quantum_transformer/
quantum_transformer.rs

1//! Quantum Transformer Example
2//!
3//! This example demonstrates the quantum transformer architecture with various
4//! attention mechanisms, position encodings, and applications to different tasks
5//! like language modeling, sequence-to-sequence, and quantum data processing.
6
7use quantrs2_ml::prelude::*;
8use quantrs2_ml::qnn::QNNLayerType;
9use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
10use scirs2_core::random::prelude::*;
11
12fn main() -> Result<()> {
13    println!("=== Quantum Transformer Architecture Demo ===\n");
14
15    // Step 1: Basic transformer configuration
16    println!("1. Quantum Transformer Configurations...");
17    config_demo()?;
18
19    // Step 2: Quantum attention mechanisms
20    println!("\n2. Quantum Attention Mechanisms...");
21    attention_mechanisms_demo()?;
22
23    // Step 3: Position encoding variants
24    println!("\n3. Quantum Position Encodings...");
25    position_encoding_demo()?;
26
27    // Step 4: Full transformer forward pass
28    println!("\n4. Complete Transformer Forward Pass...");
29    transformer_forward_demo()?;
30
31    // Step 5: Language modeling application
32    println!("\n5. Quantum Language Modeling...");
33    language_modeling_demo()?;
34
35    // Step 6: Sequence-to-sequence tasks
36    println!("\n6. Quantum Sequence-to-Sequence...");
37    seq2seq_demo()?;
38
39    // Step 7: Quantum data processing
40    println!("\n7. Quantum Data Processing...");
41    quantum_data_demo()?;
42
43    // Step 8: Multi-scale transformers
44    println!("\n8. Multi-Scale Quantum Transformers...");
45    multiscale_demo()?;
46
47    println!("\n=== Quantum Transformer Demo Complete ===");
48
49    Ok(())
50}
51
52/// Demonstrate different transformer configurations
53fn config_demo() -> Result<()> {
54    println!("   Creating various transformer configurations...");
55
56    // Small efficient model
57    let small_config = QuantumTransformerConfig::small();
58    println!(
59        "   Small model: {} params, {} heads, {} layers",
60        small_config.model_dim, small_config.num_heads, small_config.num_layers
61    );
62
63    // Standard model
64    let default_config = QuantumTransformerConfig::default();
65    println!(
66        "   Default model: {} params, {} heads, {} layers",
67        default_config.model_dim, default_config.num_heads, default_config.num_layers
68    );
69
70    // Large model
71    let large_config = QuantumTransformerConfig::large();
72    println!(
73        "   Large model: {} params, {} heads, {} layers",
74        large_config.model_dim, large_config.num_heads, large_config.num_layers
75    );
76
77    // Custom configuration
78    let custom_config = QuantumTransformerConfig {
79        model_dim: 384,
80        num_heads: 6,
81        ff_dim: 1536,
82        num_layers: 8,
83        max_seq_len: 1024,
84        num_qubits: 12,
85        dropout_rate: 0.15,
86        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
87        position_encoding: PositionEncodingType::Rotary,
88    };
89
90    println!(
91        "   Custom model: {} dim, {} qubits, {:?} attention",
92        custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
93    );
94
95    // Create transformer with custom config
96    let transformer = QuantumTransformer::new(custom_config)?;
97    println!(
98        "   Created transformer with {} total parameters",
99        transformer.num_parameters()
100    );
101
102    Ok(())
103}
104
105/// Demonstrate different quantum attention mechanisms
106fn attention_mechanisms_demo() -> Result<()> {
107    println!("   Testing various quantum attention mechanisms...");
108
109    let attention_types = vec![
110        ("Full Quantum", QuantumAttentionType::FullQuantum),
111        (
112            "Hybrid Quantum-Classical",
113            QuantumAttentionType::HybridQuantumClassical,
114        ),
115        (
116            "Variational Quantum",
117            QuantumAttentionType::VariationalQuantum,
118        ),
119        (
120            "Quantum Enhanced Multi-Head",
121            QuantumAttentionType::QuantumEnhancedMultiHead,
122        ),
123        (
124            "Quantum Self-Attention",
125            QuantumAttentionType::QuantumSelfAttention,
126        ),
127    ];
128
129    for (name, attention_type) in attention_types {
130        println!("\n   --- {name} Attention ---");
131
132        let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
133        println!(
134            "   Created attention module: {} heads, {} model dim",
135            4, 256
136        ); // Fixed values since fields are private
137
138        // Test forward pass
139        let batch_size = 2;
140        let seq_len = 10;
141        let model_dim = 256;
142
143        let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
144            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
145        });
146        let key = query.clone();
147        let value = query.clone();
148
149        let attention_output = attention.forward(&query, &key, &value, None)?;
150
151        println!(
152            "   Attention output shape: {:?}",
153            attention_output.output.dim()
154        );
155        println!(
156            "   Attention weights shape: {:?}",
157            attention_output.attention_weights.dim()
158        );
159
160        // Analyze quantum attention properties
161        let quantum_info = &attention_output.quantum_info;
162        let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
163        let max_coherence = quantum_info
164            .coherence_scores
165            .iter()
166            .copied()
167            .fold(f64::NEG_INFINITY, f64::max);
168
169        println!("   Average entanglement: {avg_entanglement:.4}");
170        println!("   Maximum coherence: {max_coherence:.4}");
171
172        // Attention pattern analysis
173        let attention_weights = &attention_output.attention_weights;
174        let max_attention = attention_weights
175            .iter()
176            .copied()
177            .fold(f64::NEG_INFINITY, f64::max);
178        let avg_attention = attention_weights.mean().unwrap_or(0.0);
179
180        println!("   Max attention weight: {max_attention:.4}");
181        println!("   Average attention: {avg_attention:.4}");
182
183        // Check attention sparsity
184        let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
185            / attention_weights.len() as f64;
186        println!("   Attention sparsity: {:.1}%", sparsity * 100.0);
187    }
188
189    Ok(())
190}
191
192/// Demonstrate different position encoding types
193fn position_encoding_demo() -> Result<()> {
194    println!("   Testing quantum position encoding variants...");
195
196    let encoding_types = vec![
197        ("Sinusoidal", PositionEncodingType::Sinusoidal),
198        ("Quantum Phase", PositionEncodingType::QuantumPhase),
199        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200        ("Relative", PositionEncodingType::Relative),
201        ("Rotary (RoPE)", PositionEncodingType::Rotary),
202    ];
203
204    let model_dim = 128;
205    let max_seq_len = 64;
206    let num_qubits = 8;
207
208    for (name, encoding_type) in encoding_types {
209        println!("\n   --- {name} Position Encoding ---");
210
211        let pos_enc =
212            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214        let batch_size = 3;
215        let seq_len = 32;
216
217        let encodings = pos_enc.forward(seq_len, batch_size)?;
218        println!("   Encoding shape: {:?}", encodings.dim());
219
220        // Analyze position encoding properties
221        let encoding_range = {
222            let min_val = encodings.iter().copied().fold(f64::INFINITY, f64::min);
223            let max_val = encodings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
224            max_val - min_val
225        };
226
227        println!("   Value range: {encoding_range:.4}");
228
229        // Check position distinguishability
230        let pos1 = encodings
231            .slice(scirs2_core::ndarray::s![0, 0, ..])
232            .to_owned();
233        let pos2 = encodings
234            .slice(scirs2_core::ndarray::s![0, seq_len - 1, ..])
235            .to_owned();
236        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
237
238        println!("   Distance between first and last position: {position_distance:.4}");
239
240        // Analyze periodicity for sinusoidal encodings
241        if name == "Sinusoidal" {
242            let mut periodicities = Vec::new();
243            for d in (0..model_dim).step_by(10) {
244                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
245
246                // Simple periodicity check
247                let period = find_period(&values);
248                if period > 0 {
249                    periodicities.push(period);
250                }
251            }
252
253            if !periodicities.is_empty() {
254                let avg_period =
255                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
256                println!("   Average period length: {avg_period:.1}");
257            }
258        }
259
260        // Check quantum phase encoding properties
261        if name == "Quantum Phase" {
262            let phase_variance = encodings.var(0.0);
263            println!("   Phase encoding variance: {phase_variance:.4}");
264        }
265    }
266
267    Ok(())
268}
269
270/// Demonstrate complete transformer forward pass
271fn transformer_forward_demo() -> Result<()> {
272    println!("   Testing complete quantum transformer forward pass...");
273
274    let config = QuantumTransformerConfig {
275        model_dim: 256,
276        num_heads: 8,
277        ff_dim: 1024,
278        num_layers: 4,
279        max_seq_len: 128,
280        num_qubits: 10,
281        dropout_rate: 0.1,
282        attention_type: QuantumAttentionType::HybridQuantumClassical,
283        position_encoding: PositionEncodingType::QuantumPhase,
284    };
285
286    let transformer = QuantumTransformer::new(config.clone())?;
287    println!(
288        "   Created transformer: {} layers, {} parameters",
289        config.num_layers,
290        transformer.num_parameters()
291    );
292
293    // Test with different sequence lengths
294    let test_sequences = vec![
295        (2, 16, 128), // small batch, short sequence
296        (4, 32, 128), // medium batch, medium sequence
297        (1, 64, 128), // single sample, long sequence
298    ];
299
300    for (batch_size, seq_len, input_dim) in test_sequences {
301        println!("\n   Testing: batch={batch_size}, seq_len={seq_len}, input_dim={input_dim}");
302
303        // Create test input
304        let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
305            let base = 0.1 * (b as f64 + 1.0);
306            let seq_component = 0.05 * (s as f64 * 0.1).sin();
307            let dim_component = 0.02 * (d as f64 * 0.01).cos();
308            base + seq_component + dim_component
309        });
310
311        // Create causal mask for autoregressive modeling
312        let causal_mask = create_causal_mask(batch_size, seq_len);
313
314        // Forward pass
315        let start_time = std::time::Instant::now();
316        let output = transformer.forward(&input, Some(&causal_mask))?;
317        let forward_time = start_time.elapsed();
318
319        println!("   Output shape: {:?}", output.dim());
320        println!("   Forward pass time: {forward_time:.2?}");
321
322        // Analyze output properties
323        let output_mean = output.mean().unwrap_or(0.0);
324        let output_std = output.var(0.0).sqrt();
325        let output_range = {
326            let min_val = output.iter().copied().fold(f64::INFINITY, f64::min);
327            let max_val = output.iter().copied().fold(f64::NEG_INFINITY, f64::max);
328            max_val - min_val
329        };
330
331        println!(
332            "   Output statistics: mean={output_mean:.4}, std={output_std:.4}, range={output_range:.4}"
333        );
334
335        // Check causality (if using causal mask)
336        let causality_check = check_causality(&input, &output, &causal_mask);
337        if causality_check {
338            println!("   ✓ Causal dependencies respected");
339        } else {
340            println!("   ⚠ Potential causality violations detected");
341        }
342
343        // Memory efficiency analysis
344        let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
345            / (batch_size * seq_len) as f64;
346        println!("   Memory per token: {memory_per_token:.1} bytes");
347    }
348
349    Ok(())
350}
351
352/// Demonstrate quantum language modeling
353fn language_modeling_demo() -> Result<()> {
354    println!("   Quantum language modeling with transformer...");
355
356    let config = QuantumTransformerConfig {
357        model_dim: 384,
358        num_heads: 6,
359        ff_dim: 1536,
360        num_layers: 6,
361        max_seq_len: 256,
362        num_qubits: 12,
363        dropout_rate: 0.1,
364        attention_type: QuantumAttentionType::QuantumSelfAttention,
365        position_encoding: PositionEncodingType::Rotary,
366    };
367
368    let transformer = QuantumTransformer::new(config.clone())?;
369
370    // Simulate language modeling task
371    let vocab_size = 1000;
372    let batch_size = 4;
373    let seq_len = 64;
374
375    // Create tokenized sequences (simulated)
376    let input_tokens =
377        Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
378            // Simulate token embeddings
379            let token_id = (b * seq_len + s) % vocab_size;
380            let embedding_val = (token_id as f64 / vocab_size as f64).mul_add(2.0, -1.0);
381            embedding_val * 0.1f64.mul_add(d as f64 / config.model_dim as f64, 1.0)
382        });
383
384    println!("   Processing {batch_size} sequences of length {seq_len}");
385
386    // Create causal mask for language modeling
387    let causal_mask = create_causal_mask(batch_size, seq_len);
388
389    // Forward pass
390    let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
391
392    // Simulate next token prediction
393    let mut perplexities = Vec::new();
394
395    for batch_idx in 0..batch_size {
396        let mut log_likelihood = 0.0;
397        let mut valid_predictions = 0;
398
399        for pos in 0..seq_len - 1 {
400            let current_logits = logits.slice(scirs2_core::ndarray::s![batch_idx, pos, ..]);
401
402            // Convert to probabilities (simplified softmax)
403            let max_logit = current_logits
404                .iter()
405                .copied()
406                .fold(f64::NEG_INFINITY, f64::max);
407            let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
408            let sum_exp = exp_logits.sum();
409            let probs = exp_logits / sum_exp;
410
411            // Simulate target token (next position embedding)
412            let target_embedding =
413                input_tokens.slice(scirs2_core::ndarray::s![batch_idx, pos + 1, ..]);
414            let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
415
416            if target_prob > 1e-10 {
417                log_likelihood += target_prob.ln();
418                valid_predictions += 1;
419            }
420        }
421
422        if valid_predictions > 0 {
423            let avg_log_likelihood = log_likelihood / f64::from(valid_predictions);
424            let perplexity = (-avg_log_likelihood).exp();
425            perplexities.push(perplexity);
426        }
427    }
428
429    if !perplexities.is_empty() {
430        let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
431        println!("   Average perplexity: {avg_perplexity:.2}");
432
433        // Analyze quantum language model properties
434        println!("   Quantum language model analysis:");
435
436        // Attention pattern analysis
437        println!("   - Uses quantum self-attention for context modeling");
438        println!("   - Rotary position encoding preserves relative positions");
439        println!(
440            "   - {} layers provide hierarchical representation",
441            config.num_layers
442        );
443
444        // Information flow analysis
445        let first_layer_norm = logits
446            .slice(scirs2_core::ndarray::s![0, .., ..])
447            .var(0.0)
448            .sqrt();
449        println!("   - Output layer standard deviation: {first_layer_norm:.4}");
450
451        // Quantum coherence in language representation
452        let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
453        println!("   - Quantum coherence in representations: {quantum_coherence:.4}");
454    }
455
456    Ok(())
457}
458
459/// Demonstrate sequence-to-sequence tasks
460fn seq2seq_demo() -> Result<()> {
461    println!("   Quantum sequence-to-sequence modeling...");
462
463    // Encoder configuration
464    let encoder_config = QuantumTransformerConfig {
465        model_dim: 256,
466        num_heads: 8,
467        ff_dim: 1024,
468        num_layers: 4,
469        max_seq_len: 128,
470        num_qubits: 10,
471        dropout_rate: 0.1,
472        attention_type: QuantumAttentionType::HybridQuantumClassical,
473        position_encoding: PositionEncodingType::Sinusoidal,
474    };
475
476    // Decoder configuration (with causal attention)
477    let decoder_config = QuantumTransformerConfig {
478        model_dim: 256,
479        num_heads: 8,
480        ff_dim: 1024,
481        num_layers: 4,
482        max_seq_len: 128,
483        num_qubits: 10,
484        dropout_rate: 0.1,
485        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
486        position_encoding: PositionEncodingType::QuantumPhase,
487    };
488
489    let encoder = QuantumTransformer::new(encoder_config)?;
490    let decoder = QuantumTransformer::new(decoder_config)?;
491
492    println!("   Created encoder-decoder architecture");
493    println!("   Encoder: {} parameters", encoder.num_parameters());
494    println!("   Decoder: {} parameters", decoder.num_parameters());
495
496    // Simulate translation task
497    let batch_size = 3;
498    let src_len = 32;
499    let tgt_len = 28;
500    let model_dim = 256;
501
502    // Source sequence (e.g., English)
503    let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
504        let src_pattern = 0.3 * ((s as f64).mul_add(0.2, b as f64).sin());
505        0.1f64.mul_add(d as f64 / model_dim as f64, src_pattern)
506    });
507
508    // Target sequence (e.g., French)
509    let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
510        let tgt_pattern = 0.4 * ((s as f64).mul_add(0.15, b as f64 * 0.3).cos());
511        0.12f64.mul_add(d as f64 / model_dim as f64, tgt_pattern)
512    });
513
514    println!("\n   Processing translation: {src_len} -> {tgt_len} tokens");
515
516    // Encode source sequence
517    let encoder_output = encoder.forward(&source, None)?;
518    println!("   Encoder output shape: {:?}", encoder_output.dim());
519
520    // Decode with causal mask
521    let causal_mask = create_causal_mask(batch_size, tgt_len);
522    let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
523    println!("   Decoder output shape: {:?}", decoder_output.dim());
524
525    // Cross-attention simulation (simplified)
526    println!("\n   Cross-attention analysis:");
527    let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
528    println!(
529        "   Cross-attention shape: {:?}",
530        cross_attention_scores.dim()
531    );
532
533    // Analyze attention alignment
534    let max_alignment = cross_attention_scores
535        .iter()
536        .copied()
537        .fold(f64::NEG_INFINITY, f64::max);
538    let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
539
540    println!("   Max alignment score: {max_alignment:.4}");
541    println!("   Average alignment: {avg_alignment:.4}");
542
543    // Translation quality metrics (simplified)
544    let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
545    println!("   Translation quality score: {translation_score:.4}");
546
547    // Quantum entanglement in cross-lingual representations
548    let cross_lingual_entanglement =
549        analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
550    println!("   Cross-lingual quantum entanglement: {cross_lingual_entanglement:.4}");
551
552    Ok(())
553}
554
555/// Demonstrate quantum data processing
556fn quantum_data_demo() -> Result<()> {
557    println!("   Processing quantum measurement data with transformers...");
558
559    let config = QuantumTransformerConfig {
560        model_dim: 128,
561        num_heads: 4,
562        ff_dim: 512,
563        num_layers: 3,
564        max_seq_len: 64,
565        num_qubits: 8,
566        dropout_rate: 0.05,
567        attention_type: QuantumAttentionType::FullQuantum,
568        position_encoding: PositionEncodingType::QuantumPhase,
569    };
570
571    let transformer = QuantumTransformer::new(config)?;
572
573    // Simulate quantum measurement sequences
574    let batch_size = 5;
575    let seq_len = 32;
576    let model_dim = 128;
577
578    println!("   Generating quantum measurement sequences...");
579
580    // Create quantum state evolution data
581    let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
582        // Simulate quantum state evolution with decoherence
583        let decoherence_factor = (-0.1 * t as f64).exp();
584        let quantum_amplitude =
585            decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
586
587        // Add measurement noise
588        let noise = 0.05 * (fastrand::f64() - 0.5);
589
590        // Encode as amplitude and phase information
591        if d % 2 == 0 {
592            quantum_amplitude + noise
593        } else {
594            (d as f64)
595                .mul_add(0.1, 2.0 * std::f64::consts::PI * t as f64 / 10.0)
596                .cos()
597                + noise
598        }
599    });
600
601    println!("   Processing {batch_size} quantum sequences of {seq_len} measurements each");
602
603    // Process quantum data
604    let output = transformer.forward(&quantum_data, None)?;
605
606    // Analyze quantum data processing
607    println!("\n   Quantum data analysis:");
608
609    // Coherence preservation
610    let input_coherence = compute_coherence_measure(&quantum_data)?;
611    let output_coherence = compute_coherence_measure(&output)?;
612    let coherence_preservation = output_coherence / input_coherence;
613
614    println!("   Input coherence: {input_coherence:.4}");
615    println!("   Output coherence: {output_coherence:.4}");
616    println!(
617        "   Coherence preservation: {:.1}%",
618        coherence_preservation * 100.0
619    );
620
621    // Quantum information extraction
622    let quantum_features = extract_quantum_features(&output)?;
623    println!("   Extracted quantum features:");
624    println!(
625        "   - Entanglement signature: {:.4}",
626        quantum_features.entanglement
627    );
628    println!(
629        "   - Phase coherence: {:.4}",
630        quantum_features.phase_coherence
631    );
632    println!(
633        "   - Amplitude stability: {:.4}",
634        quantum_features.amplitude_stability
635    );
636
637    // Decoherence detection
638    let decoherence_pattern = detect_decoherence_pattern(&output)?;
639    println!("   Decoherence detection:");
640    println!("   - Pattern strength: {:.4}", decoherence_pattern.strength);
641    println!(
642        "   - Time constant: {:.2} steps",
643        decoherence_pattern.time_constant
644    );
645
646    // Quantum state classification
647    let state_classifications = classify_quantum_states(&output)?;
648    println!("   Quantum state classification:");
649    for (i, classification) in state_classifications.iter().enumerate() {
650        println!(
651            "   - Sequence {}: {:.1}% entangled, {:.1}% coherent",
652            i,
653            classification.entangled_prob * 100.0,
654            classification.coherent_prob * 100.0
655        );
656    }
657
658    Ok(())
659}
660
661/// Demonstrate multi-scale quantum transformers
662fn multiscale_demo() -> Result<()> {
663    println!("   Multi-scale quantum transformer architecture...");
664
665    // Create transformers at different scales
666    let scales = vec![
667        (
668            "Fine-scale",
669            QuantumTransformerConfig {
670                model_dim: 128,
671                num_heads: 4,
672                ff_dim: 512,
673                num_layers: 2,
674                max_seq_len: 64,
675                num_qubits: 6,
676                dropout_rate: 0.1,
677                attention_type: QuantumAttentionType::VariationalQuantum,
678                position_encoding: PositionEncodingType::Sinusoidal,
679            },
680        ),
681        (
682            "Medium-scale",
683            QuantumTransformerConfig {
684                model_dim: 256,
685                num_heads: 8,
686                ff_dim: 1024,
687                num_layers: 4,
688                max_seq_len: 128,
689                num_qubits: 10,
690                dropout_rate: 0.1,
691                attention_type: QuantumAttentionType::HybridQuantumClassical,
692                position_encoding: PositionEncodingType::QuantumPhase,
693            },
694        ),
695        (
696            "Coarse-scale",
697            QuantumTransformerConfig {
698                model_dim: 512,
699                num_heads: 16,
700                ff_dim: 2048,
701                num_layers: 6,
702                max_seq_len: 256,
703                num_qubits: 16,
704                dropout_rate: 0.1,
705                attention_type: QuantumAttentionType::FullQuantum,
706                position_encoding: PositionEncodingType::Rotary,
707            },
708        ),
709    ];
710
711    let mut transformers = Vec::new();
712
713    for (scale_name, config) in scales {
714        let transformer = QuantumTransformer::new(config)?;
715        let num_params = transformer.num_parameters();
716
717        println!("   {scale_name} transformer: {num_params} parameters");
718        transformers.push((scale_name, transformer));
719    }
720
721    // Test hierarchical processing
722    println!("\n   Hierarchical processing demonstration:");
723
724    let batch_size = 2;
725    let base_seq_len = 64;
726    let input_dim = 128;
727
728    // Create input data
729    let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
730        // Multi-scale signal with different frequency components
731        let fine_component = 0.3 * (s as f64 * 0.5).sin();
732        let medium_component = 0.2 * (s as f64 * 0.1).sin();
733        let coarse_component = 0.1 * (s as f64 * 0.02).sin();
734
735        let base_signal = fine_component + medium_component + coarse_component;
736        0.05f64.mul_add((d as f64).mul_add(0.01, b as f64), base_signal)
737    });
738
739    // Process at each scale
740    let mut scale_outputs = Vec::new();
741
742    for (scale_name, transformer) in &transformers {
743        // Adapt input to transformer's expected dimensions
744        let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
745
746        println!("   Processing at {scale_name} scale...");
747        println!("   Adapted input shape: {:?}", adapted_input.dim());
748
749        let output = transformer.forward(&adapted_input, None)?;
750
751        // Analyze scale-specific patterns
752        let pattern_analysis = analyze_scale_patterns(&output)?;
753
754        scale_outputs.push((*scale_name, output));
755        println!("   Pattern analysis:");
756        println!(
757            "   - Local patterns: {:.4}",
758            pattern_analysis.local_strength
759        );
760        println!(
761            "   - Global patterns: {:.4}",
762            pattern_analysis.global_strength
763        );
764        println!(
765            "   - Cross-scale coherence: {:.4}",
766            pattern_analysis.coherence
767        );
768    }
769
770    // Multi-scale fusion
771    println!("\n   Multi-scale fusion analysis:");
772    let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
773        .iter()
774        .map(|(name, output)| (*name, output.clone()))
775        .collect();
776    let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
777    println!(
778        "   Fused representation dimensions: {} features",
779        fusion_result.len()
780    );
781
782    let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
783    println!("   Fusion quality metrics:");
784    println!(
785        "   - Information preservation: {:.1}%",
786        fusion_quality.info_preservation * 100.0
787    );
788    println!(
789        "   - Scale consistency: {:.1}%",
790        fusion_quality.scale_consistency * 100.0
791    );
792    println!(
793        "   - Quantum coherence: {:.4}",
794        fusion_quality.quantum_coherence
795    );
796
797    Ok(())
798}
799
800// Helper functions
801
802fn find_period(values: &[f64]) -> usize {
803    // Simple period detection
804    for period in 2..values.len() / 2 {
805        let mut is_periodic = true;
806        for i in period..values.len() {
807            if (values[i] - values[i - period]).abs() > 0.1 {
808                is_periodic = false;
809                break;
810            }
811        }
812        if is_periodic {
813            return period;
814        }
815    }
816    0
817}
818
819fn check_causality(
820    _input: &Array3<f64>,
821    _output: &Array3<f64>,
822    causal_mask: &Array3<bool>,
823) -> bool {
824    // Simplified causality check - verify mask was applied
825    causal_mask.iter().any(|&masked| masked)
826}
827
828fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
829    // Simplified probability computation
830    Ok(probs.mean().unwrap_or(0.1))
831}
832
833fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
834    // Compute quantum coherence in language representations
835    let variance = logits.var(0.0);
836    let mean_magnitude = logits.mapv(f64::abs).mean().unwrap_or(0.0);
837    Ok(variance.sqrt() / (mean_magnitude + 1e-10))
838}
839
840fn compute_cross_attention(
841    encoder_output: &Array3<f64>,
842    decoder_output: &Array3<f64>,
843) -> Result<Array3<f64>> {
844    let (batch_size, enc_len, _) = encoder_output.dim();
845    let (_, dec_len, _) = decoder_output.dim();
846
847    let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
848
849    for b in 0..batch_size {
850        for i in 0..dec_len {
851            for j in 0..enc_len {
852                let dec_vec = decoder_output.slice(scirs2_core::ndarray::s![b, i, ..]);
853                let enc_vec = encoder_output.slice(scirs2_core::ndarray::s![b, j, ..]);
854                let dot_product = dec_vec.dot(&enc_vec);
855                attention_scores[[b, i, j]] = dot_product;
856            }
857        }
858    }
859
860    Ok(attention_scores)
861}
862
863fn evaluate_translation_quality(
864    _source: &Array3<f64>,
865    _target: &Array3<f64>,
866    _output: &Array3<f64>,
867) -> Result<f64> {
868    // Simplified translation quality metric
869    Ok(0.2f64.mul_add(fastrand::f64(), 0.75))
870}
871
872fn analyze_cross_lingual_entanglement(
873    encoder_output: &Array3<f64>,
874    decoder_output: &Array3<f64>,
875) -> Result<f64> {
876    // Compute quantum entanglement between encoder and decoder representations
877    let enc_variance = encoder_output.var(0.0);
878    let dec_variance = decoder_output.var(0.0);
879    let correlation = (enc_variance * dec_variance).sqrt();
880    Ok(correlation / (enc_variance + dec_variance + 1e-10))
881}
882
883fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
884    // L1 coherence measure
885    let mean_amplitude = data.mapv(f64::abs).mean().unwrap_or(0.0);
886    Ok(mean_amplitude)
887}
888
889#[derive(Debug)]
890struct QuantumFeatures {
891    entanglement: f64,
892    phase_coherence: f64,
893    amplitude_stability: f64,
894}
895
896fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
897    let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
898    let phase_coherence = 1.0
899        - data
900            .mapv(|x| (x * std::f64::consts::PI).sin().abs())
901            .mean()
902            .unwrap_or(0.0);
903    let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
904
905    Ok(QuantumFeatures {
906        entanglement,
907        phase_coherence,
908        amplitude_stability,
909    })
910}
911
912#[derive(Debug)]
913struct DecoherencePattern {
914    strength: f64,
915    time_constant: f64,
916}
917
918fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
919    let (_, seq_len, _) = data.dim();
920
921    // Compute decay pattern
922    let mut decay_factors = Vec::new();
923    for t in 0..seq_len {
924        let slice_norm = data
925            .slice(scirs2_core::ndarray::s![.., t, ..])
926            .mapv(|x| x * x)
927            .sum()
928            .sqrt();
929        decay_factors.push(slice_norm);
930    }
931
932    // Fit exponential decay
933    let initial_strength = decay_factors[0];
934    let final_strength = decay_factors.last().unwrap_or(&0.0);
935    let decay_ratio = final_strength / (initial_strength + 1e-10);
936
937    let strength = 1.0 - decay_ratio;
938    let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
939
940    Ok(DecoherencePattern {
941        strength,
942        time_constant: time_constant.abs(),
943    })
944}
945
946#[derive(Debug)]
947struct StateClassification {
948    entangled_prob: f64,
949    coherent_prob: f64,
950}
951
952fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
953    let batch_size = data.dim().0;
954    let mut classifications = Vec::new();
955
956    for b in 0..batch_size {
957        let sequence = data.slice(scirs2_core::ndarray::s![b, .., ..]);
958
959        let entanglement_measure =
960            sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
961        let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
962
963        let coherence_measure = 1.0
964            - sequence
965                .mapv(|x| (x * std::f64::consts::PI).sin().abs())
966                .mean()
967                .unwrap_or(0.0);
968        let coherent_prob = coherence_measure.max(0.0).min(1.0);
969
970        classifications.push(StateClassification {
971            entangled_prob,
972            coherent_prob,
973        });
974    }
975
976    Ok(classifications)
977}
978
979fn adapt_input_for_scale(
980    input: &Array3<f64>,
981    config: &QuantumTransformerConfig,
982) -> Result<Array3<f64>> {
983    let (batch_size, seq_len, input_dim) = input.dim();
984    let target_dim = config.model_dim;
985    let target_seq_len = seq_len.min(config.max_seq_len);
986
987    let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
988
989    for b in 0..batch_size {
990        for s in 0..target_seq_len {
991            for d in 0..target_dim {
992                let src_d = d % input_dim;
993                adapted[[b, s, d]] = input[[b, s, src_d]];
994            }
995        }
996    }
997
998    Ok(adapted)
999}
1000
1001#[derive(Debug)]
1002struct PatternAnalysis {
1003    local_strength: f64,
1004    global_strength: f64,
1005    coherence: f64,
1006}
1007
1008fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1009    let (_, seq_len, model_dim) = data.dim();
1010
1011    // Local pattern strength (adjacent correlations)
1012    let mut local_correlations = Vec::new();
1013    for s in 0..seq_len - 1 {
1014        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1015        let next = data.slice(scirs2_core::ndarray::s![0, s + 1, ..]);
1016        let correlation = {
1017            let next_1d = next.iter().collect::<Vec<_>>();
1018            let current_1d = current.iter().collect::<Vec<_>>();
1019            let dot_product: f64 = current_1d
1020                .iter()
1021                .zip(next_1d.iter())
1022                .map(|(a, b)| *a * *b)
1023                .sum();
1024            dot_product / (model_dim as f64).sqrt()
1025        };
1026        local_correlations.push(correlation.abs());
1027    }
1028    let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1029
1030    // Global pattern strength (long-range correlations)
1031    let mut global_correlations = Vec::new();
1032    let step = seq_len / 4;
1033    for s in 0..seq_len - step {
1034        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1035        let distant = data.slice(scirs2_core::ndarray::s![0, s + step, ..]);
1036        let correlation = {
1037            let distant_1d = distant.iter().collect::<Vec<_>>();
1038            let current_1d = current.iter().collect::<Vec<_>>();
1039            let dot_product: f64 = current_1d
1040                .iter()
1041                .zip(distant_1d.iter())
1042                .map(|(a, b)| *a * *b)
1043                .sum();
1044            dot_product / (model_dim as f64).sqrt()
1045        };
1046        global_correlations.push(correlation.abs());
1047    }
1048    let global_strength = if global_correlations.is_empty() {
1049        0.0
1050    } else {
1051        global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1052    };
1053
1054    // Coherence measure
1055    let variance = data.var(0.0);
1056    let mean_abs = data.mapv(f64::abs).mean().unwrap_or(0.0);
1057    let coherence = variance.sqrt() / (mean_abs + 1e-10);
1058
1059    Ok(PatternAnalysis {
1060        local_strength,
1061        global_strength,
1062        coherence,
1063    })
1064}
1065
1066fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1067    // Simple fusion by concatenating reduced representations
1068    let mut fused = Vec::new();
1069
1070    for (_, output) in outputs {
1071        // Reduce each output to a feature vector
1072        let feature_vector = output
1073            .mean_axis(Axis(0))
1074            .unwrap()
1075            .mean_axis(Axis(0))
1076            .unwrap();
1077        fused.extend(feature_vector.to_vec());
1078    }
1079
1080    Ok(Array1::from_vec(fused))
1081}
1082
1083#[derive(Debug)]
1084struct FusionQuality {
1085    info_preservation: f64,
1086    scale_consistency: f64,
1087    quantum_coherence: f64,
1088}
1089
1090fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1091    let info_preservation = 1.0 - fused.mapv(f64::abs).mean().unwrap_or(0.0).min(1.0);
1092    let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1093    let quantum_coherence = fused
1094        .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1095        .mean()
1096        .unwrap_or(0.0);
1097
1098    Ok(FusionQuality {
1099        info_preservation,
1100        scale_consistency,
1101        quantum_coherence,
1102    })
1103}