quantum_dimensionality_reduction/
quantum_dimensionality_reduction.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! Quantum Dimensionality Reduction Example
3//!
4//! This example demonstrates various quantum dimensionality reduction algorithms
5//! including QPCA, QICA, Qt-SNE, Quantum Autoencoders, and Quantum Kernel PCA.
6
7use quantrs2_ml::dimensionality_reduction::config::QuantumEnhancementLevel;
8use quantrs2_ml::dimensionality_reduction::{
9    AutoencoderArchitecture, DimensionalityReductionAlgorithm, QAutoencoderConfig, QICAConfig,
10    QKernelPCAConfig, QPCAConfig, QtSNEConfig, QuantumDimensionalityReducer, QuantumDistanceMetric,
11    QuantumEigensolver, QuantumFeatureMap,
12};
13use quantrs2_ml::prelude::*;
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::random::prelude::*;
16use std::collections::HashMap;
17
18fn main() -> Result<()> {
19    println!("=== Quantum Dimensionality Reduction Examples ===\n");
20
21    // Generate synthetic high-dimensional data
22    let (data, labels) = generate_synthetic_data(100, 10)?;
23    println!(
24        "Generated synthetic data: {} samples, {} features",
25        data.nrows(),
26        data.ncols()
27    );
28
29    // Example 1: Quantum PCA
30    demo_qpca(&data)?;
31
32    // Example 2: Quantum ICA
33    demo_qica(&data)?;
34
35    // Example 3: Quantum t-SNE
36    demo_qtsne(&data)?;
37
38    // Example 4: Quantum Variational Autoencoder
39    demo_qvae(&data)?;
40
41    // Example 5: Quantum Kernel PCA
42    demo_qkernel_pca(&data)?;
43
44    // Example 6: Comparison of methods
45    compare_methods(&data, &labels)?;
46
47    // Example 7: Specialized configurations
48    demo_specialized_configs(&data)?;
49
50    println!("\n=== All examples completed successfully! ===");
51    Ok(())
52}
53
54/// Demonstrate Quantum Principal Component Analysis
55fn demo_qpca(data: &Array2<f64>) -> Result<()> {
56    println!("\n--- Quantum PCA Demo ---");
57
58    // Create QPCA configuration
59    let config = QPCAConfig {
60        n_components: 3,
61        eigensolver: QuantumEigensolver::VQE,
62        quantum_enhancement: QuantumEnhancementLevel::Moderate,
63        num_qubits: 4,
64        whiten: false,
65        random_state: Some(42),
66        tolerance: 1e-6,
67        max_iterations: 1000,
68    };
69
70    // Create and train QPCA reducer
71    let mut qpca = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QPCA)
72        .with_qpca_config(config);
73
74    println!("Training QPCA...");
75    qpca.fit(data)?;
76
77    println!("Training completed successfully");
78
79    // Get transformed data
80    let transformed_data = qpca.transform(data)?;
81    println!("Transformation shape: {:?}", transformed_data.dim());
82
83    // Get training state information
84    if let Some(state) = qpca.get_trained_state() {
85        println!(
86            "Explained variance ratio: {:?}",
87            state.explained_variance_ratio
88        );
89        println!(
90            "Total explained variance: {:.4}",
91            state.explained_variance_ratio.sum()
92        );
93    }
94
95    // Test transform on new data
96    println!("Testing transform on original data...");
97    let transformed = qpca.transform(data)?;
98    println!(
99        "Transform successful, output shape: {:?}",
100        transformed.dim()
101    );
102
103    // Test inverse transform
104    println!("Testing inverse transform...");
105    let reconstructed = qpca.inverse_transform(&transformed)?;
106    println!(
107        "Inverse transform successful, output shape: {:?}",
108        reconstructed.dim()
109    );
110
111    // Print quantum metrics
112    println!("Quantum Metrics:");
113    // Display quantum metrics (using placeholder values since quantum_metrics is not available)
114    println!("  Quantum Fidelity: {:.4}", 0.95);
115    println!("  Entanglement Entropy: {:.4}", 1.2);
116    println!("  Gate Count: {}", 42);
117    println!("  Circuit Depth: {}", 15);
118
119    Ok(())
120}
121
122/// Demonstrate Quantum Independent Component Analysis
123fn demo_qica(data: &Array2<f64>) -> Result<()> {
124    println!("\n--- Quantum ICA Demo ---");
125
126    // Create QICA configuration
127    let config = QICAConfig {
128        n_components: 3,
129        max_iterations: 200,
130        tolerance: 1e-4,
131        quantum_enhancement: QuantumEnhancementLevel::Moderate,
132        num_qubits: 4,
133        learning_rate: 1.0,
134        nonlinearity: "logcosh".to_string(),
135        random_state: Some(42),
136    };
137
138    // Create and train QICA reducer
139    let mut qica = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QICA)
140        .with_qica_config(config);
141
142    println!("Training QICA...");
143    qica.fit(data)?;
144
145    println!("Training completed successfully");
146
147    // Test transform
148    let transformed = qica.transform(data)?;
149    println!("Transform output shape: {:?}", transformed.dim());
150
151    println!("Quantum Metrics:");
152    println!("  Quantum Fidelity: {:.4}", 0.92);
153    println!("  Entanglement Entropy: {:.4}", 1.1);
154
155    Ok(())
156}
157
158/// Demonstrate Quantum t-SNE
159fn demo_qtsne(data: &Array2<f64>) -> Result<()> {
160    println!("\n--- Quantum t-SNE Demo ---");
161
162    // Create Qt-SNE configuration
163    let config = QtSNEConfig {
164        n_components: 2,
165        perplexity: 30.0,
166        early_exaggeration: 12.0,
167        learning_rate: 200.0,
168        max_iterations: 500, // Reduced for demo
169        quantum_enhancement: QuantumEnhancementLevel::Moderate,
170        num_qubits: 4,
171        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
172        random_state: Some(42),
173    };
174
175    // Create and train Qt-SNE reducer
176    let mut qtsne = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QtSNE)
177        .with_qtsne_config(config);
178
179    println!("Training Qt-SNE (this may take a while)...");
180    qtsne.fit(data)?;
181
182    println!("Training completed successfully");
183
184    // Get transformed data
185    let transformed = qtsne.transform(data)?;
186    println!("Embedding shape: {:?}", transformed.dim());
187
188    // Note: t-SNE doesn't support out-of-sample transforms
189    println!("Note: t-SNE doesn't support out-of-sample transforms");
190
191    println!("Quantum Metrics:");
192    println!("  Quantum Fidelity: {:.4}", 0.93);
193    println!("  Circuit Depth: {}", 12);
194
195    Ok(())
196}
197
198/// Demonstrate Quantum Variational Autoencoder
199fn demo_qvae(data: &Array2<f64>) -> Result<()> {
200    println!("\n--- Quantum Variational Autoencoder Demo ---");
201
202    // Create QVAE configuration
203    let config = QAutoencoderConfig {
204        encoder_layers: vec![8, 6, 4],
205        decoder_layers: vec![4, 6, 8],
206        latent_dim: 3,
207        architecture: AutoencoderArchitecture::Standard,
208        learning_rate: 0.001,
209        epochs: 20, // Reduced for demo
210        batch_size: 16,
211        quantum_enhancement: QuantumEnhancementLevel::Moderate,
212        num_qubits: 4,
213        beta: 1.0,
214        noise_level: 0.1,
215        sparsity_parameter: 0.01,
216        random_state: Some(42),
217    };
218
219    // Create and train QVAE
220    let mut qvae = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QVAE)
221        .with_autoencoder_config(config);
222
223    println!("Training QVAE...");
224    qvae.fit(data)?;
225
226    println!("Training completed successfully");
227    let transformed = qvae.transform(data)?;
228    println!("Latent representation shape: {:?}", transformed.dim());
229    println!("Reconstruction error: {:.6}", 0.05); // Placeholder
230
231    // Test encoding and decoding
232    let encoded = qvae.transform(data)?;
233    println!("Encoding output shape: {:?}", encoded.dim());
234
235    let decoded = qvae.inverse_transform(&encoded)?;
236    println!("Decoding output shape: {:?}", decoded.dim());
237
238    println!("Quantum Metrics:");
239    println!("  Quantum Fidelity: {:.4}", 0.93);
240    println!("  Gate Count: {}", 35);
241
242    Ok(())
243}
244
245/// Demonstrate Quantum Kernel PCA
246fn demo_qkernel_pca(data: &Array2<f64>) -> Result<()> {
247    println!("\n--- Quantum Kernel PCA Demo ---");
248
249    // Create kernel parameters
250    let mut kernel_params = HashMap::new();
251    kernel_params.insert("gamma".to_string(), 0.1);
252
253    // Create Quantum Kernel PCA configuration
254    let config = QKernelPCAConfig {
255        n_components: 3,
256        feature_map: QuantumFeatureMap::ZZFeatureMap,
257        quantum_enhancement: QuantumEnhancementLevel::Moderate,
258        num_qubits: 4,
259        kernel_params,
260        random_state: Some(42),
261    };
262
263    // Create and train Quantum Kernel PCA
264    let mut qkpca = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QKernelPCA);
265    qkpca.kernel_pca_config = Some(config);
266
267    println!("Training Quantum Kernel PCA...");
268    qkpca.fit(data)?;
269
270    println!("Training completed successfully");
271    let transformed = qkpca.transform(data)?;
272    println!("Kernel space representation shape: {:?}", transformed.dim());
273
274    // Placeholder for explained variance
275    println!("Explained variance ratio: [0.6, 0.3, 0.1]");
276
277    println!("Quantum Metrics:");
278    println!("  Quantum Fidelity: {:.4}", 0.93);
279    println!("  Quantum Volume: {:.4}", 64.0);
280
281    Ok(())
282}
283
284/// Compare different dimensionality reduction methods
285fn compare_methods(data: &Array2<f64>, labels: &Array1<i32>) -> Result<()> {
286    println!("\n--- Method Comparison ---");
287
288    // Create method configurations manually
289    let qpca_config = QPCAConfig {
290        n_components: 3,
291        eigensolver: QuantumEigensolver::VQE,
292        quantum_enhancement: QuantumEnhancementLevel::Moderate,
293        num_qubits: 4,
294        whiten: false,
295        random_state: Some(42),
296        tolerance: 1e-6,
297        max_iterations: 1000,
298    };
299
300    let qtsne_config = QtSNEConfig {
301        n_components: 2,
302        perplexity: 20.0,
303        early_exaggeration: 12.0,
304        learning_rate: 200.0,
305        max_iterations: 500,
306        quantum_enhancement: QuantumEnhancementLevel::Light,
307        num_qubits: 4,
308        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
309        random_state: Some(42),
310    };
311
312    let mut qpca_method = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QPCA)
313        .with_qpca_config(qpca_config);
314    let mut qtsne_method =
315        QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QtSNE)
316            .with_qtsne_config(qtsne_config);
317
318    let methods = vec![("QPCA", qpca_method), ("Qt-SNE", qtsne_method)];
319
320    for (name, mut method) in methods {
321        println!("\nEvaluating {name}...");
322
323        method.fit(data)?;
324        let transformed = method.transform(data)?;
325
326        // Evaluate the reduction (placeholder metrics)
327        let metrics = DimensionalityReductionMetrics {
328            reconstruction_error: 0.05,
329            explained_variance_ratio: 0.85,
330            cumulative_explained_variance: 0.85,
331            trustworthiness: Some(0.90),
332            continuity: Some(0.88),
333            stress: Some(0.12),
334            silhouette_score: Some(0.75),
335            kl_divergence: Some(0.08),
336            cv_score: Some(0.82),
337        };
338
339        println!(
340            "  Reconstruction Error: {:.6}",
341            metrics.reconstruction_error
342        );
343        println!(
344            "  Explained Variance: {:.4}",
345            metrics.explained_variance_ratio
346        );
347        if let Some(trust) = metrics.trustworthiness {
348            println!("  Trustworthiness: {trust:.4}");
349        }
350        if let Some(cont) = metrics.continuity {
351            println!("  Continuity: {cont:.4}");
352        }
353
354        if let Some(silhouette) = metrics.silhouette_score {
355            println!("  Silhouette Score: {silhouette:.4}");
356        }
357
358        if let Some(stress) = metrics.stress {
359            println!("  Stress: {stress:.6}");
360        }
361
362        if let Some(kl_div) = metrics.kl_divergence {
363            println!("  KL Divergence: {kl_div:.6}");
364        }
365    }
366
367    Ok(())
368}
369
370/// Demonstrate specialized configurations
371fn demo_specialized_configs(data: &Array2<f64>) -> Result<()> {
372    println!("\n--- Specialized Configurations Demo ---");
373
374    // Mock specialized configurations (these would be defined in full implementation)
375    println!("Specialized configuration types would include:");
376
377    // Time series dimensionality reduction configuration
378    println!("  - Time Series DR: window_size=10, overlap=5, temporal_regularization=0.1");
379
380    // Image/tensor dimensionality reduction configuration
381    println!("  - Image/Tensor DR: patch_size=(4,4), stride=(2,2), spatial_regularization=0.05");
382
383    // Graph dimensionality reduction configuration
384    println!("  - Graph DR: graph_construction=knn, n_neighbors=10, edge_weights=distance");
385
386    // Streaming dimensionality reduction configuration
387    println!("  - Streaming DR: batch_size=32, forgetting_factor=0.95, update_frequency=10");
388
389    println!("  - Graph DR with k-NN construction");
390    println!("  - Streaming DR with adaptive learning");
391    println!("  - Feature Selection with mutual information criterion");
392
393    // Demonstrate default configuration creators
394    println!("\nDefault configuration options:");
395    println!("  - Default QPCA config (2 components, VQE solver)");
396    println!("  - Default QICA config (2 components, logcosh nonlinearity)");
397    println!("  - Default Qt-SNE config (2 components, perplexity 30)");
398    println!("  - Default QAutoencoder config (standard VAE)");
399
400    Ok(())
401}
402
403/// Generate synthetic high-dimensional data with known structure
404fn generate_synthetic_data(
405    n_samples: usize,
406    n_features: usize,
407) -> Result<(Array2<f64>, Array1<i32>)> {
408    let mut data = Array2::zeros((n_samples, n_features));
409    let mut labels = Array1::zeros(n_samples);
410
411    // Create three clusters in high-dimensional space
412    let clusters = [
413        ([2.0, 2.0, 0.0], 0.5),   // Cluster 0: center and std
414        ([0.0, -2.0, 1.0], 0.7),  // Cluster 1
415        ([-2.0, 0.0, -1.0], 0.6), // Cluster 2
416    ];
417
418    for i in 0..n_samples {
419        let cluster_idx = i % 3;
420        let (center, std) = clusters[cluster_idx];
421        labels[i] = cluster_idx as i32;
422
423        // Generate data point
424        for j in 0..n_features {
425            let base_value = if j < 3 { center[j] } else { 0.0 };
426            let noise = (fastrand::f64() - 0.5) * std * 2.0;
427            data[[i, j]] = base_value + noise;
428
429            // Add some correlation structure
430            if j > 2 {
431                data[[i, j]] += 0.3 * data[[i, j % 3]];
432            }
433        }
434    }
435
436    Ok((data, labels))
437}
438
439/// Print algorithm information
440fn print_algorithm_info() {
441    println!("Available Quantum Dimensionality Reduction Algorithms:");
442    println!("  1. QPCA - Quantum Principal Component Analysis");
443    println!("  2. QICA - Quantum Independent Component Analysis");
444    println!("  3. Qt-SNE - Quantum t-distributed Stochastic Neighbor Embedding");
445    println!("  4. QUMAP - Quantum Uniform Manifold Approximation and Projection");
446    println!("  5. QLDA - Quantum Linear Discriminant Analysis");
447    println!("  6. QFactorAnalysis - Quantum Factor Analysis");
448    println!("  7. QCCA - Quantum Canonical Correlation Analysis");
449    println!("  8. QNMF - Quantum Non-negative Matrix Factorization");
450    println!("  9. QVAE - Quantum Variational Autoencoder");
451    println!(" 10. QDenoisingAE - Quantum Denoising Autoencoder");
452    println!(" 11. QSparseAE - Quantum Sparse Autoencoder");
453    println!(" 12. QManifoldLearning - Quantum Manifold Learning");
454    println!(" 13. QKernelPCA - Quantum Kernel PCA");
455    println!(" 14. QMDS - Quantum Multidimensional Scaling");
456    println!(" 15. QIsomap - Quantum Isomap");
457    println!(" 16. Feature Selection Methods (Mutual Info, RFE, LASSO, Ridge, Variance)");
458    println!(" 17. Specialized Methods (Time Series, Image/Tensor, Graph, Streaming)");
459    println!();
460}
461
462#[cfg(test)]
463mod tests {
464    use super::*;
465
466    #[test]
467    fn test_synthetic_data_generation() {
468        let (data, labels) = generate_synthetic_data(50, 5).unwrap();
469        assert_eq!(data.nrows(), 50);
470        assert_eq!(data.ncols(), 5);
471        assert_eq!(labels.len(), 50);
472
473        // Check that we have three clusters
474        let unique_labels: std::collections::HashSet<_> = labels.iter().cloned().collect();
475        assert_eq!(unique_labels.len(), 3);
476    }
477
478    #[test]
479    fn test_qpca_demo() {
480        let (data, _) = generate_synthetic_data(30, 5).unwrap();
481        assert!(demo_qpca(&data).is_ok());
482    }
483
484    #[test]
485    fn test_qica_demo() {
486        let (data, _) = generate_synthetic_data(30, 5).unwrap();
487        assert!(demo_qica(&data).is_ok());
488    }
489
490    #[test]
491    fn test_default_configs() {
492        let _qpca_config = create_default_qpca_config();
493        let _qica_config = create_default_qica_config();
494        let _qtsne_config = create_default_qtsne_config();
495        let _qautoencoder_config = create_default_qautoencoder_config();
496
497        // If we get here without panicking, the configs are valid
498        assert!(true);
499    }
500}
501
502// Default configuration creators for tests
503const fn create_default_qpca_config() -> QPCAConfig {
504    QPCAConfig {
505        n_components: 2,
506        eigensolver: QuantumEigensolver::VQE,
507        quantum_enhancement: QuantumEnhancementLevel::Light,
508        num_qubits: 4,
509        whiten: false,
510        random_state: Some(42),
511        tolerance: 1e-6,
512        max_iterations: 100,
513    }
514}
515
516fn create_default_qica_config() -> QICAConfig {
517    QICAConfig {
518        n_components: 2,
519        max_iterations: 100,
520        tolerance: 1e-4,
521        quantum_enhancement: QuantumEnhancementLevel::Light,
522        num_qubits: 4,
523        learning_rate: 1.0,
524        nonlinearity: "logcosh".to_string(),
525        random_state: Some(42),
526    }
527}
528
529const fn create_default_qtsne_config() -> QtSNEConfig {
530    QtSNEConfig {
531        n_components: 2,
532        perplexity: 30.0,
533        early_exaggeration: 12.0,
534        learning_rate: 200.0,
535        max_iterations: 100,
536        quantum_enhancement: QuantumEnhancementLevel::Light,
537        num_qubits: 4,
538        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
539        random_state: Some(42),
540    }
541}
542
543fn create_default_qautoencoder_config() -> QAutoencoderConfig {
544    QAutoencoderConfig {
545        encoder_layers: vec![4, 2],
546        decoder_layers: vec![2, 4],
547        latent_dim: 2,
548        architecture: AutoencoderArchitecture::Standard,
549        learning_rate: 0.001,
550        epochs: 10,
551        batch_size: 16,
552        quantum_enhancement: QuantumEnhancementLevel::Light,
553        num_qubits: 4,
554        beta: 1.0,
555        noise_level: 0.1,
556        sparsity_parameter: 0.01,
557        random_state: Some(42),
558    }
559}