1use crate::error::{MLError, Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use std::collections::HashMap;
10use std::time::{Duration, Instant};
11
12#[derive(Debug, Clone)]
14pub struct QuantumMLProfiler {
15 timings: HashMap<String, Vec<Duration>>,
17
18 memory_snapshots: Vec<MemorySnapshot>,
20
21 circuit_metrics: Vec<CircuitMetrics>,
23
24 session_start: Option<Instant>,
26
27 config: ProfilerConfig,
29}
30
31#[derive(Debug, Clone)]
33pub struct ProfilerConfig {
34 pub detailed_timing: bool,
36
37 pub track_memory: bool,
39
40 pub track_circuits: bool,
42
43 pub memory_sample_rate: usize,
45
46 pub auto_report: bool,
48}
49
50impl Default for ProfilerConfig {
51 fn default() -> Self {
52 Self {
53 detailed_timing: true,
54 track_memory: true,
55 track_circuits: true,
56 memory_sample_rate: 100,
57 auto_report: false,
58 }
59 }
60}
61
62#[derive(Debug, Clone)]
64pub struct MemorySnapshot {
65 pub timestamp: Duration,
66 pub allocated_bytes: usize,
67 pub peak_bytes: usize,
68 pub operation: String,
69}
70
71#[derive(Debug, Clone)]
73pub struct CircuitMetrics {
74 pub circuit_name: String,
75 pub num_qubits: usize,
76 pub circuit_depth: usize,
77 pub gate_count: usize,
78 pub execution_time: Duration,
79 pub shots: usize,
80 pub fidelity: Option<f64>,
81}
82
83#[derive(Debug, Clone)]
85pub struct ProfilingReport {
86 pub total_duration: Duration,
87 pub operation_stats: HashMap<String, OperationStats>,
88 pub memory_stats: MemoryStats,
89 pub circuit_stats: CircuitStats,
90 pub bottlenecks: Vec<Bottleneck>,
91 pub recommendations: Vec<String>,
92}
93
94#[derive(Debug, Clone)]
96pub struct OperationStats {
97 pub operation_name: String,
98 pub call_count: usize,
99 pub total_time: Duration,
100 pub mean_time: Duration,
101 pub min_time: Duration,
102 pub max_time: Duration,
103 pub std_dev: Duration,
104 pub percentage_of_total: f64,
105}
106
107#[derive(Debug, Clone)]
109pub struct MemoryStats {
110 pub peak_memory: usize,
111 pub average_memory: usize,
112 pub total_allocations: usize,
113 pub memory_efficiency: f64,
114}
115
116#[derive(Debug, Clone)]
118pub struct CircuitStats {
119 pub total_circuits_executed: usize,
120 pub average_circuit_depth: f64,
121 pub average_qubit_count: f64,
122 pub total_gate_count: usize,
123 pub average_fidelity: Option<f64>,
124 pub total_shots: usize,
125}
126
127#[derive(Debug, Clone)]
129pub struct Bottleneck {
130 pub operation: String,
131 pub severity: BottleneckSeverity,
132 pub time_percentage: f64,
133 pub description: String,
134 pub recommendation: String,
135}
136
137#[derive(Debug, Clone, PartialEq)]
138pub enum BottleneckSeverity {
139 Critical, Major, Minor, Negligible, }
144
145impl QuantumMLProfiler {
146 pub fn new() -> Self {
148 Self::with_config(ProfilerConfig::default())
149 }
150
151 pub fn with_config(config: ProfilerConfig) -> Self {
153 Self {
154 timings: HashMap::new(),
155 memory_snapshots: Vec::new(),
156 circuit_metrics: Vec::new(),
157 session_start: None,
158 config,
159 }
160 }
161
162 pub fn start_session(&mut self) {
164 self.session_start = Some(Instant::now());
165 self.timings.clear();
166 self.memory_snapshots.clear();
167 self.circuit_metrics.clear();
168 }
169
170 pub fn end_session(&mut self) -> Result<ProfilingReport> {
172 let total_duration = self
173 .session_start
174 .ok_or_else(|| MLError::InvalidInput("Profiling session not started".to_string()))?
175 .elapsed();
176
177 let operation_stats = self.compute_operation_stats(total_duration);
178 let memory_stats = self.compute_memory_stats();
179 let circuit_stats = self.compute_circuit_stats();
180 let bottlenecks = self.identify_bottlenecks(&operation_stats, total_duration);
181 let recommendations = self.generate_recommendations(&bottlenecks, &circuit_stats);
182
183 Ok(ProfilingReport {
184 total_duration,
185 operation_stats,
186 memory_stats,
187 circuit_stats,
188 bottlenecks,
189 recommendations,
190 })
191 }
192
193 pub fn time_operation<F, T>(&mut self, operation_name: &str, f: F) -> T
195 where
196 F: FnOnce() -> T,
197 {
198 let start = Instant::now();
199 let result = f();
200 let duration = start.elapsed();
201
202 self.timings
203 .entry(operation_name.to_string())
204 .or_insert_with(Vec::new)
205 .push(duration);
206
207 result
208 }
209
210 pub fn record_memory(&mut self, operation: &str, allocated_bytes: usize, peak_bytes: usize) {
212 if !self.config.track_memory {
213 return;
214 }
215
216 let timestamp = self
217 .session_start
218 .map(|start| start.elapsed())
219 .unwrap_or(Duration::ZERO);
220
221 self.memory_snapshots.push(MemorySnapshot {
222 timestamp,
223 allocated_bytes,
224 peak_bytes,
225 operation: operation.to_string(),
226 });
227 }
228
229 pub fn record_circuit_execution(
231 &mut self,
232 circuit_name: &str,
233 num_qubits: usize,
234 circuit_depth: usize,
235 gate_count: usize,
236 execution_time: Duration,
237 shots: usize,
238 fidelity: Option<f64>,
239 ) {
240 if !self.config.track_circuits {
241 return;
242 }
243
244 self.circuit_metrics.push(CircuitMetrics {
245 circuit_name: circuit_name.to_string(),
246 num_qubits,
247 circuit_depth,
248 gate_count,
249 execution_time,
250 shots,
251 fidelity,
252 });
253 }
254
255 fn compute_operation_stats(&self, total_duration: Duration) -> HashMap<String, OperationStats> {
257 let mut stats = HashMap::new();
258
259 for (operation_name, durations) in &self.timings {
260 let call_count = durations.len();
261 let total_time: Duration = durations.iter().sum();
262 let mean_time = total_time / call_count as u32;
263 let min_time = *durations.iter().min().unwrap_or(&Duration::ZERO);
264 let max_time = *durations.iter().max().unwrap_or(&Duration::ZERO);
265
266 let mean_nanos = mean_time.as_nanos() as f64;
268 let variance = durations
269 .iter()
270 .map(|d| {
271 let diff = d.as_nanos() as f64 - mean_nanos;
272 diff * diff
273 })
274 .sum::<f64>()
275 / call_count as f64;
276 let std_dev = Duration::from_nanos(variance.sqrt() as u64);
277
278 let percentage_of_total =
279 (total_time.as_secs_f64() / total_duration.as_secs_f64()) * 100.0;
280
281 stats.insert(
282 operation_name.clone(),
283 OperationStats {
284 operation_name: operation_name.clone(),
285 call_count,
286 total_time,
287 mean_time,
288 min_time,
289 max_time,
290 std_dev,
291 percentage_of_total,
292 },
293 );
294 }
295
296 stats
297 }
298
299 fn compute_memory_stats(&self) -> MemoryStats {
301 if self.memory_snapshots.is_empty() {
302 return MemoryStats {
303 peak_memory: 0,
304 average_memory: 0,
305 total_allocations: 0,
306 memory_efficiency: 1.0,
307 };
308 }
309
310 let peak_memory = self
311 .memory_snapshots
312 .iter()
313 .map(|s| s.peak_bytes)
314 .max()
315 .unwrap_or(0);
316
317 let average_memory = self
318 .memory_snapshots
319 .iter()
320 .map(|s| s.allocated_bytes)
321 .sum::<usize>()
322 / self.memory_snapshots.len();
323
324 let memory_efficiency = if peak_memory > 0 {
325 average_memory as f64 / peak_memory as f64
326 } else {
327 1.0
328 };
329
330 MemoryStats {
331 peak_memory,
332 average_memory,
333 total_allocations: self.memory_snapshots.len(),
334 memory_efficiency,
335 }
336 }
337
338 fn compute_circuit_stats(&self) -> CircuitStats {
340 if self.circuit_metrics.is_empty() {
341 return CircuitStats {
342 total_circuits_executed: 0,
343 average_circuit_depth: 0.0,
344 average_qubit_count: 0.0,
345 total_gate_count: 0,
346 average_fidelity: None,
347 total_shots: 0,
348 };
349 }
350
351 let total_circuits_executed = self.circuit_metrics.len();
352 let average_circuit_depth = self
353 .circuit_metrics
354 .iter()
355 .map(|m| m.circuit_depth as f64)
356 .sum::<f64>()
357 / total_circuits_executed as f64;
358
359 let average_qubit_count = self
360 .circuit_metrics
361 .iter()
362 .map(|m| m.num_qubits as f64)
363 .sum::<f64>()
364 / total_circuits_executed as f64;
365
366 let total_gate_count = self.circuit_metrics.iter().map(|m| m.gate_count).sum();
367
368 let fidelities: Vec<f64> = self
369 .circuit_metrics
370 .iter()
371 .filter_map(|m| m.fidelity)
372 .collect();
373
374 let average_fidelity = if !fidelities.is_empty() {
375 Some(fidelities.iter().sum::<f64>() / fidelities.len() as f64)
376 } else {
377 None
378 };
379
380 let total_shots = self.circuit_metrics.iter().map(|m| m.shots).sum();
381
382 CircuitStats {
383 total_circuits_executed,
384 average_circuit_depth,
385 average_qubit_count,
386 total_gate_count,
387 average_fidelity,
388 total_shots,
389 }
390 }
391
392 fn identify_bottlenecks(
394 &self,
395 operation_stats: &HashMap<String, OperationStats>,
396 total_duration: Duration,
397 ) -> Vec<Bottleneck> {
398 let mut bottlenecks = Vec::new();
399
400 for (_, stats) in operation_stats {
401 let severity = if stats.percentage_of_total > 50.0 {
402 BottleneckSeverity::Critical
403 } else if stats.percentage_of_total > 20.0 {
404 BottleneckSeverity::Major
405 } else if stats.percentage_of_total > 10.0 {
406 BottleneckSeverity::Minor
407 } else {
408 BottleneckSeverity::Negligible
409 };
410
411 if severity != BottleneckSeverity::Negligible {
412 let (description, recommendation) =
413 self.analyze_bottleneck(&stats.operation_name, stats);
414
415 bottlenecks.push(Bottleneck {
416 operation: stats.operation_name.clone(),
417 severity,
418 time_percentage: stats.percentage_of_total,
419 description,
420 recommendation,
421 });
422 }
423 }
424
425 bottlenecks.sort_by(|a, b| {
427 b.time_percentage
428 .partial_cmp(&a.time_percentage)
429 .unwrap_or(std::cmp::Ordering::Equal)
430 });
431
432 bottlenecks
433 }
434
435 fn analyze_bottleneck(&self, operation_name: &str, stats: &OperationStats) -> (String, String) {
437 let description = format!(
438 "Operation '{}' consumes {:.1}% of total execution time ({} calls, mean: {:?})",
439 operation_name, stats.percentage_of_total, stats.call_count, stats.mean_time
440 );
441
442 let recommendation = if operation_name.contains("circuit")
443 || operation_name.contains("quantum")
444 {
445 "Consider circuit optimization: reduce circuit depth, use gate compression, or enable SIMD acceleration".to_string()
446 } else if operation_name.contains("gradient") || operation_name.contains("backward") {
447 "Consider using parameter shift rule caching or analytical gradients where possible"
448 .to_string()
449 } else if operation_name.contains("measurement") || operation_name.contains("sampling") {
450 "Consider reducing shot count or using approximate sampling techniques".to_string()
451 } else if stats.call_count > 1000 {
452 format!(
453 "High call count ({}). Consider batching operations or caching results",
454 stats.call_count
455 )
456 } else {
457 "Analyze this operation for optimization opportunities".to_string()
458 };
459
460 (description, recommendation)
461 }
462
463 fn generate_recommendations(
465 &self,
466 bottlenecks: &[Bottleneck],
467 circuit_stats: &CircuitStats,
468 ) -> Vec<String> {
469 let mut recommendations = Vec::new();
470
471 if circuit_stats.total_circuits_executed > 0 {
473 if circuit_stats.average_circuit_depth > 100.0 {
474 recommendations.push(
475 "High average circuit depth detected. Consider circuit optimization or transpilation".to_string()
476 );
477 }
478
479 if let Some(fidelity) = circuit_stats.average_fidelity {
480 if fidelity < 0.9 {
481 recommendations.push(format!(
482 "Low average fidelity ({:.2}). Consider error mitigation strategies",
483 fidelity
484 ));
485 }
486 }
487
488 if circuit_stats.average_qubit_count > 20.0 {
489 recommendations.push(
490 "Large qubit count. Consider using tensor network simulators or real hardware"
491 .to_string(),
492 );
493 }
494 }
495
496 if !self.memory_snapshots.is_empty() {
498 let mem_stats = self.compute_memory_stats();
499 if mem_stats.memory_efficiency < 0.5 {
500 recommendations.push(
501 format!(
502 "Low memory efficiency ({:.1}%). Consider memory pooling or incremental computation",
503 mem_stats.memory_efficiency * 100.0
504 )
505 );
506 }
507 }
508
509 for bottleneck in bottlenecks.iter().filter(|b| {
511 matches!(
512 b.severity,
513 BottleneckSeverity::Critical | BottleneckSeverity::Major
514 )
515 }) {
516 recommendations.push(bottleneck.recommendation.clone());
517 }
518
519 recommendations
520 }
521
522 pub fn print_report(&self, report: &ProfilingReport) {
524 println!("\n═══════════════════════════════════════════════════════");
525 println!(" Quantum ML Performance Profiling Report ");
526 println!("═══════════════════════════════════════════════════════\n");
527
528 println!("Total Execution Time: {:?}\n", report.total_duration);
529
530 println!("─────────────────────────────────────────────────────");
532 println!("Operation Statistics:");
533 println!("─────────────────────────────────────────────────────");
534
535 let mut sorted_ops: Vec<_> = report.operation_stats.values().collect();
536 sorted_ops.sort_by(|a, b| {
537 b.percentage_of_total
538 .partial_cmp(&a.percentage_of_total)
539 .unwrap_or(std::cmp::Ordering::Equal)
540 });
541
542 for stats in sorted_ops.iter().take(10) {
543 println!(
544 " {} ({:.1}%): {} calls, mean {:?}, total {:?}",
545 stats.operation_name,
546 stats.percentage_of_total,
547 stats.call_count,
548 stats.mean_time,
549 stats.total_time
550 );
551 }
552
553 if report.circuit_stats.total_circuits_executed > 0 {
555 println!("\n─────────────────────────────────────────────────────");
556 println!("Quantum Circuit Statistics:");
557 println!("─────────────────────────────────────────────────────");
558 println!(
559 " Total Circuits: {}",
560 report.circuit_stats.total_circuits_executed
561 );
562 println!(
563 " Avg Circuit Depth: {:.1}",
564 report.circuit_stats.average_circuit_depth
565 );
566 println!(
567 " Avg Qubit Count: {:.1}",
568 report.circuit_stats.average_qubit_count
569 );
570 println!(" Total Gates: {}", report.circuit_stats.total_gate_count);
571 if let Some(fidelity) = report.circuit_stats.average_fidelity {
572 println!(" Avg Fidelity: {:.4}", fidelity);
573 }
574 println!(" Total Shots: {}", report.circuit_stats.total_shots);
575 }
576
577 println!("\n─────────────────────────────────────────────────────");
579 println!("Memory Statistics:");
580 println!("─────────────────────────────────────────────────────");
581 println!(
582 " Peak Memory: {} MB",
583 report.memory_stats.peak_memory / 1_000_000
584 );
585 println!(
586 " Avg Memory: {} MB",
587 report.memory_stats.average_memory / 1_000_000
588 );
589 println!(
590 " Memory Efficiency: {:.1}%",
591 report.memory_stats.memory_efficiency * 100.0
592 );
593
594 if !report.bottlenecks.is_empty() {
596 println!("\n─────────────────────────────────────────────────────");
597 println!("Performance Bottlenecks:");
598 println!("─────────────────────────────────────────────────────");
599
600 for bottleneck in &report.bottlenecks {
601 println!(" [{:?}] {}", bottleneck.severity, bottleneck.description);
602 }
603 }
604
605 if !report.recommendations.is_empty() {
607 println!("\n─────────────────────────────────────────────────────");
608 println!("Optimization Recommendations:");
609 println!("─────────────────────────────────────────────────────");
610
611 for (i, rec) in report.recommendations.iter().enumerate() {
612 println!(" {}. {}", i + 1, rec);
613 }
614 }
615
616 println!("\n═══════════════════════════════════════════════════════\n");
617 }
618}
619
620impl Default for QuantumMLProfiler {
621 fn default() -> Self {
622 Self::new()
623 }
624}
625
626#[cfg(test)]
627mod tests {
628 use super::*;
629 use std::thread;
630
631 #[test]
632 fn test_profiler_creation() {
633 let profiler = QuantumMLProfiler::new();
634 assert!(profiler.session_start.is_none());
635 assert!(profiler.timings.is_empty());
636 }
637
638 #[test]
639 fn test_operation_timing() {
640 let mut profiler = QuantumMLProfiler::new();
641 profiler.start_session();
642
643 profiler.time_operation("test_op", || {
644 thread::sleep(Duration::from_millis(10));
645 });
646
647 assert_eq!(
648 profiler
649 .timings
650 .get("test_op")
651 .expect("test_op timing should exist")
652 .len(),
653 1
654 );
655 }
656
657 #[test]
658 fn test_profiling_report() {
659 let mut profiler = QuantumMLProfiler::new();
660 profiler.start_session();
661
662 profiler.time_operation("fast_op", || {
663 thread::sleep(Duration::from_millis(5));
664 });
665
666 profiler.time_operation("slow_op", || {
667 thread::sleep(Duration::from_millis(20));
668 });
669
670 let report = profiler.end_session().expect("End session should succeed");
671 assert_eq!(report.operation_stats.len(), 2);
672 assert!(report.total_duration >= Duration::from_millis(25));
673 }
674
675 #[test]
676 fn test_circuit_metrics() {
677 let mut profiler = QuantumMLProfiler::new();
678 profiler.start_session();
679
680 profiler.record_circuit_execution(
681 "test_circuit",
682 5,
683 10,
684 25,
685 Duration::from_millis(100),
686 1000,
687 Some(0.95),
688 );
689
690 let report = profiler.end_session().expect("End session should succeed");
691 assert_eq!(report.circuit_stats.total_circuits_executed, 1);
692 assert_eq!(report.circuit_stats.average_qubit_count, 5.0);
693 }
694}