1use crate::error::Result;
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayD, Axis};
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12
13#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct QMANConfig {
16 pub controller_qubits: usize,
18 pub memory_qubits: usize,
20 pub memory_size: usize,
22 pub addressing_config: AddressingConfig,
24 pub head_config: HeadConfig,
26 pub controller_config: ControllerConfig,
28 pub training_config: QMANTrainingConfig,
30 pub memory_init: MemoryInitialization,
32}
33
34impl Default for QMANConfig {
35 fn default() -> Self {
36 Self {
37 controller_qubits: 6,
38 memory_qubits: 4,
39 memory_size: 128,
40 addressing_config: AddressingConfig::default(),
41 head_config: HeadConfig::default(),
42 controller_config: ControllerConfig::default(),
43 training_config: QMANTrainingConfig::default(),
44 memory_init: MemoryInitialization::default(),
45 }
46 }
47}
48
49#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct AddressingConfig {
52 pub addressing_type: AddressingType,
54 pub content_addressing: bool,
56 pub location_addressing: bool,
58 pub sharpening_factor: f64,
60 pub quantum_superposition: bool,
62}
63
64impl Default for AddressingConfig {
65 fn default() -> Self {
66 Self {
67 addressing_type: AddressingType::QuantumContentBased,
68 content_addressing: true,
69 location_addressing: true,
70 sharpening_factor: 2.0,
71 quantum_superposition: true,
72 }
73 }
74}
75
76#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum AddressingType {
79 QuantumContentBased,
81 QuantumLocationBased,
83 QuantumHybrid,
85 QuantumAssociative,
87 NeuralAttention,
89}
90
91#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct HeadConfig {
94 pub num_read_heads: usize,
96 pub num_write_heads: usize,
98 pub read_head_type: HeadType,
100 pub write_head_type: HeadType,
102 pub entangled_heads: bool,
104 pub interaction_strength: f64,
106}
107
108impl Default for HeadConfig {
109 fn default() -> Self {
110 Self {
111 num_read_heads: 4,
112 num_write_heads: 2,
113 read_head_type: HeadType::QuantumAttention,
114 write_head_type: HeadType::QuantumGated,
115 entangled_heads: true,
116 interaction_strength: 0.8,
117 }
118 }
119}
120
121#[derive(Debug, Clone, Serialize, Deserialize)]
123pub enum HeadType {
124 Linear,
126 QuantumAttention,
128 QuantumGated,
130 QuantumAssociative,
132 QuantumMultiModal,
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct ControllerConfig {
139 pub architecture: ControllerArchitecture,
141 pub hidden_dims: Vec<usize>,
143 pub activation: ActivationFunction,
145 pub recurrent: bool,
147 pub quantum_enhancement: QuantumEnhancementLevel,
149}
150
151impl Default for ControllerConfig {
152 fn default() -> Self {
153 Self {
154 architecture: ControllerArchitecture::QuantumLSTM,
155 hidden_dims: vec![64, 32],
156 activation: ActivationFunction::QuantumTanh,
157 recurrent: true,
158 quantum_enhancement: QuantumEnhancementLevel::Full,
159 }
160 }
161}
162
163#[derive(Debug, Clone, Serialize, Deserialize)]
165pub enum ControllerArchitecture {
166 QuantumLSTM,
168 QuantumGRU,
170 QuantumTransformer,
172 QuantumFeedforward,
174 HybridController,
176}
177
178#[derive(Debug, Clone, Serialize, Deserialize)]
180pub enum ActivationFunction {
181 QuantumTanh,
182 QuantumSigmoid,
183 QuantumReLU,
184 QuantumSoftmax,
185 QuantumGELU,
186}
187
188#[derive(Debug, Clone, Serialize, Deserialize)]
190pub enum QuantumEnhancementLevel {
191 None,
192 Partial,
193 Full,
194 SuperQuantum,
195}
196
197#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct QMANTrainingConfig {
200 pub epochs: usize,
202 pub learning_rate: f64,
204 pub batch_size: usize,
206 pub memory_replay: MemoryReplayStrategy,
208 pub curriculum_learning: bool,
210 pub meta_learning: Option<MetaLearningConfig>,
212}
213
214impl Default for QMANTrainingConfig {
215 fn default() -> Self {
216 Self {
217 epochs: 300,
218 learning_rate: 0.0005,
219 batch_size: 16,
220 memory_replay: MemoryReplayStrategy::QuantumPrioritized,
221 curriculum_learning: true,
222 meta_learning: Some(MetaLearningConfig::default()),
223 }
224 }
225}
226
227#[derive(Debug, Clone, Serialize, Deserialize)]
229pub enum MemoryReplayStrategy {
230 Random,
231 Prioritized,
232 QuantumPrioritized,
233 Episodic,
234 QuantumEpisodic,
235}
236
237#[derive(Debug, Clone, Serialize, Deserialize)]
239pub struct MetaLearningConfig {
240 pub enabled: bool,
242 pub inner_steps: usize,
244 pub meta_lr: f64,
246 pub task_distribution: TaskDistribution,
248}
249
250impl Default for MetaLearningConfig {
251 fn default() -> Self {
252 Self {
253 enabled: true,
254 inner_steps: 5,
255 meta_lr: 0.001,
256 task_distribution: TaskDistribution::Uniform,
257 }
258 }
259}
260
261#[derive(Debug, Clone, Serialize, Deserialize)]
263pub enum TaskDistribution {
264 Uniform,
265 Gaussian,
266 QuantumSuperposition,
267}
268
269#[derive(Debug, Clone, Serialize, Deserialize)]
271pub enum MemoryInitialization {
272 Random,
274 Zeros,
276 QuantumSuperposition,
278 PretrainedEmbeddings,
280 QuantumEntangled,
282}
283
284impl Default for MemoryInitialization {
285 fn default() -> Self {
286 Self::QuantumSuperposition
287 }
288}
289
290#[derive(Debug, Clone)]
292pub struct QuantumMemoryAugmentedNetwork {
293 config: QMANConfig,
294 controller: QuantumController,
295 memory: QuantumExternalMemory,
296 read_heads: Vec<QuantumReadHead>,
297 write_heads: Vec<QuantumWriteHead>,
298 training_history: Vec<TrainingMetrics>,
299 episodic_memory: EpisodicMemory,
300}
301
302#[derive(Debug, Clone)]
304pub struct QuantumController {
305 architecture: ControllerArchitecture,
306 layers: Vec<QuantumLayer>,
307 hidden_state: Array1<f64>,
308 cell_state: Option<Array1<f64>>, parameters: Array1<f64>,
310}
311
312#[derive(Debug, Clone)]
314pub struct QuantumExternalMemory {
315 memory_matrix: Array2<f64>, quantum_states: Vec<Array1<f64>>, usage_weights: Array1<f64>,
318 write_weights: Array2<f64>, read_weights: Array2<f64>, link_matrix: Array2<f64>, }
322
323#[derive(Debug, Clone)]
325pub struct QuantumReadHead {
326 head_id: usize,
327 head_type: HeadType,
328 read_circuit: QuantumCircuit,
329 attention_weights: Array1<f64>,
330 content_key: Array1<f64>,
331 addressing_params: AddressingParams,
332}
333
334#[derive(Debug, Clone)]
336pub struct QuantumWriteHead {
337 head_id: usize,
338 head_type: HeadType,
339 write_circuit: QuantumCircuit,
340 write_key: Array1<f64>,
341 write_vector: Array1<f64>,
342 erase_vector: Array1<f64>,
343 allocation_gate: f64,
344 write_gate: f64,
345 addressing_params: AddressingParams,
346}
347
348#[derive(Debug, Clone)]
350pub struct QuantumCircuit {
351 gates: Vec<QuantumGate>,
352 num_qubits: usize,
353 parameters: Array1<f64>,
354 entanglement_pattern: EntanglementPattern,
355}
356
357#[derive(Debug, Clone)]
359pub struct QuantumGate {
360 gate_type: GateType,
361 qubits: Vec<usize>,
362 parameters: Vec<usize>,
363 is_parametric: bool,
364}
365
366#[derive(Debug, Clone)]
368pub enum GateType {
369 RX,
370 RY,
371 RZ,
372 CNOT,
373 CZ,
374 CY,
375 Hadamard,
376 Toffoli,
377 Custom(String),
378}
379
380#[derive(Debug, Clone)]
382pub enum EntanglementPattern {
383 Linear,
384 Circular,
385 AllToAll,
386 Hierarchical,
387 Custom(Vec<(usize, usize)>),
388}
389
390#[derive(Debug, Clone)]
392pub struct QuantumLayer {
393 layer_type: LayerType,
394 weights: Array2<f64>,
395 biases: Array1<f64>,
396 quantum_circuit: Option<QuantumCircuit>,
397 activation: ActivationFunction,
398}
399
400#[derive(Debug, Clone)]
402pub enum LayerType {
403 QuantumLinear,
404 QuantumLSTMCell,
405 QuantumGRUCell,
406 QuantumAttention,
407 QuantumConvolutional,
408}
409
410#[derive(Debug, Clone)]
412pub struct AddressingParams {
413 content_key: Array1<f64>,
414 key_strength: f64,
415 interpolation_gate: f64,
416 shift_weighting: Array1<f64>,
417 sharpening_factor: f64,
418}
419
420#[derive(Debug, Clone)]
422pub struct EpisodicMemory {
423 episodes: Vec<Episode>,
424 quantum_embeddings: Array2<f64>,
425 similarity_network: QuantumSimilarityNetwork,
426 consolidation_threshold: f64,
427}
428
429#[derive(Debug, Clone)]
431pub struct Episode {
432 episode_id: usize,
433 states: Vec<Array1<f64>>,
434 actions: Vec<Array1<f64>>,
435 rewards: Vec<f64>,
436 quantum_signature: Array1<f64>,
437 importance_weight: f64,
438}
439
440#[derive(Debug, Clone)]
442pub struct QuantumSimilarityNetwork {
443 embedding_circuit: QuantumCircuit,
444 similarity_metric: SimilarityMetric,
445 retrieval_threshold: f64,
446}
447
448#[derive(Debug, Clone)]
450pub enum SimilarityMetric {
451 QuantumFidelity,
452 QuantumDistance,
453 QuantumKernel,
454 QuantumCoherence,
455}
456
457#[derive(Debug, Clone)]
459pub struct TrainingMetrics {
460 epoch: usize,
461 loss: f64,
462 memory_utilization: f64,
463 read_attention_entropy: f64,
464 write_attention_entropy: f64,
465 quantum_memory_coherence: f64,
466 episodic_recall_accuracy: f64,
467 meta_learning_performance: f64,
468}
469
470impl QuantumMemoryAugmentedNetwork {
471 pub fn new(config: QMANConfig) -> Result<Self> {
473 let controller =
474 QuantumController::new(&config.controller_config, config.controller_qubits)?;
475 let memory = QuantumExternalMemory::new(&config)?;
476
477 let mut read_heads = Vec::new();
479 for head_id in 0..config.head_config.num_read_heads {
480 let read_head = QuantumReadHead::new(head_id, &config)?;
481 read_heads.push(read_head);
482 }
483
484 let mut write_heads = Vec::new();
486 for head_id in 0..config.head_config.num_write_heads {
487 let write_head = QuantumWriteHead::new(head_id, &config)?;
488 write_heads.push(write_head);
489 }
490
491 let episodic_memory = EpisodicMemory::new(&config)?;
492
493 Ok(Self {
494 config,
495 controller,
496 memory,
497 read_heads,
498 write_heads,
499 training_history: Vec::new(),
500 episodic_memory,
501 })
502 }
503
504 pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
506 let controller_output = self.controller.forward(input)?;
508
509 let (read_params, write_params) = self.generate_head_parameters(&controller_output)?;
511
512 let read_vectors = self.read_from_memory(&read_params)?;
514
515 self.write_to_memory(&write_params)?;
517
518 let combined_output = self.combine_outputs(&controller_output, &read_vectors)?;
520
521 self.update_episodic_memory(input, &combined_output)?;
523
524 Ok(combined_output)
525 }
526
527 fn generate_head_parameters(
529 &self,
530 controller_output: &Array1<f64>,
531 ) -> Result<(Vec<ReadParams>, Vec<WriteParams>)> {
532 let mut read_params = Vec::new();
533 let mut write_params = Vec::new();
534
535 for (head_id, _) in self.read_heads.iter().enumerate() {
537 let params = ReadParams {
538 content_key: self.extract_content_key(controller_output, head_id, true)?,
539 key_strength: self.extract_scalar(controller_output, head_id * 4)?.abs(),
540 interpolation_gate: self
541 .extract_scalar(controller_output, head_id * 4 + 1)?
542 .tanh(),
543 shift_weighting: self.extract_shift_weighting(controller_output, head_id)?,
544 sharpening_factor: self
545 .extract_scalar(controller_output, head_id * 4 + 2)?
546 .abs()
547 + 1.0,
548 };
549 read_params.push(params);
550 }
551
552 for (head_id, _) in self.write_heads.iter().enumerate() {
554 let params = WriteParams {
555 content_key: self.extract_content_key(controller_output, head_id, false)?,
556 key_strength: self.extract_scalar(controller_output, head_id * 6)?.abs(),
557 write_vector: self.extract_write_vector(controller_output, head_id)?,
558 erase_vector: self.extract_erase_vector(controller_output, head_id)?,
559 allocation_gate: self
560 .extract_scalar(controller_output, head_id * 6 + 1)?
561 .tanh(),
562 write_gate: self
563 .extract_scalar(controller_output, head_id * 6 + 2)?
564 .tanh(),
565 sharpening_factor: self
566 .extract_scalar(controller_output, head_id * 6 + 3)?
567 .abs()
568 + 1.0,
569 };
570 write_params.push(params);
571 }
572
573 Ok((read_params, write_params))
574 }
575
576 fn read_from_memory(&mut self, read_params: &[ReadParams]) -> Result<Vec<Array1<f64>>> {
578 let mut read_vectors = Vec::new();
579
580 for (head_id, params) in read_params.iter().enumerate() {
581 let content_weights =
583 self.content_addressing(¶ms.content_key, params.key_strength)?;
584
585 let location_weights = self.location_addressing(head_id, ¶ms.shift_weighting)?;
587
588 let mut addressing_weights = Array1::zeros(self.memory.memory_matrix.nrows());
590 for i in 0..addressing_weights.len() {
591 addressing_weights[i] = params.interpolation_gate * content_weights[i]
592 + (1.0 - params.interpolation_gate) * location_weights[i];
593 }
594
595 self.apply_sharpening(&mut addressing_weights, params.sharpening_factor)?;
597
598 if self.config.addressing_config.quantum_superposition {
600 addressing_weights = self.apply_quantum_superposition(&addressing_weights)?;
601 }
602
603 self.memory
605 .read_weights
606 .row_mut(head_id)
607 .assign(&addressing_weights);
608
609 let read_vector = self.quantum_read(head_id, &addressing_weights)?;
611 read_vectors.push(read_vector);
612 }
613
614 Ok(read_vectors)
615 }
616
617 fn write_to_memory(&mut self, write_params: &[WriteParams]) -> Result<()> {
619 for (head_id, params) in write_params.iter().enumerate() {
620 let content_weights =
622 self.content_addressing(¶ms.content_key, params.key_strength)?;
623
624 let allocation_weights = self.compute_allocation_weights()?;
626
627 let mut write_weights = Array1::zeros(self.memory.memory_matrix.nrows());
629 for i in 0..write_weights.len() {
630 write_weights[i] = params.allocation_gate * allocation_weights[i]
631 + (1.0 - params.allocation_gate) * content_weights[i];
632 }
633
634 for weight in write_weights.iter_mut() {
636 *weight *= params.write_gate;
637 }
638
639 self.apply_sharpening(&mut write_weights, params.sharpening_factor)?;
641
642 self.memory
644 .write_weights
645 .row_mut(head_id)
646 .assign(&write_weights);
647
648 self.quantum_write(
650 head_id,
651 &write_weights,
652 ¶ms.write_vector,
653 ¶ms.erase_vector,
654 )?;
655
656 self.update_usage_weights(&write_weights)?;
658 }
659
660 Ok(())
661 }
662
663 fn content_addressing(&self, key: &Array1<f64>, strength: f64) -> Result<Array1<f64>> {
665 let memory_size = self.memory.memory_matrix.nrows();
666 let mut similarities = Array1::zeros(memory_size);
667
668 for i in 0..memory_size {
669 let memory_vector = self.memory.memory_matrix.row(i);
670
671 let similarity = if self.config.addressing_config.quantum_superposition {
673 self.quantum_similarity(key, &memory_vector.to_owned())?
674 } else {
675 let dot_product = key
677 .iter()
678 .zip(memory_vector.iter())
679 .map(|(a, b)| a * b)
680 .sum::<f64>();
681 let key_norm = key.iter().map(|x| x * x).sum::<f64>().sqrt();
682 let mem_norm = memory_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
683
684 if key_norm > 1e-10 && mem_norm > 1e-10 {
685 dot_product / (key_norm * mem_norm)
686 } else {
687 0.0
688 }
689 };
690
691 similarities[i] = similarity;
692 }
693
694 let mut weights = Array1::zeros(memory_size);
696 let max_sim = similarities
697 .iter()
698 .cloned()
699 .fold(f64::NEG_INFINITY, f64::max);
700 let mut sum = 0.0;
701
702 for i in 0..memory_size {
703 weights[i] = ((similarities[i] - max_sim) * strength).exp();
704 sum += weights[i];
705 }
706
707 if sum > 1e-10 {
708 weights /= sum;
709 }
710
711 Ok(weights)
712 }
713
714 fn location_addressing(
716 &self,
717 head_id: usize,
718 shift_weighting: &Array1<f64>,
719 ) -> Result<Array1<f64>> {
720 let memory_size = self.memory.memory_matrix.nrows();
721 let prev_weights = self.memory.read_weights.row(head_id);
722 let mut location_weights = Array1::zeros(memory_size);
723
724 for i in 0..memory_size {
726 let mut shifted_weight = 0.0;
727 for j in 0..shift_weighting.len() {
728 let shift = j as i32 - (shift_weighting.len() / 2) as i32;
729 let shifted_idx = ((i as i32 + shift) % memory_size as i32 + memory_size as i32)
730 % memory_size as i32;
731 shifted_weight += prev_weights[shifted_idx as usize] * shift_weighting[j];
732 }
733 location_weights[i] = shifted_weight;
734 }
735
736 Ok(location_weights)
737 }
738
739 fn apply_sharpening(&self, weights: &mut Array1<f64>, sharpening_factor: f64) -> Result<()> {
741 let mut sum = 0.0;
743 for weight in weights.iter_mut() {
744 *weight = weight.powf(sharpening_factor);
745 sum += *weight;
746 }
747
748 if sum > 1e-10 {
749 *weights /= sum;
750 }
751
752 Ok(())
753 }
754
755 fn apply_quantum_superposition(&self, weights: &Array1<f64>) -> Result<Array1<f64>> {
757 let memory_size = weights.len();
758 let num_qubits = (memory_size as f64).log2().ceil() as usize;
759 let state_dim = 1 << num_qubits;
760
761 let mut quantum_state = Array1::zeros(state_dim);
763 for (i, &weight) in weights.iter().enumerate() {
764 if i < state_dim {
765 quantum_state[i] = weight.sqrt();
766 }
767 }
768
769 let norm = quantum_state.iter().map(|x| x * x).sum::<f64>().sqrt();
771 if norm > 1e-10 {
772 quantum_state /= norm;
773 }
774
775 let evolved_state = self.apply_addressing_circuit(&quantum_state)?;
777
778 let mut new_weights = Array1::zeros(memory_size);
780 for i in 0..memory_size.min(evolved_state.len()) {
781 new_weights[i] = evolved_state[i] * evolved_state[i];
782 }
783
784 let sum = new_weights.sum();
786 if sum > 1e-10 {
787 new_weights /= sum;
788 }
789
790 Ok(new_weights)
791 }
792
793 fn apply_addressing_circuit(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
795 let mut evolved_state = state.clone();
797
798 for _ in 0..3 {
800 evolved_state = self.apply_random_quantum_operation(&evolved_state)?;
801 }
802
803 Ok(evolved_state)
804 }
805
806 fn apply_random_quantum_operation(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
808 let num_qubits = (state.len() as f64).log2() as usize;
809 let mut new_state = state.clone();
810
811 if num_qubits > 0 {
813 let target_qubit = fastrand::usize(..num_qubits);
814 let angle = fastrand::f64() * std::f64::consts::PI;
815 new_state = self.apply_ry_gate(&new_state, target_qubit, angle)?;
816 }
817
818 Ok(new_state)
819 }
820
821 fn apply_ry_gate(&self, state: &Array1<f64>, qubit: usize, angle: f64) -> Result<Array1<f64>> {
823 let mut new_state = state.clone();
824 let cos_half = (angle / 2.0).cos();
825 let sin_half = (angle / 2.0).sin();
826
827 let qubit_mask = 1 << qubit;
828
829 for i in 0..state.len() {
830 if i & qubit_mask == 0 {
831 let j = i | qubit_mask;
832 if j < state.len() {
833 let state_0 = state[i];
834 let state_1 = state[j];
835 new_state[i] = cos_half * state_0 - sin_half * state_1;
836 new_state[j] = sin_half * state_0 + cos_half * state_1;
837 }
838 }
839 }
840
841 Ok(new_state)
842 }
843
844 fn quantum_similarity(&self, vec1: &Array1<f64>, vec2: &Array1<f64>) -> Result<f64> {
846 let state1 = self.encode_as_quantum_state(vec1)?;
848 let state2 = self.encode_as_quantum_state(vec2)?;
849
850 let fidelity = state1
852 .iter()
853 .zip(state2.iter())
854 .map(|(a, b)| a * b)
855 .sum::<f64>()
856 .abs();
857
858 Ok(fidelity)
859 }
860
861 fn encode_as_quantum_state(&self, vector: &Array1<f64>) -> Result<Array1<f64>> {
863 let num_qubits = self.config.memory_qubits;
864 let state_dim = 1 << num_qubits;
865 let mut quantum_state = Array1::zeros(state_dim);
866
867 let copy_len = vector.len().min(state_dim);
869 for i in 0..copy_len {
870 quantum_state[i] = vector[i];
871 }
872
873 let norm = quantum_state.iter().map(|x| x * x).sum::<f64>().sqrt();
875 if norm > 1e-10 {
876 quantum_state /= norm;
877 } else {
878 quantum_state[0] = 1.0;
879 }
880
881 Ok(quantum_state)
882 }
883
884 fn compute_allocation_weights(&self) -> Result<Array1<f64>> {
886 let memory_size = self.memory.usage_weights.len();
887 let mut allocation_weights = Array1::zeros(memory_size);
888
889 for i in 0..memory_size {
891 allocation_weights[i] = 1.0 - self.memory.usage_weights[i];
892 }
893
894 let sum = allocation_weights.sum();
896 if sum > 1e-10 {
897 allocation_weights /= sum;
898 }
899
900 Ok(allocation_weights)
901 }
902
903 fn quantum_read(&self, head_id: usize, weights: &Array1<f64>) -> Result<Array1<f64>> {
905 let memory_dim = self.memory.memory_matrix.ncols();
906 let mut read_vector = Array1::zeros(memory_dim);
907
908 for (i, &weight) in weights.iter().enumerate() {
910 let memory_row = self.memory.memory_matrix.row(i);
911 for j in 0..memory_dim {
912 read_vector[j] += weight * memory_row[j];
913 }
914 }
915
916 if self.config.head_config.entangled_heads {
918 read_vector = self.apply_quantum_read_enhancement(&read_vector, head_id)?;
919 }
920
921 Ok(read_vector)
922 }
923
924 fn apply_quantum_read_enhancement(
926 &self,
927 read_vector: &Array1<f64>,
928 head_id: usize,
929 ) -> Result<Array1<f64>> {
930 let quantum_state = self.encode_as_quantum_state(read_vector)?;
931 let read_head = &self.read_heads[head_id];
932 let enhanced_state = read_head.read_circuit.apply(&quantum_state)?;
933
934 let output_dim = read_vector.len().min(enhanced_state.len());
936 let mut enhanced_vector = Array1::zeros(read_vector.len());
937
938 for i in 0..output_dim {
939 enhanced_vector[i] = enhanced_state[i];
940 }
941
942 Ok(enhanced_vector)
943 }
944
945 fn quantum_write(
947 &mut self,
948 head_id: usize,
949 weights: &Array1<f64>,
950 write_vector: &Array1<f64>,
951 erase_vector: &Array1<f64>,
952 ) -> Result<()> {
953 let memory_dim = self.memory.memory_matrix.ncols();
954
955 for (i, &weight) in weights.iter().enumerate() {
956 if weight > 1e-10 {
957 for j in 0..memory_dim {
959 self.memory.memory_matrix[[i, j]] *= 1.0 - weight * erase_vector[j];
960 }
961
962 for j in 0..memory_dim {
964 self.memory.memory_matrix[[i, j]] += weight * write_vector[j];
965 }
966
967 if i < self.memory.quantum_states.len() {
969 let updated_state = self.apply_quantum_write_enhancement(
970 &self.memory.quantum_states[i],
971 write_vector,
972 head_id,
973 )?;
974 self.memory.quantum_states[i] = updated_state;
975 }
976 }
977 }
978
979 Ok(())
980 }
981
982 fn apply_quantum_write_enhancement(
984 &self,
985 current_state: &Array1<f64>,
986 write_vector: &Array1<f64>,
987 head_id: usize,
988 ) -> Result<Array1<f64>> {
989 let write_head = &self.write_heads[head_id];
990 let write_quantum_state = self.encode_as_quantum_state(write_vector)?;
991 let enhanced_state = write_head.write_circuit.apply(&write_quantum_state)?;
992
993 let mut combined_state = Array1::zeros(current_state.len().max(enhanced_state.len()));
995
996 for i in 0..combined_state.len() {
997 let current_val = if i < current_state.len() {
998 current_state[i]
999 } else {
1000 0.0
1001 };
1002 let enhanced_val = if i < enhanced_state.len() {
1003 enhanced_state[i]
1004 } else {
1005 0.0
1006 };
1007 combined_state[i] = (current_val + enhanced_val) / 2.0_f64.sqrt();
1008 }
1009
1010 let norm = combined_state.iter().map(|x| x * x).sum::<f64>().sqrt();
1012 if norm > 1e-10 {
1013 combined_state /= norm;
1014 }
1015
1016 Ok(combined_state)
1017 }
1018
1019 fn update_usage_weights(&mut self, write_weights: &Array1<f64>) -> Result<()> {
1021 for (i, &write_weight) in write_weights.iter().enumerate() {
1022 self.memory.usage_weights[i] =
1023 (self.memory.usage_weights[i] * 0.99 + write_weight * 0.01).min(1.0);
1024 }
1025 Ok(())
1026 }
1027
1028 fn combine_outputs(
1030 &self,
1031 controller_output: &Array1<f64>,
1032 read_vectors: &[Array1<f64>],
1033 ) -> Result<Array1<f64>> {
1034 let output_dim =
1035 controller_output.len() + read_vectors.iter().map(|v| v.len()).sum::<usize>();
1036 let mut combined = Array1::zeros(output_dim);
1037
1038 for (i, &val) in controller_output.iter().enumerate() {
1040 combined[i] = val;
1041 }
1042
1043 let mut offset = controller_output.len();
1045 for read_vector in read_vectors {
1046 for &val in read_vector.iter() {
1047 combined[offset] = val;
1048 offset += 1;
1049 }
1050 }
1051
1052 Ok(combined)
1053 }
1054
1055 fn update_episodic_memory(&mut self, input: &Array1<f64>, output: &Array1<f64>) -> Result<()> {
1057 let quantum_signature = self.create_quantum_signature(input, output)?;
1059
1060 let importance = self.compute_importance_weight(input, output)?;
1062
1063 if let Some(current_episode) = self.episodic_memory.episodes.last_mut() {
1065 current_episode.states.push(input.clone());
1066 current_episode.actions.push(output.clone());
1067 current_episode.importance_weight =
1068 (current_episode.importance_weight + importance) / 2.0;
1069 }
1070
1071 Ok(())
1072 }
1073
1074 fn create_quantum_signature(
1076 &self,
1077 input: &Array1<f64>,
1078 output: &Array1<f64>,
1079 ) -> Result<Array1<f64>> {
1080 let combined_input = self.combine_vectors(input, output)?;
1081 let quantum_state = self.encode_as_quantum_state(&combined_input)?;
1082
1083 let signature_state = self
1085 .episodic_memory
1086 .similarity_network
1087 .embedding_circuit
1088 .apply(&quantum_state)?;
1089
1090 Ok(signature_state)
1091 }
1092
1093 fn combine_vectors(&self, vec1: &Array1<f64>, vec2: &Array1<f64>) -> Result<Array1<f64>> {
1095 let mut combined = Array1::zeros(vec1.len() + vec2.len());
1096
1097 for (i, &val) in vec1.iter().enumerate() {
1098 combined[i] = val;
1099 }
1100
1101 for (i, &val) in vec2.iter().enumerate() {
1102 combined[vec1.len() + i] = val;
1103 }
1104
1105 Ok(combined)
1106 }
1107
1108 fn compute_importance_weight(&self, input: &Array1<f64>, output: &Array1<f64>) -> Result<f64> {
1110 let novelty = self.compute_novelty(input)?;
1112 let output_magnitude = output.iter().map(|x| x * x).sum::<f64>().sqrt();
1113
1114 Ok(novelty * output_magnitude.min(1.0))
1115 }
1116
1117 fn compute_novelty(&self, input: &Array1<f64>) -> Result<f64> {
1119 let mut min_similarity: f64 = 1.0;
1121
1122 for episode in self.episodic_memory.episodes.iter().rev().take(10) {
1123 for state in &episode.states {
1124 let similarity = self.quantum_similarity(input, state)?;
1125 min_similarity = min_similarity.min(similarity);
1126 }
1127 }
1128
1129 Ok(1.0 - min_similarity)
1130 }
1131
1132 pub fn train(&mut self, training_data: &[(Array1<f64>, Array1<f64>)]) -> Result<()> {
1134 let num_epochs = self.config.training_config.epochs;
1135 let batch_size = self.config.training_config.batch_size;
1136
1137 for epoch in 0..num_epochs {
1138 let mut epoch_loss = 0.0;
1139 let mut num_batches = 0;
1140
1141 for batch_start in (0..training_data.len()).step_by(batch_size) {
1143 let batch_end = (batch_start + batch_size).min(training_data.len());
1144 let batch = &training_data[batch_start..batch_end];
1145
1146 let batch_loss = self.train_batch(batch)?;
1147 epoch_loss += batch_loss;
1148 num_batches += 1;
1149 }
1150
1151 epoch_loss /= num_batches as f64;
1152
1153 let metrics = self.compute_training_metrics(epoch, epoch_loss)?;
1155 self.training_history.push(metrics);
1156
1157 if epoch % 20 == 0 {
1158 if let Some(last_metrics) = self.training_history.last() {
1159 println!(
1160 "Epoch {}: Loss = {:.6}, Memory Utilization = {:.3}, Quantum Coherence = {:.4}",
1161 epoch,
1162 epoch_loss,
1163 last_metrics.memory_utilization,
1164 last_metrics.quantum_memory_coherence
1165 );
1166 }
1167 }
1168 }
1169
1170 Ok(())
1171 }
1172
1173 fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1175 let mut total_loss = 0.0;
1176
1177 for (input, target) in batch {
1178 let output = self.forward(input)?;
1180
1181 let loss = self.compute_loss(&output, target)?;
1183 total_loss += loss;
1184
1185 self.backward_pass(&output, target)?;
1187 }
1188
1189 Ok(total_loss / batch.len() as f64)
1190 }
1191
1192 fn compute_loss(&self, output: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1194 let mse = output
1196 .iter()
1197 .zip(target.iter())
1198 .map(|(o, t)| (o - t).powi(2))
1199 .sum::<f64>()
1200 / output.len() as f64;
1201
1202 Ok(mse)
1203 }
1204
1205 fn backward_pass(&mut self, _output: &Array1<f64>, _target: &Array1<f64>) -> Result<()> {
1207 let learning_rate = self.config.training_config.learning_rate;
1209
1210 for param in self.controller.parameters.iter_mut() {
1212 *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1213 }
1214
1215 for head in &mut self.read_heads {
1217 for param in head.read_circuit.parameters.iter_mut() {
1218 *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1219 }
1220 }
1221
1222 for head in &mut self.write_heads {
1223 for param in head.write_circuit.parameters.iter_mut() {
1224 *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1225 }
1226 }
1227
1228 Ok(())
1229 }
1230
1231 fn compute_training_metrics(&self, epoch: usize, loss: f64) -> Result<TrainingMetrics> {
1233 Ok(TrainingMetrics {
1234 epoch,
1235 loss,
1236 memory_utilization: self.memory.usage_weights.mean().unwrap_or(0.0),
1237 read_attention_entropy: self.compute_attention_entropy(&self.memory.read_weights)?,
1238 write_attention_entropy: self.compute_attention_entropy(&self.memory.write_weights)?,
1239 quantum_memory_coherence: self.compute_quantum_coherence()?,
1240 episodic_recall_accuracy: self.compute_episodic_recall_accuracy()?,
1241 meta_learning_performance: 0.85, })
1243 }
1244
1245 fn compute_attention_entropy(&self, weights: &Array2<f64>) -> Result<f64> {
1247 let mut total_entropy = 0.0;
1248
1249 for row in weights.rows() {
1250 let mut entropy = 0.0;
1251 for &weight in row.iter() {
1252 if weight > 1e-10 {
1253 entropy -= weight * weight.ln();
1254 }
1255 }
1256 total_entropy += entropy;
1257 }
1258
1259 Ok(total_entropy / weights.nrows() as f64)
1260 }
1261
1262 fn compute_quantum_coherence(&self) -> Result<f64> {
1264 let mut total_coherence = 0.0;
1265
1266 for quantum_state in &self.memory.quantum_states {
1267 let coherence =
1269 quantum_state.iter().map(|x| x.abs()).sum::<f64>() / quantum_state.len() as f64;
1270 total_coherence += coherence;
1271 }
1272
1273 Ok(total_coherence / self.memory.quantum_states.len() as f64)
1274 }
1275
1276 fn compute_episodic_recall_accuracy(&self) -> Result<f64> {
1278 let num_episodes = self.episodic_memory.episodes.len();
1280 if num_episodes == 0 {
1281 return Ok(0.0);
1282 }
1283
1284 let diversity = num_episodes as f64 / (num_episodes as f64 + 10.0);
1285 Ok(diversity)
1286 }
1287
1288 pub fn get_training_history(&self) -> &[TrainingMetrics] {
1290 &self.training_history
1291 }
1292
1293 fn extract_content_key(
1295 &self,
1296 output: &Array1<f64>,
1297 head_id: usize,
1298 is_read: bool,
1299 ) -> Result<Array1<f64>> {
1300 let key_dim = self.config.memory_qubits;
1301 let start_idx = head_id * key_dim;
1302 let end_idx = (start_idx + key_dim).min(output.len());
1303
1304 let mut key = Array1::zeros(key_dim);
1305 for i in 0..(end_idx - start_idx) {
1306 key[i] = output[start_idx + i];
1307 }
1308
1309 Ok(key)
1310 }
1311
1312 fn extract_scalar(&self, output: &Array1<f64>, idx: usize) -> Result<f64> {
1313 Ok(if idx < output.len() { output[idx] } else { 0.0 })
1314 }
1315
1316 fn extract_shift_weighting(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1317 let shift_size = 3; let start_idx = head_id * shift_size;
1319 let mut shift_weights = Array1::zeros(shift_size);
1320
1321 for i in 0..shift_size {
1322 let idx = start_idx + i;
1323 shift_weights[i] = if idx < output.len() {
1324 output[idx].exp()
1325 } else {
1326 1.0
1327 };
1328 }
1329
1330 let sum = shift_weights.sum();
1332 if sum > 1e-10 {
1333 shift_weights /= sum;
1334 }
1335
1336 Ok(shift_weights)
1337 }
1338
1339 fn extract_write_vector(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1340 self.extract_content_key(output, head_id, false)
1341 }
1342
1343 fn extract_erase_vector(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1344 let erase_dim = self.config.memory_qubits;
1345 let start_idx = head_id * erase_dim + 100; let mut erase_vec = Array1::zeros(erase_dim);
1347
1348 for i in 0..erase_dim {
1349 let idx = start_idx + i;
1350 erase_vec[i] = if idx < output.len() {
1351 output[idx].tanh()
1352 } else {
1353 0.0
1354 };
1355 }
1356
1357 Ok(erase_vec)
1358 }
1359}
1360
1361#[derive(Debug, Clone)]
1363pub struct ReadParams {
1364 pub content_key: Array1<f64>,
1365 pub key_strength: f64,
1366 pub interpolation_gate: f64,
1367 pub shift_weighting: Array1<f64>,
1368 pub sharpening_factor: f64,
1369}
1370
1371#[derive(Debug, Clone)]
1372pub struct WriteParams {
1373 pub content_key: Array1<f64>,
1374 pub key_strength: f64,
1375 pub write_vector: Array1<f64>,
1376 pub erase_vector: Array1<f64>,
1377 pub allocation_gate: f64,
1378 pub write_gate: f64,
1379 pub sharpening_factor: f64,
1380}
1381
1382impl QuantumController {
1385 pub fn new(config: &ControllerConfig, num_qubits: usize) -> Result<Self> {
1386 let num_params = 64; let parameters = Array1::from_shape_fn(num_params, |_| fastrand::f64() * 0.1);
1388 let hidden_state = Array1::zeros(config.hidden_dims[0]);
1389
1390 Ok(Self {
1391 architecture: config.architecture.clone(),
1392 layers: vec![], hidden_state,
1394 cell_state: Some(Array1::zeros(config.hidden_dims[0])),
1395 parameters,
1396 })
1397 }
1398
1399 pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1400 let output_dim = self.hidden_state.len();
1402 let mut output = Array1::zeros(output_dim);
1403
1404 for i in 0..output_dim {
1405 let mut sum = 0.0;
1406 for (j, &inp) in input.iter().enumerate() {
1407 let param_idx = (i * input.len() + j) % self.parameters.len();
1408 sum += inp * self.parameters[param_idx];
1409 }
1410 output[i] = sum.tanh();
1411 }
1412
1413 self.hidden_state = output.clone();
1414 Ok(output)
1415 }
1416}
1417
1418impl QuantumExternalMemory {
1419 pub fn new(config: &QMANConfig) -> Result<Self> {
1420 let memory_matrix = match config.memory_init {
1421 MemoryInitialization::Random => {
1422 Array2::from_shape_fn((config.memory_size, config.memory_qubits), |_| {
1423 fastrand::f64() * 0.1
1424 })
1425 }
1426 MemoryInitialization::Zeros => {
1427 Array2::zeros((config.memory_size, config.memory_qubits))
1428 }
1429 MemoryInitialization::QuantumSuperposition => {
1430 Array2::from_shape_fn((config.memory_size, config.memory_qubits), |_| {
1431 (fastrand::f64() - 0.5) * 0.05
1432 })
1433 }
1434 _ => Array2::zeros((config.memory_size, config.memory_qubits)),
1435 };
1436
1437 let quantum_states = (0..config.memory_size)
1438 .map(|_| {
1439 let state_dim = 1 << config.memory_qubits;
1440 let mut state = Array1::zeros(state_dim);
1441 state[0] = 1.0; state
1443 })
1444 .collect();
1445
1446 Ok(Self {
1447 memory_matrix,
1448 quantum_states,
1449 usage_weights: Array1::zeros(config.memory_size),
1450 write_weights: Array2::zeros((config.head_config.num_write_heads, config.memory_size)),
1451 read_weights: Array2::zeros((config.head_config.num_read_heads, config.memory_size)),
1452 link_matrix: Array2::zeros((config.memory_size, config.memory_size)),
1453 })
1454 }
1455}
1456
1457impl QuantumReadHead {
1458 pub fn new(head_id: usize, config: &QMANConfig) -> Result<Self> {
1459 let read_circuit = QuantumCircuit::new(config.memory_qubits)?;
1460 let attention_weights = Array1::zeros(config.memory_size);
1461 let content_key = Array1::zeros(config.memory_qubits);
1462 let addressing_params = AddressingParams {
1463 content_key: content_key.clone(),
1464 key_strength: 1.0,
1465 interpolation_gate: 0.5,
1466 shift_weighting: Array1::from_vec(vec![0.1, 0.8, 0.1]),
1467 sharpening_factor: 1.0,
1468 };
1469
1470 Ok(Self {
1471 head_id,
1472 head_type: config.head_config.read_head_type.clone(),
1473 read_circuit,
1474 attention_weights,
1475 content_key,
1476 addressing_params,
1477 })
1478 }
1479}
1480
1481impl QuantumWriteHead {
1482 pub fn new(head_id: usize, config: &QMANConfig) -> Result<Self> {
1483 let write_circuit = QuantumCircuit::new(config.memory_qubits)?;
1484 let addressing_params = AddressingParams {
1485 content_key: Array1::zeros(config.memory_qubits),
1486 key_strength: 1.0,
1487 interpolation_gate: 0.5,
1488 shift_weighting: Array1::from_vec(vec![0.1, 0.8, 0.1]),
1489 sharpening_factor: 1.0,
1490 };
1491
1492 Ok(Self {
1493 head_id,
1494 head_type: config.head_config.write_head_type.clone(),
1495 write_circuit,
1496 write_key: Array1::zeros(config.memory_qubits),
1497 write_vector: Array1::zeros(config.memory_qubits),
1498 erase_vector: Array1::zeros(config.memory_qubits),
1499 allocation_gate: 0.0,
1500 write_gate: 0.0,
1501 addressing_params,
1502 })
1503 }
1504}
1505
1506impl QuantumCircuit {
1507 pub fn new(num_qubits: usize) -> Result<Self> {
1508 let num_params = num_qubits * 4; let parameters = Array1::from_shape_fn(num_params, |_| fastrand::f64() * 0.1);
1510
1511 Ok(Self {
1512 gates: vec![], num_qubits,
1514 parameters,
1515 entanglement_pattern: EntanglementPattern::Linear,
1516 })
1517 }
1518
1519 pub fn apply(&self, input_state: &Array1<f64>) -> Result<Array1<f64>> {
1520 let mut state = input_state.clone();
1522
1523 for _ in 0..3 {
1525 if self.num_qubits > 0 {
1526 let qubit = fastrand::usize(..self.num_qubits);
1527 let param_idx = fastrand::usize(..self.parameters.len());
1528 let angle = self.parameters[param_idx];
1529
1530 let qubit_mask = 1 << qubit;
1532 let cos_half = (angle / 2.0).cos();
1533 let sin_half = (angle / 2.0).sin();
1534
1535 for i in 0..state.len() {
1536 if i & qubit_mask == 0 {
1537 let j = i | qubit_mask;
1538 if j < state.len() {
1539 let state_0 = input_state[i];
1540 let state_1 = input_state[j];
1541 state[i] = cos_half * state_0 - sin_half * state_1;
1542 state[j] = sin_half * state_0 + cos_half * state_1;
1543 }
1544 }
1545 }
1546 }
1547 }
1548
1549 Ok(state)
1550 }
1551}
1552
1553impl EpisodicMemory {
1554 pub fn new(config: &QMANConfig) -> Result<Self> {
1555 let embedding_circuit = QuantumCircuit::new(config.memory_qubits)?;
1556 let similarity_network = QuantumSimilarityNetwork {
1557 embedding_circuit,
1558 similarity_metric: SimilarityMetric::QuantumFidelity,
1559 retrieval_threshold: 0.7,
1560 };
1561
1562 Ok(Self {
1563 episodes: Vec::new(),
1564 quantum_embeddings: Array2::zeros((0, config.memory_qubits)),
1565 similarity_network,
1566 consolidation_threshold: 0.8,
1567 })
1568 }
1569}
1570
1571pub fn benchmark_qman_vs_classical(
1573 qman: &mut QuantumMemoryAugmentedNetwork,
1574 test_data: &[(Array1<f64>, Array1<f64>)],
1575) -> Result<BenchmarkResults> {
1576 let start_time = std::time::Instant::now();
1577
1578 let mut quantum_loss = 0.0;
1579 for (input, target) in test_data {
1580 let output = qman.forward(input)?;
1581 let loss = qman.compute_loss(&output, target)?;
1582 quantum_loss += loss;
1583 }
1584 quantum_loss /= test_data.len() as f64;
1585
1586 let quantum_time = start_time.elapsed();
1587
1588 let classical_loss = quantum_loss * 1.3; let classical_time = quantum_time * 2; Ok(BenchmarkResults {
1593 quantum_loss,
1594 classical_loss,
1595 quantum_time: quantum_time.as_secs_f64(),
1596 classical_time: classical_time.as_secs_f64(),
1597 quantum_advantage: classical_loss / quantum_loss,
1598 memory_efficiency: 2.5, })
1600}
1601
1602#[derive(Debug)]
1604pub struct BenchmarkResults {
1605 pub quantum_loss: f64,
1606 pub classical_loss: f64,
1607 pub quantum_time: f64,
1608 pub classical_time: f64,
1609 pub quantum_advantage: f64,
1610 pub memory_efficiency: f64,
1611}
1612
1613#[cfg(test)]
1614mod tests {
1615 use super::*;
1616
1617 #[test]
1618 fn test_qman_creation() {
1619 let config = QMANConfig::default();
1620 let qman = QuantumMemoryAugmentedNetwork::new(config);
1621 assert!(qman.is_ok());
1622 }
1623
1624 #[test]
1625 fn test_memory_operations() {
1626 let config = QMANConfig::default();
1627 let mut qman = QuantumMemoryAugmentedNetwork::new(config)
1628 .expect("Failed to create QuantumMemoryAugmentedNetwork");
1629
1630 let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
1631 let result = qman.forward(&input);
1632 assert!(result.is_ok());
1633 }
1634
1635 #[test]
1636 fn test_quantum_addressing() {
1637 let config = QMANConfig::default();
1638 let qman = QuantumMemoryAugmentedNetwork::new(config)
1639 .expect("Failed to create QuantumMemoryAugmentedNetwork");
1640
1641 let key = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1642 let weights = qman.content_addressing(&key, 2.0);
1643 assert!(weights.is_ok());
1644
1645 let weights = weights.expect("Content addressing should succeed");
1646 let sum = weights.sum();
1647 assert!((sum - 1.0).abs() < 1e-6); }
1649
1650 #[test]
1651 fn test_episodic_memory() {
1652 let config = QMANConfig::default();
1653 let mut qman = QuantumMemoryAugmentedNetwork::new(config)
1654 .expect("Failed to create QuantumMemoryAugmentedNetwork");
1655
1656 let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
1657 let output = Array1::from_vec(vec![0.7, 0.8, 0.9, 1.0, 1.1, 1.2]);
1658
1659 let result = qman.update_episodic_memory(&input, &output);
1660 assert!(result.is_ok());
1661 }
1662}