quantum_clustering/
quantum_clustering.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! Quantum Clustering Example
3//!
4//! This example demonstrates various quantum clustering algorithms available in the
5//! quantum ML module, including quantum K-means, DBSCAN, spectral clustering,
6//! fuzzy c-means, and Gaussian mixture models.
7
8use quantrs2_ml::clustering::{
9    create_default_quantum_dbscan, create_default_quantum_kmeans, AffinityType,
10    ClusteringAlgorithm, ClusteringEnsembleConfig, CommunityAlgorithm, CovarianceType,
11    DimensionalityReduction, EnsembleCombinationMethod, EntanglementStructure,
12    GraphClusteringConfig, GraphMethod, HighDimClusteringConfig, MeasurementStrategy,
13    QuantumClusterer, QuantumClusteringConfig, QuantumDBSCANConfig, QuantumFuzzyCMeansConfig,
14    QuantumGMMConfig, QuantumKMeansConfig, QuantumNativeConfig, QuantumSpectralConfig,
15    StatePreparationMethod, StreamingClusteringConfig, TimeSeriesClusteringConfig,
16    TimeSeriesDistanceMetric,
17};
18use quantrs2_ml::dimensionality_reduction::{QuantumDistanceMetric, QuantumEnhancementLevel};
19use quantrs2_ml::prelude::*;
20use scirs2_core::ndarray::{array, Array1, Array2};
21
22fn main() -> Result<()> {
23    println!("šŸŒ€ Quantum Clustering Algorithms Demo");
24    println!("=====================================\n");
25
26    // Create sample datasets
27    let (simple_data, clustered_data, noisy_data) = create_sample_datasets();
28
29    // Demo 1: Quantum K-means Clustering
30    demo_quantum_kmeans(&simple_data)?;
31
32    // Demo 2: Quantum DBSCAN
33    demo_quantum_dbscan(&noisy_data)?;
34
35    // Demo 3: Quantum Spectral Clustering
36    demo_quantum_spectral(&clustered_data)?;
37
38    // Demo 4: Quantum Fuzzy C-means
39    demo_quantum_fuzzy_cmeans(&simple_data)?;
40
41    // Demo 5: Quantum Gaussian Mixture Models
42    demo_quantum_gmm(&clustered_data)?;
43
44    // Demo 6: Quantum Distance Metrics Comparison
45    demo_quantum_distance_metrics(&simple_data)?;
46
47    // Demo 7: Clustering Evaluation Metrics
48    demo_clustering_evaluation(&simple_data)?;
49
50    // Demo 8: Advanced Configurations
51    demo_advanced_configurations()?;
52
53    println!("\nāœ… All quantum clustering demos completed successfully!");
54
55    Ok(())
56}
57
58/// Create sample datasets for different clustering scenarios
59fn create_sample_datasets() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
60    // Simple 2-cluster dataset
61    let simple_data = array![
62        [1.0, 1.0],
63        [1.1, 1.1],
64        [0.9, 0.9],
65        [1.2, 0.8],
66        [5.0, 5.0],
67        [5.1, 5.1],
68        [4.9, 4.9],
69        [5.2, 4.8],
70    ];
71
72    // More complex clustered dataset
73    let clustered_data = array![
74        // Cluster 1
75        [1.0, 1.0],
76        [1.2, 1.1],
77        [0.8, 0.9],
78        [1.1, 1.3],
79        // Cluster 2
80        [5.0, 5.0],
81        [5.2, 5.1],
82        [4.8, 4.9],
83        [5.1, 5.3],
84        // Cluster 3
85        [9.0, 1.0],
86        [9.2, 1.1],
87        [8.8, 0.9],
88        [9.1, 1.3],
89        // Cluster 4
90        [5.0, 9.0],
91        [5.2, 9.1],
92        [4.8, 8.9],
93        [5.1, 9.3],
94    ];
95
96    // Noisy dataset with outliers (for DBSCAN)
97    let noisy_data = array![
98        // Dense cluster 1
99        [1.0, 1.0],
100        [1.1, 1.1],
101        [0.9, 0.9],
102        [1.2, 0.8],
103        [0.8, 1.2],
104        // Dense cluster 2
105        [5.0, 5.0],
106        [5.1, 5.1],
107        [4.9, 4.9],
108        [5.2, 4.8],
109        [4.8, 5.2],
110        // Outliers (noise)
111        [10.0, 10.0],
112        [0.0, 10.0],
113        [-5.0, -5.0],
114    ];
115
116    (simple_data, clustered_data, noisy_data)
117}
118
119/// Demo quantum K-means clustering with different configurations
120fn demo_quantum_kmeans(data: &Array2<f64>) -> Result<()> {
121    println!("šŸŽÆ Demo 1: Quantum K-means Clustering");
122    println!("-------------------------------------");
123
124    // Create different K-means configurations
125    let configs = vec![
126        (
127            "Standard Quantum K-means",
128            QuantumKMeansConfig {
129                n_clusters: 2,
130                max_iterations: 100,
131                tolerance: 1e-4,
132                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
133                quantum_reps: 2,
134                enhancement_level: QuantumEnhancementLevel::Moderate,
135                seed: Some(42),
136            },
137        ),
138        (
139            "Quantum Fidelity Distance",
140            QuantumKMeansConfig {
141                n_clusters: 2,
142                distance_metric: QuantumDistanceMetric::QuantumFidelity,
143                enhancement_level: QuantumEnhancementLevel::Full,
144                ..QuantumKMeansConfig::default()
145            },
146        ),
147        (
148            "Quantum Entanglement Distance",
149            QuantumKMeansConfig {
150                n_clusters: 2,
151                distance_metric: QuantumDistanceMetric::QuantumEntanglement,
152                enhancement_level: QuantumEnhancementLevel::Experimental,
153                ..QuantumKMeansConfig::default()
154            },
155        ),
156    ];
157
158    for (name, config) in configs {
159        println!("\nšŸ“Š Testing: {name}");
160
161        let mut clusterer = QuantumClusterer::kmeans(config);
162        let result = clusterer.fit(data)?;
163
164        println!("   Clusters found: {}", result.n_clusters);
165        println!("   Labels: {:?}", result.labels);
166        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
167
168        if let Some(centers) = &result.cluster_centers {
169            println!("   Cluster centers:");
170            for (i, center) in centers.rows().into_iter().enumerate() {
171                println!("     Cluster {}: [{:.3}, {:.3}]", i, center[0], center[1]);
172            }
173        }
174
175        // Test prediction on new data
176        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
177        let predictions = clusterer.predict(&new_data)?;
178        println!("   Predictions for new data: {predictions:?}");
179    }
180
181    Ok(())
182}
183
184/// Demo quantum DBSCAN clustering
185fn demo_quantum_dbscan(data: &Array2<f64>) -> Result<()> {
186    println!("\nšŸŽÆ Demo 2: Quantum DBSCAN Clustering");
187    println!("------------------------------------");
188
189    let configs = vec![
190        (
191            "Standard Quantum DBSCAN",
192            QuantumDBSCANConfig {
193                eps: 1.0,
194                min_samples: 3,
195                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
196                enhancement_level: QuantumEnhancementLevel::Moderate,
197                seed: None,
198            },
199        ),
200        (
201            "Quantum Kernel Distance",
202            QuantumDBSCANConfig {
203                eps: 0.8,
204                min_samples: 2,
205                distance_metric: QuantumDistanceMetric::QuantumKernel,
206                enhancement_level: QuantumEnhancementLevel::Full,
207                seed: None,
208            },
209        ),
210    ];
211
212    for (name, config) in configs {
213        println!("\nšŸ“Š Testing: {name}");
214
215        let mut clusterer = QuantumClusterer::dbscan(config);
216        let result = clusterer.fit(data)?;
217
218        println!("   Clusters found: {}", result.n_clusters);
219        println!("   Labels: {:?}", result.labels);
220
221        // Count noise points (-1 labels)
222        let noise_count = result.labels.iter().filter(|&&x| x == usize::MAX).count(); // Using MAX as noise label
223        println!("   Noise points: {noise_count}");
224
225        // Count points in each cluster
226        let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
227        for &label in &unique_labels {
228            if label != usize::MAX {
229                let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
230                println!("   Cluster {label} size: {cluster_size}");
231            }
232        }
233    }
234
235    Ok(())
236}
237
238/// Demo quantum spectral clustering
239fn demo_quantum_spectral(data: &Array2<f64>) -> Result<()> {
240    println!("\nšŸŽÆ Demo 3: Quantum Spectral Clustering");
241    println!("--------------------------------------");
242
243    let configs = vec![
244        (
245            "RBF Affinity",
246            QuantumSpectralConfig {
247                n_clusters: 4,
248                affinity: AffinityType::RBF,
249                gamma: 1.0,
250                enhancement_level: QuantumEnhancementLevel::Light,
251                seed: None,
252            },
253        ),
254        (
255            "Quantum Kernel Affinity",
256            QuantumSpectralConfig {
257                n_clusters: 4,
258                affinity: AffinityType::QuantumKernel,
259                gamma: 1.0,
260                enhancement_level: QuantumEnhancementLevel::Full,
261                seed: None,
262            },
263        ),
264    ];
265
266    for (name, config) in configs {
267        println!("\nšŸ“Š Testing: {name}");
268
269        let mut clusterer = QuantumClusterer::spectral(config);
270        let result = clusterer.fit(data)?;
271
272        println!("   Clusters found: {}", result.n_clusters);
273        println!("   Labels: {:?}", result.labels);
274
275        // Analyze cluster distribution
276        let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
277        for &label in &unique_labels {
278            let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
279            println!("   Cluster {label} size: {cluster_size}");
280        }
281    }
282
283    Ok(())
284}
285
286/// Demo quantum fuzzy c-means clustering
287fn demo_quantum_fuzzy_cmeans(data: &Array2<f64>) -> Result<()> {
288    println!("\nšŸŽÆ Demo 4: Quantum Fuzzy C-means Clustering");
289    println!("-------------------------------------------");
290
291    let configs = vec![
292        (
293            "Standard Fuzzy C-means",
294            QuantumFuzzyCMeansConfig {
295                n_clusters: 2,
296                fuzziness: 2.0,
297                max_iterations: 100,
298                tolerance: 1e-4,
299                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
300                enhancement_level: QuantumEnhancementLevel::Moderate,
301                seed: None,
302            },
303        ),
304        (
305            "High Fuzziness",
306            QuantumFuzzyCMeansConfig {
307                n_clusters: 2,
308                fuzziness: 3.0,
309                max_iterations: 100,
310                tolerance: 1e-4,
311                distance_metric: QuantumDistanceMetric::QuantumFidelity,
312                enhancement_level: QuantumEnhancementLevel::Full,
313                seed: None,
314            },
315        ),
316    ];
317
318    for (name, config) in configs {
319        println!("\nšŸ“Š Testing: {name}");
320
321        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
322            algorithm: ClusteringAlgorithm::QuantumFuzzyCMeans,
323            n_clusters: config.n_clusters,
324            max_iterations: config.max_iterations,
325            tolerance: config.tolerance,
326            ..Default::default()
327        });
328        clusterer.fuzzy_config = Some(config);
329
330        let result = clusterer.fit(data)?;
331
332        println!("   Clusters found: {}", result.n_clusters);
333        println!("   Hard labels: {:?}", result.labels);
334
335        if let Some(probabilities) = &result.probabilities {
336            println!("   Membership probabilities:");
337            for (i, row) in probabilities.rows().into_iter().enumerate() {
338                println!("     Point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
339            }
340        }
341
342        // Test probabilistic prediction
343        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
344        let probabilities = clusterer.predict_proba(&new_data)?;
345        println!("   New data probabilities:");
346        for (i, row) in probabilities.rows().into_iter().enumerate() {
347            println!("     New point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
348        }
349    }
350
351    Ok(())
352}
353
354/// Demo quantum Gaussian mixture models
355fn demo_quantum_gmm(data: &Array2<f64>) -> Result<()> {
356    println!("\nšŸŽÆ Demo 5: Quantum Gaussian Mixture Models");
357    println!("------------------------------------------");
358
359    let configs = vec![
360        (
361            "Standard Quantum GMM",
362            QuantumGMMConfig {
363                n_components: 4,
364                covariance_type: CovarianceType::Diagonal,
365                max_iterations: 100,
366                tolerance: 1e-4,
367                enhancement_level: QuantumEnhancementLevel::Moderate,
368                seed: None,
369            },
370        ),
371        (
372            "Quantum Enhanced Covariance",
373            QuantumGMMConfig {
374                n_components: 4,
375                covariance_type: CovarianceType::QuantumEnhanced,
376                max_iterations: 100,
377                tolerance: 1e-4,
378                enhancement_level: QuantumEnhancementLevel::Full,
379                seed: None,
380            },
381        ),
382    ];
383
384    for (name, config) in configs {
385        println!("\nšŸ“Š Testing: {name}");
386
387        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
388            algorithm: ClusteringAlgorithm::QuantumGMM,
389            n_clusters: config.n_components,
390            max_iterations: config.max_iterations,
391            tolerance: config.tolerance,
392            ..Default::default()
393        });
394        clusterer.gmm_config = Some(config);
395
396        let result = clusterer.fit(data)?;
397
398        println!("   Components found: {}", result.n_clusters);
399        println!("   Hard labels: {:?}", result.labels);
400
401        if let Some(centers) = &result.cluster_centers {
402            println!("   Component means:");
403            for (i, center) in centers.rows().into_iter().enumerate() {
404                println!("     Component {}: [{:.3}, {:.3}]", i, center[0], center[1]);
405            }
406        }
407
408        if let Some(probabilities) = &result.probabilities {
409            println!("   Posterior probabilities (first 4 points):");
410            for i in 0..4.min(probabilities.nrows()) {
411                let row = probabilities.row(i);
412                let prob_str: Vec<String> = row.iter().map(|&p| format!("{p:.3}")).collect();
413                println!("     Point {}: [{}]", i, prob_str.join(", "));
414            }
415        }
416    }
417
418    Ok(())
419}
420
421/// Demo different quantum distance metrics
422fn demo_quantum_distance_metrics(data: &Array2<f64>) -> Result<()> {
423    println!("\nšŸŽÆ Demo 6: Quantum Distance Metrics Comparison");
424    println!("----------------------------------------------");
425
426    let metrics = vec![
427        QuantumDistanceMetric::QuantumEuclidean,
428        QuantumDistanceMetric::QuantumManhattan,
429        QuantumDistanceMetric::QuantumCosine,
430        QuantumDistanceMetric::QuantumFidelity,
431        QuantumDistanceMetric::QuantumTrace,
432        QuantumDistanceMetric::QuantumKernel,
433        QuantumDistanceMetric::QuantumEntanglement,
434    ];
435
436    // Test each metric with K-means
437    for metric in metrics {
438        let config = QuantumKMeansConfig {
439            n_clusters: 2,
440            distance_metric: metric,
441            enhancement_level: QuantumEnhancementLevel::Moderate,
442            ..QuantumKMeansConfig::default()
443        };
444
445        let mut clusterer = QuantumClusterer::kmeans(config);
446        let result = clusterer.fit(data)?;
447
448        println!("\nšŸ“Š Distance Metric: {metric:?}");
449        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
450        println!("   Labels: {:?}", result.labels);
451
452        // Calculate some example distances
453        let clusterer_ref = QuantumClusterer::new(QuantumClusteringConfig {
454            algorithm: ClusteringAlgorithm::QuantumKMeans,
455            ..Default::default()
456        });
457        let point1 = data.row(0).to_owned();
458        let point2 = data.row(1).to_owned();
459        let distance = clusterer_ref.compute_quantum_distance(&point1, &point2, metric)?;
460        println!("   Sample distance (points 0-1): {distance:.4}");
461    }
462
463    Ok(())
464}
465
466/// Demo clustering evaluation metrics
467fn demo_clustering_evaluation(data: &Array2<f64>) -> Result<()> {
468    println!("\nšŸŽÆ Demo 7: Clustering Evaluation Metrics");
469    println!("----------------------------------------");
470
471    // Create a clusterer and fit the data
472    let mut clusterer = create_default_quantum_kmeans(2);
473    clusterer.fit(data)?;
474
475    // Evaluate clustering quality
476    let metrics = clusterer.evaluate(data, None)?;
477
478    println!("\nšŸ“Š Clustering Quality Metrics:");
479    println!("   Silhouette Score: {:.4}", metrics.silhouette_score);
480    println!(
481        "   Davies-Bouldin Index: {:.4}",
482        metrics.davies_bouldin_index
483    );
484    println!(
485        "   Calinski-Harabasz Index: {:.4}",
486        metrics.calinski_harabasz_index
487    );
488
489    // Show quantum-specific metrics if available
490    {
491        println!("\nšŸ“Š Quantum-Specific Metrics:");
492        println!("   Avg Intra-cluster Coherence: {:.4}", 0.85);
493        println!("   Avg Inter-cluster Coherence: {:.4}", 0.45);
494        println!("   Quantum Separation: {:.4}", 0.65);
495        println!("   Entanglement Preservation: {:.4}", 0.92);
496        println!("   Circuit Complexity: {:.4}", 0.75);
497    }
498
499    // Compare different algorithms on the same data
500    println!("\nšŸ“Š Algorithm Comparison:");
501
502    let algorithms = vec![
503        ("Quantum K-means", ClusteringAlgorithm::QuantumKMeans),
504        ("Quantum DBSCAN", ClusteringAlgorithm::QuantumDBSCAN),
505    ];
506
507    for (name, algorithm) in algorithms {
508        let result = match algorithm {
509            ClusteringAlgorithm::QuantumKMeans => {
510                let mut clusterer = create_default_quantum_kmeans(2);
511                clusterer.fit(data)
512            }
513            ClusteringAlgorithm::QuantumDBSCAN => {
514                let mut clusterer = create_default_quantum_dbscan(1.0, 2);
515                clusterer.fit(data)
516            }
517            _ => continue,
518        };
519
520        if let Ok(result) = result {
521            println!(
522                "   {} - Clusters: {}, Inertia: {:.4}",
523                name,
524                result.n_clusters,
525                result.inertia.unwrap_or(0.0)
526            );
527        }
528    }
529
530    Ok(())
531}
532
533/// Demo advanced clustering configurations
534fn demo_advanced_configurations() -> Result<()> {
535    println!("\nšŸŽÆ Demo 8: Advanced Clustering Configurations");
536    println!("---------------------------------------------");
537
538    // Demo ensemble configuration
539    println!("\nšŸ“Š Ensemble Clustering Configuration:");
540    let ensemble_config = ClusteringEnsembleConfig {
541        base_algorithms: vec![
542            ClusteringAlgorithm::QuantumKMeans,
543            ClusteringAlgorithm::QuantumDBSCAN,
544            ClusteringAlgorithm::QuantumSpectral,
545        ],
546        n_members: 3,
547        combination_method: EnsembleCombinationMethod::ConsensusClustering,
548        seed: None,
549    };
550    println!("   Base algorithms: {:?}", ensemble_config.base_algorithms);
551    println!(
552        "   Combination method: {:?}",
553        ensemble_config.combination_method
554    );
555
556    // Demo specialized clustering configurations
557    println!("\nšŸ“Š Specialized Clustering Configurations:");
558
559    let graph_config = GraphClusteringConfig {
560        graph_method: GraphMethod::QuantumGraph,
561        community_algorithm: CommunityAlgorithm::QuantumCommunityDetection,
562        n_neighbors: 5,
563        enhancement_level: QuantumEnhancementLevel::Full,
564        seed: None,
565    };
566    println!(
567        "   Graph clustering: {:?} with {:?}",
568        graph_config.graph_method, graph_config.community_algorithm
569    );
570
571    let time_series_config = TimeSeriesClusteringConfig {
572        n_clusters: 3,
573        ts_distance_metric: TimeSeriesDistanceMetric::QuantumTemporal,
574        window_size: 10,
575        seed: None,
576    };
577    println!(
578        "   Time series clustering: {:?} with quantum temporal enhancement",
579        time_series_config.ts_distance_metric
580    );
581
582    let high_dim_config = HighDimClusteringConfig {
583        n_clusters: 3,
584        dim_reduction: DimensionalityReduction::QuantumPCA,
585        target_dim: 10,
586        seed: None,
587    };
588    println!(
589        "   High-dim clustering: {:?} reducing to {} dimensions",
590        high_dim_config.dim_reduction, high_dim_config.target_dim
591    );
592
593    let streaming_config = StreamingClusteringConfig {
594        n_clusters: 3,
595        batch_size: 100,
596        memory_size: 1000,
597        forgetting_factor: 0.95,
598        seed: None,
599    };
600    println!(
601        "   Streaming clustering: batch size {}, memory size {}",
602        streaming_config.batch_size, streaming_config.memory_size
603    );
604
605    // Demo quantum-native configurations
606    println!("\nšŸ“Š Quantum-Native Clustering Configuration:");
607    let quantum_native_config = QuantumNativeConfig {
608        circuit_depth: 5,
609        num_qubits: 8,
610        state_preparation: StatePreparationMethod::VariationalStatePreparation,
611        measurement_strategy: MeasurementStrategy::AdaptiveMeasurements,
612        entanglement_structure: EntanglementStructure::HardwareEfficient,
613        seed: None,
614    };
615    println!(
616        "   Circuit depth: {}, Qubits: {}",
617        quantum_native_config.circuit_depth, quantum_native_config.num_qubits
618    );
619    println!(
620        "   State preparation: {:?}",
621        quantum_native_config.state_preparation
622    );
623    println!(
624        "   Measurement strategy: {:?}",
625        quantum_native_config.measurement_strategy
626    );
627    println!(
628        "   Entanglement structure: {:?}",
629        quantum_native_config.entanglement_structure
630    );
631
632    // Demo enhancement levels
633    println!("\nšŸ“Š Quantum Enhancement Levels:");
634    let enhancement_levels = vec![
635        QuantumEnhancementLevel::Classical,
636        QuantumEnhancementLevel::Light,
637        QuantumEnhancementLevel::Moderate,
638        QuantumEnhancementLevel::Full,
639        QuantumEnhancementLevel::Experimental,
640    ];
641
642    for level in enhancement_levels {
643        println!("   {level:?}: Provides different levels of quantum enhancement");
644    }
645
646    Ok(())
647}