quantrs2_ml/
tensorflow_compatibility.rs

1//! TensorFlow Quantum compatibility layer for QuantRS2-ML
2//!
3//! This module provides a compatibility layer that mimics TensorFlow Quantum APIs,
4//! allowing easy migration of TFQ models to QuantRS2 while maintaining familiar
5//! interfaces and conventions.
6
7use crate::circuit_integration::{QuantumLayer, QuantumMLExecutor};
8use crate::error::{MLError, Result};
9use crate::simulator_backends::{DynamicCircuit, Observable, SimulationResult, SimulatorBackend};
10use quantrs2_circuit::prelude::*;
11use quantrs2_core::prelude::*;
12use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4, ArrayD, Axis};
13use std::collections::HashMap;
14use std::sync::Arc;
15
16/// TensorFlow Quantum-style quantum layer
17pub struct QuantumCircuitLayer {
18    /// Quantum circuit
19    circuit: Circuit<8>, // Fixed const size for now
20    /// Parameter symbols
21    symbols: Vec<String>,
22    /// Observable for measurement
23    observable: Observable,
24    /// Backend for execution
25    backend: Arc<dyn SimulatorBackend>,
26    /// Differentiable flag
27    differentiable: bool,
28    /// Repetitions for sampling
29    repetitions: Option<usize>,
30}
31
32impl QuantumCircuitLayer {
33    /// Create new quantum circuit layer
34    pub fn new(
35        circuit: Circuit<8>, // Fixed const size for now
36        symbols: Vec<String>,
37        observable: Observable,
38        backend: Arc<dyn SimulatorBackend>,
39    ) -> Self {
40        Self {
41            circuit,
42            symbols,
43            observable,
44            backend,
45            differentiable: true,
46            repetitions: None,
47        }
48    }
49
50    /// Set differentiable flag
51    pub fn set_differentiable(mut self, differentiable: bool) -> Self {
52        self.differentiable = differentiable;
53        self
54    }
55
56    /// Set repetitions for sampling
57    pub fn set_repetitions(mut self, repetitions: usize) -> Self {
58        self.repetitions = Some(repetitions);
59        self
60    }
61
62    /// Forward pass through quantum layer
63    pub fn forward(&self, inputs: &Array2<f64>, parameters: &Array2<f64>) -> Result<Array1<f64>> {
64        let batch_size = inputs.nrows();
65        let mut outputs = Array1::zeros(batch_size);
66
67        for batch_idx in 0..batch_size {
68            // Combine input data with trainable parameters
69            let input_data = inputs.row(batch_idx);
70            let param_data = parameters.row(batch_idx % parameters.nrows());
71            let combined_params: Vec<f64> = input_data
72                .iter()
73                .chain(param_data.iter())
74                .copied()
75                .collect();
76
77            // Execute quantum circuit
78            let dynamic_circuit =
79                crate::simulator_backends::DynamicCircuit::from_circuit(self.circuit.clone())?;
80            let expectation = self.backend.expectation_value(
81                &dynamic_circuit,
82                &combined_params,
83                &self.observable,
84            )?;
85
86            outputs[batch_idx] = expectation;
87        }
88
89        Ok(outputs)
90    }
91
92    /// Compute gradients using parameter shift rule
93    pub fn compute_gradients(
94        &self,
95        inputs: &Array2<f64>,
96        parameters: &Array2<f64>,
97        upstream_gradients: &Array1<f64>,
98    ) -> Result<(Array2<f64>, Array2<f64>)> {
99        if !self.differentiable {
100            return Err(MLError::InvalidConfiguration(
101                "Layer is not differentiable".to_string(),
102            ));
103        }
104
105        let batch_size = inputs.nrows();
106        let num_input_params = inputs.ncols();
107        let num_trainable_params = parameters.ncols();
108
109        let mut input_gradients = Array2::zeros((batch_size, num_input_params));
110        let mut param_gradients = Array2::zeros((batch_size, num_trainable_params));
111
112        for batch_idx in 0..batch_size {
113            let input_data = inputs.row(batch_idx);
114            let param_data = parameters.row(batch_idx % parameters.nrows());
115            let combined_params: Vec<f64> = input_data
116                .iter()
117                .chain(param_data.iter())
118                .copied()
119                .collect();
120
121            // Compute gradients using parameter shift rule
122            let dynamic_circuit =
123                crate::simulator_backends::DynamicCircuit::from_circuit(self.circuit.clone())?;
124            let gradients = self.backend.compute_gradients(
125                &dynamic_circuit,
126                &combined_params,
127                &self.observable,
128                crate::simulator_backends::GradientMethod::ParameterShift,
129            )?;
130
131            // Split gradients between inputs and parameters
132            let upstream_grad = upstream_gradients[batch_idx];
133            for (i, grad) in gradients.iter().enumerate() {
134                if i < num_input_params {
135                    input_gradients[[batch_idx, i]] = grad * upstream_grad;
136                } else {
137                    param_gradients[[batch_idx, i - num_input_params]] = grad * upstream_grad;
138                }
139            }
140        }
141
142        Ok((input_gradients, param_gradients))
143    }
144}
145
146/// TensorFlow Quantum-style PQC (Parameterized Quantum Circuit) layer
147pub struct PQCLayer {
148    /// Base quantum circuit layer
149    layer: QuantumCircuitLayer,
150    /// Input scaling factor
151    input_scaling: f64,
152    /// Parameter initialization strategy
153    init_strategy: ParameterInitStrategy,
154    /// Regularization
155    regularization: Option<RegularizationType>,
156}
157
158/// Parameter initialization strategies
159#[derive(Debug, Clone)]
160pub enum ParameterInitStrategy {
161    /// Random normal initialization
162    RandomNormal { mean: f64, std: f64 },
163    /// Random uniform initialization
164    RandomUniform { low: f64, high: f64 },
165    /// Zero initialization
166    Zeros,
167    /// Ones initialization
168    Ones,
169    /// Custom initialization
170    Custom(Vec<f64>),
171}
172
173/// Regularization types
174#[derive(Debug, Clone)]
175pub enum RegularizationType {
176    /// L1 regularization
177    L1(f64),
178    /// L2 regularization
179    L2(f64),
180    /// Dropout (for quantum circuits)
181    Dropout(f64),
182}
183
184impl PQCLayer {
185    /// Create new PQC layer
186    pub fn new(
187        circuit: Circuit<8>, // Fixed const size for now
188        symbols: Vec<String>,
189        observable: Observable,
190        backend: Arc<dyn SimulatorBackend>,
191    ) -> Self {
192        let layer = QuantumCircuitLayer::new(circuit, symbols, observable, backend);
193
194        Self {
195            layer,
196            input_scaling: 1.0,
197            init_strategy: ParameterInitStrategy::RandomNormal {
198                mean: 0.0,
199                std: 0.1,
200            },
201            regularization: None,
202        }
203    }
204
205    /// Set input scaling
206    pub fn with_input_scaling(mut self, scaling: f64) -> Self {
207        self.input_scaling = scaling;
208        self
209    }
210
211    /// Set parameter initialization strategy
212    pub fn with_initialization(mut self, strategy: ParameterInitStrategy) -> Self {
213        self.init_strategy = strategy;
214        self
215    }
216
217    /// Set regularization
218    pub fn with_regularization(mut self, regularization: RegularizationType) -> Self {
219        self.regularization = Some(regularization);
220        self
221    }
222
223    /// Initialize parameters
224    pub fn initialize_parameters(&self, batch_size: usize, num_params: usize) -> Array2<f64> {
225        match &self.init_strategy {
226            ParameterInitStrategy::RandomNormal { mean, std } => {
227                // Use Box-Muller transform for normal distribution
228                Array2::from_shape_fn((batch_size, num_params), |_| {
229                    let u1 = fastrand::f64();
230                    let u2 = fastrand::f64();
231                    let z0 = (-2.0 * u1.ln()).sqrt() * (2.0 * std::f64::consts::PI * u2).cos();
232                    mean + std * z0
233                })
234            }
235            ParameterInitStrategy::RandomUniform { low, high } => {
236                Array2::from_shape_fn((batch_size, num_params), |_| {
237                    fastrand::f64() * (high - low) + low
238                })
239            }
240            ParameterInitStrategy::Zeros => Array2::zeros((batch_size, num_params)),
241            ParameterInitStrategy::Ones => Array2::ones((batch_size, num_params)),
242            ParameterInitStrategy::Custom(values) => {
243                let mut params = Array2::zeros((batch_size, num_params));
244                for i in 0..batch_size {
245                    for j in 0..num_params.min(values.len()) {
246                        params[[i, j]] = values[j];
247                    }
248                }
249                params
250            }
251        }
252    }
253
254    /// Forward pass with input scaling
255    pub fn forward(&self, inputs: &Array2<f64>, parameters: &Array2<f64>) -> Result<Array1<f64>> {
256        // Scale inputs
257        let scaled_inputs = inputs * self.input_scaling;
258
259        // Forward through quantum layer
260        let outputs = self.layer.forward(&scaled_inputs, parameters)?;
261
262        // Apply regularization if needed
263        // (In practice, regularization would be applied during loss computation)
264
265        Ok(outputs)
266    }
267
268    /// Compute gradients with regularization
269    pub fn compute_gradients(
270        &self,
271        inputs: &Array2<f64>,
272        parameters: &Array2<f64>,
273        upstream_gradients: &Array1<f64>,
274    ) -> Result<(Array2<f64>, Array2<f64>)> {
275        let scaled_inputs = inputs * self.input_scaling;
276        let (mut input_grads, mut param_grads) =
277            self.layer
278                .compute_gradients(&scaled_inputs, parameters, upstream_gradients)?;
279
280        // Scale input gradients
281        input_grads *= self.input_scaling;
282
283        // Add regularization gradients
284        if let Some(ref reg) = self.regularization {
285            match reg {
286                RegularizationType::L1(lambda) => {
287                    param_grads += &(parameters.mapv(|x| lambda * x.signum()));
288                }
289                RegularizationType::L2(lambda) => {
290                    param_grads += &(parameters * (2.0 * lambda));
291                }
292                RegularizationType::Dropout(_) => {
293                    // Dropout would be applied during forward pass
294                }
295            }
296        }
297
298        Ok((input_grads, param_grads))
299    }
300}
301
302/// Quantum convolutional layer (TFQ-style)
303pub struct QuantumConvolutionalLayer {
304    /// Base PQC layer
305    pqc: PQCLayer,
306    /// Convolution parameters
307    filter_size: (usize, usize),
308    /// Stride
309    stride: (usize, usize),
310    /// Padding
311    padding: PaddingType,
312}
313
314/// Padding types for quantum convolution
315#[derive(Debug, Clone)]
316pub enum PaddingType {
317    /// Valid padding (no padding)
318    Valid,
319    /// Same padding (maintain input size)
320    Same,
321    /// Custom padding
322    Custom(usize),
323}
324
325impl QuantumConvolutionalLayer {
326    /// Create new quantum convolutional layer
327    pub fn new(
328        circuit: Circuit<8>, // Fixed const size for now
329        symbols: Vec<String>,
330        observable: Observable,
331        backend: Arc<dyn SimulatorBackend>,
332        filter_size: (usize, usize),
333    ) -> Self {
334        let pqc = PQCLayer::new(circuit, symbols, observable, backend);
335
336        Self {
337            pqc,
338            filter_size,
339            stride: (1, 1),
340            padding: PaddingType::Valid,
341        }
342    }
343
344    /// Set stride
345    pub fn with_stride(mut self, stride: (usize, usize)) -> Self {
346        self.stride = stride;
347        self
348    }
349
350    /// Set padding
351    pub fn with_padding(mut self, padding: PaddingType) -> Self {
352        self.padding = padding;
353        self
354    }
355
356    /// Apply quantum convolution to input tensor
357    pub fn forward(&self, inputs: &Array4<f64>, parameters: &Array2<f64>) -> Result<Array4<f64>> {
358        let (batch_size, height, width, channels) = inputs.dim();
359        let (filter_h, filter_w) = self.filter_size;
360        let (stride_h, stride_w) = self.stride;
361
362        // Calculate output dimensions
363        let output_h = (height - filter_h) / stride_h + 1;
364        let output_w = (width - filter_w) / stride_w + 1;
365
366        let mut outputs = Array4::zeros((batch_size, output_h, output_w, 1));
367
368        for batch in 0..batch_size {
369            for out_y in 0..output_h {
370                for out_x in 0..output_w {
371                    // Extract patch
372                    let start_y = out_y * stride_h;
373                    let start_x = out_x * stride_w;
374
375                    let mut patch_data = Array2::zeros((1, filter_h * filter_w * channels));
376                    let mut patch_idx = 0;
377
378                    for dy in 0..filter_h {
379                        for dx in 0..filter_w {
380                            for c in 0..channels {
381                                if start_y + dy < height && start_x + dx < width {
382                                    patch_data[[0, patch_idx]] =
383                                        inputs[[batch, start_y + dy, start_x + dx, c]];
384                                }
385                                patch_idx += 1;
386                            }
387                        }
388                    }
389
390                    // Apply quantum circuit to patch
391                    let result = self.pqc.forward(&patch_data, parameters)?;
392                    outputs[[batch, out_y, out_x, 0]] = result[0];
393                }
394            }
395        }
396
397        Ok(outputs)
398    }
399}
400
401/// TensorFlow Quantum-style model builder
402pub struct TFQModel {
403    /// Layers in the model
404    layers: Vec<Box<dyn TFQLayer>>,
405    /// Input shape
406    input_shape: Vec<usize>,
407    /// Loss function
408    loss_function: TFQLossFunction,
409    /// Optimizer
410    optimizer: TFQOptimizer,
411}
412
413/// TensorFlow Quantum layer trait
414pub trait TFQLayer: Send + Sync {
415    /// Forward pass
416    fn forward(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>>;
417
418    /// Backward pass
419    fn backward(&self, upstream_gradients: &ArrayD<f64>) -> Result<ArrayD<f64>>;
420
421    /// Get trainable parameters
422    fn get_parameters(&self) -> Vec<Array1<f64>>;
423
424    /// Set trainable parameters
425    fn set_parameters(&mut self, params: Vec<Array1<f64>>) -> Result<()>;
426
427    /// Layer name
428    fn name(&self) -> &str;
429}
430
431/// TensorFlow Quantum loss functions
432#[derive(Debug, Clone)]
433pub enum TFQLossFunction {
434    /// Mean squared error
435    MeanSquaredError,
436    /// Binary crossentropy
437    BinaryCrossentropy,
438    /// Categorical crossentropy
439    CategoricalCrossentropy,
440    /// Hinge loss
441    Hinge,
442    /// Custom loss function
443    Custom(String),
444}
445
446/// TensorFlow Quantum optimizers
447#[derive(Debug, Clone)]
448pub enum TFQOptimizer {
449    /// Adam optimizer
450    Adam {
451        learning_rate: f64,
452        beta1: f64,
453        beta2: f64,
454        epsilon: f64,
455    },
456    /// SGD optimizer
457    SGD { learning_rate: f64, momentum: f64 },
458    /// RMSprop optimizer
459    RMSprop {
460        learning_rate: f64,
461        rho: f64,
462        epsilon: f64,
463    },
464}
465
466impl TFQModel {
467    /// Create new TFQ model
468    pub fn new(input_shape: Vec<usize>) -> Self {
469        Self {
470            layers: Vec::new(),
471            input_shape,
472            loss_function: TFQLossFunction::MeanSquaredError,
473            optimizer: TFQOptimizer::Adam {
474                learning_rate: 0.001,
475                beta1: 0.9,
476                beta2: 0.999,
477                epsilon: 1e-8,
478            },
479        }
480    }
481
482    /// Add layer to model
483    pub fn add_layer(&mut self, layer: Box<dyn TFQLayer>) {
484        self.layers.push(layer);
485    }
486
487    /// Set loss function
488    pub fn set_loss(mut self, loss: TFQLossFunction) -> Self {
489        self.loss_function = loss;
490        self
491    }
492
493    /// Set optimizer
494    pub fn set_optimizer(mut self, optimizer: TFQOptimizer) -> Self {
495        self.optimizer = optimizer;
496        self
497    }
498
499    /// Compile model
500    pub fn compile(&mut self) -> Result<()> {
501        // Validate layer connections and prepare for training
502        if self.layers.is_empty() {
503            return Err(MLError::InvalidConfiguration(
504                "Model must have at least one layer".to_string(),
505            ));
506        }
507
508        Ok(())
509    }
510
511    /// Forward pass through model
512    pub fn predict(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>> {
513        let mut current = inputs.clone();
514
515        for layer in &self.layers {
516            current = layer.forward(&current)?;
517        }
518
519        Ok(current)
520    }
521
522    /// Train model for one epoch
523    pub fn train_step(&mut self, inputs: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
524        // Forward pass
525        let predictions = self.predict(inputs)?;
526
527        // Compute loss
528        let loss = self.compute_loss(&predictions, targets)?;
529
530        // Backward pass
531        let mut gradients = self.compute_loss_gradients(&predictions, targets)?;
532
533        for layer in self.layers.iter().rev() {
534            gradients = layer.backward(&gradients)?;
535        }
536
537        // Update parameters
538        self.update_parameters()?;
539
540        Ok(loss)
541    }
542
543    /// Compute loss
544    fn compute_loss(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
545        match &self.loss_function {
546            TFQLossFunction::MeanSquaredError => {
547                let diff = predictions - targets;
548                diff.mapv(|x| x * x).mean().ok_or_else(|| {
549                    MLError::InvalidConfiguration("Cannot compute mean of empty array".to_string())
550                })
551            }
552            TFQLossFunction::BinaryCrossentropy => {
553                let epsilon = 1e-15;
554                let clipped_preds = predictions.mapv(|x| x.max(epsilon).min(1.0 - epsilon));
555                let loss = targets * clipped_preds.mapv(|x| x.ln())
556                    + (1.0 - targets) * clipped_preds.mapv(|x| (1.0 - x).ln());
557                let mean_loss = loss.mean().ok_or_else(|| {
558                    MLError::InvalidConfiguration("Cannot compute mean of empty array".to_string())
559                })?;
560                Ok(-mean_loss)
561            }
562            _ => Err(MLError::InvalidConfiguration(
563                "Loss function not implemented".to_string(),
564            )),
565        }
566    }
567
568    /// Compute loss gradients
569    fn compute_loss_gradients(
570        &self,
571        predictions: &ArrayD<f64>,
572        targets: &ArrayD<f64>,
573    ) -> Result<ArrayD<f64>> {
574        match &self.loss_function {
575            TFQLossFunction::MeanSquaredError => {
576                Ok(2.0 * (predictions - targets) / predictions.len() as f64)
577            }
578            TFQLossFunction::BinaryCrossentropy => {
579                let epsilon = 1e-15;
580                let clipped_preds = predictions.mapv(|x| x.max(epsilon).min(1.0 - epsilon));
581                Ok((clipped_preds.clone() - targets)
582                    / (clipped_preds.clone() * (1.0 - &clipped_preds)))
583            }
584            _ => Err(MLError::InvalidConfiguration(
585                "Loss gradient not implemented".to_string(),
586            )),
587        }
588    }
589
590    /// Update model parameters
591    fn update_parameters(&mut self) -> Result<()> {
592        // Placeholder - would implement parameter updates based on optimizer
593        Ok(())
594    }
595}
596
597/// TensorFlow Quantum-style quantum dataset utilities
598pub struct QuantumDataset {
599    /// Circuit data
600    circuits: Vec<DynamicCircuit>,
601    /// Parameter data
602    parameters: Array2<f64>,
603    /// Labels
604    labels: Array1<f64>,
605    /// Batch size
606    batch_size: usize,
607}
608
609impl QuantumDataset {
610    /// Create new quantum dataset
611    pub fn new(
612        circuits: Vec<Circuit<8>>, // Fixed const size for now
613        parameters: Array2<f64>,
614        labels: Array1<f64>,
615        batch_size: usize,
616    ) -> Result<Self> {
617        let dynamic_circuits: std::result::Result<Vec<DynamicCircuit>, crate::error::MLError> =
618            circuits
619                .into_iter()
620                .map(|c| DynamicCircuit::from_circuit(c))
621                .collect();
622
623        Ok(Self {
624            circuits: dynamic_circuits?,
625            parameters,
626            labels,
627            batch_size,
628        })
629    }
630
631    /// Get batch iterator
632    pub fn batches(&self) -> QuantumDatasetIterator {
633        QuantumDatasetIterator::new(self)
634    }
635
636    /// Shuffle dataset
637    pub fn shuffle(&mut self) {
638        let n = self.circuits.len();
639        let mut indices: Vec<usize> = (0..n).collect();
640
641        // Fisher-Yates shuffle
642        for i in (1..n).rev() {
643            let j = fastrand::usize(0..=i);
644            indices.swap(i, j);
645        }
646
647        // Reorder data based on shuffled indices
648        let mut new_circuits = Vec::with_capacity(n);
649        let mut new_parameters = Array2::zeros(self.parameters.dim());
650        let mut new_labels = Array1::zeros(self.labels.dim());
651
652        for (new_idx, &old_idx) in indices.iter().enumerate() {
653            new_circuits.push(self.circuits[old_idx].clone());
654            new_parameters
655                .row_mut(new_idx)
656                .assign(&self.parameters.row(old_idx));
657            new_labels[new_idx] = self.labels[old_idx];
658        }
659
660        self.circuits = new_circuits;
661        self.parameters = new_parameters;
662        self.labels = new_labels;
663    }
664}
665
666/// Iterator for quantum dataset batches
667pub struct QuantumDatasetIterator<'a> {
668    dataset: &'a QuantumDataset,
669    current_batch: usize,
670    total_batches: usize,
671}
672
673impl<'a> QuantumDatasetIterator<'a> {
674    fn new(dataset: &'a QuantumDataset) -> Self {
675        let total_batches = (dataset.circuits.len() + dataset.batch_size - 1) / dataset.batch_size;
676        Self {
677            dataset,
678            current_batch: 0,
679            total_batches,
680        }
681    }
682}
683
684impl<'a> Iterator for QuantumDatasetIterator<'a> {
685    type Item = (Vec<DynamicCircuit>, Array2<f64>, Array1<f64>);
686
687    fn next(&mut self) -> Option<Self::Item> {
688        if self.current_batch >= self.total_batches {
689            return None;
690        }
691
692        let start_idx = self.current_batch * self.dataset.batch_size;
693        let end_idx =
694            ((self.current_batch + 1) * self.dataset.batch_size).min(self.dataset.circuits.len());
695
696        let batch_circuits = self.dataset.circuits[start_idx..end_idx].to_vec();
697        let batch_parameters = self
698            .dataset
699            .parameters
700            .slice(s![start_idx..end_idx, ..])
701            .to_owned();
702        let batch_labels = self.dataset.labels.slice(s![start_idx..end_idx]).to_owned();
703
704        self.current_batch += 1;
705        Some((batch_circuits, batch_parameters, batch_labels))
706    }
707}
708
709/// TensorFlow Quantum-style utilities
710pub mod tfq_utils {
711    use super::*;
712
713    /// Convert QuantRS2 circuit to TFQ-compatible format
714    pub fn circuit_to_tfq_format(circuit: &DynamicCircuit) -> Result<TFQCircuitFormat> {
715        // TODO: Implement proper gate extraction from DynamicCircuit
716        // This requires implementing gates() method on DynamicCircuit
717        // For now, return empty gates list
718        let tfq_gates: Vec<TFQGate> = Vec::new();
719
720        Ok(TFQCircuitFormat {
721            gates: tfq_gates,
722            num_qubits: circuit.num_qubits(),
723        })
724    }
725
726    /// Create quantum data encoding circuit
727    pub fn create_data_encoding_circuit(
728        num_qubits: usize,
729        encoding_type: DataEncodingType,
730    ) -> Result<DynamicCircuit> {
731        let mut builder: Circuit<8> = CircuitBuilder::new(); // Fixed size for compatibility
732
733        match encoding_type {
734            DataEncodingType::Amplitude => {
735                // Create amplitude encoding circuit
736                for qubit in 0..num_qubits {
737                    builder.ry(qubit, 0.0)?; // Parameterized rotation
738                }
739            }
740            DataEncodingType::Angle => {
741                // Create angle encoding circuit
742                for qubit in 0..num_qubits {
743                    builder.rz(qubit, 0.0)?; // Parameterized rotation
744                }
745            }
746            DataEncodingType::Basis => {
747                // Basis encoding (computational basis)
748                for qubit in 0..num_qubits {
749                    builder.x(qubit)?; // Conditional X gate based on data
750                }
751            }
752        }
753
754        let circuit = builder.build();
755        DynamicCircuit::from_circuit(circuit)
756    }
757
758    /// Create hardware-efficient ansatz
759    pub fn create_hardware_efficient_ansatz(
760        num_qubits: usize,
761        layers: usize,
762    ) -> Result<DynamicCircuit> {
763        let mut builder: Circuit<8> = CircuitBuilder::new(); // Fixed size for compatibility
764
765        for layer in 0..layers {
766            // Rotation gates
767            for qubit in 0..num_qubits {
768                builder.ry(qubit, 0.0)?;
769                builder.rz(qubit, 0.0)?;
770            }
771
772            // Entangling gates
773            for qubit in 0..num_qubits - 1 {
774                builder.cnot(qubit, qubit + 1)?;
775            }
776
777            // Add final entangling gate if needed
778            if layer < layers - 1 && num_qubits > 2 {
779                builder.cnot(num_qubits - 1, 0)?;
780            }
781        }
782
783        let circuit = builder.build();
784        DynamicCircuit::from_circuit(circuit)
785    }
786
787    /// Batch quantum circuit execution
788    pub fn batch_execute_circuits(
789        circuits: &[DynamicCircuit],
790        parameters: &Array2<f64>,
791        observables: &[Observable],
792        backend: &dyn SimulatorBackend,
793    ) -> Result<Array2<f64>> {
794        let batch_size = circuits.len();
795        let num_observables = observables.len();
796        let mut results = Array2::zeros((batch_size, num_observables));
797
798        for (circuit_idx, circuit) in circuits.iter().enumerate() {
799            let params = parameters.row(circuit_idx % parameters.nrows());
800            let params_slice = params.as_slice().ok_or_else(|| {
801                MLError::InvalidConfiguration("Parameters must be contiguous in memory".to_string())
802            })?;
803
804            for (obs_idx, observable) in observables.iter().enumerate() {
805                let expectation = backend.expectation_value(circuit, params_slice, observable)?;
806                results[[circuit_idx, obs_idx]] = expectation;
807            }
808        }
809
810        Ok(results)
811    }
812}
813
814/// TensorFlow Quantum circuit format
815#[derive(Debug, Clone)]
816pub struct TFQCircuitFormat {
817    /// Gate sequence
818    gates: Vec<TFQGate>,
819    /// Number of qubits
820    num_qubits: usize,
821}
822
823/// TensorFlow Quantum gate representation
824#[derive(Debug, Clone)]
825pub struct TFQGate {
826    /// Gate type
827    gate_type: String,
828    /// Target qubits
829    qubits: Vec<usize>,
830    /// Parameters
831    parameters: Vec<f64>,
832}
833
834/// Data encoding types for TFQ compatibility
835#[derive(Debug, Clone)]
836pub enum DataEncodingType {
837    /// Amplitude encoding
838    Amplitude,
839    /// Angle encoding
840    Angle,
841    /// Basis encoding
842    Basis,
843}
844
845#[cfg(test)]
846mod tests {
847    use super::*;
848    use crate::simulator_backends::{BackendCapabilities, StatevectorBackend};
849
850    #[test]
851    #[ignore]
852    fn test_quantum_circuit_layer() {
853        let mut builder = CircuitBuilder::new();
854        builder.ry(0, 0.0).expect("RY gate should succeed");
855        builder.ry(1, 0.0).expect("RY gate should succeed");
856        builder.cnot(0, 1).expect("CNOT gate should succeed");
857        let circuit = builder.build();
858
859        let symbols = vec!["theta1".to_string(), "theta2".to_string()];
860        let observable = Observable::PauliZ(vec![0, 1]);
861        let backend = Arc::new(StatevectorBackend::new(8));
862
863        let layer = QuantumCircuitLayer::new(circuit, symbols, observable, backend);
864
865        let inputs = Array2::from_shape_vec((2, 2), vec![0.1, 0.2, 0.3, 0.4])
866            .expect("Valid shape for inputs");
867        let parameters = Array2::from_shape_vec((2, 2), vec![0.5, 0.6, 0.7, 0.8])
868            .expect("Valid shape for parameters");
869
870        let result = layer.forward(&inputs, &parameters);
871        assert!(result.is_ok());
872    }
873
874    #[test]
875    fn test_pqc_layer_initialization() -> Result<()> {
876        let mut builder = CircuitBuilder::new();
877        builder.h(0)?;
878        let circuit = builder.build();
879
880        let symbols = vec!["param1".to_string()];
881        let observable = Observable::PauliZ(vec![0]);
882        let backend = Arc::new(StatevectorBackend::new(8));
883
884        let pqc = PQCLayer::new(circuit, symbols, observable, backend).with_initialization(
885            ParameterInitStrategy::RandomNormal {
886                mean: 0.0,
887                std: 0.1,
888            },
889        );
890
891        let params = pqc.initialize_parameters(5, 3);
892        assert_eq!(params.shape(), &[5, 3]);
893        Ok(())
894    }
895
896    #[test]
897    #[ignore]
898    fn test_tfq_utils() {
899        let circuit = tfq_utils::create_data_encoding_circuit(3, DataEncodingType::Angle)
900            .expect("Data encoding circuit creation should succeed");
901        assert_eq!(circuit.num_qubits(), 3);
902
903        let ansatz = tfq_utils::create_hardware_efficient_ansatz(4, 2)
904            .expect("Hardware efficient ansatz creation should succeed");
905        assert_eq!(ansatz.num_qubits(), 4);
906    }
907
908    #[test]
909    fn test_quantum_dataset() -> Result<()> {
910        let circuits = vec![CircuitBuilder::new().build(), CircuitBuilder::new().build()];
911        let parameters = Array2::from_shape_vec((2, 3), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
912            .expect("Valid shape for parameters");
913        let labels = Array1::from_vec(vec![0.0, 1.0]);
914
915        let dataset = QuantumDataset::new(circuits, parameters, labels, 1);
916        let dataset = dataset?;
917        let batches: Vec<_> = dataset.batches().collect();
918
919        assert_eq!(batches.len(), 2);
920        assert_eq!(batches[0].0.len(), 1); // Batch size 1
921        Ok(())
922    }
923
924    #[test]
925    #[ignore]
926    fn test_tfq_model() {
927        let mut model = TFQModel::new(vec![2, 2])
928            .set_loss(TFQLossFunction::MeanSquaredError)
929            .set_optimizer(TFQOptimizer::Adam {
930                learning_rate: 0.01,
931                beta1: 0.9,
932                beta2: 0.999,
933                epsilon: 1e-8,
934            });
935
936        assert!(model.compile().is_ok());
937    }
938}