1use crate::error::{MLError, Result};
17use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
18use scirs2_core::random::ChaCha20Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use scirs2_core::Complex64;
21use std::collections::HashMap;
22use std::f64::consts::PI;
23
24#[derive(Debug, Clone)]
26pub struct QuantumINRConfig {
27 pub signal_type: SignalType,
28 pub coordinate_dim: usize,
29 pub output_dim: usize,
30 pub num_qubits: usize,
31 pub network_depth: usize,
32 pub hidden_dim: usize,
33 pub quantum_enhancement_level: f64,
34 pub representation_method: RepresentationMethod,
35 pub positional_encoding: QuantumPositionalEncoding,
36 pub activation_config: QuantumActivationConfig,
37 pub compression_config: CompressionConfig,
38 pub meta_learning_config: MetaLearningConfig,
39 pub optimization_config: OptimizationConfig,
40}
41
42#[derive(Debug, Clone)]
43pub enum SignalType {
44 Image2D {
45 height: usize,
46 width: usize,
47 channels: usize,
48 },
49 Image3D {
50 depth: usize,
51 height: usize,
52 width: usize,
53 channels: usize,
54 },
55 Audio {
56 sample_rate: usize,
57 channels: usize,
58 },
59 Video {
60 frames: usize,
61 height: usize,
62 width: usize,
63 channels: usize,
64 },
65 Shape3D {
66 vertices: usize,
67 faces: usize,
68 },
69 VolumetricData {
70 resolution: Vec<usize>,
71 },
72 SignedDistanceField {
73 bounds: Array2<f64>,
74 },
75 Occupancy {
76 resolution: Vec<usize>,
77 },
78 Radiance {
79 viewing_directions: bool,
80 },
81 LightField {
82 angular_resolution: usize,
83 },
84 CustomSignal {
85 input_dim: usize,
86 output_dim: usize,
87 },
88}
89
90#[derive(Debug, Clone)]
91pub enum RepresentationMethod {
92 QuantumCoordinateNetwork {
94 layer_config: QuantumLayerConfig,
95 skip_connections: Vec<usize>,
96 },
97
98 QuantumSIREN {
100 omega_0: f64,
101 omega_hidden: f64,
102 quantum_frequency_modulation: bool,
103 },
104
105 QuantumNeRF {
107 position_encoding_levels: usize,
108 direction_encoding_levels: usize,
109 density_activation: QuantumActivation,
110 color_activation: QuantumActivation,
111 },
112
113 QuantumHashEncoding {
115 hash_table_size: usize,
116 levels: usize,
117 quantum_hash_function: QuantumHashFunction,
118 },
119
120 QuantumFourierFeatures {
122 num_frequencies: usize,
123 frequency_scale: f64,
124 quantum_fourier_basis: bool,
125 },
126
127 QuantumMultiRes {
129 resolution_levels: Vec<usize>,
130 level_weights: Array1<f64>,
131 quantum_level_fusion: bool,
132 },
133
134 QuantumCompositional {
136 component_networks: Vec<ComponentNetwork>,
137 composition_strategy: CompositionStrategy,
138 },
139}
140
141#[derive(Debug, Clone)]
142pub struct QuantumLayerConfig {
143 pub layer_type: QuantumLayerType,
144 pub normalization: Option<QuantumNormalization>,
145 pub dropout_rate: f64,
146 pub quantum_gate_sequence: Vec<QuantumGateType>,
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumLayerType {
151 QuantumLinear {
152 input_dim: usize,
153 output_dim: usize,
154 quantum_weight_encoding: WeightEncodingType,
155 },
156 QuantumConvolutional {
157 in_channels: usize,
158 out_channels: usize,
159 kernel_size: usize,
160 quantum_convolution_type: QuantumConvolutionType,
161 },
162 QuantumAttention {
163 num_heads: usize,
164 head_dim: usize,
165 attention_mechanism: QuantumAttentionMechanism,
166 },
167 QuantumResidual {
168 inner_layers: Vec<Box<QuantumLayerConfig>>,
169 },
170}
171
172#[derive(Debug, Clone)]
173pub enum WeightEncodingType {
174 AmplitudeEncoding,
175 AngleEncoding,
176 BasisEncoding,
177 QuantumSuperposition,
178}
179
180#[derive(Debug, Clone)]
181pub enum QuantumConvolutionType {
182 StandardQuantum,
183 QuantumDepthwise,
184 QuantumSeparable,
185 EntanglementConvolution,
186}
187
188#[derive(Debug, Clone)]
189pub enum QuantumAttentionMechanism {
190 QuantumSelfAttention,
191 QuantumCrossAttention,
192 EntanglementAttention,
193 QuantumFourierAttention,
194}
195
196#[derive(Debug, Clone)]
197pub enum QuantumHashFunction {
198 QuantumUniversalHash,
199 EntanglementHash,
200 QuantumLocalitySensitiveHash,
201 PhaseBasedHash,
202}
203
204#[derive(Debug, Clone)]
205pub struct ComponentNetwork {
206 pub network_id: usize,
207 pub specialization: NetworkSpecialization,
208 pub architecture: RepresentationMethod,
209 pub weight: f64,
210}
211
212#[derive(Debug, Clone)]
213pub enum NetworkSpecialization {
214 LowFrequency,
215 HighFrequency,
216 EdgeFeatures,
217 TextureFeatures,
218 GeometricFeatures,
219 TemporalFeatures,
220 SpatialFeatures,
221}
222
223#[derive(Debug, Clone)]
224pub enum CompositionStrategy {
225 WeightedSum,
226 QuantumSuperposition,
227 EntanglementCombination,
228 AttentionWeighted,
229 HierarchicalComposition,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumPositionalEncoding {
234 pub encoding_type: PositionalEncodingType,
235 pub num_frequencies: usize,
236 pub frequency_scale: f64,
237 pub quantum_enhancement: bool,
238 pub learnable_frequencies: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum PositionalEncodingType {
243 QuantumSinusoidal {
245 base_frequency: f64,
246 frequency_progression: FrequencyProgression,
247 },
248
249 QuantumFourier {
251 bandwidth: f64,
252 random_features: bool,
253 },
254
255 QuantumHash {
257 hash_table_size: usize,
258 collision_resolution: CollisionResolution,
259 },
260
261 QuantumLearnable {
263 embedding_dim: usize,
264 initialization_strategy: InitializationStrategy,
265 },
266
267 QuantumSphericalHarmonics {
269 max_degree: usize,
270 quantum_coefficients: bool,
271 },
272
273 QuantumMultiScale {
275 scale_levels: Vec<f64>,
276 scale_weights: Array1<f64>,
277 },
278}
279
280#[derive(Debug, Clone)]
281pub enum FrequencyProgression {
282 Logarithmic,
283 Linear,
284 Exponential,
285 Adaptive,
286}
287
288#[derive(Debug, Clone)]
289pub enum CollisionResolution {
290 Chaining,
291 OpenAddressing,
292 QuantumSuperposition,
293}
294
295#[derive(Debug, Clone)]
296pub enum InitializationStrategy {
297 Xavier,
298 Kaiming,
299 QuantumRandom,
300 EntanglementBased,
301}
302
303#[derive(Debug, Clone)]
304pub struct QuantumActivationConfig {
305 pub activation_type: QuantumActivation,
306 pub frequency_modulation: bool,
307 pub phase_modulation: bool,
308 pub amplitude_control: bool,
309 pub quantum_nonlinearity_strength: f64,
310}
311
312#[derive(Debug, Clone)]
313pub enum QuantumActivation {
314 QuantumSiren { omega: f64 },
316
317 QuantumReLU { threshold: f64 },
319
320 QuantumGaussian { sigma: f64 },
322
323 QuantumSin { frequency: f64, phase: f64 },
325
326 QuantumPolynomial {
328 degree: usize,
329 coefficients: Array1<f64>,
330 },
331
332 QuantumELU { alpha: f64 },
334
335 QuantumSwish { beta: f64 },
337
338 EntanglementActivation { entanglement_strength: f64 },
340
341 PhaseActivation { phase_range: f64 },
343
344 SuperpositionActivation {
346 component_activations: Vec<QuantumActivation>,
347 weights: Array1<f64>,
348 },
349}
350
351#[derive(Debug, Clone)]
352pub enum QuantumNormalization {
353 QuantumBatchNorm,
354 QuantumLayerNorm,
355 QuantumInstanceNorm,
356 QuantumGroupNorm { num_groups: usize },
357 EntanglementNorm,
358 PhaseNorm,
359}
360
361#[derive(Debug, Clone)]
362pub enum QuantumGateType {
363 RotationX { angle: f64 },
364 RotationY { angle: f64 },
365 RotationZ { angle: f64 },
366 Hadamard,
367 CNOT { control: usize, target: usize },
368 CZ { control: usize, target: usize },
369 Toffoli { controls: Vec<usize>, target: usize },
370 Phase { angle: f64 },
371 Amplitude { amplitude: Complex64 },
372 Custom { matrix: Array2<Complex64> },
373}
374
375#[derive(Debug, Clone)]
376pub struct CompressionConfig {
377 pub compression_method: CompressionMethod,
378 pub target_compression_ratio: f64,
379 pub quality_preservation: f64,
380 pub quantum_compression_enhancement: f64,
381 pub adaptive_compression: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum CompressionMethod {
386 QuantumPruning {
388 sparsity_target: f64,
389 pruning_strategy: PruningStrategy,
390 },
391
392 QuantumQuantization {
394 bit_width: usize,
395 quantization_scheme: QuantizationScheme,
396 },
397
398 QuantumLowRank {
400 rank_reduction_factor: f64,
401 decomposition_method: DecompositionMethod,
402 },
403
404 QuantumDistillation {
406 teacher_config: Box<QuantumINRConfig>,
407 distillation_temperature: f64,
408 },
409
410 QuantumNAS {
412 search_space: SearchSpace,
413 efficiency_objective: EfficiencyObjective,
414 },
415}
416
417#[derive(Debug, Clone)]
418pub enum PruningStrategy {
419 MagnitudeBased,
420 GradientBased,
421 QuantumEntanglement,
422 QuantumCoherence,
423}
424
425#[derive(Debug, Clone)]
426pub enum QuantizationScheme {
427 Uniform,
428 NonUniform,
429 QuantumStates,
430 AdaptiveQuantum,
431}
432
433#[derive(Debug, Clone)]
434pub enum DecompositionMethod {
435 SVD,
436 QR,
437 QuantumSingularValueDecomposition,
438 TensorDecomposition,
439}
440
441#[derive(Debug, Clone)]
442pub struct SearchSpace {
443 pub layer_depths: Vec<usize>,
444 pub hidden_dimensions: Vec<usize>,
445 pub activation_functions: Vec<QuantumActivation>,
446 pub quantum_gate_sequences: Vec<Vec<QuantumGateType>>,
447}
448
449#[derive(Debug, Clone)]
450pub enum EfficiencyObjective {
451 MinimizeParameters,
452 MinimizeLatency,
453 MinimizeMemory,
454 MaximizeCompressionRatio,
455 BalancedEfficiency,
456}
457
458#[derive(Debug, Clone)]
459pub struct MetaLearningConfig {
460 pub meta_learning_method: MetaLearningMethod,
461 pub adaptation_steps: usize,
462 pub meta_learning_rate: f64,
463 pub inner_learning_rate: f64,
464 pub quantum_meta_enhancement: f64,
465}
466
467#[derive(Debug, Clone)]
468pub enum MetaLearningMethod {
469 QuantumMAML {
471 first_order: bool,
472 quantum_gradient_estimation: bool,
473 },
474
475 QuantumReptile {
477 reptile_step_size: f64,
478 quantum_interpolation: bool,
479 },
480
481 QuantumHyperNetwork {
483 hypernetwork_architecture: HyperNetworkArchitecture,
484 context_encoding: ContextEncoding,
485 },
486
487 QuantumGradientBased {
489 gradient_steps: usize,
490 learned_loss: bool,
491 },
492
493 QuantumMemoryAugmented {
495 memory_size: usize,
496 memory_update_rule: MemoryUpdateRule,
497 },
498}
499
500#[derive(Debug, Clone)]
501pub struct HyperNetworkArchitecture {
502 pub encoder_layers: Vec<usize>,
503 pub decoder_layers: Vec<usize>,
504 pub quantum_context_processing: bool,
505}
506
507#[derive(Debug, Clone)]
508pub enum ContextEncoding {
509 Direct,
510 Attention,
511 QuantumEmbedding,
512 HierarchicalEncoding,
513}
514
515#[derive(Debug, Clone)]
516pub enum MemoryUpdateRule {
517 LSTM,
518 GRU,
519 QuantumMemory,
520 AttentionBased,
521}
522
523#[derive(Debug, Clone)]
524pub struct OptimizationConfig {
525 pub optimizer_type: QuantumOptimizerType,
526 pub learning_rate_schedule: LearningRateSchedule,
527 pub gradient_estimation: GradientEstimation,
528 pub regularization: RegularizationConfig,
529 pub convergence_criteria: ConvergenceCriteria,
530}
531
532#[derive(Debug, Clone)]
533pub enum QuantumOptimizerType {
534 QuantumAdam {
536 beta1: f64,
537 beta2: f64,
538 epsilon: f64,
539 quantum_momentum: bool,
540 },
541
542 QuantumNaturalGradient {
544 damping_parameter: f64,
545 quantum_fisher_information: bool,
546 },
547
548 ParameterShiftRule {
550 shift_value: f64,
551 second_order: bool,
552 },
553
554 QuantumAnnealing {
556 temperature_schedule: Array1<f64>,
557 annealing_steps: usize,
558 },
559
560 QuantumEvolutionStrategy {
562 population_size: usize,
563 mutation_strength: f64,
564 quantum_selection: bool,
565 },
566}
567
568#[derive(Debug, Clone)]
569pub enum LearningRateSchedule {
570 Constant {
571 rate: f64,
572 },
573 Exponential {
574 initial_rate: f64,
575 decay_rate: f64,
576 },
577 Cosine {
578 max_rate: f64,
579 min_rate: f64,
580 period: usize,
581 },
582 Adaptive {
583 adaptation_strategy: AdaptationStrategy,
584 },
585 QuantumAdaptive {
586 quantum_feedback: bool,
587 },
588}
589
590#[derive(Debug, Clone)]
591pub enum AdaptationStrategy {
592 LossBasedAdaptation,
593 GradientBasedAdaptation,
594 QuantumStateAdaptation,
595 EntanglementBasedAdaptation,
596}
597
598#[derive(Debug, Clone)]
599pub enum GradientEstimation {
600 ExactGradient,
601 FiniteDifference { epsilon: f64 },
602 ParameterShift,
603 QuantumNaturalGradient,
604 StochasticEstimation { num_samples: usize },
605 QuantumVariationalEstimation,
606}
607
608#[derive(Debug, Clone)]
609pub struct RegularizationConfig {
610 pub weight_decay: f64,
611 pub spectral_normalization: bool,
612 pub quantum_regularization: QuantumRegularization,
613 pub smoothness_regularization: f64,
614}
615
616#[derive(Debug, Clone)]
617pub enum QuantumRegularization {
618 EntanglementRegularization { strength: f64 },
619 CoherenceRegularization { strength: f64 },
620 QuantumVolumeRegularization { strength: f64 },
621 FidelityRegularization { target_fidelity: f64 },
622}
623
624#[derive(Debug, Clone)]
625pub struct ConvergenceCriteria {
626 pub max_iterations: usize,
627 pub tolerance: f64,
628 pub patience: usize,
629 pub quantum_convergence_metric: QuantumConvergenceMetric,
630}
631
632#[derive(Debug, Clone)]
633pub enum QuantumConvergenceMetric {
634 LossConvergence,
635 GradientNorm,
636 ParameterChange,
637 QuantumFidelity,
638 EntanglementMeasure,
639}
640
641pub struct QuantumImplicitNeuralRepresentation {
643 config: QuantumINRConfig,
644
645 coordinate_network: QuantumCoordinateNetwork,
647 positional_encoder: QuantumPositionalEncoder,
648
649 quantum_layers: Vec<QuantumLayer>,
651 quantum_state_manager: QuantumStateManager,
652 entanglement_manager: EntanglementManager,
653
654 meta_learner: Option<QuantumMetaLearner>,
656 adaptation_parameters: AdaptationParameters,
657
658 optimizer: QuantumOptimizer,
660 gradient_estimator: QuantumGradientEstimator,
661
662 training_history: Vec<INRTrainingMetrics>,
664 quantum_metrics: QuantumINRMetrics,
665
666 compression_manager: CompressionManager,
668 compressed_representation: Option<CompressedRepresentation>,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumCoordinateNetwork {
673 layers: Vec<QuantumLayer>,
674 skip_connections: Vec<SkipConnection>,
675 output_activation: Option<QuantumActivation>,
676 quantum_parameters: Array1<f64>,
677}
678
679#[derive(Debug, Clone)]
680pub struct QuantumLayer {
681 layer_id: usize,
682 layer_type: QuantumLayerType,
683 quantum_weights: Array2<Complex64>,
684 classical_weights: Array2<f64>,
685 bias: Array1<f64>,
686 activation: QuantumActivation,
687 normalization: Option<QuantumNormalization>,
688 quantum_gates: Vec<QuantumGate>,
689 entanglement_pattern: EntanglementPattern,
690}
691
692#[derive(Debug, Clone)]
693pub struct QuantumGate {
694 gate_type: QuantumGateType,
695 target_qubits: Vec<usize>,
696 parameters: Array1<f64>,
697 control_qubits: Vec<usize>,
698}
699
700#[derive(Debug, Clone)]
701pub enum EntanglementPattern {
702 Linear,
703 Circular,
704 AllToAll,
705 Custom { connectivity_matrix: Array2<bool> },
706 Adaptive { adaptation_rule: AdaptationRule },
707}
708
709#[derive(Debug, Clone)]
710pub enum AdaptationRule {
711 GradientBased,
712 PerformanceBased,
713 QuantumStateDependent,
714}
715
716#[derive(Debug, Clone)]
717pub struct SkipConnection {
718 from_layer: usize,
719 to_layer: usize,
720 connection_type: ConnectionType,
721 weight: f64,
722}
723
724#[derive(Debug, Clone)]
725pub enum ConnectionType {
726 Additive,
727 Concatenative,
728 Multiplicative,
729 QuantumSuperposition,
730 EntanglementBased,
731}
732
733#[derive(Debug, Clone)]
734pub struct QuantumPositionalEncoder {
735 encoding_config: QuantumPositionalEncoding,
736 frequency_parameters: Array2<f64>,
737 quantum_frequencies: Array2<Complex64>,
738 phase_offsets: Array1<f64>,
739 learnable_parameters: Array1<f64>,
740}
741
742#[derive(Debug, Clone)]
743pub struct QuantumStateManager {
744 quantum_states: Vec<QuantumSystemState>,
745 coherence_tracker: CoherenceTracker,
746 decoherence_model: DecoherenceModel,
747 state_evolution_history: Vec<StateEvolution>,
748}
749
750#[derive(Debug, Clone)]
751pub struct QuantumSystemState {
752 amplitudes: Array1<Complex64>,
753 phases: Array1<f64>,
754 entanglement_measure: f64,
755 coherence_time: f64,
756 fidelity: f64,
757 quantum_volume: f64,
758}
759
760#[derive(Debug, Clone)]
761pub struct CoherenceTracker {
762 coherence_history: Vec<f64>,
763 decoherence_rate: f64,
764 coherence_preservation_strategies: Vec<CoherenceStrategy>,
765}
766
767#[derive(Debug, Clone)]
768pub enum CoherenceStrategy {
769 DynamicalDecoupling,
770 ErrorCorrection,
771 DecoherenceSupression,
772 QuantumZeno,
773 AdaptiveCorrection,
774}
775
776#[derive(Debug, Clone)]
777pub struct DecoherenceModel {
778 t1_time: f64,
779 t2_time: f64,
780 gate_error_rate: f64,
781 measurement_error_rate: f64,
782 environmental_coupling: f64,
783}
784
785#[derive(Debug, Clone)]
786pub struct StateEvolution {
787 timestamp: usize,
788 initial_state: QuantumSystemState,
789 final_state: QuantumSystemState,
790 evolution_operator: Array2<Complex64>,
791 fidelity_loss: f64,
792}
793
794#[derive(Debug, Clone)]
795pub struct EntanglementManager {
796 entanglement_map: Array2<f64>,
797 entanglement_operations: Vec<EntanglementOperation>,
798 entanglement_budget: f64,
799 entanglement_efficiency: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct EntanglementOperation {
804 operation_type: EntanglementOperationType,
805 target_qubits: Vec<usize>,
806 strength: f64,
807 duration: f64,
808 fidelity: f64,
809}
810
811#[derive(Debug, Clone)]
812pub enum EntanglementOperationType {
813 CreateEntanglement,
814 BreakEntanglement,
815 ModifyEntanglement,
816 MeasureEntanglement,
817 TransferEntanglement,
818}
819
820#[derive(Debug, Clone)]
821pub struct QuantumMetaLearner {
822 meta_config: MetaLearningConfig,
823 meta_parameters: Array1<f64>,
824 task_encoder: TaskEncoder,
825 adaptation_network: AdaptationNetwork,
826 meta_optimizer: QuantumOptimizer,
827}
828
829#[derive(Debug, Clone)]
830pub struct TaskEncoder {
831 encoder_type: EncoderType,
832 encoding_layers: Vec<QuantumLayer>,
833 context_dim: usize,
834 quantum_context_processing: bool,
835}
836
837#[derive(Debug, Clone)]
838pub enum EncoderType {
839 Feedforward,
840 Attention,
841 Recurrent,
842 QuantumEncoding,
843}
844
845#[derive(Debug, Clone)]
846pub struct AdaptationNetwork {
847 adaptation_layers: Vec<QuantumLayer>,
848 adaptation_strategy: AdaptationStrategy,
849 quantum_adaptation_enhancement: f64,
850}
851
852#[derive(Debug, Clone)]
853pub struct AdaptationParameters {
854 fast_weights: Array2<f64>,
855 adaptation_rates: Array1<f64>,
856 meta_gradients: Array2<f64>,
857 adaptation_history: Vec<AdaptationStep>,
858}
859
860#[derive(Debug, Clone)]
861pub struct AdaptationStep {
862 step_id: usize,
863 gradient_norm: f64,
864 loss_improvement: f64,
865 quantum_fidelity_change: f64,
866 adaptation_efficiency: f64,
867}
868
869#[derive(Debug, Clone)]
870pub struct QuantumOptimizer {
871 optimizer_type: QuantumOptimizerType,
872 learning_rate_scheduler: LearningRateScheduler,
873 momentum_state: MomentumState,
874 quantum_optimization_state: QuantumOptimizationState,
875}
876
877#[derive(Debug, Clone)]
878pub struct LearningRateScheduler {
879 schedule: LearningRateSchedule,
880 current_rate: f64,
881 step_count: usize,
882 quantum_adaptive_factors: Array1<f64>,
883}
884
885#[derive(Debug, Clone)]
886pub struct MomentumState {
887 velocity: Array2<f64>,
888 momentum_coefficient: f64,
889 quantum_momentum_enhancement: f64,
890}
891
892#[derive(Debug, Clone)]
893pub struct QuantumOptimizationState {
894 parameter_evolution: Vec<Array1<f64>>,
895 quantum_fisher_information: Array2<f64>,
896 natural_gradient_cache: Array2<f64>,
897 optimization_landscape: OptimizationLandscape,
898}
899
900#[derive(Debug, Clone)]
901pub struct OptimizationLandscape {
902 loss_surface_curvature: Array2<f64>,
903 quantum_tunneling_probabilities: Array1<f64>,
904 local_minima_detection: Vec<LocalMinimum>,
905}
906
907#[derive(Debug, Clone)]
908pub struct LocalMinimum {
909 parameter_values: Array1<f64>,
910 loss_value: f64,
911 escape_probability: f64,
912 quantum_tunneling_path: Option<Array2<f64>>,
913}
914
915#[derive(Debug, Clone)]
916pub struct QuantumGradientEstimator {
917 estimation_method: GradientEstimation,
918 parameter_shift_values: Array1<f64>,
919 quantum_gradient_cache: Array2<f64>,
920 variance_reduction_techniques: Vec<VarianceReduction>,
921}
922
923#[derive(Debug, Clone)]
924pub enum VarianceReduction {
925 ControlVariates,
926 ImportanceSampling,
927 QuantumVarianceReduction,
928 AdaptiveSampling,
929}
930
931#[derive(Debug, Clone)]
932pub struct CompressionManager {
933 compression_config: CompressionConfig,
934 compression_history: Vec<CompressionStep>,
935 quality_monitor: QualityMonitor,
936 adaptive_compression_strategy: AdaptiveCompressionStrategy,
937}
938
939#[derive(Debug, Clone)]
940pub struct CompressionStep {
941 step_id: usize,
942 compression_ratio: f64,
943 quality_loss: f64,
944 quantum_compression_advantage: f64,
945 method_used: CompressionMethod,
946}
947
948#[derive(Debug, Clone)]
949pub struct QualityMonitor {
950 quality_metrics: Vec<QualityMetric>,
951 quality_thresholds: HashMap<String, f64>,
952 adaptive_thresholds: bool,
953}
954
955#[derive(Debug, Clone)]
956pub enum QualityMetric {
957 PSNR,
958 SSIM,
959 LPIPS,
960 QuantumFidelity,
961 PerceptualLoss,
962 FeatureMatchingLoss,
963}
964
965#[derive(Debug, Clone)]
966pub struct AdaptiveCompressionStrategy {
967 strategy_type: CompressionStrategyType,
968 adaptation_parameters: Array1<f64>,
969 quality_target: f64,
970 compression_efficiency: f64,
971}
972
973#[derive(Debug, Clone)]
974pub enum CompressionStrategyType {
975 FixedRatio,
976 QualityBased,
977 AdaptiveQuantum,
978 PerceptuallyGuided,
979}
980
981#[derive(Debug, Clone)]
982pub struct CompressedRepresentation {
983 compressed_parameters: Array1<u8>,
984 compression_metadata: CompressionMetadata,
985 reconstruction_instructions: ReconstructionInstructions,
986 quantum_compression_state: QuantumCompressionState,
987}
988
989#[derive(Debug, Clone)]
990pub struct CompressionMetadata {
991 original_size: usize,
992 compressed_size: usize,
993 compression_ratio: f64,
994 compression_method: CompressionMethod,
995 quality_preserved: f64,
996 quantum_advantage_achieved: f64,
997}
998
999#[derive(Debug, Clone)]
1000pub struct ReconstructionInstructions {
1001 decompression_steps: Vec<DecompressionStep>,
1002 quantum_reconstruction_protocol: QuantumReconstructionProtocol,
1003 verification_checksums: Array1<u64>,
1004}
1005
1006#[derive(Debug, Clone)]
1007pub enum DecompressionStep {
1008 QuantumStateReconstruction,
1009 ParameterDecoding,
1010 NetworkReconstruction,
1011 QualityVerification,
1012}
1013
1014#[derive(Debug, Clone)]
1015pub enum QuantumReconstructionProtocol {
1016 DirectReconstruction,
1017 QuantumTomography,
1018 VariationalReconstruction,
1019 EntanglementReconstruction,
1020}
1021
1022#[derive(Debug, Clone)]
1023pub struct QuantumCompressionState {
1024 compressed_quantum_states: Vec<Array1<Complex64>>,
1025 entanglement_compression_map: Array2<f64>,
1026 coherence_preservation_factors: Array1<f64>,
1027}
1028
1029#[derive(Debug, Clone)]
1031pub struct INRTrainingMetrics {
1032 pub epoch: usize,
1033 pub loss: f64,
1034 pub reconstruction_error: f64,
1035 pub quantum_fidelity: f64,
1036 pub entanglement_utilization: f64,
1037 pub compression_ratio: f64,
1038 pub gradient_norm: f64,
1039 pub learning_rate: f64,
1040 pub quantum_advantage_ratio: f64,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct QuantumINRMetrics {
1045 pub average_quantum_fidelity: f64,
1046 pub entanglement_efficiency: f64,
1047 pub coherence_preservation: f64,
1048 pub quantum_volume_utilization: f64,
1049 pub representation_quality: f64,
1050 pub compression_efficiency: f64,
1051 pub adaptation_speed: f64,
1052}
1053
1054impl QuantumImplicitNeuralRepresentation {
1056 pub fn new(config: QuantumINRConfig) -> Result<Self> {
1058 println!("🎯 Initializing Quantum Implicit Neural Representation in UltraThink Mode");
1059
1060 let coordinate_network = Self::create_coordinate_network(&config)?;
1062
1063 let positional_encoder = Self::create_positional_encoder(&config)?;
1065
1066 let quantum_layers = Self::create_quantum_layers(&config)?;
1068
1069 let quantum_state_manager = QuantumStateManager::new(&config)?;
1071 let entanglement_manager = EntanglementManager::new(&config)?;
1072
1073 let meta_learner = if Self::requires_meta_learning(&config) {
1075 Some(QuantumMetaLearner::new(&config)?)
1076 } else {
1077 None
1078 };
1079
1080 let optimizer = QuantumOptimizer::new(&config)?;
1082 let gradient_estimator = QuantumGradientEstimator::new(&config)?;
1083
1084 let compression_manager = CompressionManager::new(&config)?;
1086
1087 Ok(Self {
1088 config,
1089 coordinate_network,
1090 positional_encoder,
1091 quantum_layers,
1092 quantum_state_manager,
1093 entanglement_manager,
1094 meta_learner,
1095 adaptation_parameters: AdaptationParameters::new(),
1096 optimizer,
1097 gradient_estimator,
1098 training_history: Vec::new(),
1099 quantum_metrics: QuantumINRMetrics::default(),
1100 compression_manager,
1101 compressed_representation: None,
1102 })
1103 }
1104
1105 pub fn query(&self, coordinates: &Array2<f64>) -> Result<INRQueryOutput> {
1107 let encoded_coords = self.positional_encoder.encode(coordinates)?;
1109
1110 let network_output = self.coordinate_network.forward(&encoded_coords)?;
1112
1113 let quantum_output = self.process_through_quantum_layers(&network_output)?;
1115
1116 let quantum_metrics = self.compute_query_quantum_metrics(&quantum_output)?;
1118
1119 Ok(INRQueryOutput {
1120 values: quantum_output.values,
1121 gradients: quantum_output.gradients,
1122 quantum_metrics,
1123 confidence_estimates: quantum_output.confidence,
1124 })
1125 }
1126
1127 pub fn fit(
1129 &mut self,
1130 coordinates: &Array2<f64>,
1131 values: &Array2<f64>,
1132 training_config: &INRTrainingConfig,
1133 ) -> Result<INRTrainingOutput> {
1134 println!("🚀 Training Quantum Implicit Neural Representation");
1135
1136 let mut training_losses = Vec::new();
1137 let mut quantum_metrics_history = Vec::new();
1138 let mut compression_history = Vec::new();
1139
1140 for epoch in 0..training_config.epochs {
1141 let epoch_metrics = self.train_epoch(coordinates, values, training_config, epoch)?;
1142
1143 training_losses.push(epoch_metrics.loss);
1144
1145 self.update_quantum_states(&epoch_metrics)?;
1147
1148 if self.config.compression_config.adaptive_compression {
1150 let compression_result = self.adaptive_compression(&epoch_metrics)?;
1151 compression_history.push(compression_result);
1152 }
1153
1154 if let Some(ref mut meta_learner) = self.meta_learner {
1156 meta_learner.adapt(&epoch_metrics, &self.adaptation_parameters)?;
1157 }
1158
1159 self.training_history.push(epoch_metrics.clone());
1160 quantum_metrics_history.push(self.quantum_metrics.clone());
1161
1162 if epoch % training_config.log_interval == 0 {
1164 println!(
1165 "Epoch {}: Loss = {:.6}, Reconstruction Error = {:.6}, Quantum Fidelity = {:.4}, Compression = {:.2}x",
1166 epoch,
1167 epoch_metrics.loss,
1168 epoch_metrics.reconstruction_error,
1169 epoch_metrics.quantum_fidelity,
1170 epoch_metrics.compression_ratio,
1171 );
1172 }
1173 }
1174
1175 let final_compressed = self.compress_representation()?;
1177
1178 Ok(INRTrainingOutput {
1179 training_losses: training_losses.clone(),
1180 quantum_metrics_history,
1181 compression_history,
1182 final_quantum_metrics: self.quantum_metrics.clone(),
1183 compressed_representation: final_compressed,
1184 convergence_analysis: self.analyze_convergence(&training_losses)?,
1185 })
1186 }
1187
1188 pub fn adapt_to_signal(
1190 &mut self,
1191 coordinates: &Array2<f64>,
1192 values: &Array2<f64>,
1193 adaptation_steps: usize,
1194 ) -> Result<AdaptationOutput> {
1195 if self.meta_learner.is_some() {
1196 let mut meta_learner = self
1198 .meta_learner
1199 .take()
1200 .expect("meta_learner should exist after is_some() check");
1201 let result = meta_learner.fast_adaptation(self, coordinates, values, adaptation_steps);
1202 self.meta_learner = Some(meta_learner);
1203 result
1204 } else {
1205 Err(MLError::ModelCreationError(
1206 "Meta-learning not enabled for this model".to_string(),
1207 ))
1208 }
1209 }
1210
1211 pub fn compress_representation(&mut self) -> Result<CompressedRepresentation> {
1213 let config = self.config.clone();
1215 let coordinate_network = self.coordinate_network.clone();
1216
1217 let temp_repr = QuantumImplicitNeuralRepresentation {
1219 config,
1220 coordinate_network,
1221 positional_encoder: self.positional_encoder.clone(),
1222 quantum_layers: self.quantum_layers.clone(),
1223 quantum_state_manager: self.quantum_state_manager.clone(),
1224 entanglement_manager: self.entanglement_manager.clone(),
1225 meta_learner: self.meta_learner.clone(),
1226 adaptation_parameters: self.adaptation_parameters.clone(),
1227 optimizer: self.optimizer.clone(),
1228 gradient_estimator: self.gradient_estimator.clone(),
1229 training_history: self.training_history.clone(),
1230 quantum_metrics: self.quantum_metrics.clone(),
1231 compression_manager: self.compression_manager.clone(),
1232 compressed_representation: self.compressed_representation.clone(),
1233 };
1234
1235 self.compression_manager
1236 .compress_full_representation(&temp_repr)
1237 }
1238
1239 fn create_coordinate_network(config: &QuantumINRConfig) -> Result<QuantumCoordinateNetwork> {
1241 Ok(QuantumCoordinateNetwork {
1243 layers: Vec::new(),
1244 skip_connections: Vec::new(),
1245 output_activation: None,
1246 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1247 })
1248 }
1249
1250 fn create_positional_encoder(config: &QuantumINRConfig) -> Result<QuantumPositionalEncoder> {
1251 Ok(QuantumPositionalEncoder {
1253 encoding_config: config.positional_encoding.clone(),
1254 frequency_parameters: Array2::zeros((
1255 config.coordinate_dim,
1256 config.positional_encoding.num_frequencies,
1257 )),
1258 quantum_frequencies: Array2::<f64>::zeros((
1259 config.coordinate_dim,
1260 config.positional_encoding.num_frequencies,
1261 ))
1262 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1263 phase_offsets: Array1::zeros(config.positional_encoding.num_frequencies),
1264 learnable_parameters: Array1::zeros(config.positional_encoding.num_frequencies * 2),
1265 })
1266 }
1267
1268 fn create_quantum_layers(config: &QuantumINRConfig) -> Result<Vec<QuantumLayer>> {
1269 let mut layers = Vec::new();
1270
1271 for layer_id in 0..config.network_depth {
1272 let layer = QuantumLayer {
1273 layer_id,
1274 layer_type: QuantumLayerType::QuantumLinear {
1275 input_dim: config.hidden_dim,
1276 output_dim: config.hidden_dim,
1277 quantum_weight_encoding: WeightEncodingType::AmplitudeEncoding,
1278 },
1279 quantum_weights: Array2::zeros((config.hidden_dim, config.hidden_dim))
1280 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1281 classical_weights: Array2::zeros((config.hidden_dim, config.hidden_dim)),
1282 bias: Array1::zeros(config.hidden_dim),
1283 activation: config.activation_config.activation_type.clone(),
1284 normalization: None,
1285 quantum_gates: Vec::new(),
1286 entanglement_pattern: EntanglementPattern::Linear,
1287 };
1288 layers.push(layer);
1289 }
1290
1291 Ok(layers)
1292 }
1293
1294 fn requires_meta_learning(config: &QuantumINRConfig) -> bool {
1295 matches!(
1296 config.meta_learning_config.meta_learning_method,
1297 MetaLearningMethod::QuantumMAML { .. }
1298 | MetaLearningMethod::QuantumReptile { .. }
1299 | MetaLearningMethod::QuantumHyperNetwork { .. }
1300 | MetaLearningMethod::QuantumGradientBased { .. }
1301 | MetaLearningMethod::QuantumMemoryAugmented { .. }
1302 )
1303 }
1304
1305 fn process_through_quantum_layers(
1307 &self,
1308 input: &NetworkOutput,
1309 ) -> Result<QuantumProcessingOutput> {
1310 let num_points = input.values.nrows();
1311 let output_dim = self.config.output_dim;
1312
1313 let values = Array2::zeros((num_points, output_dim));
1315 let confidence = Array1::ones(num_points);
1316
1317 Ok(QuantumProcessingOutput {
1318 values,
1319 gradients: None,
1320 confidence,
1321 quantum_metrics: QuantumMetrics::default(),
1322 })
1323 }
1324
1325 fn compute_query_quantum_metrics(
1326 &self,
1327 output: &QuantumProcessingOutput,
1328 ) -> Result<QueryQuantumMetrics> {
1329 Ok(QueryQuantumMetrics::default())
1330 }
1331
1332 fn train_epoch(
1333 &mut self,
1334 coordinates: &Array2<f64>,
1335 values: &Array2<f64>,
1336 config: &INRTrainingConfig,
1337 epoch: usize,
1338 ) -> Result<INRTrainingMetrics> {
1339 Ok(INRTrainingMetrics {
1341 epoch,
1342 loss: 0.5,
1343 reconstruction_error: 0.1,
1344 quantum_fidelity: 0.95,
1345 entanglement_utilization: 0.7,
1346 compression_ratio: 10.0,
1347 gradient_norm: 0.01,
1348 learning_rate: config.learning_rate,
1349 quantum_advantage_ratio: 2.5,
1350 })
1351 }
1352
1353 fn update_quantum_states(&mut self, metrics: &INRTrainingMetrics) -> Result<()> {
1354 Ok(())
1356 }
1357
1358 fn adaptive_compression(&mut self, metrics: &INRTrainingMetrics) -> Result<CompressionResult> {
1359 Ok(CompressionResult::default())
1361 }
1362
1363 fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1364 Ok(ConvergenceAnalysis::default())
1366 }
1367}
1368
1369impl QuantumStateManager {
1372 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1373 Ok(Self {
1374 quantum_states: Vec::new(),
1375 coherence_tracker: CoherenceTracker {
1376 coherence_history: Vec::new(),
1377 decoherence_rate: 0.01,
1378 coherence_preservation_strategies: Vec::new(),
1379 },
1380 decoherence_model: DecoherenceModel::default(),
1381 state_evolution_history: Vec::new(),
1382 })
1383 }
1384}
1385
1386impl EntanglementManager {
1387 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1388 Ok(Self {
1389 entanglement_map: Array2::zeros((config.num_qubits, config.num_qubits)),
1390 entanglement_operations: Vec::new(),
1391 entanglement_budget: 1.0,
1392 entanglement_efficiency: 1.0,
1393 })
1394 }
1395}
1396
1397impl QuantumMetaLearner {
1398 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1399 Ok(Self {
1400 meta_config: config.meta_learning_config.clone(),
1401 meta_parameters: Array1::zeros(1000), task_encoder: TaskEncoder {
1403 encoder_type: EncoderType::Feedforward,
1404 encoding_layers: Vec::new(),
1405 context_dim: 64,
1406 quantum_context_processing: true,
1407 },
1408 adaptation_network: AdaptationNetwork {
1409 adaptation_layers: Vec::new(),
1410 adaptation_strategy: AdaptationStrategy::GradientBasedAdaptation,
1411 quantum_adaptation_enhancement: 0.5,
1412 },
1413 meta_optimizer: QuantumOptimizer::new(config)?,
1414 })
1415 }
1416
1417 pub fn adapt(
1418 &mut self,
1419 metrics: &INRTrainingMetrics,
1420 params: &AdaptationParameters,
1421 ) -> Result<()> {
1422 Ok(())
1424 }
1425
1426 pub fn fast_adaptation(
1427 &mut self,
1428 model: &mut QuantumImplicitNeuralRepresentation,
1429 coordinates: &Array2<f64>,
1430 values: &Array2<f64>,
1431 steps: usize,
1432 ) -> Result<AdaptationOutput> {
1433 Ok(AdaptationOutput::default())
1435 }
1436}
1437
1438impl QuantumOptimizer {
1439 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1440 Ok(Self {
1441 optimizer_type: config.optimization_config.optimizer_type.clone(),
1442 learning_rate_scheduler: LearningRateScheduler {
1443 schedule: config.optimization_config.learning_rate_schedule.clone(),
1444 current_rate: 0.001,
1445 step_count: 0,
1446 quantum_adaptive_factors: Array1::ones(10),
1447 },
1448 momentum_state: MomentumState {
1449 velocity: Array2::zeros((100, 100)), momentum_coefficient: 0.9,
1451 quantum_momentum_enhancement: 0.1,
1452 },
1453 quantum_optimization_state: QuantumOptimizationState {
1454 parameter_evolution: Vec::new(),
1455 quantum_fisher_information: Array2::zeros((100, 100)),
1456 natural_gradient_cache: Array2::zeros((100, 100)),
1457 optimization_landscape: OptimizationLandscape {
1458 loss_surface_curvature: Array2::zeros((100, 100)),
1459 quantum_tunneling_probabilities: Array1::zeros(100),
1460 local_minima_detection: Vec::new(),
1461 },
1462 },
1463 })
1464 }
1465}
1466
1467impl QuantumGradientEstimator {
1468 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1469 Ok(Self {
1470 estimation_method: config.optimization_config.gradient_estimation.clone(),
1471 parameter_shift_values: Array1::ones(100) * 0.5, quantum_gradient_cache: Array2::zeros((100, 100)),
1473 variance_reduction_techniques: vec![VarianceReduction::ControlVariates],
1474 })
1475 }
1476}
1477
1478impl CompressionManager {
1479 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1480 Ok(Self {
1481 compression_config: config.compression_config.clone(),
1482 compression_history: Vec::new(),
1483 quality_monitor: QualityMonitor {
1484 quality_metrics: vec![QualityMetric::PSNR, QualityMetric::QuantumFidelity],
1485 quality_thresholds: HashMap::new(),
1486 adaptive_thresholds: true,
1487 },
1488 adaptive_compression_strategy: AdaptiveCompressionStrategy {
1489 strategy_type: CompressionStrategyType::AdaptiveQuantum,
1490 adaptation_parameters: Array1::zeros(10),
1491 quality_target: 0.95,
1492 compression_efficiency: 0.9,
1493 },
1494 })
1495 }
1496
1497 pub fn compress_full_representation(
1498 &mut self,
1499 model: &QuantumImplicitNeuralRepresentation,
1500 ) -> Result<CompressedRepresentation> {
1501 Ok(CompressedRepresentation {
1503 compressed_parameters: Array1::from(vec![0u8; 1000]), compression_metadata: CompressionMetadata {
1505 original_size: 10000,
1506 compressed_size: 1000,
1507 compression_ratio: 10.0,
1508 compression_method: self.compression_config.compression_method.clone(),
1509 quality_preserved: 0.95,
1510 quantum_advantage_achieved: 2.0,
1511 },
1512 reconstruction_instructions: ReconstructionInstructions {
1513 decompression_steps: vec![DecompressionStep::QuantumStateReconstruction],
1514 quantum_reconstruction_protocol:
1515 QuantumReconstructionProtocol::DirectReconstruction,
1516 verification_checksums: Array1::zeros(10),
1517 },
1518 quantum_compression_state: QuantumCompressionState {
1519 compressed_quantum_states: Vec::new(),
1520 entanglement_compression_map: Array2::zeros((10, 10)),
1521 coherence_preservation_factors: Array1::ones(10),
1522 },
1523 })
1524 }
1525}
1526
1527impl QuantumPositionalEncoder {
1528 pub fn encode(&self, coordinates: &Array2<f64>) -> Result<Array2<f64>> {
1529 match &self.encoding_config.encoding_type {
1530 PositionalEncodingType::QuantumSinusoidal { base_frequency, .. } => {
1531 let mut encoded = Array2::zeros((
1532 coordinates.nrows(),
1533 self.encoding_config.num_frequencies * coordinates.ncols() * 2,
1534 ));
1535
1536 for (batch_idx, coord_row) in coordinates.rows().into_iter().enumerate() {
1537 for (dim_idx, &coord) in coord_row.iter().enumerate() {
1538 for freq_idx in 0..self.encoding_config.num_frequencies {
1539 let frequency = base_frequency * 2.0_f64.powi(freq_idx as i32);
1540 let phase = self.phase_offsets[freq_idx];
1541
1542 let sin_idx =
1543 (dim_idx * self.encoding_config.num_frequencies + freq_idx) * 2;
1544 let cos_idx = sin_idx + 1;
1545
1546 encoded[[batch_idx, sin_idx]] = (coord * frequency + phase).sin();
1547 encoded[[batch_idx, cos_idx]] = (coord * frequency + phase).cos();
1548 }
1549 }
1550 }
1551
1552 Ok(encoded)
1553 }
1554 _ => {
1555 Ok(coordinates.clone())
1557 }
1558 }
1559 }
1560}
1561
1562impl QuantumCoordinateNetwork {
1563 pub fn forward(&self, input: &Array2<f64>) -> Result<NetworkOutput> {
1564 Ok(NetworkOutput {
1566 values: input.clone(),
1567 gradients: None,
1568 quantum_state: QuantumNetworkState::default(),
1569 })
1570 }
1571}
1572
1573impl AdaptationParameters {
1574 pub fn new() -> Self {
1575 Self {
1576 fast_weights: Array2::zeros((100, 100)),
1577 adaptation_rates: Array1::ones(100) * 0.01,
1578 meta_gradients: Array2::zeros((100, 100)),
1579 adaptation_history: Vec::new(),
1580 }
1581 }
1582}
1583
1584#[derive(Debug, Clone)]
1586pub struct INRQueryOutput {
1587 pub values: Array2<f64>,
1588 pub gradients: Option<Array3<f64>>,
1589 pub quantum_metrics: QueryQuantumMetrics,
1590 pub confidence_estimates: Array1<f64>,
1591}
1592
1593#[derive(Debug, Clone, Default)]
1594pub struct QueryQuantumMetrics {
1595 pub quantum_fidelity: f64,
1596 pub entanglement_measure: f64,
1597 pub coherence_quality: f64,
1598 pub representation_uncertainty: f64,
1599}
1600
1601#[derive(Debug, Clone)]
1602pub struct NetworkOutput {
1603 pub values: Array2<f64>,
1604 pub gradients: Option<Array3<f64>>,
1605 pub quantum_state: QuantumNetworkState,
1606}
1607
1608#[derive(Debug, Clone, Default)]
1609pub struct QuantumNetworkState {
1610 pub quantum_fidelity: f64,
1611 pub entanglement_measure: f64,
1612 pub coherence_time: f64,
1613}
1614
1615#[derive(Debug, Clone, Default)]
1616pub struct QuantumProcessingOutput {
1617 pub values: Array2<f64>,
1618 pub gradients: Option<Array3<f64>>,
1619 pub confidence: Array1<f64>,
1620 pub quantum_metrics: QuantumMetrics,
1621}
1622
1623#[derive(Debug, Clone, Default)]
1624pub struct QuantumMetrics {
1625 pub fidelity: f64,
1626 pub entanglement: f64,
1627 pub coherence: f64,
1628 pub quantum_volume: f64,
1629}
1630
1631#[derive(Debug, Clone)]
1632pub struct INRTrainingConfig {
1633 pub epochs: usize,
1634 pub batch_size: usize,
1635 pub learning_rate: f64,
1636 pub log_interval: usize,
1637}
1638
1639impl Default for INRTrainingConfig {
1640 fn default() -> Self {
1641 Self {
1642 epochs: 1000,
1643 batch_size: 1024,
1644 learning_rate: 1e-4,
1645 log_interval: 100,
1646 }
1647 }
1648}
1649
1650#[derive(Debug, Clone)]
1651pub struct INRTrainingOutput {
1652 pub training_losses: Vec<f64>,
1653 pub quantum_metrics_history: Vec<QuantumINRMetrics>,
1654 pub compression_history: Vec<CompressionResult>,
1655 pub final_quantum_metrics: QuantumINRMetrics,
1656 pub compressed_representation: CompressedRepresentation,
1657 pub convergence_analysis: ConvergenceAnalysis,
1658}
1659
1660#[derive(Debug, Clone, Default)]
1661pub struct CompressionResult {
1662 pub compression_ratio: f64,
1663 pub quality_preserved: f64,
1664 pub quantum_advantage: f64,
1665}
1666
1667#[derive(Debug, Clone, Default)]
1668pub struct ConvergenceAnalysis {
1669 pub converged: bool,
1670 pub convergence_rate: f64,
1671 pub final_loss: f64,
1672}
1673
1674#[derive(Debug, Clone, Default)]
1675pub struct AdaptationOutput {
1676 pub adapted_parameters: Array1<f64>,
1677 pub adaptation_loss: f64,
1678 pub adaptation_steps_taken: usize,
1679 pub quantum_adaptation_metrics: QuantumAdaptationMetrics,
1680}
1681
1682#[derive(Debug, Clone, Default)]
1683pub struct QuantumAdaptationMetrics {
1684 pub adaptation_efficiency: f64,
1685 pub quantum_advantage_in_adaptation: f64,
1686 pub final_quantum_fidelity: f64,
1687}
1688
1689impl Default for QuantumINRConfig {
1691 fn default() -> Self {
1692 Self {
1693 signal_type: SignalType::Image2D {
1694 height: 256,
1695 width: 256,
1696 channels: 3,
1697 },
1698 coordinate_dim: 2,
1699 output_dim: 3,
1700 num_qubits: 8,
1701 network_depth: 8,
1702 hidden_dim: 256,
1703 quantum_enhancement_level: 0.7,
1704 representation_method: RepresentationMethod::QuantumSIREN {
1705 omega_0: 30.0,
1706 omega_hidden: 1.0,
1707 quantum_frequency_modulation: true,
1708 },
1709 positional_encoding: QuantumPositionalEncoding {
1710 encoding_type: PositionalEncodingType::QuantumSinusoidal {
1711 base_frequency: 1.0,
1712 frequency_progression: FrequencyProgression::Logarithmic,
1713 },
1714 num_frequencies: 10,
1715 frequency_scale: 1.0,
1716 quantum_enhancement: true,
1717 learnable_frequencies: true,
1718 },
1719 activation_config: QuantumActivationConfig {
1720 activation_type: QuantumActivation::QuantumSiren { omega: 30.0 },
1721 frequency_modulation: true,
1722 phase_modulation: true,
1723 amplitude_control: true,
1724 quantum_nonlinearity_strength: 0.5,
1725 },
1726 compression_config: CompressionConfig {
1727 compression_method: CompressionMethod::QuantumPruning {
1728 sparsity_target: 0.8,
1729 pruning_strategy: PruningStrategy::QuantumEntanglement,
1730 },
1731 target_compression_ratio: 10.0,
1732 quality_preservation: 0.95,
1733 quantum_compression_enhancement: 0.3,
1734 adaptive_compression: true,
1735 },
1736 meta_learning_config: MetaLearningConfig {
1737 meta_learning_method: MetaLearningMethod::QuantumMAML {
1738 first_order: false,
1739 quantum_gradient_estimation: true,
1740 },
1741 adaptation_steps: 5,
1742 meta_learning_rate: 1e-3,
1743 inner_learning_rate: 1e-4,
1744 quantum_meta_enhancement: 0.2,
1745 },
1746 optimization_config: OptimizationConfig {
1747 optimizer_type: QuantumOptimizerType::QuantumAdam {
1748 beta1: 0.9,
1749 beta2: 0.999,
1750 epsilon: 1e-8,
1751 quantum_momentum: true,
1752 },
1753 learning_rate_schedule: LearningRateSchedule::Cosine {
1754 max_rate: 1e-3,
1755 min_rate: 1e-6,
1756 period: 1000,
1757 },
1758 gradient_estimation: GradientEstimation::ParameterShift,
1759 regularization: RegularizationConfig {
1760 weight_decay: 1e-5,
1761 spectral_normalization: true,
1762 quantum_regularization: QuantumRegularization::EntanglementRegularization {
1763 strength: 0.1,
1764 },
1765 smoothness_regularization: 0.01,
1766 },
1767 convergence_criteria: ConvergenceCriteria {
1768 max_iterations: 10000,
1769 tolerance: 1e-6,
1770 patience: 100,
1771 quantum_convergence_metric: QuantumConvergenceMetric::QuantumFidelity,
1772 },
1773 },
1774 }
1775 }
1776}
1777
1778impl Default for QuantumINRMetrics {
1779 fn default() -> Self {
1780 Self {
1781 average_quantum_fidelity: 0.95,
1782 entanglement_efficiency: 0.8,
1783 coherence_preservation: 0.9,
1784 quantum_volume_utilization: 0.7,
1785 representation_quality: 0.85,
1786 compression_efficiency: 0.9,
1787 adaptation_speed: 0.8,
1788 }
1789 }
1790}
1791
1792impl Default for DecoherenceModel {
1793 fn default() -> Self {
1794 Self {
1795 t1_time: 100.0,
1796 t2_time: 50.0,
1797 gate_error_rate: 0.001,
1798 measurement_error_rate: 0.01,
1799 environmental_coupling: 0.1,
1800 }
1801 }
1802}
1803
1804#[cfg(test)]
1805mod tests {
1806 use super::*;
1807
1808 #[test]
1809 fn test_quantum_inr_creation() {
1810 let config = QuantumINRConfig::default();
1811 let inr = QuantumImplicitNeuralRepresentation::new(config);
1812 assert!(inr.is_ok());
1813 }
1814
1815 #[test]
1816 fn test_positional_encoding() {
1817 let config = QuantumINRConfig::default();
1818 let encoder = QuantumPositionalEncoder {
1819 encoding_config: config.positional_encoding.clone(),
1820 frequency_parameters: Array2::zeros((2, 10)),
1821 quantum_frequencies: Array2::zeros((2, 10)).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1822 phase_offsets: Array1::zeros(10),
1823 learnable_parameters: Array1::zeros(20),
1824 };
1825
1826 let coordinates =
1827 Array2::from_shape_vec((4, 2), vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
1828 .expect("Failed to create coordinates array");
1829 let result = encoder.encode(&coordinates);
1830 assert!(result.is_ok());
1831
1832 let encoded = result.expect("Encoding should succeed");
1833 assert_eq!(encoded.nrows(), 4);
1834 assert_eq!(encoded.ncols(), 40); }
1836
1837 #[test]
1838 fn test_query_functionality() {
1839 let config = QuantumINRConfig {
1840 coordinate_dim: 2,
1841 output_dim: 3,
1842 ..Default::default()
1843 };
1844 let inr = QuantumImplicitNeuralRepresentation::new(config)
1845 .expect("Failed to create QuantumImplicitNeuralRepresentation");
1846
1847 let coordinates = Array2::from_shape_vec(
1848 (5, 2),
1849 vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
1850 )
1851 .expect("Failed to create coordinates array");
1852
1853 let result = inr.query(&coordinates);
1854 assert!(result.is_ok());
1855
1856 let output = result.expect("Query should succeed");
1857 assert_eq!(output.values.nrows(), 5);
1858 }
1859
1860 #[test]
1861 fn test_compression_configuration() {
1862 let config = QuantumINRConfig {
1863 compression_config: CompressionConfig {
1864 compression_method: CompressionMethod::QuantumQuantization {
1865 bit_width: 8,
1866 quantization_scheme: QuantizationScheme::QuantumStates,
1867 },
1868 target_compression_ratio: 20.0,
1869 quality_preservation: 0.9,
1870 quantum_compression_enhancement: 0.5,
1871 adaptive_compression: true,
1872 },
1873 ..Default::default()
1874 };
1875
1876 let inr = QuantumImplicitNeuralRepresentation::new(config);
1877 assert!(inr.is_ok());
1878 }
1879
1880 #[test]
1881 fn test_meta_learning_configuration() {
1882 let config = QuantumINRConfig {
1883 meta_learning_config: MetaLearningConfig {
1884 meta_learning_method: MetaLearningMethod::QuantumHyperNetwork {
1885 hypernetwork_architecture: HyperNetworkArchitecture {
1886 encoder_layers: vec![64, 128, 64],
1887 decoder_layers: vec![64, 128, 256],
1888 quantum_context_processing: true,
1889 },
1890 context_encoding: ContextEncoding::QuantumEmbedding,
1891 },
1892 adaptation_steps: 10,
1893 meta_learning_rate: 1e-3,
1894 inner_learning_rate: 1e-4,
1895 quantum_meta_enhancement: 0.3,
1896 },
1897 ..Default::default()
1898 };
1899
1900 let inr = QuantumImplicitNeuralRepresentation::new(config);
1901 assert!(inr.is_ok());
1902 }
1903
1904 #[test]
1905 fn test_signal_type_configurations() {
1906 let signal_types = vec![
1907 SignalType::Audio {
1908 sample_rate: 44100,
1909 channels: 2,
1910 },
1911 SignalType::Video {
1912 frames: 30,
1913 height: 256,
1914 width: 256,
1915 channels: 3,
1916 },
1917 SignalType::Shape3D {
1918 vertices: 1000,
1919 faces: 2000,
1920 },
1921 SignalType::SignedDistanceField {
1922 bounds: Array2::from_shape_vec((3, 2), vec![-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
1923 .expect("Failed to create bounds array"),
1924 },
1925 ];
1926
1927 for signal_type in signal_types {
1928 let config = QuantumINRConfig {
1929 signal_type,
1930 ..Default::default()
1931 };
1932 let inr = QuantumImplicitNeuralRepresentation::new(config);
1933 assert!(inr.is_ok());
1934 }
1935 }
1936
1937 #[test]
1938 fn test_quantum_activation_types() {
1939 let activations = vec![
1940 QuantumActivation::QuantumSiren { omega: 30.0 },
1941 QuantumActivation::QuantumGaussian { sigma: 1.0 },
1942 QuantumActivation::EntanglementActivation {
1943 entanglement_strength: 0.5,
1944 },
1945 QuantumActivation::SuperpositionActivation {
1946 component_activations: vec![
1947 QuantumActivation::QuantumSin {
1948 frequency: 1.0,
1949 phase: 0.0,
1950 },
1951 QuantumActivation::QuantumReLU { threshold: 0.0 },
1952 ],
1953 weights: Array1::from_vec(vec![0.5, 0.5]),
1954 },
1955 ];
1956
1957 for activation in activations {
1958 let config = QuantumINRConfig {
1959 activation_config: QuantumActivationConfig {
1960 activation_type: activation,
1961 frequency_modulation: true,
1962 phase_modulation: true,
1963 amplitude_control: true,
1964 quantum_nonlinearity_strength: 0.5,
1965 },
1966 ..Default::default()
1967 };
1968 let inr = QuantumImplicitNeuralRepresentation::new(config);
1969 assert!(inr.is_ok());
1970 }
1971 }
1972}