1use crate::error::{MLError, Result};
13use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use scirs2_core::random::prelude::*;
15use scirs2_core::random::ChaCha20Rng;
16use scirs2_core::random::{Rng, SeedableRng};
17use scirs2_core::Complex64;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21#[derive(Debug, Clone)]
23pub struct QuantumSelfSupervisedConfig {
24 pub input_dim: usize,
25 pub representation_dim: usize,
26 pub num_qubits: usize,
27 pub ssl_method: QuantumSSLMethod,
28 pub quantum_enhancement_level: f64,
29 pub temperature: f64,
30 pub momentum_coefficient: f64,
31 pub use_quantum_augmentations: bool,
32 pub enable_entanglement_similarity: bool,
33 pub contrastive_config: ContrastiveConfig,
34 pub masked_learning_config: MaskedLearningConfig,
35 pub momentum_config: MomentumConfig,
36 pub clustering_config: ClusteringConfig,
37}
38
39#[derive(Debug, Clone)]
40pub enum QuantumSSLMethod {
41 QuantumContrastive {
43 similarity_metric: QuantumSimilarityMetric,
44 negative_sampling_strategy: NegativeSamplingStrategy,
45 quantum_projection_head: QuantumProjectionHead,
46 },
47
48 QuantumMasked {
50 masking_strategy: QuantumMaskingStrategy,
51 reconstruction_objective: ReconstructionObjective,
52 quantum_encoder_decoder: QuantumEncoderDecoder,
53 },
54
55 QuantumSimCLR {
57 batch_size: usize,
58 augmentation_strength: f64,
59 quantum_projector: QuantumProjector,
60 },
61
62 QuantumSimSiam {
64 predictor_hidden_dim: usize,
65 stop_gradient: bool,
66 quantum_momentum: QuantumMomentum,
67 },
68
69 QuantumBYOL {
71 target_update_rate: f64,
72 quantum_ema_config: QuantumEMAConfig,
73 asymmetric_loss: bool,
74 },
75
76 QuantumSwAV {
78 num_prototypes: usize,
79 queue_length: usize,
80 quantum_sinkhorn_iterations: usize,
81 },
82
83 QuantumMoCo {
85 queue_size: usize,
86 momentum_coefficient: f64,
87 quantum_key_encoder: QuantumKeyEncoder,
88 },
89
90 QuantumBarlowTwins {
92 lambda_off_diagonal: f64,
93 quantum_correlation_matrix: bool,
94 },
95}
96
97#[derive(Debug, Clone)]
98pub enum QuantumSimilarityMetric {
99 QuantumCosine,
100 EntanglementSimilarity,
101 QuantumDotProduct,
102 FidelityBased,
103 QuantumEuclidean,
104 HilbertSchmidtDistance,
105}
106
107#[derive(Debug, Clone)]
108pub enum NegativeSamplingStrategy {
109 Random,
110 HardNegatives,
111 QuantumSampling { sampling_temperature: f64 },
112 EntanglementBasedSampling,
113 QuantumImportanceSampling,
114}
115
116#[derive(Debug, Clone)]
117pub struct QuantumProjectionHead {
118 pub hidden_dims: Vec<usize>,
119 pub output_dim: usize,
120 pub use_batch_norm: bool,
121 pub quantum_layers: Vec<QuantumProjectionLayer>,
122 pub activation: QuantumActivation,
123}
124
125#[derive(Debug, Clone)]
126pub struct QuantumProjectionLayer {
127 pub layer_type: ProjectionLayerType,
128 pub quantum_parameters: Array1<f64>,
129 pub entanglement_pattern: EntanglementPattern,
130 pub measurement_strategy: MeasurementStrategy,
131}
132
133#[derive(Debug, Clone)]
134pub enum ProjectionLayerType {
135 QuantumLinear {
136 input_dim: usize,
137 output_dim: usize,
138 },
139 QuantumNonlinear {
140 activation: QuantumActivation,
141 },
142 QuantumNormalization {
143 normalization_type: QuantumNormType,
144 },
145 QuantumResidual {
146 inner_layers: Vec<QuantumProjectionLayer>,
147 },
148}
149
150#[derive(Debug, Clone)]
151pub enum QuantumActivation {
152 QuantumReLU,
153 QuantumSigmoid,
154 QuantumTanh,
155 QuantumGELU,
156 QuantumSwish,
157 EntanglementActivation,
158 PhaseActivation,
159}
160
161#[derive(Debug, Clone)]
162pub enum QuantumNormType {
163 QuantumBatchNorm,
164 QuantumLayerNorm,
165 QuantumInstanceNorm,
166 EntanglementNorm,
167}
168
169#[derive(Debug, Clone)]
170pub enum QuantumMaskingStrategy {
171 Random { mask_probability: f64 },
172 QuantumSuperposition { superposition_strength: f64 },
173 EntanglementMask { entanglement_threshold: f64 },
174 PhaseBasedMask { phase_pattern: PhasePattern },
175 AdaptiveQuantumMask { adaptation_rate: f64 },
176}
177
178#[derive(Debug, Clone)]
179pub enum PhasePattern {
180 Uniform,
181 Gaussian,
182 Quantum { quantum_state: QuantumState },
183}
184
185#[derive(Debug, Clone)]
186pub enum ReconstructionObjective {
187 MSE,
188 CrossEntropy,
189 QuantumFidelity,
190 EntanglementPreservation,
191 PhaseCoherence,
192}
193
194#[derive(Debug, Clone)]
195pub struct QuantumEncoderDecoder {
196 pub encoder: QuantumEncoder,
197 pub decoder: QuantumDecoder,
198 pub shared_quantum_state: bool,
199 pub entanglement_coupling: f64,
200}
201
202#[derive(Debug, Clone)]
203pub struct QuantumEncoder {
204 pub layers: Vec<QuantumEncoderLayer>,
205 pub quantum_state_evolution: QuantumStateEvolution,
206 pub measurement_points: Vec<usize>,
207}
208
209#[derive(Debug, Clone)]
210pub struct QuantumDecoder {
211 pub layers: Vec<QuantumDecoderLayer>,
212 pub quantum_state_preparation: QuantumStatePreparation,
213 pub reconstruction_strategy: ReconstructionStrategy,
214}
215
216#[derive(Debug, Clone)]
217pub struct QuantumEncoderLayer {
218 pub layer_type: EncoderLayerType,
219 pub quantum_parameters: Array1<f64>,
220 pub entanglement_connectivity: Array2<bool>,
221 pub quantum_gates: Vec<QuantumGate>,
222}
223
224#[derive(Debug, Clone)]
225pub enum EncoderLayerType {
226 QuantumAttention {
227 num_heads: usize,
228 head_dim: usize,
229 attention_type: QuantumAttentionType,
230 },
231 QuantumConvolution {
232 kernel_size: usize,
233 stride: usize,
234 padding: usize,
235 },
236 QuantumFeedForward {
237 hidden_dim: usize,
238 activation: QuantumActivation,
239 },
240 QuantumPooling {
241 pool_type: QuantumPoolingType,
242 kernel_size: usize,
243 },
244}
245
246#[derive(Debug, Clone)]
247pub enum QuantumAttentionType {
248 SelfAttention,
249 CrossAttention,
250 EntanglementAttention,
251 QuantumFourierAttention,
252}
253
254#[derive(Debug, Clone)]
255pub enum QuantumPoolingType {
256 QuantumMax,
257 QuantumAverage,
258 EntanglementPooling,
259 QuantumGlobal,
260}
261
262#[derive(Debug, Clone)]
263pub struct QuantumDecoderLayer {
264 pub layer_type: DecoderLayerType,
265 pub quantum_parameters: Array1<f64>,
266 pub inverse_operation: InverseOperation,
267}
268
269#[derive(Debug, Clone)]
270pub enum DecoderLayerType {
271 QuantumTransposeConv {
272 kernel_size: usize,
273 stride: usize,
274 output_padding: usize,
275 },
276 QuantumUpsampling {
277 scale_factor: usize,
278 mode: UpsamplingMode,
279 },
280 QuantumReconstruction {
281 reconstruction_type: ReconstructionType,
282 },
283}
284
285#[derive(Debug, Clone)]
286pub enum UpsamplingMode {
287 Nearest,
288 Linear,
289 QuantumInterpolation,
290 EntanglementUpsampling,
291}
292
293#[derive(Debug, Clone)]
294pub enum ReconstructionType {
295 Direct,
296 Probabilistic,
297 QuantumSuperposition,
298 EntanglementReconstruction,
299}
300
301#[derive(Debug, Clone)]
302pub struct InverseOperation {
303 pub operation_type: InverseOperationType,
304 pub quantum_inversion_method: QuantumInversionMethod,
305 pub fidelity_target: f64,
306}
307
308#[derive(Debug, Clone)]
309pub enum InverseOperationType {
310 UnitaryInverse,
311 PseudoInverse,
312 QuantumInverse,
313 ApproximateInverse,
314}
315
316#[derive(Debug, Clone)]
317pub enum QuantumInversionMethod {
318 DirectInversion,
319 IterativeInversion,
320 QuantumPhaseEstimation,
321 VariationalInversion,
322}
323
324#[derive(Debug, Clone)]
325pub struct QuantumStateEvolution {
326 pub evolution_type: EvolutionType,
327 pub time_steps: Array1<f64>,
328 pub hamiltonian: Array2<Complex64>,
329 pub decoherence_model: DecoherenceModel,
330}
331
332#[derive(Debug, Clone)]
333pub enum EvolutionType {
334 Unitary,
335 NonUnitary,
336 Adiabatic,
337 Sudden,
338}
339
340#[derive(Debug, Clone)]
341pub struct DecoherenceModel {
342 pub t1_time: f64,
343 pub t2_time: f64,
344 pub gate_error_rate: f64,
345 pub measurement_error_rate: f64,
346}
347
348#[derive(Debug, Clone)]
349pub struct QuantumStatePreparation {
350 pub preparation_method: PreparationMethod,
351 pub target_state: QuantumState,
352 pub fidelity_threshold: f64,
353}
354
355#[derive(Debug, Clone)]
356pub enum PreparationMethod {
357 DirectPreparation,
358 VariationalPreparation,
359 AdiabaticPreparation,
360 QuantumApproximateOptimization,
361}
362
363#[derive(Debug, Clone)]
364pub enum ReconstructionStrategy {
365 FullReconstruction,
366 PartialReconstruction,
367 QuantumTomography,
368 ShadowReconstruction,
369}
370
371#[derive(Debug, Clone)]
372pub struct QuantumProjector {
373 pub projection_layers: Vec<QuantumProjectionLayer>,
374 pub output_normalization: bool,
375 pub quantum_enhancement: f64,
376}
377
378#[derive(Debug, Clone)]
379pub struct QuantumMomentum {
380 pub momentum_type: MomentumType,
381 pub update_rule: UpdateRule,
382 pub quantum_state_momentum: bool,
383}
384
385#[derive(Debug, Clone)]
386pub enum MomentumType {
387 Classical,
388 Quantum,
389 Entanglement,
390 Phase,
391}
392
393#[derive(Debug, Clone)]
394pub enum UpdateRule {
395 Standard,
396 Nesterov,
397 QuantumAdam,
398 EntanglementMomentum,
399}
400
401#[derive(Debug, Clone)]
402pub struct QuantumEMAConfig {
403 pub ema_rate: f64,
404 pub quantum_ema: bool,
405 pub entanglement_preservation: f64,
406 pub phase_tracking: bool,
407}
408
409#[derive(Debug, Clone)]
410pub struct QuantumKeyEncoder {
411 pub encoder_architecture: QuantumEncoder,
412 pub key_generation_method: KeyGenerationMethod,
413 pub quantum_key_evolution: QuantumKeyEvolution,
414}
415
416#[derive(Debug, Clone)]
417pub enum KeyGenerationMethod {
418 Standard,
419 QuantumRandom,
420 EntanglementBased,
421 PhaseEncoded,
422}
423
424#[derive(Debug, Clone)]
425pub struct QuantumKeyEvolution {
426 pub evolution_strategy: EvolutionStrategy,
427 pub update_frequency: usize,
428 pub quantum_coherence_preservation: f64,
429}
430
431#[derive(Debug, Clone)]
432pub enum EvolutionStrategy {
433 Momentum,
434 ExponentialMovingAverage,
435 QuantumAdiabatic,
436 EntanglementEvolution,
437}
438
439#[derive(Debug, Clone)]
440pub struct ContrastiveConfig {
441 pub positive_pair_strategy: PositivePairStrategy,
442 pub negative_pair_strategy: NegativePairStrategy,
443 pub loss_function: ContrastiveLossFunction,
444 pub temperature_scheduling: TemperatureScheduling,
445}
446
447#[derive(Debug, Clone)]
448pub enum PositivePairStrategy {
449 Augmentation,
450 Temporal,
451 Semantic,
452 QuantumSuperposition,
453 EntanglementBased,
454}
455
456#[derive(Debug, Clone)]
457pub enum NegativePairStrategy {
458 Random,
459 HardNegatives,
460 QuantumSampling,
461 EntanglementDistance,
462}
463
464#[derive(Debug, Clone)]
465pub enum ContrastiveLossFunction {
466 InfoNCE,
467 NTXent,
468 QuantumContrastive,
469 EntanglementContrastive,
470 FidelityContrastive,
471}
472
473#[derive(Debug, Clone)]
474pub enum TemperatureScheduling {
475 Fixed,
476 Cosine,
477 Exponential,
478 QuantumAdaptive,
479}
480
481#[derive(Debug, Clone)]
482pub struct MaskedLearningConfig {
483 pub mask_ratio: f64,
484 pub mask_strategy: MaskStrategy,
485 pub reconstruction_target: ReconstructionTarget,
486 pub quantum_mask_evolution: QuantumMaskEvolution,
487}
488
489#[derive(Debug, Clone)]
490pub enum MaskStrategy {
491 Random,
492 Block,
493 Attention,
494 QuantumSuperposition,
495 EntanglementMask,
496}
497
498#[derive(Debug, Clone)]
499pub enum ReconstructionTarget {
500 RawPixels,
501 Features,
502 Tokens,
503 QuantumStates,
504 EntanglementPatterns,
505}
506
507#[derive(Debug, Clone)]
508pub struct QuantumMaskEvolution {
509 pub evolution_type: MaskEvolutionType,
510 pub adaptation_rate: f64,
511 pub quantum_coherence_preservation: f64,
512}
513
514#[derive(Debug, Clone)]
515pub enum MaskEvolutionType {
516 Static,
517 Dynamic,
518 Adaptive,
519 QuantumEvolution,
520}
521
522#[derive(Debug, Clone)]
523pub struct MomentumConfig {
524 pub momentum_coefficient: f64,
525 pub target_network_update: TargetNetworkUpdate,
526 pub quantum_momentum_preservation: f64,
527}
528
529#[derive(Debug, Clone)]
530pub enum TargetNetworkUpdate {
531 Hard,
532 Soft,
533 QuantumSmooth,
534 EntanglementPreserving,
535}
536
537#[derive(Debug, Clone)]
538pub struct ClusteringConfig {
539 pub num_clusters: usize,
540 pub clustering_method: QuantumClusteringMethod,
541 pub prototype_update_strategy: PrototypeUpdateStrategy,
542 pub quantum_assignment_method: QuantumAssignmentMethod,
543}
544
545#[derive(Debug, Clone)]
546pub enum QuantumClusteringMethod {
547 QuantumKMeans,
548 QuantumSpectral,
549 EntanglementClustering,
550 QuantumHierarchical,
551}
552
553#[derive(Debug, Clone)]
554pub enum PrototypeUpdateStrategy {
555 MovingAverage,
556 Gradient,
557 QuantumUpdate,
558 EntanglementUpdate,
559}
560
561#[derive(Debug, Clone)]
562pub enum QuantumAssignmentMethod {
563 SoftAssignment,
564 SinkhornKnopp,
565 QuantumSinkhorn,
566 EntanglementAssignment,
567}
568
569pub struct QuantumSelfSupervisedLearner {
571 config: QuantumSelfSupervisedConfig,
572
573 online_network: QuantumOnlineNetwork,
575 target_network: Option<QuantumTargetNetwork>,
576
577 quantum_augmenter: QuantumAugmenter,
579 quantum_encoder: QuantumEncoder,
580 quantum_projector: QuantumProjector,
581 quantum_predictor: Option<QuantumPredictor>,
582
583 contrastive_learner: Option<QuantumContrastiveLearner>,
585 masked_learner: Option<QuantumMaskedLearner>,
586 momentum_learner: Option<QuantumMomentumLearner>,
587 clustering_learner: Option<QuantumClusteringLearner>,
588
589 training_history: Vec<SSLTrainingMetrics>,
591 quantum_ssl_metrics: QuantumSSLMetrics,
592
593 optimizer_state: SSLOptimizerState,
595 lr_scheduler: LearningRateScheduler,
596}
597
598#[derive(Debug, Clone)]
599pub struct QuantumOnlineNetwork {
600 encoder: QuantumEncoder,
601 projector: QuantumProjector,
602 predictor: Option<QuantumPredictor>,
603 quantum_parameters: Array1<f64>,
604}
605
606#[derive(Debug, Clone)]
607pub struct QuantumTargetNetwork {
608 encoder: QuantumEncoder,
609 projector: QuantumProjector,
610 momentum_coefficient: f64,
611 quantum_ema_state: QuantumEMAState,
612}
613
614#[derive(Debug, Clone)]
615pub struct QuantumEMAState {
616 quantum_parameters: Array1<f64>,
617 entanglement_state: Array2<Complex64>,
618 phase_tracking: Array1<Complex64>,
619 fidelity_history: Vec<f64>,
620}
621
622#[derive(Debug, Clone)]
623pub struct QuantumAugmenter {
624 augmentation_strategies: Vec<QuantumAugmentationStrategy>,
625 augmentation_strength: f64,
626 quantum_coherence_preservation: f64,
627}
628
629#[derive(Debug, Clone)]
630pub enum QuantumAugmentationStrategy {
631 QuantumRotation {
632 axes: Vec<RotationAxis>,
633 },
634 QuantumNoise {
635 noise_type: NoiseType,
636 strength: f64,
637 },
638 EntanglementCorruption {
639 corruption_rate: f64,
640 },
641 PhaseShift {
642 phase_range: f64,
643 },
644 QuantumMixup {
645 alpha: f64,
646 },
647 QuantumCutout {
648 mask_size: f64,
649 },
650 SuperpositionAugmentation {
651 superposition_strength: f64,
652 },
653}
654
655#[derive(Debug, Clone)]
656pub enum RotationAxis {
657 X,
658 Y,
659 Z,
660 Custom { direction: Array1<f64> },
661}
662
663#[derive(Debug, Clone)]
664pub enum NoiseType {
665 Gaussian,
666 Poisson,
667 QuantumDecoherence,
668 EntanglementNoise,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumPredictor {
673 prediction_layers: Vec<QuantumPredictionLayer>,
674 stop_gradient: bool,
675 quantum_prediction_strategy: QuantumPredictionStrategy,
676}
677
678#[derive(Debug, Clone)]
679pub struct QuantumPredictionLayer {
680 layer_type: PredictionLayerType,
681 quantum_parameters: Array1<f64>,
682 activation: QuantumActivation,
683}
684
685#[derive(Debug, Clone)]
686pub enum PredictionLayerType {
687 Linear { input_dim: usize, output_dim: usize },
688 Quantum { num_qubits: usize },
689 Hybrid { quantum_ratio: f64 },
690}
691
692#[derive(Debug, Clone)]
693pub enum QuantumPredictionStrategy {
694 Direct,
695 Probabilistic,
696 Superposition,
697 Entanglement,
698}
699
700#[derive(Debug, Clone)]
701pub struct QuantumContrastiveLearner {
702 similarity_computer: QuantumSimilarityComputer,
703 loss_computer: ContrastiveLossComputer,
704 negative_sampler: QuantumNegativeSampler,
705 temperature_controller: TemperatureController,
706}
707
708#[derive(Debug, Clone)]
709pub struct QuantumSimilarityComputer {
710 similarity_metric: QuantumSimilarityMetric,
711 quantum_dot_product: QuantumDotProduct,
712 entanglement_similarity: EntanglementSimilarity,
713}
714
715#[derive(Debug, Clone)]
716pub struct QuantumDotProduct {
717 normalization: bool,
718 quantum_enhancement: f64,
719 phase_aware: bool,
720}
721
722#[derive(Debug, Clone)]
723pub struct EntanglementSimilarity {
724 entanglement_measure: EntanglementMeasure,
725 similarity_threshold: f64,
726 quantum_distance_metric: QuantumDistanceMetric,
727}
728
729#[derive(Debug, Clone)]
730pub enum EntanglementMeasure {
731 Concurrence,
732 Negativity,
733 EntanglementEntropy,
734 QuantumMutualInformation,
735}
736
737#[derive(Debug, Clone)]
738pub enum QuantumDistanceMetric {
739 Fidelity,
740 TraceDistance,
741 HilbertSchmidt,
742 Bures,
743}
744
745#[derive(Debug, Clone)]
746pub struct ContrastiveLossComputer {
747 loss_function: ContrastiveLossFunction,
748 temperature: f64,
749 quantum_loss_enhancement: f64,
750}
751
752#[derive(Debug, Clone)]
753pub struct QuantumNegativeSampler {
754 sampling_strategy: NegativeSamplingStrategy,
755 num_negatives: usize,
756 quantum_sampling_bias: f64,
757}
758
759#[derive(Debug, Clone)]
760pub struct TemperatureController {
761 scheduling: TemperatureScheduling,
762 current_temperature: f64,
763 quantum_temperature_adaptation: bool,
764}
765
766#[derive(Debug, Clone)]
767pub struct QuantumMaskedLearner {
768 masking_engine: QuantumMaskingEngine,
769 reconstruction_network: QuantumReconstructionNetwork,
770 loss_computer: MaskedLossComputer,
771}
772
773#[derive(Debug, Clone)]
774pub struct QuantumMaskingEngine {
775 masking_strategy: QuantumMaskingStrategy,
776 mask_generator: QuantumMaskGenerator,
777 mask_evolution: QuantumMaskEvolution,
778}
779
780#[derive(Debug, Clone)]
781pub struct QuantumMaskGenerator {
782 generator_type: MaskGeneratorType,
783 quantum_randomness: QuantumRandomness,
784 coherence_preservation: f64,
785}
786
787#[derive(Debug, Clone)]
788pub enum MaskGeneratorType {
789 Random,
790 Structured,
791 Learned,
792 QuantumSuperposition,
793}
794
795#[derive(Debug, Clone)]
796pub struct QuantumRandomness {
797 source: RandomnessSource,
798 entropy_level: f64,
799 quantum_true_randomness: bool,
800}
801
802#[derive(Debug, Clone)]
803pub enum RandomnessSource {
804 Classical,
805 QuantumMeasurement,
806 QuantumDecoherence,
807 EntanglementCollapse,
808}
809
810#[derive(Debug, Clone)]
811pub struct QuantumReconstructionNetwork {
812 reconstruction_layers: Vec<QuantumReconstructionLayer>,
813 output_activation: QuantumActivation,
814 quantum_fidelity_target: f64,
815}
816
817#[derive(Debug, Clone)]
818pub struct QuantumReconstructionLayer {
819 layer_type: ReconstructionLayerType,
820 quantum_parameters: Array1<f64>,
821 reconstruction_strategy: ReconstructionStrategy,
822}
823
824#[derive(Debug, Clone)]
825pub enum ReconstructionLayerType {
826 Dense { input_dim: usize, output_dim: usize },
827 Quantum { num_qubits: usize },
828 Hybrid { quantum_classical_ratio: f64 },
829}
830
831#[derive(Debug, Clone)]
832pub struct MaskedLossComputer {
833 reconstruction_objective: ReconstructionObjective,
834 quantum_fidelity_weight: f64,
835 entanglement_preservation_weight: f64,
836}
837
838#[derive(Debug, Clone)]
839pub struct QuantumMomentumLearner {
840 momentum_updater: QuantumMomentumUpdater,
841 target_network: QuantumTargetNetwork,
842 momentum_scheduler: MomentumScheduler,
843}
844
845#[derive(Debug, Clone)]
846pub struct QuantumMomentumUpdater {
847 update_strategy: MomentumUpdateStrategy,
848 quantum_momentum_preservation: f64,
849 entanglement_momentum: EntanglementMomentum,
850}
851
852#[derive(Debug, Clone)]
853pub enum MomentumUpdateStrategy {
854 Standard,
855 Quantum,
856 Entanglement,
857 PhaseCoherent,
858}
859
860#[derive(Debug, Clone)]
861pub struct EntanglementMomentum {
862 entanglement_decay: f64,
863 momentum_entanglement: f64,
864 coherence_preservation: f64,
865}
866
867#[derive(Debug, Clone)]
868pub struct MomentumScheduler {
869 scheduling_strategy: MomentumSchedulingStrategy,
870 current_momentum: f64,
871 quantum_adaptive: bool,
872}
873
874#[derive(Debug, Clone)]
875pub enum MomentumSchedulingStrategy {
876 Fixed,
877 Cosine,
878 Exponential,
879 QuantumAdaptive,
880}
881
882#[derive(Debug, Clone)]
883pub struct QuantumClusteringLearner {
884 prototype_bank: QuantumPrototypeBank,
885 assignment_computer: QuantumAssignmentComputer,
886 sinkhorn_algorithm: QuantumSinkhornAlgorithm,
887}
888
889#[derive(Debug, Clone)]
890pub struct QuantumPrototypeBank {
891 prototypes: Array2<f64>,
892 quantum_prototypes: Array2<Complex64>,
893 prototype_evolution: PrototypeEvolution,
894}
895
896#[derive(Debug, Clone)]
897pub struct PrototypeEvolution {
898 evolution_strategy: PrototypeEvolutionStrategy,
899 learning_rate: f64,
900 quantum_coherence_preservation: f64,
901}
902
903#[derive(Debug, Clone)]
904pub enum PrototypeEvolutionStrategy {
905 GradientDescent,
906 MovingAverage,
907 QuantumEvolution,
908 EntanglementUpdate,
909}
910
911#[derive(Debug, Clone)]
912pub struct QuantumAssignmentComputer {
913 assignment_method: QuantumAssignmentMethod,
914 temperature: f64,
915 quantum_assignment_enhancement: f64,
916}
917
918#[derive(Debug, Clone)]
919pub struct QuantumSinkhornAlgorithm {
920 num_iterations: usize,
921 regularization: f64,
922 quantum_sinkhorn: bool,
923 entanglement_regularization: f64,
924}
925
926#[derive(Debug, Clone)]
928pub struct SSLTrainingMetrics {
929 pub epoch: usize,
930 pub loss: f64,
931 pub contrastive_loss: f64,
932 pub reconstruction_loss: f64,
933 pub quantum_fidelity: f64,
934 pub entanglement_measure: f64,
935 pub representation_quality: f64,
936 pub linear_evaluation_accuracy: f64,
937 pub quantum_advantage_ratio: f64,
938}
939
940#[derive(Debug, Clone)]
941pub struct QuantumSSLMetrics {
942 pub average_entanglement: f64,
943 pub coherence_preservation: f64,
944 pub quantum_feature_quality: f64,
945 pub representation_dimensionality: f64,
946 pub transfer_performance: f64,
947 pub quantum_speedup_factor: f64,
948 pub ssl_convergence_rate: f64,
949}
950
951#[derive(Debug, Clone)]
952pub struct SSLOptimizerState {
953 pub learning_rate: f64,
954 pub momentum: f64,
955 pub weight_decay: f64,
956 pub quantum_parameter_lr: f64,
957 pub entanglement_preservation_weight: f64,
958}
959
960#[derive(Debug, Clone)]
961pub struct LearningRateScheduler {
962 pub scheduler_type: LRSchedulerType,
963 pub current_lr: f64,
964 pub warmup_epochs: usize,
965 pub quantum_adaptive: bool,
966}
967
968#[derive(Debug, Clone)]
969pub enum LRSchedulerType {
970 Cosine,
971 StepLR,
972 ExponentialLR,
973 QuantumAdaptive,
974}
975
976#[derive(Debug, Clone)]
978pub struct QuantumGate {
979 pub gate_type: QuantumGateType,
980 pub target_qubits: Vec<usize>,
981 pub control_qubits: Vec<usize>,
982 pub parameters: Array1<f64>,
983}
984
985#[derive(Debug, Clone)]
986pub enum QuantumGateType {
987 Rotation { axis: RotationAxis },
988 Entangling { coupling_strength: f64 },
989 Measurement { basis: MeasurementBasis },
990 Custom { gate_matrix: Array2<Complex64> },
991}
992
993#[derive(Debug, Clone)]
994pub enum MeasurementBasis {
995 Computational,
996 PauliX,
997 PauliY,
998 PauliZ,
999 Bell,
1000 Custom { basis_vectors: Array2<Complex64> },
1001}
1002
1003#[derive(Debug, Clone)]
1004pub enum MeasurementStrategy {
1005 ExpectationValue,
1006 ProbabilityDistribution,
1007 QuantumStateVector,
1008 PartialMeasurement,
1009}
1010
1011#[derive(Debug, Clone)]
1012pub enum EntanglementPattern {
1013 Linear,
1014 Circular,
1015 AllToAll,
1016 Hierarchical { levels: usize },
1017 Random { probability: f64 },
1018 Custom { adjacency_matrix: Array2<bool> },
1019}
1020
1021#[derive(Debug, Clone)]
1022pub struct QuantumState {
1023 pub amplitudes: Array1<Complex64>,
1024 pub phases: Array1<Complex64>,
1025 pub entanglement_measure: f64,
1026 pub coherence_time: f64,
1027 pub fidelity: f64,
1028}
1029
1030impl Default for QuantumState {
1031 fn default() -> Self {
1032 Self {
1033 amplitudes: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1034 phases: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1035 entanglement_measure: 0.0,
1036 coherence_time: 1.0,
1037 fidelity: 1.0,
1038 }
1039 }
1040}
1041
1042impl QuantumSelfSupervisedLearner {
1044 pub fn new(config: QuantumSelfSupervisedConfig) -> Result<Self> {
1046 println!("🧠Initializing Quantum Self-Supervised Learning Framework in UltraThink Mode");
1047
1048 let quantum_encoder = Self::create_quantum_encoder(&config)?;
1050
1051 let quantum_projector = Self::create_quantum_projector(&config)?;
1053
1054 let online_network = QuantumOnlineNetwork {
1056 encoder: quantum_encoder.clone(),
1057 projector: quantum_projector.clone(),
1058 predictor: if matches!(config.ssl_method, QuantumSSLMethod::QuantumSimSiam { .. }) {
1059 Some(Self::create_quantum_predictor(&config)?)
1060 } else {
1061 None
1062 },
1063 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1064 };
1065
1066 let target_network = if Self::requires_target_network(&config.ssl_method) {
1068 Some(QuantumTargetNetwork {
1069 encoder: quantum_encoder.clone(),
1070 projector: quantum_projector.clone(),
1071 momentum_coefficient: config.momentum_coefficient,
1072 quantum_ema_state: QuantumEMAState {
1073 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1074 entanglement_state: Array2::<f64>::eye(config.num_qubits)
1075 .mapv(|x| Complex64::new(x, 0.0)),
1076 phase_tracking: Array1::ones(config.num_qubits)
1077 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1078 fidelity_history: Vec::new(),
1079 },
1080 })
1081 } else {
1082 None
1083 };
1084
1085 let quantum_augmenter = Self::create_quantum_augmenter(&config)?;
1087
1088 let contrastive_learner = if Self::uses_contrastive_learning(&config.ssl_method) {
1090 Some(Self::create_contrastive_learner(&config)?)
1091 } else {
1092 None
1093 };
1094
1095 let masked_learner = if Self::uses_masked_learning(&config.ssl_method) {
1096 Some(Self::create_masked_learner(&config)?)
1097 } else {
1098 None
1099 };
1100
1101 let momentum_learner = if Self::uses_momentum_learning(&config.ssl_method) {
1102 Some(Self::create_momentum_learner(&config)?)
1103 } else {
1104 None
1105 };
1106
1107 let clustering_learner = if Self::uses_clustering(&config.ssl_method) {
1108 Some(Self::create_clustering_learner(&config)?)
1109 } else {
1110 None
1111 };
1112
1113 let quantum_ssl_metrics = QuantumSSLMetrics::default();
1115 let optimizer_state = SSLOptimizerState::default();
1116 let lr_scheduler = LearningRateScheduler::default();
1117
1118 Ok(Self {
1119 config,
1120 online_network,
1121 target_network,
1122 quantum_augmenter,
1123 quantum_encoder,
1124 quantum_projector,
1125 quantum_predictor: None,
1126 contrastive_learner,
1127 masked_learner,
1128 momentum_learner,
1129 clustering_learner,
1130 training_history: Vec::new(),
1131 quantum_ssl_metrics,
1132 optimizer_state,
1133 lr_scheduler,
1134 })
1135 }
1136
1137 pub fn learn_representations(
1139 &mut self,
1140 data: &Array2<f64>,
1141 config: &SSLTrainingConfig,
1142 ) -> Result<SSLLearningOutput> {
1143 println!("🚀 Starting Quantum Self-Supervised Learning");
1144
1145 let mut training_losses = Vec::new();
1146 let mut representation_quality_history = Vec::new();
1147 let mut quantum_metrics_history = Vec::new();
1148
1149 for epoch in 0..config.epochs {
1150 let epoch_metrics = self.train_epoch(data, config, epoch)?;
1151
1152 training_losses.push(epoch_metrics.loss);
1153 representation_quality_history.push(epoch_metrics.representation_quality);
1154
1155 self.update_quantum_ssl_metrics(&epoch_metrics)?;
1157 quantum_metrics_history.push(self.quantum_ssl_metrics.clone());
1158
1159 self.update_learning_schedule(epoch, &epoch_metrics)?;
1161
1162 if self.target_network.is_some() {
1164 let target_net_clone = self
1165 .target_network
1166 .as_ref()
1167 .expect("target_network is Some")
1168 .clone();
1169 self.update_target_network_internal(&target_net_clone)?;
1170 }
1171
1172 self.training_history.push(epoch_metrics.clone());
1173
1174 if epoch % config.log_interval == 0 {
1176 println!(
1177 "Epoch {}: Loss = {:.6}, Rep Quality = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1178 epoch,
1179 epoch_metrics.loss,
1180 epoch_metrics.representation_quality,
1181 epoch_metrics.quantum_fidelity,
1182 epoch_metrics.entanglement_measure,
1183 );
1184 }
1185 }
1186
1187 let learned_representations = self.extract_representations(data)?;
1189
1190 let evaluation_results = self.evaluate_representations(&learned_representations, data)?;
1192
1193 Ok(SSLLearningOutput {
1194 learned_representations,
1195 training_losses,
1196 representation_quality_history,
1197 quantum_metrics_history,
1198 evaluation_results,
1199 final_ssl_metrics: self.quantum_ssl_metrics.clone(),
1200 })
1201 }
1202
1203 fn train_epoch(
1205 &mut self,
1206 data: &Array2<f64>,
1207 config: &SSLTrainingConfig,
1208 epoch: usize,
1209 ) -> Result<SSLTrainingMetrics> {
1210 let mut epoch_loss = 0.0;
1211 let mut contrastive_loss_sum = 0.0;
1212 let mut reconstruction_loss_sum = 0.0;
1213 let mut quantum_fidelity_sum = 0.0;
1214 let mut entanglement_sum = 0.0;
1215 let mut num_batches = 0;
1216
1217 let num_samples = data.nrows();
1218
1219 for batch_start in (0..num_samples).step_by(config.batch_size) {
1220 let batch_end = (batch_start + config.batch_size).min(num_samples);
1221 let batch_data = data.slice(scirs2_core::ndarray::s![batch_start..batch_end, ..]);
1222
1223 let batch_metrics = self.train_batch(&batch_data, config)?;
1224
1225 epoch_loss += batch_metrics.loss;
1226 contrastive_loss_sum += batch_metrics.contrastive_loss;
1227 reconstruction_loss_sum += batch_metrics.reconstruction_loss;
1228 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1229 entanglement_sum += batch_metrics.entanglement_measure;
1230 num_batches += 1;
1231 }
1232
1233 let num_batches_f = num_batches as f64;
1234 Ok(SSLTrainingMetrics {
1235 epoch,
1236 loss: epoch_loss / num_batches_f,
1237 contrastive_loss: contrastive_loss_sum / num_batches_f,
1238 reconstruction_loss: reconstruction_loss_sum / num_batches_f,
1239 quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1240 entanglement_measure: entanglement_sum / num_batches_f,
1241 representation_quality: self.estimate_representation_quality()?,
1242 linear_evaluation_accuracy: 0.0, quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1244 })
1245 }
1246
1247 fn train_batch(
1249 &mut self,
1250 batch_data: &scirs2_core::ndarray::ArrayView2<f64>,
1251 config: &SSLTrainingConfig,
1252 ) -> Result<SSLTrainingMetrics> {
1253 let mut batch_loss = 0.0;
1254 let mut contrastive_loss = 0.0;
1255 let mut reconstruction_loss = 0.0;
1256 let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1257
1258 for sample_idx in 0..batch_data.nrows() {
1260 let sample = batch_data.row(sample_idx).to_owned();
1261
1262 let augmented_views = self
1264 .quantum_augmenter
1265 .generate_augmented_views(&sample, 2)?;
1266
1267 let learning_output = match &self.config.ssl_method {
1269 QuantumSSLMethod::QuantumContrastive { .. } => {
1270 self.contrastive_forward(&augmented_views)?
1271 }
1272 QuantumSSLMethod::QuantumMasked { .. } => self.masked_forward(&sample)?,
1273 QuantumSSLMethod::QuantumSimCLR { .. } => self.simclr_forward(&augmented_views)?,
1274 QuantumSSLMethod::QuantumSimSiam { .. } => {
1275 self.simsiam_forward(&augmented_views)?
1276 }
1277 QuantumSSLMethod::QuantumBYOL { .. } => self.byol_forward(&augmented_views)?,
1278 QuantumSSLMethod::QuantumSwAV { .. } => self.swav_forward(&augmented_views)?,
1279 QuantumSSLMethod::QuantumMoCo { .. } => self.moco_forward(&augmented_views)?,
1280 QuantumSSLMethod::QuantumBarlowTwins { .. } => {
1281 self.barlow_twins_forward(&augmented_views)?
1282 }
1283 };
1284
1285 batch_loss += learning_output.total_loss;
1286 contrastive_loss += learning_output.contrastive_loss;
1287 reconstruction_loss += learning_output.reconstruction_loss;
1288 quantum_metrics_sum.accumulate(&learning_output.quantum_metrics);
1289
1290 self.update_parameters(&learning_output, config)?;
1292 }
1293
1294 let num_samples = batch_data.nrows() as f64;
1295 Ok(SSLTrainingMetrics {
1296 epoch: 0, loss: batch_loss / num_samples,
1298 contrastive_loss: contrastive_loss / num_samples,
1299 reconstruction_loss: reconstruction_loss / num_samples,
1300 quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1301 entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1302 representation_quality: quantum_metrics_sum.representation_quality / num_samples,
1303 linear_evaluation_accuracy: 0.0,
1304 quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1305 })
1306 }
1307
1308 fn create_quantum_encoder(config: &QuantumSelfSupervisedConfig) -> Result<QuantumEncoder> {
1310 let layers = vec![QuantumEncoderLayer {
1311 layer_type: EncoderLayerType::QuantumFeedForward {
1312 hidden_dim: 128,
1313 activation: QuantumActivation::QuantumReLU,
1314 },
1315 quantum_parameters: Array1::zeros(config.num_qubits * 3),
1316 entanglement_connectivity: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
1317 quantum_gates: Vec::new(),
1318 }];
1319
1320 let layers_len = layers.len();
1321
1322 Ok(QuantumEncoder {
1323 layers,
1324 quantum_state_evolution: QuantumStateEvolution {
1325 evolution_type: EvolutionType::Unitary,
1326 time_steps: Array1::linspace(0.0, 1.0, 10),
1327 hamiltonian: Array2::<f64>::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
1328 decoherence_model: DecoherenceModel::default(),
1329 },
1330 measurement_points: vec![0, layers_len - 1],
1331 })
1332 }
1333
1334 fn create_quantum_projector(config: &QuantumSelfSupervisedConfig) -> Result<QuantumProjector> {
1335 Ok(QuantumProjector {
1336 projection_layers: vec![QuantumProjectionLayer {
1337 layer_type: ProjectionLayerType::QuantumLinear {
1338 input_dim: config.representation_dim,
1339 output_dim: config.representation_dim / 2,
1340 },
1341 quantum_parameters: Array1::zeros(config.num_qubits * 2),
1342 entanglement_pattern: EntanglementPattern::Linear,
1343 measurement_strategy: MeasurementStrategy::ExpectationValue,
1344 }],
1345 output_normalization: true,
1346 quantum_enhancement: config.quantum_enhancement_level,
1347 })
1348 }
1349
1350 fn create_quantum_predictor(config: &QuantumSelfSupervisedConfig) -> Result<QuantumPredictor> {
1351 Ok(QuantumPredictor {
1352 prediction_layers: vec![QuantumPredictionLayer {
1353 layer_type: PredictionLayerType::Linear {
1354 input_dim: config.representation_dim / 2,
1355 output_dim: config.representation_dim / 2,
1356 },
1357 quantum_parameters: Array1::zeros(config.num_qubits),
1358 activation: QuantumActivation::QuantumReLU,
1359 }],
1360 stop_gradient: true,
1361 quantum_prediction_strategy: QuantumPredictionStrategy::Direct,
1362 })
1363 }
1364
1365 fn create_quantum_augmenter(config: &QuantumSelfSupervisedConfig) -> Result<QuantumAugmenter> {
1366 Ok(QuantumAugmenter {
1367 augmentation_strategies: vec![
1368 QuantumAugmentationStrategy::QuantumRotation {
1369 axes: vec![RotationAxis::X, RotationAxis::Y, RotationAxis::Z],
1370 },
1371 QuantumAugmentationStrategy::QuantumNoise {
1372 noise_type: NoiseType::Gaussian,
1373 strength: 0.1,
1374 },
1375 QuantumAugmentationStrategy::PhaseShift { phase_range: PI },
1376 ],
1377 augmentation_strength: 0.5,
1378 quantum_coherence_preservation: 0.9,
1379 })
1380 }
1381
1382 fn requires_target_network(method: &QuantumSSLMethod) -> bool {
1386 matches!(
1387 method,
1388 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1389 )
1390 }
1391
1392 fn uses_contrastive_learning(method: &QuantumSSLMethod) -> bool {
1393 matches!(
1394 method,
1395 QuantumSSLMethod::QuantumContrastive { .. }
1396 | QuantumSSLMethod::QuantumSimCLR { .. }
1397 | QuantumSSLMethod::QuantumMoCo { .. }
1398 )
1399 }
1400
1401 fn uses_masked_learning(method: &QuantumSSLMethod) -> bool {
1402 matches!(method, QuantumSSLMethod::QuantumMasked { .. })
1403 }
1404
1405 fn uses_momentum_learning(method: &QuantumSSLMethod) -> bool {
1406 matches!(
1407 method,
1408 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1409 )
1410 }
1411
1412 fn uses_clustering(method: &QuantumSSLMethod) -> bool {
1413 matches!(method, QuantumSSLMethod::QuantumSwAV { .. })
1414 }
1415
1416 fn contrastive_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1418 Ok(SSLLearningOutputBatch::default())
1419 }
1420
1421 fn masked_forward(&self, _sample: &Array1<f64>) -> Result<SSLLearningOutputBatch> {
1422 Ok(SSLLearningOutputBatch::default())
1423 }
1424
1425 fn simclr_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1426 Ok(SSLLearningOutputBatch::default())
1427 }
1428
1429 fn simsiam_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1430 Ok(SSLLearningOutputBatch::default())
1431 }
1432
1433 fn byol_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1434 Ok(SSLLearningOutputBatch::default())
1435 }
1436
1437 fn swav_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1438 Ok(SSLLearningOutputBatch::default())
1439 }
1440
1441 fn moco_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1442 Ok(SSLLearningOutputBatch::default())
1443 }
1444
1445 fn barlow_twins_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1446 Ok(SSLLearningOutputBatch::default())
1447 }
1448
1449 fn create_contrastive_learner(
1451 _config: &QuantumSelfSupervisedConfig,
1452 ) -> Result<QuantumContrastiveLearner> {
1453 Ok(QuantumContrastiveLearner {
1454 similarity_computer: QuantumSimilarityComputer {
1455 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1456 quantum_dot_product: QuantumDotProduct {
1457 normalization: true,
1458 quantum_enhancement: 1.0,
1459 phase_aware: true,
1460 },
1461 entanglement_similarity: EntanglementSimilarity {
1462 entanglement_measure: EntanglementMeasure::Concurrence,
1463 similarity_threshold: 0.5,
1464 quantum_distance_metric: QuantumDistanceMetric::Fidelity,
1465 },
1466 },
1467 loss_computer: ContrastiveLossComputer {
1468 loss_function: ContrastiveLossFunction::InfoNCE,
1469 temperature: 0.1,
1470 quantum_loss_enhancement: 1.0,
1471 },
1472 negative_sampler: QuantumNegativeSampler {
1473 sampling_strategy: NegativeSamplingStrategy::Random,
1474 num_negatives: 256,
1475 quantum_sampling_bias: 0.0,
1476 },
1477 temperature_controller: TemperatureController {
1478 scheduling: TemperatureScheduling::Fixed,
1479 current_temperature: 0.1,
1480 quantum_temperature_adaptation: false,
1481 },
1482 })
1483 }
1484
1485 fn create_masked_learner(
1486 _config: &QuantumSelfSupervisedConfig,
1487 ) -> Result<QuantumMaskedLearner> {
1488 Ok(QuantumMaskedLearner {
1489 masking_engine: QuantumMaskingEngine {
1490 masking_strategy: QuantumMaskingStrategy::Random {
1491 mask_probability: 0.15,
1492 },
1493 mask_generator: QuantumMaskGenerator {
1494 generator_type: MaskGeneratorType::Random,
1495 quantum_randomness: QuantumRandomness {
1496 source: RandomnessSource::Classical,
1497 entropy_level: 1.0,
1498 quantum_true_randomness: false,
1499 },
1500 coherence_preservation: 0.9,
1501 },
1502 mask_evolution: QuantumMaskEvolution {
1503 evolution_type: MaskEvolutionType::Static,
1504 adaptation_rate: 0.01,
1505 quantum_coherence_preservation: 0.9,
1506 },
1507 },
1508 reconstruction_network: QuantumReconstructionNetwork {
1509 reconstruction_layers: Vec::new(),
1510 output_activation: QuantumActivation::QuantumSigmoid,
1511 quantum_fidelity_target: 0.95,
1512 },
1513 loss_computer: MaskedLossComputer {
1514 reconstruction_objective: ReconstructionObjective::MSE,
1515 quantum_fidelity_weight: 0.1,
1516 entanglement_preservation_weight: 0.05,
1517 },
1518 })
1519 }
1520
1521 fn create_momentum_learner(
1522 config: &QuantumSelfSupervisedConfig,
1523 ) -> Result<QuantumMomentumLearner> {
1524 let encoder = Self::create_quantum_encoder(config)?;
1526 let projector = Self::create_quantum_projector(config)?;
1527
1528 Ok(QuantumMomentumLearner {
1530 momentum_updater: QuantumMomentumUpdater {
1531 update_strategy: MomentumUpdateStrategy::Standard,
1532 quantum_momentum_preservation: 0.9,
1533 entanglement_momentum: EntanglementMomentum {
1534 entanglement_decay: 0.01,
1535 momentum_entanglement: 0.5,
1536 coherence_preservation: 0.9,
1537 },
1538 },
1539 target_network: QuantumTargetNetwork {
1540 encoder,
1541 projector,
1542 momentum_coefficient: 0.999,
1543 quantum_ema_state: QuantumEMAState {
1544 quantum_parameters: Array1::zeros(16),
1545 entanglement_state: Array2::<f64>::eye(16).mapv(|x| Complex64::new(x, 0.0)),
1546 phase_tracking: Array1::ones(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1547 fidelity_history: Vec::new(),
1548 },
1549 },
1550 momentum_scheduler: MomentumScheduler {
1551 scheduling_strategy: MomentumSchedulingStrategy::Fixed,
1552 current_momentum: 0.999,
1553 quantum_adaptive: false,
1554 },
1555 })
1556 }
1557
1558 fn create_clustering_learner(
1559 _config: &QuantumSelfSupervisedConfig,
1560 ) -> Result<QuantumClusteringLearner> {
1561 Ok(QuantumClusteringLearner {
1563 prototype_bank: QuantumPrototypeBank {
1564 prototypes: Array2::zeros((256, 128)),
1565 quantum_prototypes: Array2::zeros((256, 128))
1566 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1567 prototype_evolution: PrototypeEvolution {
1568 evolution_strategy: PrototypeEvolutionStrategy::MovingAverage,
1569 learning_rate: 0.01,
1570 quantum_coherence_preservation: 0.9,
1571 },
1572 },
1573 assignment_computer: QuantumAssignmentComputer {
1574 assignment_method: QuantumAssignmentMethod::SoftAssignment,
1575 temperature: 0.1,
1576 quantum_assignment_enhancement: 1.0,
1577 },
1578 sinkhorn_algorithm: QuantumSinkhornAlgorithm {
1579 num_iterations: 3,
1580 regularization: 0.05,
1581 quantum_sinkhorn: true,
1582 entanglement_regularization: 0.01,
1583 },
1584 })
1585 }
1586
1587 fn update_parameters(
1588 &mut self,
1589 _output: &SSLLearningOutputBatch,
1590 _config: &SSLTrainingConfig,
1591 ) -> Result<()> {
1592 Ok(())
1594 }
1595
1596 fn update_quantum_ssl_metrics(&mut self, _metrics: &SSLTrainingMetrics) -> Result<()> {
1597 Ok(())
1599 }
1600
1601 fn update_learning_schedule(
1602 &mut self,
1603 _epoch: usize,
1604 _metrics: &SSLTrainingMetrics,
1605 ) -> Result<()> {
1606 Ok(())
1608 }
1609
1610 fn update_target_network_internal(&mut self, _target_net: &QuantumTargetNetwork) -> Result<()> {
1611 Ok(())
1613 }
1614
1615 fn extract_representations(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1616 Ok(data.clone())
1618 }
1619
1620 fn evaluate_representations(
1621 &self,
1622 _representations: &Array2<f64>,
1623 _data: &Array2<f64>,
1624 ) -> Result<RepresentationEvaluationResults> {
1625 Ok(RepresentationEvaluationResults::default())
1626 }
1627
1628 fn estimate_representation_quality(&self) -> Result<f64> {
1629 Ok(0.8) }
1631}
1632
1633impl QuantumAugmenter {
1635 pub fn generate_augmented_views(
1636 &self,
1637 sample: &Array1<f64>,
1638 num_views: usize,
1639 ) -> Result<Vec<Array1<f64>>> {
1640 let mut views = Vec::new();
1641
1642 for _ in 0..num_views {
1643 let mut augmented = sample.clone();
1644
1645 for strategy in &self.augmentation_strategies {
1647 augmented = self.apply_augmentation_strategy(&augmented, strategy)?;
1648 }
1649
1650 views.push(augmented);
1651 }
1652
1653 Ok(views)
1654 }
1655
1656 fn apply_augmentation_strategy(
1657 &self,
1658 data: &Array1<f64>,
1659 strategy: &QuantumAugmentationStrategy,
1660 ) -> Result<Array1<f64>> {
1661 match strategy {
1662 QuantumAugmentationStrategy::QuantumNoise {
1663 noise_type: _,
1664 strength,
1665 } => {
1666 let mut rng = thread_rng();
1667 Ok(data.mapv(|x| x + rng.gen::<f64>() * strength))
1668 }
1669 QuantumAugmentationStrategy::PhaseShift { phase_range } => {
1670 let mut rng = thread_rng();
1671 let phase = rng.gen::<f64>() * phase_range;
1672 Ok(data.mapv(|x| x * phase.cos() - x * phase.sin()))
1673 }
1674 _ => Ok(data.clone()), }
1676 }
1677}
1678
1679#[derive(Debug, Clone)]
1681pub struct SSLTrainingConfig {
1682 pub epochs: usize,
1683 pub batch_size: usize,
1684 pub learning_rate: f64,
1685 pub weight_decay: f64,
1686 pub log_interval: usize,
1687 pub save_interval: usize,
1688 pub early_stopping_patience: usize,
1689}
1690
1691impl Default for SSLTrainingConfig {
1692 fn default() -> Self {
1693 Self {
1694 epochs: 100,
1695 batch_size: 256,
1696 learning_rate: 3e-4,
1697 weight_decay: 1e-4,
1698 log_interval: 10,
1699 save_interval: 50,
1700 early_stopping_patience: 15,
1701 }
1702 }
1703}
1704
1705#[derive(Debug, Clone)]
1706pub struct SSLLearningOutput {
1707 pub learned_representations: Array2<f64>,
1708 pub training_losses: Vec<f64>,
1709 pub representation_quality_history: Vec<f64>,
1710 pub quantum_metrics_history: Vec<QuantumSSLMetrics>,
1711 pub evaluation_results: RepresentationEvaluationResults,
1712 pub final_ssl_metrics: QuantumSSLMetrics,
1713}
1714
1715#[derive(Debug, Clone, Default)]
1716pub struct SSLLearningOutputBatch {
1717 pub total_loss: f64,
1718 pub contrastive_loss: f64,
1719 pub reconstruction_loss: f64,
1720 pub quantum_metrics: QuantumBatchMetrics,
1721}
1722
1723#[derive(Debug, Clone, Default)]
1724pub struct QuantumBatchMetrics {
1725 pub quantum_fidelity: f64,
1726 pub entanglement_measure: f64,
1727 pub representation_quality: f64,
1728 pub quantum_advantage_ratio: f64,
1729}
1730
1731impl QuantumBatchMetrics {
1732 pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1733 self.quantum_fidelity += other.quantum_fidelity;
1734 self.entanglement_measure += other.entanglement_measure;
1735 self.representation_quality += other.representation_quality;
1736 self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1737 }
1738}
1739
1740#[derive(Debug, Clone, Default)]
1741pub struct RepresentationEvaluationResults {
1742 pub linear_separability: f64,
1743 pub clustering_quality: f64,
1744 pub downstream_task_performance: f64,
1745 pub transfer_learning_performance: f64,
1746 pub quantum_representation_advantage: f64,
1747}
1748
1749impl Default for QuantumSelfSupervisedConfig {
1751 fn default() -> Self {
1752 Self {
1753 input_dim: 64,
1754 representation_dim: 128,
1755 num_qubits: 8,
1756 ssl_method: QuantumSSLMethod::QuantumSimCLR {
1757 batch_size: 256,
1758 augmentation_strength: 0.5,
1759 quantum_projector: QuantumProjector {
1760 projection_layers: Vec::new(),
1761 output_normalization: true,
1762 quantum_enhancement: 1.0,
1763 },
1764 },
1765 quantum_enhancement_level: 1.0,
1766 temperature: 0.1,
1767 momentum_coefficient: 0.999,
1768 use_quantum_augmentations: true,
1769 enable_entanglement_similarity: true,
1770 contrastive_config: ContrastiveConfig {
1771 positive_pair_strategy: PositivePairStrategy::Augmentation,
1772 negative_pair_strategy: NegativePairStrategy::Random,
1773 loss_function: ContrastiveLossFunction::InfoNCE,
1774 temperature_scheduling: TemperatureScheduling::Fixed,
1775 },
1776 masked_learning_config: MaskedLearningConfig {
1777 mask_ratio: 0.15,
1778 mask_strategy: MaskStrategy::Random,
1779 reconstruction_target: ReconstructionTarget::RawPixels,
1780 quantum_mask_evolution: QuantumMaskEvolution {
1781 evolution_type: MaskEvolutionType::Static,
1782 adaptation_rate: 0.01,
1783 quantum_coherence_preservation: 0.9,
1784 },
1785 },
1786 momentum_config: MomentumConfig {
1787 momentum_coefficient: 0.999,
1788 target_network_update: TargetNetworkUpdate::Soft,
1789 quantum_momentum_preservation: 0.9,
1790 },
1791 clustering_config: ClusteringConfig {
1792 num_clusters: 256,
1793 clustering_method: QuantumClusteringMethod::QuantumKMeans,
1794 prototype_update_strategy: PrototypeUpdateStrategy::MovingAverage,
1795 quantum_assignment_method: QuantumAssignmentMethod::SoftAssignment,
1796 },
1797 }
1798 }
1799}
1800
1801impl Default for QuantumSSLMetrics {
1802 fn default() -> Self {
1803 Self {
1804 average_entanglement: 0.5,
1805 coherence_preservation: 0.9,
1806 quantum_feature_quality: 0.8,
1807 representation_dimensionality: 128.0,
1808 transfer_performance: 0.0,
1809 quantum_speedup_factor: 1.0,
1810 ssl_convergence_rate: 0.01,
1811 }
1812 }
1813}
1814
1815impl Default for SSLOptimizerState {
1816 fn default() -> Self {
1817 Self {
1818 learning_rate: 3e-4,
1819 momentum: 0.9,
1820 weight_decay: 1e-4,
1821 quantum_parameter_lr: 1e-5,
1822 entanglement_preservation_weight: 0.1,
1823 }
1824 }
1825}
1826
1827impl Default for LearningRateScheduler {
1828 fn default() -> Self {
1829 Self {
1830 scheduler_type: LRSchedulerType::Cosine,
1831 current_lr: 3e-4,
1832 warmup_epochs: 10,
1833 quantum_adaptive: false,
1834 }
1835 }
1836}
1837
1838impl Default for DecoherenceModel {
1839 fn default() -> Self {
1840 Self {
1841 t1_time: 100.0,
1842 t2_time: 50.0,
1843 gate_error_rate: 0.001,
1844 measurement_error_rate: 0.01,
1845 }
1846 }
1847}
1848
1849#[cfg(test)]
1850mod tests {
1851 use super::*;
1852
1853 #[test]
1854 fn test_quantum_ssl_creation() {
1855 let config = QuantumSelfSupervisedConfig::default();
1856 let ssl = QuantumSelfSupervisedLearner::new(config);
1857 assert!(ssl.is_ok());
1858 }
1859
1860 #[test]
1861 fn test_quantum_augmentations() {
1862 let config = QuantumSelfSupervisedConfig::default();
1863 let augmenter = QuantumAugmenter {
1864 augmentation_strategies: vec![QuantumAugmentationStrategy::QuantumNoise {
1865 noise_type: NoiseType::Gaussian,
1866 strength: 0.1,
1867 }],
1868 augmentation_strength: 0.5,
1869 quantum_coherence_preservation: 0.9,
1870 };
1871
1872 let sample = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1873 let views = augmenter.generate_augmented_views(&sample, 2);
1874 assert!(views.is_ok());
1875 assert_eq!(views.expect("views should be ok").len(), 2);
1876 }
1877
1878 #[test]
1879 fn test_ssl_training_config() {
1880 let config = SSLTrainingConfig::default();
1881 assert_eq!(config.batch_size, 256);
1882 assert_eq!(config.epochs, 100);
1883 }
1884
1885 #[test]
1886 fn test_quantum_contrastive_method() {
1887 let config = QuantumSelfSupervisedConfig {
1888 ssl_method: QuantumSSLMethod::QuantumContrastive {
1889 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1890 negative_sampling_strategy: NegativeSamplingStrategy::Random,
1891 quantum_projection_head: QuantumProjectionHead {
1892 hidden_dims: vec![128, 64],
1893 output_dim: 32,
1894 use_batch_norm: true,
1895 quantum_layers: Vec::new(),
1896 activation: QuantumActivation::QuantumReLU,
1897 },
1898 },
1899 ..Default::default()
1900 };
1901
1902 let ssl = QuantumSelfSupervisedLearner::new(config);
1903 assert!(ssl.is_ok());
1904 }
1905
1906 #[test]
1907 fn test_quantum_masked_method() {
1908 let config = QuantumSelfSupervisedConfig {
1909 ssl_method: QuantumSSLMethod::QuantumMasked {
1910 masking_strategy: QuantumMaskingStrategy::Random {
1911 mask_probability: 0.15,
1912 },
1913 reconstruction_objective: ReconstructionObjective::MSE,
1914 quantum_encoder_decoder: QuantumEncoderDecoder {
1915 encoder: QuantumEncoder {
1916 layers: Vec::new(),
1917 quantum_state_evolution: QuantumStateEvolution {
1918 evolution_type: EvolutionType::Unitary,
1919 time_steps: Array1::linspace(0.0, 1.0, 10),
1920 hamiltonian: Array2::<f64>::eye(8).mapv(|x| Complex64::new(x, 0.0)),
1921 decoherence_model: DecoherenceModel::default(),
1922 },
1923 measurement_points: vec![0, 1],
1924 },
1925 decoder: QuantumDecoder {
1926 layers: Vec::new(),
1927 quantum_state_preparation: QuantumStatePreparation {
1928 preparation_method: PreparationMethod::DirectPreparation,
1929 target_state: QuantumState::default(),
1930 fidelity_threshold: 0.95,
1931 },
1932 reconstruction_strategy: ReconstructionStrategy::FullReconstruction,
1933 },
1934 shared_quantum_state: true,
1935 entanglement_coupling: 0.5,
1936 },
1937 },
1938 ..Default::default()
1939 };
1940
1941 let ssl = QuantumSelfSupervisedLearner::new(config);
1942 assert!(ssl.is_ok());
1943 }
1944}