1#![recursion_limit = "8192"]
2#![allow(warnings)]
3#![allow(clippy::all)]
4#![allow(clippy::pedantic)]
5#![allow(clippy::nursery)]
6#![allow(clippy::restriction)]
7
8use fastrand;
42use std::error::Error;
43use thiserror::Error;
44
45pub mod barren_plateau;
46pub mod blockchain;
47pub mod classification;
48pub mod crypto;
49pub mod enhanced_gan;
50pub mod gan;
51pub mod hep;
52pub mod kernels;
53pub mod nlp;
54pub mod optimization;
55pub mod qcnn;
56pub mod qnn;
57pub mod qsvm;
58pub mod reinforcement;
59pub mod vae;
60pub mod variational;
61
62pub mod adversarial;
63pub mod anneal_integration;
64pub mod anomaly_detection;
65pub mod attention;
66pub mod autodiff;
67pub mod automl;
68pub mod benchmarking;
69pub mod boltzmann;
70pub mod circuit_integration;
71pub mod classical_ml_integration;
72pub mod clustering;
73pub mod computer_vision;
74pub mod continual_learning;
75pub mod continuous_rl;
76pub mod device_compilation;
77pub mod diffusion;
78pub mod dimensionality_reduction;
79pub mod domain_templates;
80pub mod error;
81pub mod error_mitigation;
82pub mod explainable_ai;
83pub mod federated;
84pub mod few_shot;
85pub mod gnn;
86#[cfg(feature = "gpu")]
87pub mod gpu_backend_impl;
88pub mod industry_examples;
89pub mod keras_api;
90pub mod lstm;
91pub mod meta_learning;
92pub mod model_zoo;
93pub mod onnx_export;
94pub mod performance_profiler;
95pub mod pytorch_api;
96pub mod quantum_advanced_diffusion;
97pub mod quantum_advantage_validator;
98pub mod quantum_continuous_flows;
99pub mod quantum_graph_attention;
100pub mod quantum_implicit_neural_representations;
101pub mod quantum_in_context_learning;
102pub mod quantum_llm;
103pub mod quantum_memory_networks;
104pub mod quantum_mixture_of_experts;
105pub mod quantum_nas;
106pub mod quantum_neural_odes;
107pub mod quantum_neural_radiance_fields;
108pub mod quantum_pinns;
109pub mod quantum_reservoir_computing;
110pub mod quantum_self_supervised_learning;
111pub mod quantum_transformer;
112pub mod recommender;
113pub mod scirs2_integration;
114pub mod simulator_backends;
115pub mod sklearn_compatibility;
116pub mod tensorflow_compatibility;
117pub mod time_series;
118pub mod transfer;
119pub mod tutorials;
120
121pub mod utils;
123
124pub mod hybrid_automl_engine;
126
127pub use error::MLError;
129pub use error::Result;
130
131pub mod prelude {
133 pub use crate::adversarial::{
134 create_comprehensive_defense, create_default_adversarial_config, AdversarialTrainingConfig,
135 QuantumAdversarialExample, QuantumAdversarialTrainer, QuantumAttackType,
136 QuantumDefenseStrategy, RobustnessMetrics,
137 };
138 pub use crate::anneal_integration::{
139 AnnealingClient, AnnealingParams, AnnealingResult,
140 AnnealingSchedule as MLAnnealingSchedule, CircuitOptimizationProblem,
141 FeatureSelectionProblem, HyperparameterProblem, IsingProblem, OptimizationResult,
142 PortfolioOptimizationProblem, QuantumMLAnnealer, QuantumMLOptimizationProblem,
143 QuantumMLQUBO,
144 };
145 pub use crate::anomaly_detection::{
146 AnomalyDetectionMethod, AnomalyMetrics, AnomalyResult, PerformanceConfig,
147 PreprocessingConfig as AnomalyPreprocessingConfig, QuantumAnomalyConfig,
148 QuantumAnomalyDetector, QuantumAnomalyMetrics, QuantumAutoencoder,
149 QuantumEnhancementConfig, QuantumIsolationForest, QuantumLOF, QuantumOneClassSVM,
150 RealtimeConfig, SpecializedDetectorConfig,
151 };
152 pub use crate::automl::{
153 create_comprehensive_automl_config, create_default_automl_config, AdvancedAutoMLFeatures,
154 AlgorithmSearchSpace, EnsembleSearchSpace, EvaluationConfig, HyperparameterSearchSpace,
155 MLTaskType, OptimizationObjective, QuantumAutoML, QuantumAutoMLConfig, QuantumConstraints,
156 QuantumEncodingMethod, SearchBudgetConfig, SearchSpaceConfig,
157 };
158 pub use crate::benchmarking::{
159 Benchmark, BenchmarkCategory, BenchmarkConfig, BenchmarkFramework, BenchmarkReport,
160 BenchmarkResults, BenchmarkRunResult, BenchmarkSummary, ScalingType,
161 };
162 pub use crate::blockchain::{ConsensusType, QuantumBlockchain, QuantumToken, SmartContract};
163 pub use crate::boltzmann::{
164 AnnealingSchedule, DeepBoltzmannMachine, QuantumBoltzmannMachine, QuantumRBM,
165 };
166 pub use crate::circuit_integration::{
167 BackendManager, DeviceTopology, ExpressionvityMetrics, HardwareAwareCompiler,
168 MLCircuitAnalyzer, MLCircuitOptimizer, OptimizationPass, ParameterizedLayer, QuantumLayer,
169 QuantumMLExecutor, QubitProperties, RotationAxis, TrainabilityMetrics,
170 };
171 pub use crate::classical_ml_integration::{
172 utils as pipeline_utils, AutoOptimizationConfig, ClassicalModel, DataPreprocessor,
173 DatasetInfo, EnsembleStrategy, HybridModel, HybridPipeline, HybridPipelineManager,
174 MinMaxScaler, ModelRegistry, ModelType, OptimizedPipeline, PerformanceProfile,
175 PipelineConfig, PipelineRecommendation, PipelineStage, PipelineTemplate,
176 ResourceConstraints, StandardScaler, ValidationStrategy, WeightedVotingEnsemble,
177 };
178 pub use crate::classification::{ClassificationMetrics, Classifier};
179 pub use crate::clustering::{
180 ClusteringAlgorithm, CoreClusteringMetrics as QuantumClusteringMetrics, QuantumClusterer,
181 QuantumClusteringConfig,
182 };
183 pub use crate::computer_vision::{
184 AugmentationConfig, ColorSpace, ComputationalMetrics, ConvolutionalConfig,
185 ImageEncodingMethod, ImagePreprocessor, PreprocessingConfig, QuantumConvolutionalNN,
186 QuantumEnhancement, QuantumFeatureExtractor, QuantumImageEncoder, QuantumMetrics,
187 QuantumSpatialAttention, QuantumVisionConfig, QuantumVisionPipeline, ResidualBlock,
188 TaskOutput, TaskTarget, TrainingHistory, VisionBackbone, VisionMetrics, VisionTaskConfig,
189 };
190 pub use crate::continual_learning::{
191 create_continual_task, generate_task_sequence, ContinualLearningStrategy, ContinualTask,
192 Experience, ForgettingMetrics, MemoryBuffer, MemorySelectionStrategy,
193 ParameterAllocationStrategy, QuantumContinualLearner, TaskMetrics, TaskType,
194 };
195 pub use crate::continuous_rl::{
196 ContinuousEnvironment, Experience as RLExperience, PendulumEnvironment, QuantumActor,
197 QuantumCritic, QuantumDDPG, QuantumSAC, ReplayBuffer,
198 };
199 pub use crate::crypto::{
200 ProtocolType, QuantumAuthentication, QuantumKeyDistribution, QuantumSignature,
201 };
202 pub use crate::device_compilation::{
203 CompilationMetrics, CompilationOptions, CompiledModel, DeviceCharacterization,
204 DeviceCompiler, QuantumMLModel, QubitMapping, RoutingAlgorithm, SynthesisMethod,
205 };
206 pub use crate::diffusion::{
207 NoiseSchedule, QuantumDiffusionModel, QuantumScoreDiffusion, QuantumVariationalDiffusion,
208 };
209 pub use crate::dimensionality_reduction::{
210 AutoencoderArchitecture, DRTrainedState, DimensionalityReductionAlgorithm,
211 DimensionalityReductionMetrics, ManifoldMetrics, QAutoencoderConfig, QCCAConfig,
212 QFactorAnalysisConfig, QFeatureSelectionConfig, QICAConfig, QKernelPCAConfig, QLDAConfig,
213 QManifoldConfig, QNMFConfig, QPCAConfig, QSpecializedConfig, QUMAPConfig, QtSNEConfig,
214 QuantumDimensionalityReducer, QuantumDistanceMetric as DRQuantumDistanceMetric,
215 QuantumEigensolver, QuantumEnhancementLevel as DRQuantumEnhancementLevel,
216 QuantumFeatureMap, ReconstructionMetrics,
217 };
218 pub use crate::domain_templates::{
219 utils as domain_utils, CreditRiskModel, Domain, DomainModel, DomainTemplateManager,
220 DrugDiscoveryModel, FraudDetectionModel, MaterialPropertyModel, MedicalImageModel,
221 ModelComplexity, MolecularPropertyModel, PortfolioOptimizationModel, ProblemType,
222 SmartGridModel, TemplateConfig, TemplateMetadata, VehicleRoutingModel,
223 };
224 pub use crate::error::{MLError, Result};
225 pub use crate::error_mitigation::{
226 AdaptiveConfig, CalibrationData, CircuitFoldingMethod, CoherenceTimeModel, ErrorType,
227 ExtrapolationMethod, GateErrorModel, MeasurementErrorModel, MitigatedInferenceData,
228 MitigatedTrainingData, MitigationStrategy, NoiseModel, QuantumMLErrorMitigator,
229 ReadoutCorrectionMethod,
230 };
231 pub use crate::explainable_ai::{
232 create_default_xai_config, AggregationMethod, AttributionMethod, CircuitExplanation,
233 ExplanationMethod, ExplanationResult, LRPRule, LocalModelType, PerturbationMethod,
234 QuantumExplainableAI, QuantumStateProperties,
235 };
236 pub use crate::few_shot::{
237 DistanceMetric, Episode, FewShotLearner, FewShotMethod, QuantumMAML,
238 QuantumPrototypicalNetwork,
239 };
240 pub use crate::gan::{Discriminator, GANEvaluationMetrics, Generator, QuantumGAN};
241 pub use crate::hep::{
242 AnomalyDetector, EventReconstructor, HEPQuantumClassifier, ParticleCollisionClassifier,
243 };
244 pub use crate::industry_examples::{
245 utils as industry_utils, BenchmarkResult, BusinessImpact, DataRequirements, ExampleResult,
246 ImplementationComplexity, Industry, IndustryExampleManager, PerformanceMetrics,
247 QuantumAdvantageMetrics, ROIEstimate, ROISummary, ResourceRequirements, UseCase,
248 };
249 pub use crate::keras_api::{
250 utils as keras_utils, Activation, ActivationFunction, Callback, DataType, Dense,
251 EarlyStopping, InitializerType, Input, KerasLayer, LayerInfo, LossFunction, MetricType,
252 ModelSummary, OptimizerType, QuantumAnsatzType, QuantumDense, Sequential,
253 TrainingHistory as KerasTrainingHistory,
254 };
255 pub use crate::kernels::{KernelMethod, QuantumKernel};
256 pub use crate::meta_learning::{
257 ContinualMetaLearner, MetaLearningAlgorithm, MetaLearningHistory, MetaTask,
258 QuantumMetaLearner, TaskGenerator,
259 };
260 pub use crate::model_zoo::{
261 utils as model_zoo_utils, IrisQuantumSVM, MNISTQuantumNN, ModelCategory, ModelMetadata,
262 ModelRequirements, ModelZoo, PortfolioQAOA, QuantumModel, TrainingConfig, H2VQE,
263 };
264 pub use crate::nlp::{NLPTaskType, QuantumLanguageModel, SentimentAnalyzer, TextSummarizer};
265 pub use crate::onnx_export::{
266 utils as onnx_utils, ExportOptions, ImportOptions, ModelInfo, ONNXAttribute, ONNXDataType,
267 ONNXExporter, ONNXGraph, ONNXImporter, ONNXNode, ONNXTensor, ONNXValueInfo,
268 QuantumBackendTarget, TargetFramework, UnsupportedOpHandling, ValidationReport,
269 };
270 pub use crate::optimization::{ObjectiveFunction, OptimizationMethod, Optimizer};
271 pub use crate::performance_profiler::{
272 Bottleneck, BottleneckSeverity, CircuitMetrics, MemorySnapshot, MemoryStats,
273 OperationStats, ProfilerConfig, ProfilingReport, QuantumMLProfiler,
274 };
275 pub use crate::pytorch_api::{
276 ActivationType as PyTorchActivationType, DataLoader, InitType, MemoryDataLoader, Parameter,
277 QuantumActivation, QuantumConv2d, QuantumCrossEntropyLoss, QuantumLinear, QuantumLoss,
278 QuantumMSELoss, QuantumModule, QuantumSequential, QuantumTrainer,
279 TrainingHistory as PyTorchTrainingHistory,
280 };
281 pub use crate::qnn::{QNNBuilder, QNNLayer, QuantumNeuralNetwork};
282 pub use crate::qsvm::{
283 FeatureMapType, QSVMParams, QuantumKernel as QSVMKernel, QuantumKernelRidge, QSVM,
284 };
285 pub use crate::quantum_llm::{
286 GenerationConfig, GenerationStatistics, MemoryRetrievalType, ModelScale,
287 QLLMTrainingConfig, QualityMetrics, QuantumAnalogyEngine, QuantumAssociativeMemory,
288 QuantumLLM, QuantumLLMConfig, QuantumMemoryConfig, QuantumMemorySystem,
289 QuantumParameterUpdate, QuantumReasoningConfig, QuantumReasoningModule, Vocabulary,
290 };
291 pub use crate::quantum_nas::{
292 create_default_search_space, AcquisitionFunction, ArchitectureCandidate,
293 ArchitectureMetrics, ArchitectureProperties, QuantumNAS, QuantumTopology, QubitConstraints,
294 RLAgentType, SearchSpace, SearchStrategy,
295 };
296 pub use crate::quantum_transformer::{
297 create_causal_mask, create_padding_mask, ActivationType, AttentionOutput,
298 PositionEncodingType, QuantumAttentionInfo, QuantumAttentionType, QuantumFeedForward,
299 QuantumMultiHeadAttention, QuantumPositionEncoding, QuantumTransformer,
300 QuantumTransformerConfig, QuantumTransformerLayer,
301 };
302 pub use crate::recommender::{
303 BusinessRules, FeatureExtractionMethod, ItemFeatures, ProfileLearningMethod,
304 QuantumEnhancementLevel, QuantumRecommender, QuantumRecommenderConfig, Recommendation,
305 RecommendationAlgorithm, RecommendationExplanation, RecommendationOptions,
306 SimilarityMeasure, UserProfile,
307 };
308 pub use crate::reinforcement::{Environment, QuantumAgent, ReinforcementLearning};
309 pub use crate::scirs2_integration::{
310 SciRS2Array, SciRS2DistributedTrainer, SciRS2Optimizer, SciRS2Serializer, SciRS2Tensor,
311 };
312 pub use crate::simulator_backends::{
313 BackendCapabilities, BackendSelectionStrategy, GradientMethod, MPSBackend, Observable,
314 SimulationResult, SimulatorBackend, StatevectorBackend,
315 };
316 pub use crate::sklearn_compatibility::{
317 model_selection, pipeline, QuantumKMeans, QuantumMLPClassifier, QuantumMLPRegressor,
318 QuantumSVC, SklearnClassifier, SklearnClusterer, SklearnEstimator, SklearnRegressor,
319 };
320 pub use crate::tensorflow_compatibility::{
321 tfq_utils, DataEncodingType, PQCLayer, PaddingType, ParameterInitStrategy,
322 QuantumCircuitLayer, QuantumConvolutionalLayer, QuantumDataset, QuantumDatasetIterator,
323 RegularizationType, TFQCircuitFormat, TFQGate, TFQLayer, TFQLossFunction, TFQModel,
324 TFQOptimizer,
325 };
326 pub use crate::time_series::{
327 generate_synthetic_time_series, AnomalyPoint, AnomalyType, DiversityStrategy,
328 EnsembleConfig, EnsembleMethod, FeatureEngineeringConfig, ForecastMetrics, ForecastResult,
329 QuantumEnhancementLevel as TSQuantumEnhancementLevel, QuantumTimeSeriesConfig,
330 QuantumTimeSeriesForecaster, SeasonalityConfig, TimeSeriesModel,
331 };
332 pub use crate::transfer::{
333 LayerConfig, PretrainedModel, QuantumModelZoo, QuantumTransferLearning, TransferStrategy,
334 };
335 pub use crate::tutorials::{
336 utils as tutorial_utils, CodeExample, DifficultyLevel, Exercise, ExerciseResult,
337 ExerciseType, ExperienceLevel, InteractiveElement, InteractiveType, TestCase, Tutorial,
338 TutorialCategory, TutorialManager, TutorialProgress, TutorialSection, TutorialSession,
339 UserBackground,
340 };
341 pub use crate::variational::{VariationalAlgorithm, VariationalCircuit};
342
343 pub use crate::quantum_graph_attention::{
345 AttentionAnalysis, AttentionConfig as QGATAttentionConfig,
346 BenchmarkResults as QGATBenchmarkResults, Graph, PoolingConfig, QGATConfig,
347 QuantumAttentionType as QGATQuantumAttentionType, QuantumGraphAttentionNetwork,
348 TrainingMetrics as QGATTrainingMetrics,
349 };
350 pub use crate::quantum_in_context_learning::{
351 AdaptationResult, AdaptationStrategy, AdaptationTarget, ContextExample, ContextMetadata,
352 ContextModality, ContextRetrievalMethod, EntanglementPattern, InContextLearningMetrics,
353 InContextLearningOutput, InContextLearningStatistics, InterpolationMethod,
354 MetaUpdateStrategy, QuantumAttentionMechanism, QuantumContextAttention,
355 QuantumContextEncoder, QuantumContextEncoding, QuantumContextState, QuantumDistanceMetric,
356 QuantumEpisodicMemory, QuantumInContextLearner, QuantumInContextLearningConfig,
357 QuantumTaskAdapter, TransferLearningResults,
358 };
359 pub use crate::quantum_memory_networks::{
360 AddressingConfig, AddressingType, BenchmarkResults as QMANBenchmarkResults,
361 ControllerArchitecture, ControllerConfig as QMANControllerConfig, EpisodicMemory,
362 HeadConfig, HeadType as QMANHeadType, MemoryInitialization, QMANConfig, QMANTrainingConfig,
363 QuantumMemoryAugmentedNetwork, ReadParams, TrainingMetrics as QMANTrainingMetrics,
364 WriteParams,
365 };
366 pub use crate::quantum_neural_odes::{
367 AnsatzType as QNODEAnsatzType, BenchmarkResults as QNODEBenchmarkResults,
368 IntegrationMethod, OptimizationStrategy as QNODEOptimizationStrategy, QNODEConfig,
369 QuantumNeuralODE, TrainingMetrics as QNODETrainingMetrics,
370 };
371 pub use crate::quantum_pinns::{
372 BoundaryCondition, DerivativeResults, InitialCondition, LossWeights, PhysicsEquationType,
373 QPINNConfig, QuantumPINN, TrainingMetrics as QPINNTrainingMetrics,
374 };
375 pub use crate::quantum_reservoir_computing::{
376 BenchmarkResults as QRCBenchmarkResults, DynamicsAnalysis, InputEncoding, QRCConfig,
377 QuantumReservoirComputer, ReadoutConfig, ReservoirDynamics,
378 TrainingMetrics as QRCTrainingMetrics,
379 };
380
381 pub use crate::quantum_advanced_diffusion::{
382 DenoisingArchitecture, ErrorMitigationStrategy, GenerationMetrics,
383 QuantumAdvancedDiffusionConfig, QuantumAdvancedDiffusionModel, QuantumGenerationOutput,
384 QuantumNoiseSchedule, QuantumTrainingConfig,
385 };
386
387 pub use crate::quantum_advantage_validator::{
388 ClassicalBaseline, ComparisonMetric, QuantumAdvantage, QuantumAdvantageValidator,
389 QuantumResourceUsage, QuantumResult, ResourceUsage, StatisticalSignificance,
390 ValidationConfig, ValidationReport as AdvantageValidationReport,
391 };
392
393 pub use crate::quantum_continuous_flows::{
394 FlowArchitecture, FlowSamplingOutput, FlowTrainingConfig, QuantumContinuousFlow,
395 QuantumContinuousFlowConfig, QuantumODEFunction,
396 };
397
398 pub use crate::quantum_neural_radiance_fields::{
399 QuantumNeRF, QuantumNeRFConfig, QuantumRenderOutput, QuantumRenderingMetrics,
400 };
401
402 pub use crate::quantum_mixture_of_experts::{
403 InterferencePattern, MoEOutput, MoEStatistics, MoETrainingConfig,
404 QuantumCombinationMetrics, QuantumGatingMechanism, QuantumMixtureOfExperts,
405 QuantumMixtureOfExpertsConfig, QuantumRoutingStrategy,
406 };
407
408 pub use crate::quantum_self_supervised_learning::{
409 ContrastiveLossFunction, QuantumAugmentationStrategy, QuantumAugmenter, QuantumDecoder,
410 QuantumEncoder, QuantumMaskingStrategy, QuantumProjector, QuantumSSLMethod,
411 QuantumSSLMetrics, QuantumSelfSupervisedConfig, QuantumSelfSupervisedLearner,
412 QuantumSimilarityMetric, RepresentationEvaluationResults, SSLLearningOutput,
413 SSLTrainingConfig,
414 };
415
416 pub use crate::quantum_implicit_neural_representations::{
417 AdaptationOutput, CompressedRepresentation, CompressionConfig, CompressionManager,
418 EntanglementManager, INRQueryOutput, INRTrainingConfig, INRTrainingOutput,
419 MetaLearningConfig, OptimizationConfig, QuantumActivationConfig, QuantumGradientEstimator,
420 QuantumINRConfig, QuantumINRMetrics, QuantumImplicitNeuralRepresentation,
421 QuantumLayerConfig, QuantumOptimizer, QuantumPositionalEncoding, QuantumStateManager,
422 RepresentationMethod, SignalType,
423 };
424}