quantrs2_ml/
performance_profiler.rs

1// ! Performance Profiling Utilities for Quantum ML
2//!
3//! This module provides comprehensive performance profiling tools for quantum
4//! machine learning algorithms, helping identify bottlenecks and optimize
5//! quantum circuit execution.
6
7use crate::error::{MLError, Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use std::collections::HashMap;
10use std::time::{Duration, Instant};
11
12/// Performance profiling data for quantum ML operations
13#[derive(Debug, Clone)]
14pub struct QuantumMLProfiler {
15    /// Operation timings
16    timings: HashMap<String, Vec<Duration>>,
17
18    /// Memory usage tracking
19    memory_snapshots: Vec<MemorySnapshot>,
20
21    /// Quantum circuit metrics
22    circuit_metrics: Vec<CircuitMetrics>,
23
24    /// Start time for the current profiling session
25    session_start: Option<Instant>,
26
27    /// Profiling configuration
28    config: ProfilerConfig,
29}
30
31/// Configuration for the profiler
32#[derive(Debug, Clone)]
33pub struct ProfilerConfig {
34    /// Enable detailed timing breakdown
35    pub detailed_timing: bool,
36
37    /// Track memory usage
38    pub track_memory: bool,
39
40    /// Track quantum circuit metrics
41    pub track_circuits: bool,
42
43    /// Sample rate for memory snapshots (every N operations)
44    pub memory_sample_rate: usize,
45
46    /// Enable automatic report generation
47    pub auto_report: bool,
48}
49
50impl Default for ProfilerConfig {
51    fn default() -> Self {
52        Self {
53            detailed_timing: true,
54            track_memory: true,
55            track_circuits: true,
56            memory_sample_rate: 100,
57            auto_report: false,
58        }
59    }
60}
61
62/// Memory usage snapshot
63#[derive(Debug, Clone)]
64pub struct MemorySnapshot {
65    pub timestamp: Duration,
66    pub allocated_bytes: usize,
67    pub peak_bytes: usize,
68    pub operation: String,
69}
70
71/// Quantum circuit performance metrics
72#[derive(Debug, Clone)]
73pub struct CircuitMetrics {
74    pub circuit_name: String,
75    pub num_qubits: usize,
76    pub circuit_depth: usize,
77    pub gate_count: usize,
78    pub execution_time: Duration,
79    pub shots: usize,
80    pub fidelity: Option<f64>,
81}
82
83/// Profiling report
84#[derive(Debug, Clone)]
85pub struct ProfilingReport {
86    pub total_duration: Duration,
87    pub operation_stats: HashMap<String, OperationStats>,
88    pub memory_stats: MemoryStats,
89    pub circuit_stats: CircuitStats,
90    pub bottlenecks: Vec<Bottleneck>,
91    pub recommendations: Vec<String>,
92}
93
94/// Statistics for a specific operation
95#[derive(Debug, Clone)]
96pub struct OperationStats {
97    pub operation_name: String,
98    pub call_count: usize,
99    pub total_time: Duration,
100    pub mean_time: Duration,
101    pub min_time: Duration,
102    pub max_time: Duration,
103    pub std_dev: Duration,
104    pub percentage_of_total: f64,
105}
106
107/// Memory usage statistics
108#[derive(Debug, Clone)]
109pub struct MemoryStats {
110    pub peak_memory: usize,
111    pub average_memory: usize,
112    pub total_allocations: usize,
113    pub memory_efficiency: f64,
114}
115
116/// Quantum circuit statistics
117#[derive(Debug, Clone)]
118pub struct CircuitStats {
119    pub total_circuits_executed: usize,
120    pub average_circuit_depth: f64,
121    pub average_qubit_count: f64,
122    pub total_gate_count: usize,
123    pub average_fidelity: Option<f64>,
124    pub total_shots: usize,
125}
126
127/// Performance bottleneck identification
128#[derive(Debug, Clone)]
129pub struct Bottleneck {
130    pub operation: String,
131    pub severity: BottleneckSeverity,
132    pub time_percentage: f64,
133    pub description: String,
134    pub recommendation: String,
135}
136
137#[derive(Debug, Clone, PartialEq)]
138pub enum BottleneckSeverity {
139    Critical,   // >50% of total time
140    Major,      // 20-50% of total time
141    Minor,      // 10-20% of total time
142    Negligible, // <10% of total time
143}
144
145impl QuantumMLProfiler {
146    /// Create a new profiler with default configuration
147    pub fn new() -> Self {
148        Self::with_config(ProfilerConfig::default())
149    }
150
151    /// Create a new profiler with custom configuration
152    pub fn with_config(config: ProfilerConfig) -> Self {
153        Self {
154            timings: HashMap::new(),
155            memory_snapshots: Vec::new(),
156            circuit_metrics: Vec::new(),
157            session_start: None,
158            config,
159        }
160    }
161
162    /// Start a profiling session
163    pub fn start_session(&mut self) {
164        self.session_start = Some(Instant::now());
165        self.timings.clear();
166        self.memory_snapshots.clear();
167        self.circuit_metrics.clear();
168    }
169
170    /// End the profiling session and generate a report
171    pub fn end_session(&mut self) -> Result<ProfilingReport> {
172        let total_duration = self
173            .session_start
174            .ok_or_else(|| MLError::InvalidInput("Profiling session not started".to_string()))?
175            .elapsed();
176
177        let operation_stats = self.compute_operation_stats(total_duration);
178        let memory_stats = self.compute_memory_stats();
179        let circuit_stats = self.compute_circuit_stats();
180        let bottlenecks = self.identify_bottlenecks(&operation_stats, total_duration);
181        let recommendations = self.generate_recommendations(&bottlenecks, &circuit_stats);
182
183        Ok(ProfilingReport {
184            total_duration,
185            operation_stats,
186            memory_stats,
187            circuit_stats,
188            bottlenecks,
189            recommendations,
190        })
191    }
192
193    /// Time an operation
194    pub fn time_operation<F, T>(&mut self, operation_name: &str, f: F) -> T
195    where
196        F: FnOnce() -> T,
197    {
198        let start = Instant::now();
199        let result = f();
200        let duration = start.elapsed();
201
202        self.timings
203            .entry(operation_name.to_string())
204            .or_insert_with(Vec::new)
205            .push(duration);
206
207        result
208    }
209
210    /// Record a memory snapshot
211    pub fn record_memory(&mut self, operation: &str, allocated_bytes: usize, peak_bytes: usize) {
212        if !self.config.track_memory {
213            return;
214        }
215
216        let timestamp = self
217            .session_start
218            .map(|start| start.elapsed())
219            .unwrap_or(Duration::ZERO);
220
221        self.memory_snapshots.push(MemorySnapshot {
222            timestamp,
223            allocated_bytes,
224            peak_bytes,
225            operation: operation.to_string(),
226        });
227    }
228
229    /// Record quantum circuit metrics
230    pub fn record_circuit_execution(
231        &mut self,
232        circuit_name: &str,
233        num_qubits: usize,
234        circuit_depth: usize,
235        gate_count: usize,
236        execution_time: Duration,
237        shots: usize,
238        fidelity: Option<f64>,
239    ) {
240        if !self.config.track_circuits {
241            return;
242        }
243
244        self.circuit_metrics.push(CircuitMetrics {
245            circuit_name: circuit_name.to_string(),
246            num_qubits,
247            circuit_depth,
248            gate_count,
249            execution_time,
250            shots,
251            fidelity,
252        });
253    }
254
255    /// Compute statistics for all operations
256    fn compute_operation_stats(&self, total_duration: Duration) -> HashMap<String, OperationStats> {
257        let mut stats = HashMap::new();
258
259        for (operation_name, durations) in &self.timings {
260            let call_count = durations.len();
261            let total_time: Duration = durations.iter().sum();
262            let mean_time = total_time / call_count as u32;
263            let min_time = *durations.iter().min().unwrap_or(&Duration::ZERO);
264            let max_time = *durations.iter().max().unwrap_or(&Duration::ZERO);
265
266            // Compute standard deviation
267            let mean_nanos = mean_time.as_nanos() as f64;
268            let variance = durations
269                .iter()
270                .map(|d| {
271                    let diff = d.as_nanos() as f64 - mean_nanos;
272                    diff * diff
273                })
274                .sum::<f64>()
275                / call_count as f64;
276            let std_dev = Duration::from_nanos(variance.sqrt() as u64);
277
278            let percentage_of_total =
279                (total_time.as_secs_f64() / total_duration.as_secs_f64()) * 100.0;
280
281            stats.insert(
282                operation_name.clone(),
283                OperationStats {
284                    operation_name: operation_name.clone(),
285                    call_count,
286                    total_time,
287                    mean_time,
288                    min_time,
289                    max_time,
290                    std_dev,
291                    percentage_of_total,
292                },
293            );
294        }
295
296        stats
297    }
298
299    /// Compute memory usage statistics
300    fn compute_memory_stats(&self) -> MemoryStats {
301        if self.memory_snapshots.is_empty() {
302            return MemoryStats {
303                peak_memory: 0,
304                average_memory: 0,
305                total_allocations: 0,
306                memory_efficiency: 1.0,
307            };
308        }
309
310        let peak_memory = self
311            .memory_snapshots
312            .iter()
313            .map(|s| s.peak_bytes)
314            .max()
315            .unwrap_or(0);
316
317        let average_memory = self
318            .memory_snapshots
319            .iter()
320            .map(|s| s.allocated_bytes)
321            .sum::<usize>()
322            / self.memory_snapshots.len();
323
324        let memory_efficiency = if peak_memory > 0 {
325            average_memory as f64 / peak_memory as f64
326        } else {
327            1.0
328        };
329
330        MemoryStats {
331            peak_memory,
332            average_memory,
333            total_allocations: self.memory_snapshots.len(),
334            memory_efficiency,
335        }
336    }
337
338    /// Compute quantum circuit statistics
339    fn compute_circuit_stats(&self) -> CircuitStats {
340        if self.circuit_metrics.is_empty() {
341            return CircuitStats {
342                total_circuits_executed: 0,
343                average_circuit_depth: 0.0,
344                average_qubit_count: 0.0,
345                total_gate_count: 0,
346                average_fidelity: None,
347                total_shots: 0,
348            };
349        }
350
351        let total_circuits_executed = self.circuit_metrics.len();
352        let average_circuit_depth = self
353            .circuit_metrics
354            .iter()
355            .map(|m| m.circuit_depth as f64)
356            .sum::<f64>()
357            / total_circuits_executed as f64;
358
359        let average_qubit_count = self
360            .circuit_metrics
361            .iter()
362            .map(|m| m.num_qubits as f64)
363            .sum::<f64>()
364            / total_circuits_executed as f64;
365
366        let total_gate_count = self.circuit_metrics.iter().map(|m| m.gate_count).sum();
367
368        let fidelities: Vec<f64> = self
369            .circuit_metrics
370            .iter()
371            .filter_map(|m| m.fidelity)
372            .collect();
373
374        let average_fidelity = if !fidelities.is_empty() {
375            Some(fidelities.iter().sum::<f64>() / fidelities.len() as f64)
376        } else {
377            None
378        };
379
380        let total_shots = self.circuit_metrics.iter().map(|m| m.shots).sum();
381
382        CircuitStats {
383            total_circuits_executed,
384            average_circuit_depth,
385            average_qubit_count,
386            total_gate_count,
387            average_fidelity,
388            total_shots,
389        }
390    }
391
392    /// Identify performance bottlenecks
393    fn identify_bottlenecks(
394        &self,
395        operation_stats: &HashMap<String, OperationStats>,
396        total_duration: Duration,
397    ) -> Vec<Bottleneck> {
398        let mut bottlenecks = Vec::new();
399
400        for (_, stats) in operation_stats {
401            let severity = if stats.percentage_of_total > 50.0 {
402                BottleneckSeverity::Critical
403            } else if stats.percentage_of_total > 20.0 {
404                BottleneckSeverity::Major
405            } else if stats.percentage_of_total > 10.0 {
406                BottleneckSeverity::Minor
407            } else {
408                BottleneckSeverity::Negligible
409            };
410
411            if severity != BottleneckSeverity::Negligible {
412                let (description, recommendation) =
413                    self.analyze_bottleneck(&stats.operation_name, stats);
414
415                bottlenecks.push(Bottleneck {
416                    operation: stats.operation_name.clone(),
417                    severity,
418                    time_percentage: stats.percentage_of_total,
419                    description,
420                    recommendation,
421                });
422            }
423        }
424
425        // Sort by severity (Critical first)
426        bottlenecks.sort_by(|a, b| {
427            b.time_percentage
428                .partial_cmp(&a.time_percentage)
429                .unwrap_or(std::cmp::Ordering::Equal)
430        });
431
432        bottlenecks
433    }
434
435    /// Analyze a specific bottleneck and provide recommendations
436    fn analyze_bottleneck(&self, operation_name: &str, stats: &OperationStats) -> (String, String) {
437        let description = format!(
438            "Operation '{}' consumes {:.1}% of total execution time ({} calls, mean: {:?})",
439            operation_name, stats.percentage_of_total, stats.call_count, stats.mean_time
440        );
441
442        let recommendation = if operation_name.contains("circuit")
443            || operation_name.contains("quantum")
444        {
445            "Consider circuit optimization: reduce circuit depth, use gate compression, or enable SIMD acceleration".to_string()
446        } else if operation_name.contains("gradient") || operation_name.contains("backward") {
447            "Consider using parameter shift rule caching or analytical gradients where possible"
448                .to_string()
449        } else if operation_name.contains("measurement") || operation_name.contains("sampling") {
450            "Consider reducing shot count or using approximate sampling techniques".to_string()
451        } else if stats.call_count > 1000 {
452            format!(
453                "High call count ({}). Consider batching operations or caching results",
454                stats.call_count
455            )
456        } else {
457            "Analyze this operation for optimization opportunities".to_string()
458        };
459
460        (description, recommendation)
461    }
462
463    /// Generate optimization recommendations based on profiling data
464    fn generate_recommendations(
465        &self,
466        bottlenecks: &[Bottleneck],
467        circuit_stats: &CircuitStats,
468    ) -> Vec<String> {
469        let mut recommendations = Vec::new();
470
471        // Circuit-specific recommendations
472        if circuit_stats.total_circuits_executed > 0 {
473            if circuit_stats.average_circuit_depth > 100.0 {
474                recommendations.push(
475                    "High average circuit depth detected. Consider circuit optimization or transpilation".to_string()
476                );
477            }
478
479            if let Some(fidelity) = circuit_stats.average_fidelity {
480                if fidelity < 0.9 {
481                    recommendations.push(format!(
482                        "Low average fidelity ({:.2}). Consider error mitigation strategies",
483                        fidelity
484                    ));
485                }
486            }
487
488            if circuit_stats.average_qubit_count > 20.0 {
489                recommendations.push(
490                    "Large qubit count. Consider using tensor network simulators or real hardware"
491                        .to_string(),
492                );
493            }
494        }
495
496        // Memory recommendations
497        if !self.memory_snapshots.is_empty() {
498            let mem_stats = self.compute_memory_stats();
499            if mem_stats.memory_efficiency < 0.5 {
500                recommendations.push(
501                    format!(
502                        "Low memory efficiency ({:.1}%). Consider memory pooling or incremental computation",
503                        mem_stats.memory_efficiency * 100.0
504                    )
505                );
506            }
507        }
508
509        // Bottleneck-specific recommendations
510        for bottleneck in bottlenecks.iter().filter(|b| {
511            matches!(
512                b.severity,
513                BottleneckSeverity::Critical | BottleneckSeverity::Major
514            )
515        }) {
516            recommendations.push(bottleneck.recommendation.clone());
517        }
518
519        recommendations
520    }
521
522    /// Print a formatted profiling report
523    pub fn print_report(&self, report: &ProfilingReport) {
524        println!("\n═══════════════════════════════════════════════════════");
525        println!("        Quantum ML Performance Profiling Report        ");
526        println!("═══════════════════════════════════════════════════════\n");
527
528        println!("Total Execution Time: {:?}\n", report.total_duration);
529
530        // Operation Statistics
531        println!("─────────────────────────────────────────────────────");
532        println!("Operation Statistics:");
533        println!("─────────────────────────────────────────────────────");
534
535        let mut sorted_ops: Vec<_> = report.operation_stats.values().collect();
536        sorted_ops.sort_by(|a, b| {
537            b.percentage_of_total
538                .partial_cmp(&a.percentage_of_total)
539                .unwrap_or(std::cmp::Ordering::Equal)
540        });
541
542        for stats in sorted_ops.iter().take(10) {
543            println!(
544                "  {} ({:.1}%): {} calls, mean {:?}, total {:?}",
545                stats.operation_name,
546                stats.percentage_of_total,
547                stats.call_count,
548                stats.mean_time,
549                stats.total_time
550            );
551        }
552
553        // Circuit Statistics
554        if report.circuit_stats.total_circuits_executed > 0 {
555            println!("\n─────────────────────────────────────────────────────");
556            println!("Quantum Circuit Statistics:");
557            println!("─────────────────────────────────────────────────────");
558            println!(
559                "  Total Circuits: {}",
560                report.circuit_stats.total_circuits_executed
561            );
562            println!(
563                "  Avg Circuit Depth: {:.1}",
564                report.circuit_stats.average_circuit_depth
565            );
566            println!(
567                "  Avg Qubit Count: {:.1}",
568                report.circuit_stats.average_qubit_count
569            );
570            println!("  Total Gates: {}", report.circuit_stats.total_gate_count);
571            if let Some(fidelity) = report.circuit_stats.average_fidelity {
572                println!("  Avg Fidelity: {:.4}", fidelity);
573            }
574            println!("  Total Shots: {}", report.circuit_stats.total_shots);
575        }
576
577        // Memory Statistics
578        println!("\n─────────────────────────────────────────────────────");
579        println!("Memory Statistics:");
580        println!("─────────────────────────────────────────────────────");
581        println!(
582            "  Peak Memory: {} MB",
583            report.memory_stats.peak_memory / 1_000_000
584        );
585        println!(
586            "  Avg Memory: {} MB",
587            report.memory_stats.average_memory / 1_000_000
588        );
589        println!(
590            "  Memory Efficiency: {:.1}%",
591            report.memory_stats.memory_efficiency * 100.0
592        );
593
594        // Bottlenecks
595        if !report.bottlenecks.is_empty() {
596            println!("\n─────────────────────────────────────────────────────");
597            println!("Performance Bottlenecks:");
598            println!("─────────────────────────────────────────────────────");
599
600            for bottleneck in &report.bottlenecks {
601                println!("  [{:?}] {}", bottleneck.severity, bottleneck.description);
602            }
603        }
604
605        // Recommendations
606        if !report.recommendations.is_empty() {
607            println!("\n─────────────────────────────────────────────────────");
608            println!("Optimization Recommendations:");
609            println!("─────────────────────────────────────────────────────");
610
611            for (i, rec) in report.recommendations.iter().enumerate() {
612                println!("  {}. {}", i + 1, rec);
613            }
614        }
615
616        println!("\n═══════════════════════════════════════════════════════\n");
617    }
618}
619
620impl Default for QuantumMLProfiler {
621    fn default() -> Self {
622        Self::new()
623    }
624}
625
626#[cfg(test)]
627mod tests {
628    use super::*;
629    use std::thread;
630
631    #[test]
632    fn test_profiler_creation() {
633        let profiler = QuantumMLProfiler::new();
634        assert!(profiler.session_start.is_none());
635        assert!(profiler.timings.is_empty());
636    }
637
638    #[test]
639    fn test_operation_timing() {
640        let mut profiler = QuantumMLProfiler::new();
641        profiler.start_session();
642
643        profiler.time_operation("test_op", || {
644            thread::sleep(Duration::from_millis(10));
645        });
646
647        assert_eq!(
648            profiler
649                .timings
650                .get("test_op")
651                .expect("test_op timing should exist")
652                .len(),
653            1
654        );
655    }
656
657    #[test]
658    fn test_profiling_report() {
659        let mut profiler = QuantumMLProfiler::new();
660        profiler.start_session();
661
662        profiler.time_operation("fast_op", || {
663            thread::sleep(Duration::from_millis(5));
664        });
665
666        profiler.time_operation("slow_op", || {
667            thread::sleep(Duration::from_millis(20));
668        });
669
670        let report = profiler.end_session().expect("End session should succeed");
671        assert_eq!(report.operation_stats.len(), 2);
672        assert!(report.total_duration >= Duration::from_millis(25));
673    }
674
675    #[test]
676    fn test_circuit_metrics() {
677        let mut profiler = QuantumMLProfiler::new();
678        profiler.start_session();
679
680        profiler.record_circuit_execution(
681            "test_circuit",
682            5,
683            10,
684            25,
685            Duration::from_millis(100),
686            1000,
687            Some(0.95),
688        );
689
690        let report = profiler.end_session().expect("End session should succeed");
691        assert_eq!(report.circuit_stats.total_circuits_executed, 1);
692        assert_eq!(report.circuit_stats.average_qubit_count, 5.0);
693    }
694}