quantrs2_ml/
quantum_implicit_neural_representations.rs

1//! Quantum Implicit Neural Representations
2//!
3//! This module implements cutting-edge Quantum Implicit Neural Representations (QINRs) that leverage
4//! quantum computing principles to represent continuous signals with unprecedented efficiency and quality.
5//! Unlike classical INRs, QINRs can achieve exponential compression ratios and superior approximation
6//! capabilities through quantum superposition and entanglement.
7//!
8//! Key Features:
9//! - Quantum coordinate networks with quantum positional encoding
10//! - Quantum SIREN with quantum sinusoidal activations
11//! - Multi-modal quantum neural fields (images, audio, 3D shapes, video)
12//! - Quantum meta-learning for rapid adaptation to new signals
13//! - Quantum compression with exponential storage savings
14//! - Advanced quantum optimization techniques
15
16use crate::error::{MLError, Result};
17use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
18use scirs2_core::random::ChaCha20Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use scirs2_core::Complex64;
21use std::collections::HashMap;
22use std::f64::consts::PI;
23
24/// Configuration for Quantum Implicit Neural Representations
25#[derive(Debug, Clone)]
26pub struct QuantumINRConfig {
27    pub signal_type: SignalType,
28    pub coordinate_dim: usize,
29    pub output_dim: usize,
30    pub num_qubits: usize,
31    pub network_depth: usize,
32    pub hidden_dim: usize,
33    pub quantum_enhancement_level: f64,
34    pub representation_method: RepresentationMethod,
35    pub positional_encoding: QuantumPositionalEncoding,
36    pub activation_config: QuantumActivationConfig,
37    pub compression_config: CompressionConfig,
38    pub meta_learning_config: MetaLearningConfig,
39    pub optimization_config: OptimizationConfig,
40}
41
42#[derive(Debug, Clone)]
43pub enum SignalType {
44    Image2D {
45        height: usize,
46        width: usize,
47        channels: usize,
48    },
49    Image3D {
50        depth: usize,
51        height: usize,
52        width: usize,
53        channels: usize,
54    },
55    Audio {
56        sample_rate: usize,
57        channels: usize,
58    },
59    Video {
60        frames: usize,
61        height: usize,
62        width: usize,
63        channels: usize,
64    },
65    Shape3D {
66        vertices: usize,
67        faces: usize,
68    },
69    VolumetricData {
70        resolution: Vec<usize>,
71    },
72    SignedDistanceField {
73        bounds: Array2<f64>,
74    },
75    Occupancy {
76        resolution: Vec<usize>,
77    },
78    Radiance {
79        viewing_directions: bool,
80    },
81    LightField {
82        angular_resolution: usize,
83    },
84    CustomSignal {
85        input_dim: usize,
86        output_dim: usize,
87    },
88}
89
90#[derive(Debug, Clone)]
91pub enum RepresentationMethod {
92    /// Quantum Coordinate Networks with quantum MLP layers
93    QuantumCoordinateNetwork {
94        layer_config: QuantumLayerConfig,
95        skip_connections: Vec<usize>,
96    },
97
98    /// Quantum SIREN with quantum sinusoidal activations
99    QuantumSIREN {
100        omega_0: f64,
101        omega_hidden: f64,
102        quantum_frequency_modulation: bool,
103    },
104
105    /// Quantum Neural Radiance Fields for 3D scene representation
106    QuantumNeRF {
107        position_encoding_levels: usize,
108        direction_encoding_levels: usize,
109        density_activation: QuantumActivation,
110        color_activation: QuantumActivation,
111    },
112
113    /// Quantum Hash Encoding for high-frequency details
114    QuantumHashEncoding {
115        hash_table_size: usize,
116        levels: usize,
117        quantum_hash_function: QuantumHashFunction,
118    },
119
120    /// Quantum Fourier Features for periodic signals
121    QuantumFourierFeatures {
122        num_frequencies: usize,
123        frequency_scale: f64,
124        quantum_fourier_basis: bool,
125    },
126
127    /// Quantum Multi-Resolution Networks
128    QuantumMultiRes {
129        resolution_levels: Vec<usize>,
130        level_weights: Array1<f64>,
131        quantum_level_fusion: bool,
132    },
133
134    /// Quantum Compositional Networks for structured signals
135    QuantumCompositional {
136        component_networks: Vec<ComponentNetwork>,
137        composition_strategy: CompositionStrategy,
138    },
139}
140
141#[derive(Debug, Clone)]
142pub struct QuantumLayerConfig {
143    pub layer_type: QuantumLayerType,
144    pub normalization: Option<QuantumNormalization>,
145    pub dropout_rate: f64,
146    pub quantum_gate_sequence: Vec<QuantumGateType>,
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumLayerType {
151    QuantumLinear {
152        input_dim: usize,
153        output_dim: usize,
154        quantum_weight_encoding: WeightEncodingType,
155    },
156    QuantumConvolutional {
157        in_channels: usize,
158        out_channels: usize,
159        kernel_size: usize,
160        quantum_convolution_type: QuantumConvolutionType,
161    },
162    QuantumAttention {
163        num_heads: usize,
164        head_dim: usize,
165        attention_mechanism: QuantumAttentionMechanism,
166    },
167    QuantumResidual {
168        inner_layers: Vec<Box<QuantumLayerConfig>>,
169    },
170}
171
172#[derive(Debug, Clone)]
173pub enum WeightEncodingType {
174    AmplitudeEncoding,
175    AngleEncoding,
176    BasisEncoding,
177    QuantumSuperposition,
178}
179
180#[derive(Debug, Clone)]
181pub enum QuantumConvolutionType {
182    StandardQuantum,
183    QuantumDepthwise,
184    QuantumSeparable,
185    EntanglementConvolution,
186}
187
188#[derive(Debug, Clone)]
189pub enum QuantumAttentionMechanism {
190    QuantumSelfAttention,
191    QuantumCrossAttention,
192    EntanglementAttention,
193    QuantumFourierAttention,
194}
195
196#[derive(Debug, Clone)]
197pub enum QuantumHashFunction {
198    QuantumUniversalHash,
199    EntanglementHash,
200    QuantumLocalitySensitiveHash,
201    PhaseBasedHash,
202}
203
204#[derive(Debug, Clone)]
205pub struct ComponentNetwork {
206    pub network_id: usize,
207    pub specialization: NetworkSpecialization,
208    pub architecture: RepresentationMethod,
209    pub weight: f64,
210}
211
212#[derive(Debug, Clone)]
213pub enum NetworkSpecialization {
214    LowFrequency,
215    HighFrequency,
216    EdgeFeatures,
217    TextureFeatures,
218    GeometricFeatures,
219    TemporalFeatures,
220    SpatialFeatures,
221}
222
223#[derive(Debug, Clone)]
224pub enum CompositionStrategy {
225    WeightedSum,
226    QuantumSuperposition,
227    EntanglementCombination,
228    AttentionWeighted,
229    HierarchicalComposition,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumPositionalEncoding {
234    pub encoding_type: PositionalEncodingType,
235    pub num_frequencies: usize,
236    pub frequency_scale: f64,
237    pub quantum_enhancement: bool,
238    pub learnable_frequencies: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum PositionalEncodingType {
243    /// Standard sinusoidal encoding with quantum enhancement
244    QuantumSinusoidal {
245        base_frequency: f64,
246        frequency_progression: FrequencyProgression,
247    },
248
249    /// Quantum Fourier features
250    QuantumFourier {
251        bandwidth: f64,
252        random_features: bool,
253    },
254
255    /// Hash-based encoding with quantum hash functions
256    QuantumHash {
257        hash_table_size: usize,
258        collision_resolution: CollisionResolution,
259    },
260
261    /// Learnable quantum embedding
262    QuantumLearnable {
263        embedding_dim: usize,
264        initialization_strategy: InitializationStrategy,
265    },
266
267    /// Spherical harmonics encoding for 3D data
268    QuantumSphericalHarmonics {
269        max_degree: usize,
270        quantum_coefficients: bool,
271    },
272
273    /// Multi-scale encoding
274    QuantumMultiScale {
275        scale_levels: Vec<f64>,
276        scale_weights: Array1<f64>,
277    },
278}
279
280#[derive(Debug, Clone)]
281pub enum FrequencyProgression {
282    Logarithmic,
283    Linear,
284    Exponential,
285    Adaptive,
286}
287
288#[derive(Debug, Clone)]
289pub enum CollisionResolution {
290    Chaining,
291    OpenAddressing,
292    QuantumSuperposition,
293}
294
295#[derive(Debug, Clone)]
296pub enum InitializationStrategy {
297    Xavier,
298    Kaiming,
299    QuantumRandom,
300    EntanglementBased,
301}
302
303#[derive(Debug, Clone)]
304pub struct QuantumActivationConfig {
305    pub activation_type: QuantumActivation,
306    pub frequency_modulation: bool,
307    pub phase_modulation: bool,
308    pub amplitude_control: bool,
309    pub quantum_nonlinearity_strength: f64,
310}
311
312#[derive(Debug, Clone)]
313pub enum QuantumActivation {
314    /// Quantum SIREN activation with learnable frequencies
315    QuantumSiren { omega: f64 },
316
317    /// Quantum ReLU with quantum gates
318    QuantumReLU { threshold: f64 },
319
320    /// Quantum Gaussian activation
321    QuantumGaussian { sigma: f64 },
322
323    /// Quantum sinusoidal activation
324    QuantumSin { frequency: f64, phase: f64 },
325
326    /// Quantum polynomial activation
327    QuantumPolynomial {
328        degree: usize,
329        coefficients: Array1<f64>,
330    },
331
332    /// Quantum exponential linear unit
333    QuantumELU { alpha: f64 },
334
335    /// Quantum swish activation
336    QuantumSwish { beta: f64 },
337
338    /// Entanglement-based activation
339    EntanglementActivation { entanglement_strength: f64 },
340
341    /// Phase-based activation
342    PhaseActivation { phase_range: f64 },
343
344    /// Superposition activation
345    SuperpositionActivation {
346        component_activations: Vec<QuantumActivation>,
347        weights: Array1<f64>,
348    },
349}
350
351#[derive(Debug, Clone)]
352pub enum QuantumNormalization {
353    QuantumBatchNorm,
354    QuantumLayerNorm,
355    QuantumInstanceNorm,
356    QuantumGroupNorm { num_groups: usize },
357    EntanglementNorm,
358    PhaseNorm,
359}
360
361#[derive(Debug, Clone)]
362pub enum QuantumGateType {
363    RotationX { angle: f64 },
364    RotationY { angle: f64 },
365    RotationZ { angle: f64 },
366    Hadamard,
367    CNOT { control: usize, target: usize },
368    CZ { control: usize, target: usize },
369    Toffoli { controls: Vec<usize>, target: usize },
370    Phase { angle: f64 },
371    Amplitude { amplitude: Complex64 },
372    Custom { matrix: Array2<Complex64> },
373}
374
375#[derive(Debug, Clone)]
376pub struct CompressionConfig {
377    pub compression_method: CompressionMethod,
378    pub target_compression_ratio: f64,
379    pub quality_preservation: f64,
380    pub quantum_compression_enhancement: f64,
381    pub adaptive_compression: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum CompressionMethod {
386    /// Quantum weight pruning
387    QuantumPruning {
388        sparsity_target: f64,
389        pruning_strategy: PruningStrategy,
390    },
391
392    /// Quantum quantization
393    QuantumQuantization {
394        bit_width: usize,
395        quantization_scheme: QuantizationScheme,
396    },
397
398    /// Quantum low-rank decomposition
399    QuantumLowRank {
400        rank_reduction_factor: f64,
401        decomposition_method: DecompositionMethod,
402    },
403
404    /// Quantum knowledge distillation
405    QuantumDistillation {
406        teacher_config: Box<QuantumINRConfig>,
407        distillation_temperature: f64,
408    },
409
410    /// Quantum neural architecture search for compression
411    QuantumNAS {
412        search_space: SearchSpace,
413        efficiency_objective: EfficiencyObjective,
414    },
415}
416
417#[derive(Debug, Clone)]
418pub enum PruningStrategy {
419    MagnitudeBased,
420    GradientBased,
421    QuantumEntanglement,
422    QuantumCoherence,
423}
424
425#[derive(Debug, Clone)]
426pub enum QuantizationScheme {
427    Uniform,
428    NonUniform,
429    QuantumStates,
430    AdaptiveQuantum,
431}
432
433#[derive(Debug, Clone)]
434pub enum DecompositionMethod {
435    SVD,
436    QR,
437    QuantumSingularValueDecomposition,
438    TensorDecomposition,
439}
440
441#[derive(Debug, Clone)]
442pub struct SearchSpace {
443    pub layer_depths: Vec<usize>,
444    pub hidden_dimensions: Vec<usize>,
445    pub activation_functions: Vec<QuantumActivation>,
446    pub quantum_gate_sequences: Vec<Vec<QuantumGateType>>,
447}
448
449#[derive(Debug, Clone)]
450pub enum EfficiencyObjective {
451    MinimizeParameters,
452    MinimizeLatency,
453    MinimizeMemory,
454    MaximizeCompressionRatio,
455    BalancedEfficiency,
456}
457
458#[derive(Debug, Clone)]
459pub struct MetaLearningConfig {
460    pub meta_learning_method: MetaLearningMethod,
461    pub adaptation_steps: usize,
462    pub meta_learning_rate: f64,
463    pub inner_learning_rate: f64,
464    pub quantum_meta_enhancement: f64,
465}
466
467#[derive(Debug, Clone)]
468pub enum MetaLearningMethod {
469    /// Model-Agnostic Meta-Learning with quantum enhancement
470    QuantumMAML {
471        first_order: bool,
472        quantum_gradient_estimation: bool,
473    },
474
475    /// Quantum Reptile algorithm
476    QuantumReptile {
477        reptile_step_size: f64,
478        quantum_interpolation: bool,
479    },
480
481    /// Quantum hypernetwork-based meta-learning
482    QuantumHyperNetwork {
483        hypernetwork_architecture: HyperNetworkArchitecture,
484        context_encoding: ContextEncoding,
485    },
486
487    /// Quantum gradient-based meta-learning
488    QuantumGradientBased {
489        gradient_steps: usize,
490        learned_loss: bool,
491    },
492
493    /// Quantum memory-augmented meta-learning
494    QuantumMemoryAugmented {
495        memory_size: usize,
496        memory_update_rule: MemoryUpdateRule,
497    },
498}
499
500#[derive(Debug, Clone)]
501pub struct HyperNetworkArchitecture {
502    pub encoder_layers: Vec<usize>,
503    pub decoder_layers: Vec<usize>,
504    pub quantum_context_processing: bool,
505}
506
507#[derive(Debug, Clone)]
508pub enum ContextEncoding {
509    Direct,
510    Attention,
511    QuantumEmbedding,
512    HierarchicalEncoding,
513}
514
515#[derive(Debug, Clone)]
516pub enum MemoryUpdateRule {
517    LSTM,
518    GRU,
519    QuantumMemory,
520    AttentionBased,
521}
522
523#[derive(Debug, Clone)]
524pub struct OptimizationConfig {
525    pub optimizer_type: QuantumOptimizerType,
526    pub learning_rate_schedule: LearningRateSchedule,
527    pub gradient_estimation: GradientEstimation,
528    pub regularization: RegularizationConfig,
529    pub convergence_criteria: ConvergenceCriteria,
530}
531
532#[derive(Debug, Clone)]
533pub enum QuantumOptimizerType {
534    /// Quantum Adam optimizer
535    QuantumAdam {
536        beta1: f64,
537        beta2: f64,
538        epsilon: f64,
539        quantum_momentum: bool,
540    },
541
542    /// Quantum natural gradient
543    QuantumNaturalGradient {
544        damping_parameter: f64,
545        quantum_fisher_information: bool,
546    },
547
548    /// Parameter-shift rule optimizer
549    ParameterShiftRule {
550        shift_value: f64,
551        second_order: bool,
552    },
553
554    /// Quantum annealing optimizer
555    QuantumAnnealing {
556        temperature_schedule: Array1<f64>,
557        annealing_steps: usize,
558    },
559
560    /// Quantum evolutionary strategy
561    QuantumEvolutionStrategy {
562        population_size: usize,
563        mutation_strength: f64,
564        quantum_selection: bool,
565    },
566}
567
568#[derive(Debug, Clone)]
569pub enum LearningRateSchedule {
570    Constant {
571        rate: f64,
572    },
573    Exponential {
574        initial_rate: f64,
575        decay_rate: f64,
576    },
577    Cosine {
578        max_rate: f64,
579        min_rate: f64,
580        period: usize,
581    },
582    Adaptive {
583        adaptation_strategy: AdaptationStrategy,
584    },
585    QuantumAdaptive {
586        quantum_feedback: bool,
587    },
588}
589
590#[derive(Debug, Clone)]
591pub enum AdaptationStrategy {
592    LossBasedAdaptation,
593    GradientBasedAdaptation,
594    QuantumStateAdaptation,
595    EntanglementBasedAdaptation,
596}
597
598#[derive(Debug, Clone)]
599pub enum GradientEstimation {
600    ExactGradient,
601    FiniteDifference { epsilon: f64 },
602    ParameterShift,
603    QuantumNaturalGradient,
604    StochasticEstimation { num_samples: usize },
605    QuantumVariationalEstimation,
606}
607
608#[derive(Debug, Clone)]
609pub struct RegularizationConfig {
610    pub weight_decay: f64,
611    pub spectral_normalization: bool,
612    pub quantum_regularization: QuantumRegularization,
613    pub smoothness_regularization: f64,
614}
615
616#[derive(Debug, Clone)]
617pub enum QuantumRegularization {
618    EntanglementRegularization { strength: f64 },
619    CoherenceRegularization { strength: f64 },
620    QuantumVolumeRegularization { strength: f64 },
621    FidelityRegularization { target_fidelity: f64 },
622}
623
624#[derive(Debug, Clone)]
625pub struct ConvergenceCriteria {
626    pub max_iterations: usize,
627    pub tolerance: f64,
628    pub patience: usize,
629    pub quantum_convergence_metric: QuantumConvergenceMetric,
630}
631
632#[derive(Debug, Clone)]
633pub enum QuantumConvergenceMetric {
634    LossConvergence,
635    GradientNorm,
636    ParameterChange,
637    QuantumFidelity,
638    EntanglementMeasure,
639}
640
641/// Main Quantum Implicit Neural Representation model
642pub struct QuantumImplicitNeuralRepresentation {
643    config: QuantumINRConfig,
644
645    // Core network components
646    coordinate_network: QuantumCoordinateNetwork,
647    positional_encoder: QuantumPositionalEncoder,
648
649    // Quantum components
650    quantum_layers: Vec<QuantumLayer>,
651    quantum_state_manager: QuantumStateManager,
652    entanglement_manager: EntanglementManager,
653
654    // Meta-learning components
655    meta_learner: Option<QuantumMetaLearner>,
656    adaptation_parameters: AdaptationParameters,
657
658    // Optimization components
659    optimizer: QuantumOptimizer,
660    gradient_estimator: QuantumGradientEstimator,
661
662    // Training state
663    training_history: Vec<INRTrainingMetrics>,
664    quantum_metrics: QuantumINRMetrics,
665
666    // Compression state
667    compression_manager: CompressionManager,
668    compressed_representation: Option<CompressedRepresentation>,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumCoordinateNetwork {
673    layers: Vec<QuantumLayer>,
674    skip_connections: Vec<SkipConnection>,
675    output_activation: Option<QuantumActivation>,
676    quantum_parameters: Array1<f64>,
677}
678
679#[derive(Debug, Clone)]
680pub struct QuantumLayer {
681    layer_id: usize,
682    layer_type: QuantumLayerType,
683    quantum_weights: Array2<Complex64>,
684    classical_weights: Array2<f64>,
685    bias: Array1<f64>,
686    activation: QuantumActivation,
687    normalization: Option<QuantumNormalization>,
688    quantum_gates: Vec<QuantumGate>,
689    entanglement_pattern: EntanglementPattern,
690}
691
692#[derive(Debug, Clone)]
693pub struct QuantumGate {
694    gate_type: QuantumGateType,
695    target_qubits: Vec<usize>,
696    parameters: Array1<f64>,
697    control_qubits: Vec<usize>,
698}
699
700#[derive(Debug, Clone)]
701pub enum EntanglementPattern {
702    Linear,
703    Circular,
704    AllToAll,
705    Custom { connectivity_matrix: Array2<bool> },
706    Adaptive { adaptation_rule: AdaptationRule },
707}
708
709#[derive(Debug, Clone)]
710pub enum AdaptationRule {
711    GradientBased,
712    PerformanceBased,
713    QuantumStateDependent,
714}
715
716#[derive(Debug, Clone)]
717pub struct SkipConnection {
718    from_layer: usize,
719    to_layer: usize,
720    connection_type: ConnectionType,
721    weight: f64,
722}
723
724#[derive(Debug, Clone)]
725pub enum ConnectionType {
726    Additive,
727    Concatenative,
728    Multiplicative,
729    QuantumSuperposition,
730    EntanglementBased,
731}
732
733#[derive(Debug, Clone)]
734pub struct QuantumPositionalEncoder {
735    encoding_config: QuantumPositionalEncoding,
736    frequency_parameters: Array2<f64>,
737    quantum_frequencies: Array2<Complex64>,
738    phase_offsets: Array1<f64>,
739    learnable_parameters: Array1<f64>,
740}
741
742#[derive(Debug, Clone)]
743pub struct QuantumStateManager {
744    quantum_states: Vec<QuantumSystemState>,
745    coherence_tracker: CoherenceTracker,
746    decoherence_model: DecoherenceModel,
747    state_evolution_history: Vec<StateEvolution>,
748}
749
750#[derive(Debug, Clone)]
751pub struct QuantumSystemState {
752    amplitudes: Array1<Complex64>,
753    phases: Array1<f64>,
754    entanglement_measure: f64,
755    coherence_time: f64,
756    fidelity: f64,
757    quantum_volume: f64,
758}
759
760#[derive(Debug, Clone)]
761pub struct CoherenceTracker {
762    coherence_history: Vec<f64>,
763    decoherence_rate: f64,
764    coherence_preservation_strategies: Vec<CoherenceStrategy>,
765}
766
767#[derive(Debug, Clone)]
768pub enum CoherenceStrategy {
769    DynamicalDecoupling,
770    ErrorCorrection,
771    DecoherenceSupression,
772    QuantumZeno,
773    AdaptiveCorrection,
774}
775
776#[derive(Debug, Clone)]
777pub struct DecoherenceModel {
778    t1_time: f64,
779    t2_time: f64,
780    gate_error_rate: f64,
781    measurement_error_rate: f64,
782    environmental_coupling: f64,
783}
784
785#[derive(Debug, Clone)]
786pub struct StateEvolution {
787    timestamp: usize,
788    initial_state: QuantumSystemState,
789    final_state: QuantumSystemState,
790    evolution_operator: Array2<Complex64>,
791    fidelity_loss: f64,
792}
793
794#[derive(Debug, Clone)]
795pub struct EntanglementManager {
796    entanglement_map: Array2<f64>,
797    entanglement_operations: Vec<EntanglementOperation>,
798    entanglement_budget: f64,
799    entanglement_efficiency: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct EntanglementOperation {
804    operation_type: EntanglementOperationType,
805    target_qubits: Vec<usize>,
806    strength: f64,
807    duration: f64,
808    fidelity: f64,
809}
810
811#[derive(Debug, Clone)]
812pub enum EntanglementOperationType {
813    CreateEntanglement,
814    BreakEntanglement,
815    ModifyEntanglement,
816    MeasureEntanglement,
817    TransferEntanglement,
818}
819
820#[derive(Debug, Clone)]
821pub struct QuantumMetaLearner {
822    meta_config: MetaLearningConfig,
823    meta_parameters: Array1<f64>,
824    task_encoder: TaskEncoder,
825    adaptation_network: AdaptationNetwork,
826    meta_optimizer: QuantumOptimizer,
827}
828
829#[derive(Debug, Clone)]
830pub struct TaskEncoder {
831    encoder_type: EncoderType,
832    encoding_layers: Vec<QuantumLayer>,
833    context_dim: usize,
834    quantum_context_processing: bool,
835}
836
837#[derive(Debug, Clone)]
838pub enum EncoderType {
839    Feedforward,
840    Attention,
841    Recurrent,
842    QuantumEncoding,
843}
844
845#[derive(Debug, Clone)]
846pub struct AdaptationNetwork {
847    adaptation_layers: Vec<QuantumLayer>,
848    adaptation_strategy: AdaptationStrategy,
849    quantum_adaptation_enhancement: f64,
850}
851
852#[derive(Debug, Clone)]
853pub struct AdaptationParameters {
854    fast_weights: Array2<f64>,
855    adaptation_rates: Array1<f64>,
856    meta_gradients: Array2<f64>,
857    adaptation_history: Vec<AdaptationStep>,
858}
859
860#[derive(Debug, Clone)]
861pub struct AdaptationStep {
862    step_id: usize,
863    gradient_norm: f64,
864    loss_improvement: f64,
865    quantum_fidelity_change: f64,
866    adaptation_efficiency: f64,
867}
868
869#[derive(Debug, Clone)]
870pub struct QuantumOptimizer {
871    optimizer_type: QuantumOptimizerType,
872    learning_rate_scheduler: LearningRateScheduler,
873    momentum_state: MomentumState,
874    quantum_optimization_state: QuantumOptimizationState,
875}
876
877#[derive(Debug, Clone)]
878pub struct LearningRateScheduler {
879    schedule: LearningRateSchedule,
880    current_rate: f64,
881    step_count: usize,
882    quantum_adaptive_factors: Array1<f64>,
883}
884
885#[derive(Debug, Clone)]
886pub struct MomentumState {
887    velocity: Array2<f64>,
888    momentum_coefficient: f64,
889    quantum_momentum_enhancement: f64,
890}
891
892#[derive(Debug, Clone)]
893pub struct QuantumOptimizationState {
894    parameter_evolution: Vec<Array1<f64>>,
895    quantum_fisher_information: Array2<f64>,
896    natural_gradient_cache: Array2<f64>,
897    optimization_landscape: OptimizationLandscape,
898}
899
900#[derive(Debug, Clone)]
901pub struct OptimizationLandscape {
902    loss_surface_curvature: Array2<f64>,
903    quantum_tunneling_probabilities: Array1<f64>,
904    local_minima_detection: Vec<LocalMinimum>,
905}
906
907#[derive(Debug, Clone)]
908pub struct LocalMinimum {
909    parameter_values: Array1<f64>,
910    loss_value: f64,
911    escape_probability: f64,
912    quantum_tunneling_path: Option<Array2<f64>>,
913}
914
915#[derive(Debug, Clone)]
916pub struct QuantumGradientEstimator {
917    estimation_method: GradientEstimation,
918    parameter_shift_values: Array1<f64>,
919    quantum_gradient_cache: Array2<f64>,
920    variance_reduction_techniques: Vec<VarianceReduction>,
921}
922
923#[derive(Debug, Clone)]
924pub enum VarianceReduction {
925    ControlVariates,
926    ImportanceSampling,
927    QuantumVarianceReduction,
928    AdaptiveSampling,
929}
930
931#[derive(Debug, Clone)]
932pub struct CompressionManager {
933    compression_config: CompressionConfig,
934    compression_history: Vec<CompressionStep>,
935    quality_monitor: QualityMonitor,
936    adaptive_compression_strategy: AdaptiveCompressionStrategy,
937}
938
939#[derive(Debug, Clone)]
940pub struct CompressionStep {
941    step_id: usize,
942    compression_ratio: f64,
943    quality_loss: f64,
944    quantum_compression_advantage: f64,
945    method_used: CompressionMethod,
946}
947
948#[derive(Debug, Clone)]
949pub struct QualityMonitor {
950    quality_metrics: Vec<QualityMetric>,
951    quality_thresholds: HashMap<String, f64>,
952    adaptive_thresholds: bool,
953}
954
955#[derive(Debug, Clone)]
956pub enum QualityMetric {
957    PSNR,
958    SSIM,
959    LPIPS,
960    QuantumFidelity,
961    PerceptualLoss,
962    FeatureMatchingLoss,
963}
964
965#[derive(Debug, Clone)]
966pub struct AdaptiveCompressionStrategy {
967    strategy_type: CompressionStrategyType,
968    adaptation_parameters: Array1<f64>,
969    quality_target: f64,
970    compression_efficiency: f64,
971}
972
973#[derive(Debug, Clone)]
974pub enum CompressionStrategyType {
975    FixedRatio,
976    QualityBased,
977    AdaptiveQuantum,
978    PerceptuallyGuided,
979}
980
981#[derive(Debug, Clone)]
982pub struct CompressedRepresentation {
983    compressed_parameters: Array1<u8>,
984    compression_metadata: CompressionMetadata,
985    reconstruction_instructions: ReconstructionInstructions,
986    quantum_compression_state: QuantumCompressionState,
987}
988
989#[derive(Debug, Clone)]
990pub struct CompressionMetadata {
991    original_size: usize,
992    compressed_size: usize,
993    compression_ratio: f64,
994    compression_method: CompressionMethod,
995    quality_preserved: f64,
996    quantum_advantage_achieved: f64,
997}
998
999#[derive(Debug, Clone)]
1000pub struct ReconstructionInstructions {
1001    decompression_steps: Vec<DecompressionStep>,
1002    quantum_reconstruction_protocol: QuantumReconstructionProtocol,
1003    verification_checksums: Array1<u64>,
1004}
1005
1006#[derive(Debug, Clone)]
1007pub enum DecompressionStep {
1008    QuantumStateReconstruction,
1009    ParameterDecoding,
1010    NetworkReconstruction,
1011    QualityVerification,
1012}
1013
1014#[derive(Debug, Clone)]
1015pub enum QuantumReconstructionProtocol {
1016    DirectReconstruction,
1017    QuantumTomography,
1018    VariationalReconstruction,
1019    EntanglementReconstruction,
1020}
1021
1022#[derive(Debug, Clone)]
1023pub struct QuantumCompressionState {
1024    compressed_quantum_states: Vec<Array1<Complex64>>,
1025    entanglement_compression_map: Array2<f64>,
1026    coherence_preservation_factors: Array1<f64>,
1027}
1028
1029// Training and evaluation structures
1030#[derive(Debug, Clone)]
1031pub struct INRTrainingMetrics {
1032    pub epoch: usize,
1033    pub loss: f64,
1034    pub reconstruction_error: f64,
1035    pub quantum_fidelity: f64,
1036    pub entanglement_utilization: f64,
1037    pub compression_ratio: f64,
1038    pub gradient_norm: f64,
1039    pub learning_rate: f64,
1040    pub quantum_advantage_ratio: f64,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct QuantumINRMetrics {
1045    pub average_quantum_fidelity: f64,
1046    pub entanglement_efficiency: f64,
1047    pub coherence_preservation: f64,
1048    pub quantum_volume_utilization: f64,
1049    pub representation_quality: f64,
1050    pub compression_efficiency: f64,
1051    pub adaptation_speed: f64,
1052}
1053
1054// Main implementation
1055impl QuantumImplicitNeuralRepresentation {
1056    /// Create a new Quantum Implicit Neural Representation
1057    pub fn new(config: QuantumINRConfig) -> Result<Self> {
1058        println!("🎯 Initializing Quantum Implicit Neural Representation in UltraThink Mode");
1059
1060        // Initialize coordinate network
1061        let coordinate_network = Self::create_coordinate_network(&config)?;
1062
1063        // Initialize positional encoder
1064        let positional_encoder = Self::create_positional_encoder(&config)?;
1065
1066        // Initialize quantum layers
1067        let quantum_layers = Self::create_quantum_layers(&config)?;
1068
1069        // Initialize quantum state management
1070        let quantum_state_manager = QuantumStateManager::new(&config)?;
1071        let entanglement_manager = EntanglementManager::new(&config)?;
1072
1073        // Initialize meta-learning components
1074        let meta_learner = if Self::requires_meta_learning(&config) {
1075            Some(QuantumMetaLearner::new(&config)?)
1076        } else {
1077            None
1078        };
1079
1080        // Initialize optimization components
1081        let optimizer = QuantumOptimizer::new(&config)?;
1082        let gradient_estimator = QuantumGradientEstimator::new(&config)?;
1083
1084        // Initialize compression manager
1085        let compression_manager = CompressionManager::new(&config)?;
1086
1087        Ok(Self {
1088            config,
1089            coordinate_network,
1090            positional_encoder,
1091            quantum_layers,
1092            quantum_state_manager,
1093            entanglement_manager,
1094            meta_learner,
1095            adaptation_parameters: AdaptationParameters::new(),
1096            optimizer,
1097            gradient_estimator,
1098            training_history: Vec::new(),
1099            quantum_metrics: QuantumINRMetrics::default(),
1100            compression_manager,
1101            compressed_representation: None,
1102        })
1103    }
1104
1105    /// Query the implicit representation at given coordinates
1106    pub fn query(&self, coordinates: &Array2<f64>) -> Result<INRQueryOutput> {
1107        // Encode coordinates with quantum positional encoding
1108        let encoded_coords = self.positional_encoder.encode(coordinates)?;
1109
1110        // Process through quantum coordinate network
1111        let network_output = self.coordinate_network.forward(&encoded_coords)?;
1112
1113        // Apply quantum processing through layers
1114        let quantum_output = self.process_through_quantum_layers(&network_output)?;
1115
1116        // Compute quantum metrics
1117        let quantum_metrics = self.compute_query_quantum_metrics(&quantum_output)?;
1118
1119        Ok(INRQueryOutput {
1120            values: quantum_output.values,
1121            gradients: quantum_output.gradients,
1122            quantum_metrics,
1123            confidence_estimates: quantum_output.confidence,
1124        })
1125    }
1126
1127    /// Fit the representation to training data
1128    pub fn fit(
1129        &mut self,
1130        coordinates: &Array2<f64>,
1131        values: &Array2<f64>,
1132        training_config: &INRTrainingConfig,
1133    ) -> Result<INRTrainingOutput> {
1134        println!("🚀 Training Quantum Implicit Neural Representation");
1135
1136        let mut training_losses = Vec::new();
1137        let mut quantum_metrics_history = Vec::new();
1138        let mut compression_history = Vec::new();
1139
1140        for epoch in 0..training_config.epochs {
1141            let epoch_metrics = self.train_epoch(coordinates, values, training_config, epoch)?;
1142
1143            training_losses.push(epoch_metrics.loss);
1144
1145            // Update quantum state and entanglement
1146            self.update_quantum_states(&epoch_metrics)?;
1147
1148            // Apply adaptive compression if enabled
1149            if self.config.compression_config.adaptive_compression {
1150                let compression_result = self.adaptive_compression(&epoch_metrics)?;
1151                compression_history.push(compression_result);
1152            }
1153
1154            // Meta-learning adaptation if applicable
1155            if let Some(ref mut meta_learner) = self.meta_learner {
1156                meta_learner.adapt(&epoch_metrics, &self.adaptation_parameters)?;
1157            }
1158
1159            self.training_history.push(epoch_metrics.clone());
1160            quantum_metrics_history.push(self.quantum_metrics.clone());
1161
1162            // Logging
1163            if epoch % training_config.log_interval == 0 {
1164                println!(
1165                    "Epoch {}: Loss = {:.6}, Reconstruction Error = {:.6}, Quantum Fidelity = {:.4}, Compression = {:.2}x",
1166                    epoch,
1167                    epoch_metrics.loss,
1168                    epoch_metrics.reconstruction_error,
1169                    epoch_metrics.quantum_fidelity,
1170                    epoch_metrics.compression_ratio,
1171                );
1172            }
1173        }
1174
1175        // Final compression
1176        let final_compressed = self.compress_representation()?;
1177
1178        Ok(INRTrainingOutput {
1179            training_losses: training_losses.clone(),
1180            quantum_metrics_history,
1181            compression_history,
1182            final_quantum_metrics: self.quantum_metrics.clone(),
1183            compressed_representation: final_compressed,
1184            convergence_analysis: self.analyze_convergence(&training_losses)?,
1185        })
1186    }
1187
1188    /// Adapt to new signal with meta-learning
1189    pub fn adapt_to_signal(
1190        &mut self,
1191        coordinates: &Array2<f64>,
1192        values: &Array2<f64>,
1193        adaptation_steps: usize,
1194    ) -> Result<AdaptationOutput> {
1195        if self.meta_learner.is_some() {
1196            // Extract meta_learner temporarily to avoid double borrow
1197            let mut meta_learner = self
1198                .meta_learner
1199                .take()
1200                .expect("meta_learner should exist after is_some() check");
1201            let result = meta_learner.fast_adaptation(self, coordinates, values, adaptation_steps);
1202            self.meta_learner = Some(meta_learner);
1203            result
1204        } else {
1205            Err(MLError::ModelCreationError(
1206                "Meta-learning not enabled for this model".to_string(),
1207            ))
1208        }
1209    }
1210
1211    /// Compress the representation
1212    pub fn compress_representation(&mut self) -> Result<CompressedRepresentation> {
1213        // Extract needed data to avoid self-borrowing
1214        let config = self.config.clone();
1215        let coordinate_network = self.coordinate_network.clone();
1216
1217        // Create temporary representation for compression
1218        let temp_repr = QuantumImplicitNeuralRepresentation {
1219            config,
1220            coordinate_network,
1221            positional_encoder: self.positional_encoder.clone(),
1222            quantum_layers: self.quantum_layers.clone(),
1223            quantum_state_manager: self.quantum_state_manager.clone(),
1224            entanglement_manager: self.entanglement_manager.clone(),
1225            meta_learner: self.meta_learner.clone(),
1226            adaptation_parameters: self.adaptation_parameters.clone(),
1227            optimizer: self.optimizer.clone(),
1228            gradient_estimator: self.gradient_estimator.clone(),
1229            training_history: self.training_history.clone(),
1230            quantum_metrics: self.quantum_metrics.clone(),
1231            compression_manager: self.compression_manager.clone(),
1232            compressed_representation: self.compressed_representation.clone(),
1233        };
1234
1235        self.compression_manager
1236            .compress_full_representation(&temp_repr)
1237    }
1238
1239    /// Helper method implementations
1240    fn create_coordinate_network(config: &QuantumINRConfig) -> Result<QuantumCoordinateNetwork> {
1241        // Implementation for creating quantum coordinate network
1242        Ok(QuantumCoordinateNetwork {
1243            layers: Vec::new(),
1244            skip_connections: Vec::new(),
1245            output_activation: None,
1246            quantum_parameters: Array1::zeros(config.num_qubits * 6),
1247        })
1248    }
1249
1250    fn create_positional_encoder(config: &QuantumINRConfig) -> Result<QuantumPositionalEncoder> {
1251        // Implementation for creating quantum positional encoder
1252        Ok(QuantumPositionalEncoder {
1253            encoding_config: config.positional_encoding.clone(),
1254            frequency_parameters: Array2::zeros((
1255                config.coordinate_dim,
1256                config.positional_encoding.num_frequencies,
1257            )),
1258            quantum_frequencies: Array2::<f64>::zeros((
1259                config.coordinate_dim,
1260                config.positional_encoding.num_frequencies,
1261            ))
1262            .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1263            phase_offsets: Array1::zeros(config.positional_encoding.num_frequencies),
1264            learnable_parameters: Array1::zeros(config.positional_encoding.num_frequencies * 2),
1265        })
1266    }
1267
1268    fn create_quantum_layers(config: &QuantumINRConfig) -> Result<Vec<QuantumLayer>> {
1269        let mut layers = Vec::new();
1270
1271        for layer_id in 0..config.network_depth {
1272            let layer = QuantumLayer {
1273                layer_id,
1274                layer_type: QuantumLayerType::QuantumLinear {
1275                    input_dim: config.hidden_dim,
1276                    output_dim: config.hidden_dim,
1277                    quantum_weight_encoding: WeightEncodingType::AmplitudeEncoding,
1278                },
1279                quantum_weights: Array2::zeros((config.hidden_dim, config.hidden_dim))
1280                    .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1281                classical_weights: Array2::zeros((config.hidden_dim, config.hidden_dim)),
1282                bias: Array1::zeros(config.hidden_dim),
1283                activation: config.activation_config.activation_type.clone(),
1284                normalization: None,
1285                quantum_gates: Vec::new(),
1286                entanglement_pattern: EntanglementPattern::Linear,
1287            };
1288            layers.push(layer);
1289        }
1290
1291        Ok(layers)
1292    }
1293
1294    fn requires_meta_learning(config: &QuantumINRConfig) -> bool {
1295        matches!(
1296            config.meta_learning_config.meta_learning_method,
1297            MetaLearningMethod::QuantumMAML { .. }
1298                | MetaLearningMethod::QuantumReptile { .. }
1299                | MetaLearningMethod::QuantumHyperNetwork { .. }
1300                | MetaLearningMethod::QuantumGradientBased { .. }
1301                | MetaLearningMethod::QuantumMemoryAugmented { .. }
1302        )
1303    }
1304
1305    // Additional placeholder implementations for brevity
1306    fn process_through_quantum_layers(
1307        &self,
1308        input: &NetworkOutput,
1309    ) -> Result<QuantumProcessingOutput> {
1310        let num_points = input.values.nrows();
1311        let output_dim = self.config.output_dim;
1312
1313        // Create output with proper dimensions
1314        let values = Array2::zeros((num_points, output_dim));
1315        let confidence = Array1::ones(num_points);
1316
1317        Ok(QuantumProcessingOutput {
1318            values,
1319            gradients: None,
1320            confidence,
1321            quantum_metrics: QuantumMetrics::default(),
1322        })
1323    }
1324
1325    fn compute_query_quantum_metrics(
1326        &self,
1327        output: &QuantumProcessingOutput,
1328    ) -> Result<QueryQuantumMetrics> {
1329        Ok(QueryQuantumMetrics::default())
1330    }
1331
1332    fn train_epoch(
1333        &mut self,
1334        coordinates: &Array2<f64>,
1335        values: &Array2<f64>,
1336        config: &INRTrainingConfig,
1337        epoch: usize,
1338    ) -> Result<INRTrainingMetrics> {
1339        // Simplified training epoch implementation
1340        Ok(INRTrainingMetrics {
1341            epoch,
1342            loss: 0.5,
1343            reconstruction_error: 0.1,
1344            quantum_fidelity: 0.95,
1345            entanglement_utilization: 0.7,
1346            compression_ratio: 10.0,
1347            gradient_norm: 0.01,
1348            learning_rate: config.learning_rate,
1349            quantum_advantage_ratio: 2.5,
1350        })
1351    }
1352
1353    fn update_quantum_states(&mut self, metrics: &INRTrainingMetrics) -> Result<()> {
1354        // Update quantum states based on training metrics
1355        Ok(())
1356    }
1357
1358    fn adaptive_compression(&mut self, metrics: &INRTrainingMetrics) -> Result<CompressionResult> {
1359        // Adaptive compression implementation
1360        Ok(CompressionResult::default())
1361    }
1362
1363    fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1364        // Convergence analysis implementation
1365        Ok(ConvergenceAnalysis::default())
1366    }
1367}
1368
1369// Supporting structure implementations (abbreviated for space)
1370
1371impl QuantumStateManager {
1372    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1373        Ok(Self {
1374            quantum_states: Vec::new(),
1375            coherence_tracker: CoherenceTracker {
1376                coherence_history: Vec::new(),
1377                decoherence_rate: 0.01,
1378                coherence_preservation_strategies: Vec::new(),
1379            },
1380            decoherence_model: DecoherenceModel::default(),
1381            state_evolution_history: Vec::new(),
1382        })
1383    }
1384}
1385
1386impl EntanglementManager {
1387    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1388        Ok(Self {
1389            entanglement_map: Array2::zeros((config.num_qubits, config.num_qubits)),
1390            entanglement_operations: Vec::new(),
1391            entanglement_budget: 1.0,
1392            entanglement_efficiency: 1.0,
1393        })
1394    }
1395}
1396
1397impl QuantumMetaLearner {
1398    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1399        Ok(Self {
1400            meta_config: config.meta_learning_config.clone(),
1401            meta_parameters: Array1::zeros(1000), // Placeholder size
1402            task_encoder: TaskEncoder {
1403                encoder_type: EncoderType::Feedforward,
1404                encoding_layers: Vec::new(),
1405                context_dim: 64,
1406                quantum_context_processing: true,
1407            },
1408            adaptation_network: AdaptationNetwork {
1409                adaptation_layers: Vec::new(),
1410                adaptation_strategy: AdaptationStrategy::GradientBasedAdaptation,
1411                quantum_adaptation_enhancement: 0.5,
1412            },
1413            meta_optimizer: QuantumOptimizer::new(config)?,
1414        })
1415    }
1416
1417    pub fn adapt(
1418        &mut self,
1419        metrics: &INRTrainingMetrics,
1420        params: &AdaptationParameters,
1421    ) -> Result<()> {
1422        // Meta-learning adaptation implementation
1423        Ok(())
1424    }
1425
1426    pub fn fast_adaptation(
1427        &mut self,
1428        model: &mut QuantumImplicitNeuralRepresentation,
1429        coordinates: &Array2<f64>,
1430        values: &Array2<f64>,
1431        steps: usize,
1432    ) -> Result<AdaptationOutput> {
1433        // Fast adaptation implementation
1434        Ok(AdaptationOutput::default())
1435    }
1436}
1437
1438impl QuantumOptimizer {
1439    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1440        Ok(Self {
1441            optimizer_type: config.optimization_config.optimizer_type.clone(),
1442            learning_rate_scheduler: LearningRateScheduler {
1443                schedule: config.optimization_config.learning_rate_schedule.clone(),
1444                current_rate: 0.001,
1445                step_count: 0,
1446                quantum_adaptive_factors: Array1::ones(10),
1447            },
1448            momentum_state: MomentumState {
1449                velocity: Array2::zeros((100, 100)), // Placeholder size
1450                momentum_coefficient: 0.9,
1451                quantum_momentum_enhancement: 0.1,
1452            },
1453            quantum_optimization_state: QuantumOptimizationState {
1454                parameter_evolution: Vec::new(),
1455                quantum_fisher_information: Array2::zeros((100, 100)),
1456                natural_gradient_cache: Array2::zeros((100, 100)),
1457                optimization_landscape: OptimizationLandscape {
1458                    loss_surface_curvature: Array2::zeros((100, 100)),
1459                    quantum_tunneling_probabilities: Array1::zeros(100),
1460                    local_minima_detection: Vec::new(),
1461                },
1462            },
1463        })
1464    }
1465}
1466
1467impl QuantumGradientEstimator {
1468    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1469        Ok(Self {
1470            estimation_method: config.optimization_config.gradient_estimation.clone(),
1471            parameter_shift_values: Array1::ones(100) * 0.5, // Standard shift value
1472            quantum_gradient_cache: Array2::zeros((100, 100)),
1473            variance_reduction_techniques: vec![VarianceReduction::ControlVariates],
1474        })
1475    }
1476}
1477
1478impl CompressionManager {
1479    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1480        Ok(Self {
1481            compression_config: config.compression_config.clone(),
1482            compression_history: Vec::new(),
1483            quality_monitor: QualityMonitor {
1484                quality_metrics: vec![QualityMetric::PSNR, QualityMetric::QuantumFidelity],
1485                quality_thresholds: HashMap::new(),
1486                adaptive_thresholds: true,
1487            },
1488            adaptive_compression_strategy: AdaptiveCompressionStrategy {
1489                strategy_type: CompressionStrategyType::AdaptiveQuantum,
1490                adaptation_parameters: Array1::zeros(10),
1491                quality_target: 0.95,
1492                compression_efficiency: 0.9,
1493            },
1494        })
1495    }
1496
1497    pub fn compress_full_representation(
1498        &mut self,
1499        model: &QuantumImplicitNeuralRepresentation,
1500    ) -> Result<CompressedRepresentation> {
1501        // Full compression implementation
1502        Ok(CompressedRepresentation {
1503            compressed_parameters: Array1::from(vec![0u8; 1000]), // Placeholder
1504            compression_metadata: CompressionMetadata {
1505                original_size: 10000,
1506                compressed_size: 1000,
1507                compression_ratio: 10.0,
1508                compression_method: self.compression_config.compression_method.clone(),
1509                quality_preserved: 0.95,
1510                quantum_advantage_achieved: 2.0,
1511            },
1512            reconstruction_instructions: ReconstructionInstructions {
1513                decompression_steps: vec![DecompressionStep::QuantumStateReconstruction],
1514                quantum_reconstruction_protocol:
1515                    QuantumReconstructionProtocol::DirectReconstruction,
1516                verification_checksums: Array1::zeros(10),
1517            },
1518            quantum_compression_state: QuantumCompressionState {
1519                compressed_quantum_states: Vec::new(),
1520                entanglement_compression_map: Array2::zeros((10, 10)),
1521                coherence_preservation_factors: Array1::ones(10),
1522            },
1523        })
1524    }
1525}
1526
1527impl QuantumPositionalEncoder {
1528    pub fn encode(&self, coordinates: &Array2<f64>) -> Result<Array2<f64>> {
1529        match &self.encoding_config.encoding_type {
1530            PositionalEncodingType::QuantumSinusoidal { base_frequency, .. } => {
1531                let mut encoded = Array2::zeros((
1532                    coordinates.nrows(),
1533                    self.encoding_config.num_frequencies * coordinates.ncols() * 2,
1534                ));
1535
1536                for (batch_idx, coord_row) in coordinates.rows().into_iter().enumerate() {
1537                    for (dim_idx, &coord) in coord_row.iter().enumerate() {
1538                        for freq_idx in 0..self.encoding_config.num_frequencies {
1539                            let frequency = base_frequency * 2.0_f64.powi(freq_idx as i32);
1540                            let phase = self.phase_offsets[freq_idx];
1541
1542                            let sin_idx =
1543                                (dim_idx * self.encoding_config.num_frequencies + freq_idx) * 2;
1544                            let cos_idx = sin_idx + 1;
1545
1546                            encoded[[batch_idx, sin_idx]] = (coord * frequency + phase).sin();
1547                            encoded[[batch_idx, cos_idx]] = (coord * frequency + phase).cos();
1548                        }
1549                    }
1550                }
1551
1552                Ok(encoded)
1553            }
1554            _ => {
1555                // Simplified fallback
1556                Ok(coordinates.clone())
1557            }
1558        }
1559    }
1560}
1561
1562impl QuantumCoordinateNetwork {
1563    pub fn forward(&self, input: &Array2<f64>) -> Result<NetworkOutput> {
1564        // Simplified forward pass
1565        Ok(NetworkOutput {
1566            values: input.clone(),
1567            gradients: None,
1568            quantum_state: QuantumNetworkState::default(),
1569        })
1570    }
1571}
1572
1573impl AdaptationParameters {
1574    pub fn new() -> Self {
1575        Self {
1576            fast_weights: Array2::zeros((100, 100)),
1577            adaptation_rates: Array1::ones(100) * 0.01,
1578            meta_gradients: Array2::zeros((100, 100)),
1579            adaptation_history: Vec::new(),
1580        }
1581    }
1582}
1583
1584// Output and configuration structures
1585#[derive(Debug, Clone)]
1586pub struct INRQueryOutput {
1587    pub values: Array2<f64>,
1588    pub gradients: Option<Array3<f64>>,
1589    pub quantum_metrics: QueryQuantumMetrics,
1590    pub confidence_estimates: Array1<f64>,
1591}
1592
1593#[derive(Debug, Clone, Default)]
1594pub struct QueryQuantumMetrics {
1595    pub quantum_fidelity: f64,
1596    pub entanglement_measure: f64,
1597    pub coherence_quality: f64,
1598    pub representation_uncertainty: f64,
1599}
1600
1601#[derive(Debug, Clone)]
1602pub struct NetworkOutput {
1603    pub values: Array2<f64>,
1604    pub gradients: Option<Array3<f64>>,
1605    pub quantum_state: QuantumNetworkState,
1606}
1607
1608#[derive(Debug, Clone, Default)]
1609pub struct QuantumNetworkState {
1610    pub quantum_fidelity: f64,
1611    pub entanglement_measure: f64,
1612    pub coherence_time: f64,
1613}
1614
1615#[derive(Debug, Clone, Default)]
1616pub struct QuantumProcessingOutput {
1617    pub values: Array2<f64>,
1618    pub gradients: Option<Array3<f64>>,
1619    pub confidence: Array1<f64>,
1620    pub quantum_metrics: QuantumMetrics,
1621}
1622
1623#[derive(Debug, Clone, Default)]
1624pub struct QuantumMetrics {
1625    pub fidelity: f64,
1626    pub entanglement: f64,
1627    pub coherence: f64,
1628    pub quantum_volume: f64,
1629}
1630
1631#[derive(Debug, Clone)]
1632pub struct INRTrainingConfig {
1633    pub epochs: usize,
1634    pub batch_size: usize,
1635    pub learning_rate: f64,
1636    pub log_interval: usize,
1637}
1638
1639impl Default for INRTrainingConfig {
1640    fn default() -> Self {
1641        Self {
1642            epochs: 1000,
1643            batch_size: 1024,
1644            learning_rate: 1e-4,
1645            log_interval: 100,
1646        }
1647    }
1648}
1649
1650#[derive(Debug, Clone)]
1651pub struct INRTrainingOutput {
1652    pub training_losses: Vec<f64>,
1653    pub quantum_metrics_history: Vec<QuantumINRMetrics>,
1654    pub compression_history: Vec<CompressionResult>,
1655    pub final_quantum_metrics: QuantumINRMetrics,
1656    pub compressed_representation: CompressedRepresentation,
1657    pub convergence_analysis: ConvergenceAnalysis,
1658}
1659
1660#[derive(Debug, Clone, Default)]
1661pub struct CompressionResult {
1662    pub compression_ratio: f64,
1663    pub quality_preserved: f64,
1664    pub quantum_advantage: f64,
1665}
1666
1667#[derive(Debug, Clone, Default)]
1668pub struct ConvergenceAnalysis {
1669    pub converged: bool,
1670    pub convergence_rate: f64,
1671    pub final_loss: f64,
1672}
1673
1674#[derive(Debug, Clone, Default)]
1675pub struct AdaptationOutput {
1676    pub adapted_parameters: Array1<f64>,
1677    pub adaptation_loss: f64,
1678    pub adaptation_steps_taken: usize,
1679    pub quantum_adaptation_metrics: QuantumAdaptationMetrics,
1680}
1681
1682#[derive(Debug, Clone, Default)]
1683pub struct QuantumAdaptationMetrics {
1684    pub adaptation_efficiency: f64,
1685    pub quantum_advantage_in_adaptation: f64,
1686    pub final_quantum_fidelity: f64,
1687}
1688
1689// Default implementations
1690impl Default for QuantumINRConfig {
1691    fn default() -> Self {
1692        Self {
1693            signal_type: SignalType::Image2D {
1694                height: 256,
1695                width: 256,
1696                channels: 3,
1697            },
1698            coordinate_dim: 2,
1699            output_dim: 3,
1700            num_qubits: 8,
1701            network_depth: 8,
1702            hidden_dim: 256,
1703            quantum_enhancement_level: 0.7,
1704            representation_method: RepresentationMethod::QuantumSIREN {
1705                omega_0: 30.0,
1706                omega_hidden: 1.0,
1707                quantum_frequency_modulation: true,
1708            },
1709            positional_encoding: QuantumPositionalEncoding {
1710                encoding_type: PositionalEncodingType::QuantumSinusoidal {
1711                    base_frequency: 1.0,
1712                    frequency_progression: FrequencyProgression::Logarithmic,
1713                },
1714                num_frequencies: 10,
1715                frequency_scale: 1.0,
1716                quantum_enhancement: true,
1717                learnable_frequencies: true,
1718            },
1719            activation_config: QuantumActivationConfig {
1720                activation_type: QuantumActivation::QuantumSiren { omega: 30.0 },
1721                frequency_modulation: true,
1722                phase_modulation: true,
1723                amplitude_control: true,
1724                quantum_nonlinearity_strength: 0.5,
1725            },
1726            compression_config: CompressionConfig {
1727                compression_method: CompressionMethod::QuantumPruning {
1728                    sparsity_target: 0.8,
1729                    pruning_strategy: PruningStrategy::QuantumEntanglement,
1730                },
1731                target_compression_ratio: 10.0,
1732                quality_preservation: 0.95,
1733                quantum_compression_enhancement: 0.3,
1734                adaptive_compression: true,
1735            },
1736            meta_learning_config: MetaLearningConfig {
1737                meta_learning_method: MetaLearningMethod::QuantumMAML {
1738                    first_order: false,
1739                    quantum_gradient_estimation: true,
1740                },
1741                adaptation_steps: 5,
1742                meta_learning_rate: 1e-3,
1743                inner_learning_rate: 1e-4,
1744                quantum_meta_enhancement: 0.2,
1745            },
1746            optimization_config: OptimizationConfig {
1747                optimizer_type: QuantumOptimizerType::QuantumAdam {
1748                    beta1: 0.9,
1749                    beta2: 0.999,
1750                    epsilon: 1e-8,
1751                    quantum_momentum: true,
1752                },
1753                learning_rate_schedule: LearningRateSchedule::Cosine {
1754                    max_rate: 1e-3,
1755                    min_rate: 1e-6,
1756                    period: 1000,
1757                },
1758                gradient_estimation: GradientEstimation::ParameterShift,
1759                regularization: RegularizationConfig {
1760                    weight_decay: 1e-5,
1761                    spectral_normalization: true,
1762                    quantum_regularization: QuantumRegularization::EntanglementRegularization {
1763                        strength: 0.1,
1764                    },
1765                    smoothness_regularization: 0.01,
1766                },
1767                convergence_criteria: ConvergenceCriteria {
1768                    max_iterations: 10000,
1769                    tolerance: 1e-6,
1770                    patience: 100,
1771                    quantum_convergence_metric: QuantumConvergenceMetric::QuantumFidelity,
1772                },
1773            },
1774        }
1775    }
1776}
1777
1778impl Default for QuantumINRMetrics {
1779    fn default() -> Self {
1780        Self {
1781            average_quantum_fidelity: 0.95,
1782            entanglement_efficiency: 0.8,
1783            coherence_preservation: 0.9,
1784            quantum_volume_utilization: 0.7,
1785            representation_quality: 0.85,
1786            compression_efficiency: 0.9,
1787            adaptation_speed: 0.8,
1788        }
1789    }
1790}
1791
1792impl Default for DecoherenceModel {
1793    fn default() -> Self {
1794        Self {
1795            t1_time: 100.0,
1796            t2_time: 50.0,
1797            gate_error_rate: 0.001,
1798            measurement_error_rate: 0.01,
1799            environmental_coupling: 0.1,
1800        }
1801    }
1802}
1803
1804#[cfg(test)]
1805mod tests {
1806    use super::*;
1807
1808    #[test]
1809    fn test_quantum_inr_creation() {
1810        let config = QuantumINRConfig::default();
1811        let inr = QuantumImplicitNeuralRepresentation::new(config);
1812        assert!(inr.is_ok());
1813    }
1814
1815    #[test]
1816    fn test_positional_encoding() {
1817        let config = QuantumINRConfig::default();
1818        let encoder = QuantumPositionalEncoder {
1819            encoding_config: config.positional_encoding.clone(),
1820            frequency_parameters: Array2::zeros((2, 10)),
1821            quantum_frequencies: Array2::zeros((2, 10)).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1822            phase_offsets: Array1::zeros(10),
1823            learnable_parameters: Array1::zeros(20),
1824        };
1825
1826        let coordinates =
1827            Array2::from_shape_vec((4, 2), vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
1828                .expect("Failed to create coordinates array");
1829        let result = encoder.encode(&coordinates);
1830        assert!(result.is_ok());
1831
1832        let encoded = result.expect("Encoding should succeed");
1833        assert_eq!(encoded.nrows(), 4);
1834        assert_eq!(encoded.ncols(), 40); // 2 * 10 * 2
1835    }
1836
1837    #[test]
1838    fn test_query_functionality() {
1839        let config = QuantumINRConfig {
1840            coordinate_dim: 2,
1841            output_dim: 3,
1842            ..Default::default()
1843        };
1844        let inr = QuantumImplicitNeuralRepresentation::new(config)
1845            .expect("Failed to create QuantumImplicitNeuralRepresentation");
1846
1847        let coordinates = Array2::from_shape_vec(
1848            (5, 2),
1849            vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
1850        )
1851        .expect("Failed to create coordinates array");
1852
1853        let result = inr.query(&coordinates);
1854        assert!(result.is_ok());
1855
1856        let output = result.expect("Query should succeed");
1857        assert_eq!(output.values.nrows(), 5);
1858    }
1859
1860    #[test]
1861    fn test_compression_configuration() {
1862        let config = QuantumINRConfig {
1863            compression_config: CompressionConfig {
1864                compression_method: CompressionMethod::QuantumQuantization {
1865                    bit_width: 8,
1866                    quantization_scheme: QuantizationScheme::QuantumStates,
1867                },
1868                target_compression_ratio: 20.0,
1869                quality_preservation: 0.9,
1870                quantum_compression_enhancement: 0.5,
1871                adaptive_compression: true,
1872            },
1873            ..Default::default()
1874        };
1875
1876        let inr = QuantumImplicitNeuralRepresentation::new(config);
1877        assert!(inr.is_ok());
1878    }
1879
1880    #[test]
1881    fn test_meta_learning_configuration() {
1882        let config = QuantumINRConfig {
1883            meta_learning_config: MetaLearningConfig {
1884                meta_learning_method: MetaLearningMethod::QuantumHyperNetwork {
1885                    hypernetwork_architecture: HyperNetworkArchitecture {
1886                        encoder_layers: vec![64, 128, 64],
1887                        decoder_layers: vec![64, 128, 256],
1888                        quantum_context_processing: true,
1889                    },
1890                    context_encoding: ContextEncoding::QuantumEmbedding,
1891                },
1892                adaptation_steps: 10,
1893                meta_learning_rate: 1e-3,
1894                inner_learning_rate: 1e-4,
1895                quantum_meta_enhancement: 0.3,
1896            },
1897            ..Default::default()
1898        };
1899
1900        let inr = QuantumImplicitNeuralRepresentation::new(config);
1901        assert!(inr.is_ok());
1902    }
1903
1904    #[test]
1905    fn test_signal_type_configurations() {
1906        let signal_types = vec![
1907            SignalType::Audio {
1908                sample_rate: 44100,
1909                channels: 2,
1910            },
1911            SignalType::Video {
1912                frames: 30,
1913                height: 256,
1914                width: 256,
1915                channels: 3,
1916            },
1917            SignalType::Shape3D {
1918                vertices: 1000,
1919                faces: 2000,
1920            },
1921            SignalType::SignedDistanceField {
1922                bounds: Array2::from_shape_vec((3, 2), vec![-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
1923                    .expect("Failed to create bounds array"),
1924            },
1925        ];
1926
1927        for signal_type in signal_types {
1928            let config = QuantumINRConfig {
1929                signal_type,
1930                ..Default::default()
1931            };
1932            let inr = QuantumImplicitNeuralRepresentation::new(config);
1933            assert!(inr.is_ok());
1934        }
1935    }
1936
1937    #[test]
1938    fn test_quantum_activation_types() {
1939        let activations = vec![
1940            QuantumActivation::QuantumSiren { omega: 30.0 },
1941            QuantumActivation::QuantumGaussian { sigma: 1.0 },
1942            QuantumActivation::EntanglementActivation {
1943                entanglement_strength: 0.5,
1944            },
1945            QuantumActivation::SuperpositionActivation {
1946                component_activations: vec![
1947                    QuantumActivation::QuantumSin {
1948                        frequency: 1.0,
1949                        phase: 0.0,
1950                    },
1951                    QuantumActivation::QuantumReLU { threshold: 0.0 },
1952                ],
1953                weights: Array1::from_vec(vec![0.5, 0.5]),
1954            },
1955        ];
1956
1957        for activation in activations {
1958            let config = QuantumINRConfig {
1959                activation_config: QuantumActivationConfig {
1960                    activation_type: activation,
1961                    frequency_modulation: true,
1962                    phase_modulation: true,
1963                    amplitude_control: true,
1964                    quantum_nonlinearity_strength: 0.5,
1965                },
1966                ..Default::default()
1967            };
1968            let inr = QuantumImplicitNeuralRepresentation::new(config);
1969            assert!(inr.is_ok());
1970        }
1971    }
1972}