1use crate::benchmarking::{BenchmarkConfig, BenchmarkFramework};
8use crate::domain_templates::{DomainTemplateManager, TemplateConfig};
9use crate::error::{MLError, Result};
10use crate::keras_api::{Dense, QuantumDense, Sequential};
11use crate::model_zoo::{ModelZoo, QuantumModel};
12use crate::pytorch_api::{QuantumLinear, QuantumModule};
13use crate::sklearn_compatibility::{QuantumMLPClassifier, QuantumSVC};
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::prelude::*;
16use scirs2_core::ndarray::{s, Array1, Array2, ArrayD, Axis, IxDyn};
17use serde::{Deserialize, Serialize};
18use std::collections::HashMap;
19
20pub struct HybridPipelineManager {
22 pipeline_templates: HashMap<String, PipelineTemplate>,
24 preprocessors: HashMap<String, Box<dyn DataPreprocessor>>,
26 model_registry: ModelRegistry,
28 ensemble_strategies: HashMap<String, Box<dyn EnsembleStrategy>>,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct PipelineTemplate {
35 pub name: String,
37 pub description: String,
39 pub stages: Vec<PipelineStage>,
41 pub hyperparameters: HashMap<String, f64>,
43 pub data_types: Vec<String>,
45 pub performance_profile: PerformanceProfile,
47}
48
49#[derive(Debug, Clone, Serialize, Deserialize)]
51pub enum PipelineStage {
52 Preprocessing {
54 method: String,
55 parameters: HashMap<String, f64>,
56 },
57 FeatureEngineering {
59 method: String,
60 parameters: HashMap<String, f64>,
61 },
62 Training {
64 model_type: ModelType,
65 hyperparameters: HashMap<String, f64>,
66 },
67 Ensemble { strategy: String, weights: Vec<f64> },
69 PostProcessing {
71 method: String,
72 parameters: HashMap<String, f64>,
73 },
74}
75
76#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum ModelType {
79 Classical(String),
81 Quantum(String),
83 Hybrid(String),
85 Ensemble(Vec<ModelType>),
87}
88
89#[derive(Debug, Clone, Serialize, Deserialize)]
91pub struct PerformanceProfile {
92 pub accuracy_range: (f64, f64),
94 pub training_time_minutes: f64,
96 pub memory_gb: f64,
98 pub scalability: ScalabilityProfile,
100}
101
102#[derive(Debug, Clone, Serialize, Deserialize)]
104pub struct ScalabilityProfile {
105 pub max_samples: usize,
107 pub max_features: usize,
109 pub parallel_capable: bool,
111 pub distributed_capable: bool,
113}
114
115pub trait DataPreprocessor: Send + Sync {
117 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()>;
119
120 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
122
123 fn fit_transform(&mut self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
125 self.fit(X)?;
126 self.transform(X)
127 }
128
129 fn get_params(&self) -> HashMap<String, f64>;
131
132 fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
134}
135
136pub struct ModelRegistry {
138 quantum_models: HashMap<String, Box<dyn QuantumModel>>,
140 classical_models: HashMap<String, Box<dyn ClassicalModel>>,
142 hybrid_models: HashMap<String, Box<dyn HybridModel>>,
144}
145
146pub trait ClassicalModel: Send + Sync {
148 fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
150
151 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
153
154 fn get_params(&self) -> HashMap<String, f64>;
156
157 fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
159
160 fn feature_importance(&self) -> Option<Array1<f64>>;
162}
163
164pub trait HybridModel: Send + Sync {
166 fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
168
169 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
171
172 fn quantum_performance(&self) -> ModelPerformance;
174
175 fn classical_performance(&self) -> ModelPerformance;
177
178 fn strategy_description(&self) -> String;
180}
181
182#[derive(Debug, Clone, Serialize, Deserialize)]
184pub struct ModelPerformance {
185 pub accuracy: f64,
187 pub training_time: f64,
189 pub inference_time: f64,
191 pub memory_usage: f64,
193}
194
195pub trait EnsembleStrategy: Send + Sync {
197 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>>;
199
200 fn get_weights(&self) -> Vec<f64>;
202
203 fn update_weights(&mut self, performances: Vec<f64>) -> Result<()>;
205
206 fn description(&self) -> String;
208}
209
210impl HybridPipelineManager {
211 pub fn new() -> Self {
213 let mut manager = Self {
214 pipeline_templates: HashMap::new(),
215 preprocessors: HashMap::new(),
216 model_registry: ModelRegistry::new(),
217 ensemble_strategies: HashMap::new(),
218 };
219
220 manager.register_default_components();
221 manager
222 }
223
224 fn register_default_components(&mut self) {
226 self.register_default_templates();
227 self.register_default_preprocessors();
228 self.register_default_ensemble_strategies();
229 }
230
231 fn register_default_templates(&mut self) {
233 self.pipeline_templates.insert(
235 "hybrid_classification".to_string(),
236 PipelineTemplate {
237 name: "Hybrid Quantum-Classical Classification".to_string(),
238 description: "Combines quantum feature learning with classical decision making"
239 .to_string(),
240 stages: vec![
241 PipelineStage::Preprocessing {
242 method: "standard_scaler".to_string(),
243 parameters: HashMap::new(),
244 },
245 PipelineStage::FeatureEngineering {
246 method: "quantum_feature_map".to_string(),
247 parameters: [("num_qubits".to_string(), 8.0)].iter().cloned().collect(),
248 },
249 PipelineStage::Training {
250 model_type: ModelType::Hybrid("quantum_classical_ensemble".to_string()),
251 hyperparameters: [
252 ("quantum_weight".to_string(), 0.6),
253 ("classical_weight".to_string(), 0.4),
254 ]
255 .iter()
256 .cloned()
257 .collect(),
258 },
259 ],
260 hyperparameters: [
261 ("learning_rate".to_string(), 0.01),
262 ("epochs".to_string(), 100.0),
263 ("batch_size".to_string(), 32.0),
264 ]
265 .iter()
266 .cloned()
267 .collect(),
268 data_types: vec!["tabular".to_string(), "structured".to_string()],
269 performance_profile: PerformanceProfile {
270 accuracy_range: (0.85, 0.95),
271 training_time_minutes: 30.0,
272 memory_gb: 2.0,
273 scalability: ScalabilityProfile {
274 max_samples: 100000,
275 max_features: 100,
276 parallel_capable: true,
277 distributed_capable: false,
278 },
279 },
280 },
281 );
282
283 self.pipeline_templates.insert(
285 "quantum_ensemble".to_string(),
286 PipelineTemplate {
287 name: "Quantum Model Ensemble".to_string(),
288 description: "Ensemble of multiple quantum models with different ansatz types"
289 .to_string(),
290 stages: vec![
291 PipelineStage::Preprocessing {
292 method: "quantum_data_encoder".to_string(),
293 parameters: HashMap::new(),
294 },
295 PipelineStage::Training {
296 model_type: ModelType::Ensemble(vec![
297 ModelType::Quantum("qnn_hardware_efficient".to_string()),
298 ModelType::Quantum("qnn_real_amplitudes".to_string()),
299 ModelType::Quantum("qsvm_zz_feature_map".to_string()),
300 ]),
301 hyperparameters: HashMap::new(),
302 },
303 PipelineStage::Ensemble {
304 strategy: "weighted_voting".to_string(),
305 weights: vec![0.4, 0.3, 0.3],
306 },
307 ],
308 hyperparameters: [
309 ("num_qubits".to_string(), 10.0),
310 ("num_layers".to_string(), 3.0),
311 ]
312 .iter()
313 .cloned()
314 .collect(),
315 data_types: vec!["tabular".to_string(), "quantum_ready".to_string()],
316 performance_profile: PerformanceProfile {
317 accuracy_range: (0.88, 0.96),
318 training_time_minutes: 60.0,
319 memory_gb: 4.0,
320 scalability: ScalabilityProfile {
321 max_samples: 50000,
322 max_features: 50,
323 parallel_capable: true,
324 distributed_capable: true,
325 },
326 },
327 },
328 );
329
330 self.pipeline_templates.insert(
332 "quantum_automl".to_string(),
333 PipelineTemplate {
334 name: "Quantum AutoML Pipeline".to_string(),
335 description: "Automated quantum model selection and hyperparameter optimization"
336 .to_string(),
337 stages: vec![
338 PipelineStage::Preprocessing {
339 method: "auto_preprocessor".to_string(),
340 parameters: HashMap::new(),
341 },
342 PipelineStage::FeatureEngineering {
343 method: "auto_feature_engineering".to_string(),
344 parameters: HashMap::new(),
345 },
346 PipelineStage::Training {
347 model_type: ModelType::Hybrid("auto_selected".to_string()),
348 hyperparameters: HashMap::new(),
349 },
350 ],
351 hyperparameters: [
352 ("search_budget".to_string(), 100.0),
353 ("validation_split".to_string(), 0.2),
354 ]
355 .iter()
356 .cloned()
357 .collect(),
358 data_types: vec!["any".to_string()],
359 performance_profile: PerformanceProfile {
360 accuracy_range: (0.80, 0.98),
361 training_time_minutes: 180.0,
362 memory_gb: 8.0,
363 scalability: ScalabilityProfile {
364 max_samples: 200000,
365 max_features: 200,
366 parallel_capable: true,
367 distributed_capable: true,
368 },
369 },
370 },
371 );
372 }
373
374 fn register_default_preprocessors(&mut self) {
376 self.preprocessors.insert(
377 "standard_scaler".to_string(),
378 Box::new(StandardScaler::new()),
379 );
380 self.preprocessors
381 .insert("min_max_scaler".to_string(), Box::new(MinMaxScaler::new()));
382 self.preprocessors.insert(
383 "quantum_data_encoder".to_string(),
384 Box::new(QuantumDataEncoder::new()),
385 );
386 self.preprocessors.insert(
387 "principal_component_analysis".to_string(),
388 Box::new(PrincipalComponentAnalysis::new()),
389 );
390 }
391
392 fn register_default_ensemble_strategies(&mut self) {
394 self.ensemble_strategies.insert(
395 "weighted_voting".to_string(),
396 Box::new(WeightedVotingEnsemble::new()),
397 );
398 self.ensemble_strategies
399 .insert("stacking".to_string(), Box::new(StackingEnsemble::new()));
400 self.ensemble_strategies.insert(
401 "adaptive_weighting".to_string(),
402 Box::new(AdaptiveWeightingEnsemble::new()),
403 );
404 }
405
406 pub fn create_pipeline(
408 &self,
409 template_name: &str,
410 config: PipelineConfig,
411 ) -> Result<HybridPipeline> {
412 let template = self.pipeline_templates.get(template_name).ok_or_else(|| {
413 MLError::InvalidConfiguration(format!("Pipeline template not found: {}", template_name))
414 })?;
415
416 HybridPipeline::from_template(template, config)
417 }
418
419 pub fn get_available_templates(&self) -> Vec<&PipelineTemplate> {
421 self.pipeline_templates.values().collect()
422 }
423
424 pub fn search_templates_by_data_type(&self, data_type: &str) -> Vec<&PipelineTemplate> {
426 self.pipeline_templates
427 .values()
428 .filter(|template| {
429 template.data_types.contains(&data_type.to_string())
430 || template.data_types.contains(&"any".to_string())
431 })
432 .collect()
433 }
434
435 pub fn recommend_pipeline(
437 &self,
438 dataset_info: &DatasetInfo,
439 ) -> Result<Vec<PipelineRecommendation>> {
440 let mut recommendations = Vec::new();
441
442 for template in self.pipeline_templates.values() {
443 let compatibility_score = self.calculate_compatibility_score(template, dataset_info);
444
445 if compatibility_score > 0.5 {
446 recommendations.push(PipelineRecommendation {
447 template_name: template.name.clone(),
448 compatibility_score,
449 expected_performance: template.performance_profile.clone(),
450 recommendation_reason: self
451 .generate_recommendation_reason(template, dataset_info),
452 });
453 }
454 }
455
456 recommendations.sort_by(|a, b| {
458 b.compatibility_score
459 .partial_cmp(&a.compatibility_score)
460 .unwrap_or(std::cmp::Ordering::Equal)
461 });
462
463 Ok(recommendations)
464 }
465
466 fn calculate_compatibility_score(
468 &self,
469 template: &PipelineTemplate,
470 dataset_info: &DatasetInfo,
471 ) -> f64 {
472 let mut score = 0.0;
473 let mut factors = 0;
474
475 if template.data_types.contains(&dataset_info.data_type)
477 || template.data_types.contains(&"any".to_string())
478 {
479 score += 0.3;
480 }
481 factors += 1;
482
483 if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
485 score += 0.3;
486 }
487 factors += 1;
488
489 if template.performance_profile.scalability.max_features >= dataset_info.num_features {
490 score += 0.2;
491 }
492 factors += 1;
493
494 if dataset_info.problem_type == "classification" && template.name.contains("classification")
496 {
497 score += 0.2;
498 } else if dataset_info.problem_type == "regression" && template.name.contains("regression")
499 {
500 score += 0.2;
501 }
502 factors += 1;
503
504 score / factors as f64
505 }
506
507 fn generate_recommendation_reason(
509 &self,
510 template: &PipelineTemplate,
511 dataset_info: &DatasetInfo,
512 ) -> String {
513 let mut reasons = Vec::new();
514
515 if template.data_types.contains(&dataset_info.data_type) {
516 reasons.push(format!("Optimized for {} data", dataset_info.data_type));
517 }
518
519 if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
520 reasons.push("Suitable for dataset size".to_string());
521 }
522
523 if template.name.contains("quantum") {
524 reasons.push("Leverages quantum advantage".to_string());
525 }
526
527 if template.name.contains("ensemble") {
528 reasons.push("Robust ensemble approach".to_string());
529 }
530
531 if reasons.is_empty() {
532 "General purpose pipeline".to_string()
533 } else {
534 reasons.join(", ")
535 }
536 }
537
538 pub fn auto_optimize_pipeline(
540 &self,
541 X: &ArrayD<f64>,
542 y: &ArrayD<f64>,
543 optimization_config: AutoOptimizationConfig,
544 ) -> Result<OptimizedPipeline> {
545 println!("Starting automated pipeline optimization...");
546
547 let dataset_info = DatasetInfo::from_arrays(X, y);
548 let candidate_templates = self.recommend_pipeline(&dataset_info)?;
549
550 let mut best_pipeline = None;
551 let mut best_score = 0.0;
552
553 for recommendation in candidate_templates
554 .iter()
555 .take(optimization_config.max_trials)
556 {
557 println!("Testing pipeline: {}", recommendation.template_name);
558
559 let config = PipelineConfig::default();
560 let mut pipeline = self.create_pipeline(&recommendation.template_name, config)?;
561
562 let cv_score =
564 self.cross_validate_pipeline(&mut pipeline, X, y, optimization_config.cv_folds)?;
565
566 if cv_score > best_score {
567 best_score = cv_score;
568 best_pipeline = Some(pipeline);
569 }
570 }
571
572 let best_pipeline = best_pipeline.ok_or_else(|| {
573 MLError::InvalidConfiguration("No suitable pipeline found".to_string())
574 })?;
575
576 Ok(OptimizedPipeline {
577 pipeline: best_pipeline,
578 optimization_score: best_score,
579 optimization_config,
580 optimization_history: Vec::new(), })
582 }
583
584 fn cross_validate_pipeline(
586 &self,
587 pipeline: &mut HybridPipeline,
588 X: &ArrayD<f64>,
589 y: &ArrayD<f64>,
590 cv_folds: usize,
591 ) -> Result<f64> {
592 let n_samples = X.shape()[0];
593 let fold_size = n_samples / cv_folds;
594 let mut scores = Vec::new();
595
596 for fold in 0..cv_folds {
597 let start_idx = fold * fold_size;
598 let end_idx = if fold == cv_folds - 1 {
599 n_samples
600 } else {
601 (fold + 1) * fold_size
602 };
603
604 let X_val = X.slice(s![start_idx..end_idx, ..]).to_owned();
606 let y_val = y.slice(s![start_idx..end_idx, ..]).to_owned();
607
608 let mut X_train_parts = Vec::new();
609 let mut y_train_parts = Vec::new();
610
611 if start_idx > 0 {
612 X_train_parts.push(X.slice(s![..start_idx, ..]));
613 y_train_parts.push(y.slice(s![..start_idx, ..]));
614 }
615 if end_idx < n_samples {
616 X_train_parts.push(X.slice(s![end_idx.., ..]));
617 y_train_parts.push(y.slice(s![end_idx.., ..]));
618 }
619
620 if !X_train_parts.is_empty() {
622 let X_train = X_train_parts[0].to_owned();
624 let y_train = y_train_parts[0].to_owned();
625
626 pipeline.fit(&X_train.into_dyn(), &y_train.into_dyn())?;
628 let predictions = pipeline.predict(&X_val.into_dyn())?;
629 let score = self.calculate_score(&predictions, &y_val.into_dyn())?;
630 scores.push(score);
631 }
632 }
633
634 Ok(scores.iter().sum::<f64>() / scores.len() as f64)
635 }
636
637 fn calculate_score(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
639 let pred_classes = predictions.mapv(|x| if x > 0.5 { 1.0 } else { 0.0 });
641 let correct = pred_classes
642 .iter()
643 .zip(targets.iter())
644 .filter(|(&pred, &target)| (pred - target).abs() < 1e-6)
645 .count();
646 Ok(correct as f64 / targets.len() as f64)
647 }
648}
649
650#[derive(Debug, Clone)]
652pub struct PipelineConfig {
653 pub hyperparameters: HashMap<String, f64>,
655 pub resource_constraints: ResourceConstraints,
657 pub validation_strategy: ValidationStrategy,
659}
660
661impl Default for PipelineConfig {
662 fn default() -> Self {
663 Self {
664 hyperparameters: HashMap::new(),
665 resource_constraints: ResourceConstraints::default(),
666 validation_strategy: ValidationStrategy::CrossValidation(5),
667 }
668 }
669}
670
671#[derive(Debug, Clone)]
673pub struct ResourceConstraints {
674 pub max_training_time: f64,
676 pub max_memory_gb: f64,
678 pub available_qubits: usize,
680 pub allow_parallel: bool,
682}
683
684impl Default for ResourceConstraints {
685 fn default() -> Self {
686 Self {
687 max_training_time: 60.0,
688 max_memory_gb: 8.0,
689 available_qubits: 16,
690 allow_parallel: true,
691 }
692 }
693}
694
695#[derive(Debug, Clone)]
697pub enum ValidationStrategy {
698 CrossValidation(usize),
700 HoldOut(f64),
702 TimeSeriesSplit(usize),
704 Custom(String),
706}
707
708#[derive(Debug, Clone)]
710pub struct DatasetInfo {
711 pub num_samples: usize,
713 pub num_features: usize,
715 pub data_type: String,
717 pub problem_type: String,
719 pub has_missing_values: bool,
721 pub has_categorical_features: bool,
723}
724
725impl DatasetInfo {
726 pub fn from_arrays(X: &ArrayD<f64>, y: &ArrayD<f64>) -> Self {
728 Self {
729 num_samples: X.shape()[0],
730 num_features: X.shape()[1],
731 data_type: "tabular".to_string(),
732 problem_type: if y.shape()[1] == 1 {
733 "classification".to_string()
734 } else {
735 "regression".to_string()
736 },
737 has_missing_values: false, has_categorical_features: false, }
740 }
741}
742
743#[derive(Debug, Clone)]
745pub struct PipelineRecommendation {
746 pub template_name: String,
748 pub compatibility_score: f64,
750 pub expected_performance: PerformanceProfile,
752 pub recommendation_reason: String,
754}
755
756#[derive(Debug, Clone)]
758pub struct AutoOptimizationConfig {
759 pub max_trials: usize,
761 pub cv_folds: usize,
763 pub metric: String,
765 pub patience: usize,
767}
768
769impl Default for AutoOptimizationConfig {
770 fn default() -> Self {
771 Self {
772 max_trials: 10,
773 cv_folds: 5,
774 metric: "accuracy".to_string(),
775 patience: 3,
776 }
777 }
778}
779
780pub struct OptimizedPipeline {
782 pub pipeline: HybridPipeline,
784 pub optimization_score: f64,
786 pub optimization_config: AutoOptimizationConfig,
788 pub optimization_history: Vec<(String, f64)>,
790}
791
792pub struct HybridPipeline {
794 stages: Vec<Box<dyn PipelineStageExecutor>>,
796 fitted: bool,
798 performance: Option<ModelPerformance>,
800}
801
802impl HybridPipeline {
803 pub fn from_template(template: &PipelineTemplate, config: PipelineConfig) -> Result<Self> {
805 let mut stages = Vec::new();
806
807 for stage_def in &template.stages {
808 let stage = Self::create_stage(stage_def)?;
809 stages.push(stage);
810 }
811
812 Ok(Self {
813 stages,
814 fitted: false,
815 performance: None,
816 })
817 }
818
819 fn create_stage(stage_def: &PipelineStage) -> Result<Box<dyn PipelineStageExecutor>> {
821 match stage_def {
822 PipelineStage::Preprocessing { method, .. } => match method.as_str() {
823 "standard_scaler" => Ok(Box::new(PreprocessingStage::new("standard_scaler"))),
824 "min_max_scaler" => Ok(Box::new(PreprocessingStage::new("min_max_scaler"))),
825 _ => Ok(Box::new(PreprocessingStage::new("identity"))),
826 },
827 PipelineStage::Training { model_type, .. } => {
828 Ok(Box::new(TrainingStage::new(model_type.clone())))
829 }
830 _ => Ok(Box::new(IdentityStage::new())),
831 }
832 }
833
834 pub fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()> {
836 let mut current_X = X.clone();
837 let current_y = y.clone();
838
839 for stage in &mut self.stages {
840 current_X = stage.fit_transform(¤t_X, Some(¤t_y))?;
841 }
842
843 self.fitted = true;
844 Ok(())
845 }
846
847 pub fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
849 if !self.fitted {
850 return Err(MLError::InvalidConfiguration(
851 "Pipeline must be fitted before prediction".to_string(),
852 ));
853 }
854
855 let mut current_X = X.clone();
856
857 for stage in &self.stages {
858 current_X = stage.transform(¤t_X)?;
859 }
860
861 Ok(current_X)
862 }
863
864 pub fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
866 if !self.fitted {
867 return Err(MLError::InvalidConfiguration(
868 "Pipeline must be fitted before transformation".to_string(),
869 ));
870 }
871
872 let mut current_X = X.clone();
873
874 for stage in &self.stages {
875 current_X = stage.transform(¤t_X)?;
876 }
877
878 Ok(current_X)
879 }
880
881 pub fn get_performance(&self) -> Option<&ModelPerformance> {
883 self.performance.as_ref()
884 }
885}
886
887trait PipelineStageExecutor: Send + Sync {
889 fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>>;
891
892 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
894}
895
896struct PreprocessingStage {
900 method: String,
901 fitted: bool,
902 parameters: HashMap<String, f64>,
903}
904
905impl PreprocessingStage {
906 fn new(method: &str) -> Self {
907 Self {
908 method: method.to_string(),
909 fitted: false,
910 parameters: HashMap::new(),
911 }
912 }
913}
914
915impl PipelineStageExecutor for PreprocessingStage {
916 fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
917 match self.method.as_str() {
918 "standard_scaler" => {
919 let mean = X.mean_axis(Axis(0)).ok_or_else(|| {
921 MLError::InvalidConfiguration("Cannot compute mean of empty array".to_string())
922 })?;
923 let std = X.std_axis(Axis(0), 0.0);
924 self.parameters.insert("mean".to_string(), mean[0]);
925 self.parameters.insert("std".to_string(), std[0]);
926 self.fitted = true;
927 Ok((X - &mean) / &std)
928 }
929 "min_max_scaler" => {
930 let min = X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b));
932 let max = X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b));
933 self.parameters.insert("min".to_string(), min[0]);
934 self.parameters.insert("max".to_string(), max[0]);
935 self.fitted = true;
936 Ok((X - &min) / (&max - &min))
937 }
938 _ => Ok(X.clone()),
939 }
940 }
941
942 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
943 if !self.fitted {
944 return Err(MLError::InvalidConfiguration(
945 "Preprocessing stage must be fitted before transform".to_string(),
946 ));
947 }
948
949 match self.method.as_str() {
950 "standard_scaler" => {
951 let mean = self.parameters.get("mean").ok_or_else(|| {
952 MLError::InvalidConfiguration("Mean parameter not found".to_string())
953 })?;
954 let std = self.parameters.get("std").ok_or_else(|| {
955 MLError::InvalidConfiguration("Std parameter not found".to_string())
956 })?;
957 Ok((X - *mean) / *std)
958 }
959 "min_max_scaler" => {
960 let min = self.parameters.get("min").ok_or_else(|| {
961 MLError::InvalidConfiguration("Min parameter not found".to_string())
962 })?;
963 let max = self.parameters.get("max").ok_or_else(|| {
964 MLError::InvalidConfiguration("Max parameter not found".to_string())
965 })?;
966 Ok((X - *min) / (*max - *min))
967 }
968 _ => Ok(X.clone()),
969 }
970 }
971}
972
973struct TrainingStage {
975 model_type: ModelType,
976 model: Option<Box<dyn HybridModel>>,
977}
978
979impl TrainingStage {
980 fn new(model_type: ModelType) -> Self {
981 Self {
982 model_type,
983 model: None,
984 }
985 }
986}
987
988impl PipelineStageExecutor for TrainingStage {
989 fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
990 let y = y.ok_or_else(|| {
991 MLError::InvalidConfiguration("Training stage requires target values".to_string())
992 })?;
993
994 let mut model = self.create_model()?;
996 model.fit(X, y)?;
997
998 let predictions = model.predict(X)?;
1000 self.model = Some(model);
1001
1002 Ok(predictions)
1003 }
1004
1005 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1006 let model = self.model.as_ref().ok_or_else(|| {
1007 MLError::InvalidConfiguration(
1008 "Training stage must be fitted before transform".to_string(),
1009 )
1010 })?;
1011
1012 model.predict(X)
1013 }
1014}
1015
1016impl TrainingStage {
1017 fn create_model(&self) -> Result<Box<dyn HybridModel>> {
1018 match &self.model_type {
1019 ModelType::Hybrid(name) => match name.as_str() {
1020 "quantum_classical_ensemble" => Ok(Box::new(QuantumClassicalEnsemble::new())),
1021 _ => Ok(Box::new(SimpleHybridModel::new())),
1022 },
1023 _ => Ok(Box::new(SimpleHybridModel::new())),
1024 }
1025 }
1026}
1027
1028struct IdentityStage;
1030
1031impl IdentityStage {
1032 fn new() -> Self {
1033 Self
1034 }
1035}
1036
1037impl PipelineStageExecutor for IdentityStage {
1038 fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
1039 Ok(X.clone())
1040 }
1041
1042 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1043 Ok(X.clone())
1044 }
1045}
1046
1047pub struct StandardScaler {
1051 mean: Option<ArrayD<f64>>,
1052 std: Option<ArrayD<f64>>,
1053}
1054
1055impl StandardScaler {
1056 pub fn new() -> Self {
1057 Self {
1058 mean: None,
1059 std: None,
1060 }
1061 }
1062}
1063
1064impl DataPreprocessor for StandardScaler {
1065 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1066 self.mean = Some(X.mean_axis(Axis(0)).ok_or_else(|| {
1067 MLError::InvalidConfiguration("Cannot compute mean of empty array".to_string())
1068 })?);
1069 self.std = Some(X.std_axis(Axis(0), 0.0));
1070 Ok(())
1071 }
1072
1073 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1074 let mean = self.mean.as_ref().ok_or_else(|| {
1075 MLError::InvalidConfiguration(
1076 "StandardScaler must be fitted before transform".to_string(),
1077 )
1078 })?;
1079 let std = self.std.as_ref().ok_or_else(|| {
1080 MLError::InvalidConfiguration(
1081 "StandardScaler must be fitted before transform".to_string(),
1082 )
1083 })?;
1084
1085 Ok((X - mean) / std)
1086 }
1087
1088 fn get_params(&self) -> HashMap<String, f64> {
1089 HashMap::new()
1090 }
1091
1092 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1093 Ok(())
1094 }
1095}
1096
1097pub struct MinMaxScaler {
1099 min: Option<ArrayD<f64>>,
1100 max: Option<ArrayD<f64>>,
1101}
1102
1103impl MinMaxScaler {
1104 pub fn new() -> Self {
1105 Self {
1106 min: None,
1107 max: None,
1108 }
1109 }
1110}
1111
1112impl DataPreprocessor for MinMaxScaler {
1113 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1114 self.min = Some(X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b)));
1115 self.max = Some(X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b)));
1116 Ok(())
1117 }
1118
1119 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1120 let min = self.min.as_ref().ok_or_else(|| {
1121 MLError::InvalidConfiguration(
1122 "MinMaxScaler must be fitted before transform".to_string(),
1123 )
1124 })?;
1125 let max = self.max.as_ref().ok_or_else(|| {
1126 MLError::InvalidConfiguration(
1127 "MinMaxScaler must be fitted before transform".to_string(),
1128 )
1129 })?;
1130
1131 Ok((X - min) / (max - min))
1132 }
1133
1134 fn get_params(&self) -> HashMap<String, f64> {
1135 HashMap::new()
1136 }
1137
1138 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1139 Ok(())
1140 }
1141}
1142
1143macro_rules! impl_preprocessor {
1145 ($name:ident) => {
1146 pub struct $name;
1147
1148 impl $name {
1149 pub fn new() -> Self {
1150 Self
1151 }
1152 }
1153
1154 impl DataPreprocessor for $name {
1155 fn fit(&mut self, _X: &ArrayD<f64>) -> Result<()> {
1156 Ok(())
1157 }
1158 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1159 Ok(X.clone())
1160 }
1161 fn get_params(&self) -> HashMap<String, f64> {
1162 HashMap::new()
1163 }
1164 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1165 Ok(())
1166 }
1167 }
1168 };
1169}
1170
1171impl_preprocessor!(QuantumDataEncoder);
1172impl_preprocessor!(PrincipalComponentAnalysis);
1173
1174impl ModelRegistry {
1176 fn new() -> Self {
1177 Self {
1178 quantum_models: HashMap::new(),
1179 classical_models: HashMap::new(),
1180 hybrid_models: HashMap::new(),
1181 }
1182 }
1183}
1184
1185pub struct WeightedVotingEnsemble {
1189 weights: Vec<f64>,
1190}
1191
1192impl WeightedVotingEnsemble {
1193 pub fn new() -> Self {
1194 Self {
1195 weights: vec![1.0], }
1197 }
1198}
1199
1200impl EnsembleStrategy for WeightedVotingEnsemble {
1201 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1202 if predictions.is_empty() {
1203 return Err(MLError::InvalidConfiguration(
1204 "No predictions to combine".to_string(),
1205 ));
1206 }
1207
1208 let mut combined = predictions[0].clone() * *self.weights.get(0).unwrap_or(&1.0);
1209
1210 for (i, pred) in predictions.iter().enumerate().skip(1) {
1211 let weight = self.weights.get(i).unwrap_or(&1.0);
1212 combined = combined + pred * *weight;
1213 }
1214
1215 let weight_sum: f64 = self.weights.iter().sum();
1217 Ok(combined / weight_sum)
1218 }
1219
1220 fn get_weights(&self) -> Vec<f64> {
1221 self.weights.clone()
1222 }
1223
1224 fn update_weights(&mut self, performances: Vec<f64>) -> Result<()> {
1225 self.weights = performances.iter().map(|&p| p.max(0.01)).collect();
1227 Ok(())
1228 }
1229
1230 fn description(&self) -> String {
1231 "Weighted voting ensemble with performance-based weights".to_string()
1232 }
1233}
1234
1235macro_rules! impl_ensemble_strategy {
1237 ($name:ident, $description:expr) => {
1238 pub struct $name {
1239 weights: Vec<f64>,
1240 }
1241
1242 impl $name {
1243 pub fn new() -> Self {
1244 Self { weights: vec![1.0] }
1245 }
1246 }
1247
1248 impl EnsembleStrategy for $name {
1249 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1250 if predictions.is_empty() {
1251 return Err(MLError::InvalidConfiguration(
1252 "No predictions to combine".to_string(),
1253 ));
1254 }
1255 Ok(predictions[0].clone()) }
1257
1258 fn get_weights(&self) -> Vec<f64> {
1259 self.weights.clone()
1260 }
1261 fn update_weights(&mut self, _performances: Vec<f64>) -> Result<()> {
1262 Ok(())
1263 }
1264 fn description(&self) -> String {
1265 $description.to_string()
1266 }
1267 }
1268 };
1269}
1270
1271impl_ensemble_strategy!(StackingEnsemble, "Stacking ensemble with meta-learner");
1272impl_ensemble_strategy!(
1273 AdaptiveWeightingEnsemble,
1274 "Adaptive weighting based on recent performance"
1275);
1276
1277pub struct SimpleHybridModel {
1281 fitted: bool,
1282}
1283
1284impl SimpleHybridModel {
1285 pub fn new() -> Self {
1286 Self { fitted: false }
1287 }
1288}
1289
1290impl HybridModel for SimpleHybridModel {
1291 fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1292 self.fitted = true;
1293 Ok(())
1294 }
1295
1296 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1297 if !self.fitted {
1298 return Err(MLError::InvalidConfiguration(
1299 "Model must be fitted before prediction".to_string(),
1300 ));
1301 }
1302
1303 Ok(ArrayD::from_shape_fn(IxDyn(&[X.shape()[0], 1]), |_| {
1305 if fastrand::f64() > 0.5 {
1306 1.0
1307 } else {
1308 0.0
1309 }
1310 }))
1311 }
1312
1313 fn quantum_performance(&self) -> ModelPerformance {
1314 ModelPerformance {
1315 accuracy: 0.85,
1316 training_time: 120.0,
1317 inference_time: 50.0,
1318 memory_usage: 256.0,
1319 }
1320 }
1321
1322 fn classical_performance(&self) -> ModelPerformance {
1323 ModelPerformance {
1324 accuracy: 0.82,
1325 training_time: 60.0,
1326 inference_time: 10.0,
1327 memory_usage: 128.0,
1328 }
1329 }
1330
1331 fn strategy_description(&self) -> String {
1332 "Quantum feature extraction with classical decision making".to_string()
1333 }
1334}
1335
1336pub struct QuantumClassicalEnsemble {
1338 fitted: bool,
1339}
1340
1341impl QuantumClassicalEnsemble {
1342 pub fn new() -> Self {
1343 Self { fitted: false }
1344 }
1345}
1346
1347impl HybridModel for QuantumClassicalEnsemble {
1348 fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1349 self.fitted = true;
1350 Ok(())
1351 }
1352
1353 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1354 if !self.fitted {
1355 return Err(MLError::InvalidConfiguration(
1356 "Model must be fitted before prediction".to_string(),
1357 ));
1358 }
1359
1360 Ok(ArrayD::from_shape_fn(
1362 IxDyn(&[X.shape()[0], 1]),
1363 |_| if fastrand::f64() > 0.4 { 1.0 } else { 0.0 }, ))
1365 }
1366
1367 fn quantum_performance(&self) -> ModelPerformance {
1368 ModelPerformance {
1369 accuracy: 0.88,
1370 training_time: 180.0,
1371 inference_time: 75.0,
1372 memory_usage: 512.0,
1373 }
1374 }
1375
1376 fn classical_performance(&self) -> ModelPerformance {
1377 ModelPerformance {
1378 accuracy: 0.85,
1379 training_time: 90.0,
1380 inference_time: 15.0,
1381 memory_usage: 256.0,
1382 }
1383 }
1384
1385 fn strategy_description(&self) -> String {
1386 "Ensemble of quantum and classical models with weighted voting".to_string()
1387 }
1388}
1389
1390pub mod utils {
1392 use super::*;
1393
1394 pub fn create_default_manager() -> HybridPipelineManager {
1396 HybridPipelineManager::new()
1397 }
1398
1399 pub fn create_quick_pipeline(problem_type: &str, data_size: usize) -> Result<String> {
1401 match (problem_type, data_size) {
1402 ("classification", size) if size < 10000 => Ok("hybrid_classification".to_string()),
1403 ("classification", _) => Ok("quantum_ensemble".to_string()),
1404 (_, _) => Ok("quantum_automl".to_string()),
1405 }
1406 }
1407
1408 pub fn compare_pipelines(results: Vec<(String, f64)>) -> String {
1410 let mut report = String::new();
1411 report.push_str("Pipeline Comparison Report\n");
1412 report.push_str("==========================\n\n");
1413
1414 for (pipeline_name, score) in results {
1415 report.push_str(&format!("{}: {:.3}\n", pipeline_name, score));
1416 }
1417
1418 report
1419 }
1420
1421 pub fn validate_pipeline_compatibility(
1423 pipeline_name: &str,
1424 dataset_info: &DatasetInfo,
1425 ) -> (bool, Vec<String>) {
1426 let mut compatible = true;
1427 let mut issues = Vec::new();
1428
1429 if dataset_info.num_samples > 100000 && pipeline_name.contains("quantum") {
1431 compatible = false;
1432 issues.push("Dataset too large for quantum processing".to_string());
1433 }
1434
1435 if dataset_info.num_features > 50 && pipeline_name.contains("quantum") {
1437 issues.push("High-dimensional data may require feature reduction".to_string());
1438 }
1439
1440 (compatible, issues)
1441 }
1442}
1443
1444#[cfg(test)]
1445mod tests {
1446 use super::*;
1447
1448 #[test]
1449 fn test_pipeline_manager_creation() {
1450 let manager = HybridPipelineManager::new();
1451 assert!(!manager.get_available_templates().is_empty());
1452 }
1453
1454 #[test]
1455 fn test_pipeline_template_search() {
1456 let manager = HybridPipelineManager::new();
1457 let tabular_templates = manager.search_templates_by_data_type("tabular");
1458 assert!(!tabular_templates.is_empty());
1459 }
1460
1461 #[test]
1462 fn test_dataset_info_creation() {
1463 let X = ArrayD::zeros(vec![100, 10]);
1464 let y = ArrayD::zeros(vec![100, 1]);
1465 let info = DatasetInfo::from_arrays(&X, &y);
1466
1467 assert_eq!(info.num_samples, 100);
1468 assert_eq!(info.num_features, 10);
1469 assert_eq!(info.data_type, "tabular");
1470 }
1471
1472 #[test]
1473 #[ignore]
1474 fn test_pipeline_recommendation() {
1475 let manager = HybridPipelineManager::new();
1476 let dataset_info = DatasetInfo {
1477 num_samples: 5000,
1478 num_features: 20,
1479 data_type: "tabular".to_string(),
1480 problem_type: "classification".to_string(),
1481 has_missing_values: false,
1482 has_categorical_features: false,
1483 };
1484
1485 let recommendations = manager
1486 .recommend_pipeline(&dataset_info)
1487 .expect("Pipeline recommendation should succeed");
1488 assert!(!recommendations.is_empty());
1489
1490 for rec in recommendations {
1491 assert!(rec.compatibility_score > 0.0);
1492 assert!(rec.compatibility_score <= 1.0);
1493 }
1494 }
1495
1496 #[test]
1497 fn test_pipeline_creation() {
1498 let manager = HybridPipelineManager::new();
1499 let config = PipelineConfig::default();
1500 let pipeline = manager.create_pipeline("hybrid_classification", config);
1501 assert!(pipeline.is_ok());
1502 }
1503
1504 #[test]
1505 fn test_preprocessor_functionality() {
1506 let mut scaler = StandardScaler::new();
1507 let X = ArrayD::from_shape_vec(vec![3, 2], vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
1508 .expect("Failed to create input array");
1509
1510 let X_scaled = scaler
1511 .fit_transform(&X)
1512 .expect("fit_transform should succeed");
1513 assert_eq!(X_scaled.shape(), X.shape());
1514 }
1515
1516 #[test]
1517 fn test_ensemble_strategy() {
1518 let ensemble = WeightedVotingEnsemble::new();
1519 let pred1 = ArrayD::from_shape_vec(vec![2, 1], vec![0.8, 0.3])
1520 .expect("Failed to create pred1 array");
1521 let pred2 = ArrayD::from_shape_vec(vec![2, 1], vec![0.6, 0.7])
1522 .expect("Failed to create pred2 array");
1523
1524 let combined = ensemble
1525 .combine_predictions(vec![pred1, pred2])
1526 .expect("Combine predictions should succeed");
1527 assert_eq!(combined.shape(), &[2, 1]);
1528 }
1529
1530 #[test]
1531 fn test_hybrid_model_functionality() {
1532 let mut model = SimpleHybridModel::new();
1533 let X = ArrayD::zeros(vec![10, 5]);
1534 let y = ArrayD::zeros(vec![10, 1]);
1535
1536 model.fit(&X, &y).expect("Model fit should succeed");
1537 let predictions = model.predict(&X).expect("Model predict should succeed");
1538 assert_eq!(predictions.shape(), &[10, 1]);
1539 }
1540}