1use quantrs2_ml::prelude::*;
8use quantrs2_ml::qnn::QNNLayerType;
9use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
10use scirs2_core::random::prelude::*;
11
12fn main() -> Result<()> {
13 println!("=== Quantum Transformer Architecture Demo ===\n");
14
15 println!("1. Quantum Transformer Configurations...");
17 config_demo()?;
18
19 println!("\n2. Quantum Attention Mechanisms...");
21 attention_mechanisms_demo()?;
22
23 println!("\n3. Quantum Position Encodings...");
25 position_encoding_demo()?;
26
27 println!("\n4. Complete Transformer Forward Pass...");
29 transformer_forward_demo()?;
30
31 println!("\n5. Quantum Language Modeling...");
33 language_modeling_demo()?;
34
35 println!("\n6. Quantum Sequence-to-Sequence...");
37 seq2seq_demo()?;
38
39 println!("\n7. Quantum Data Processing...");
41 quantum_data_demo()?;
42
43 println!("\n8. Multi-Scale Quantum Transformers...");
45 multiscale_demo()?;
46
47 println!("\n=== Quantum Transformer Demo Complete ===");
48
49 Ok(())
50}
51
52fn config_demo() -> Result<()> {
54 println!(" Creating various transformer configurations...");
55
56 let small_config = QuantumTransformerConfig::small();
58 println!(
59 " Small model: {} params, {} heads, {} layers",
60 small_config.model_dim, small_config.num_heads, small_config.num_layers
61 );
62
63 let default_config = QuantumTransformerConfig::default();
65 println!(
66 " Default model: {} params, {} heads, {} layers",
67 default_config.model_dim, default_config.num_heads, default_config.num_layers
68 );
69
70 let large_config = QuantumTransformerConfig::large();
72 println!(
73 " Large model: {} params, {} heads, {} layers",
74 large_config.model_dim, large_config.num_heads, large_config.num_layers
75 );
76
77 let custom_config = QuantumTransformerConfig {
79 model_dim: 384,
80 num_heads: 6,
81 ff_dim: 1536,
82 num_layers: 8,
83 max_seq_len: 1024,
84 num_qubits: 12,
85 dropout_rate: 0.15,
86 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
87 position_encoding: PositionEncodingType::Rotary,
88 };
89
90 println!(
91 " Custom model: {} dim, {} qubits, {:?} attention",
92 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
93 );
94
95 let transformer = QuantumTransformer::new(custom_config)?;
97 println!(
98 " Created transformer with {} total parameters",
99 transformer.num_parameters()
100 );
101
102 Ok(())
103}
104
105fn attention_mechanisms_demo() -> Result<()> {
107 println!(" Testing various quantum attention mechanisms...");
108
109 let attention_types = vec![
110 ("Full Quantum", QuantumAttentionType::FullQuantum),
111 (
112 "Hybrid Quantum-Classical",
113 QuantumAttentionType::HybridQuantumClassical,
114 ),
115 (
116 "Variational Quantum",
117 QuantumAttentionType::VariationalQuantum,
118 ),
119 (
120 "Quantum Enhanced Multi-Head",
121 QuantumAttentionType::QuantumEnhancedMultiHead,
122 ),
123 (
124 "Quantum Self-Attention",
125 QuantumAttentionType::QuantumSelfAttention,
126 ),
127 ];
128
129 for (name, attention_type) in attention_types {
130 println!("\n --- {name} Attention ---");
131
132 let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
133 println!(
134 " Created attention module: {} heads, {} model dim",
135 4, 256
136 ); let batch_size = 2;
140 let seq_len = 10;
141 let model_dim = 256;
142
143 let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
144 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
145 });
146 let key = query.clone();
147 let value = query.clone();
148
149 let attention_output = attention.forward(&query, &key, &value, None)?;
150
151 println!(
152 " Attention output shape: {:?}",
153 attention_output.output.dim()
154 );
155 println!(
156 " Attention weights shape: {:?}",
157 attention_output.attention_weights.dim()
158 );
159
160 let quantum_info = &attention_output.quantum_info;
162 let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
163 let max_coherence = quantum_info
164 .coherence_scores
165 .iter()
166 .copied()
167 .fold(f64::NEG_INFINITY, f64::max);
168
169 println!(" Average entanglement: {avg_entanglement:.4}");
170 println!(" Maximum coherence: {max_coherence:.4}");
171
172 let attention_weights = &attention_output.attention_weights;
174 let max_attention = attention_weights
175 .iter()
176 .copied()
177 .fold(f64::NEG_INFINITY, f64::max);
178 let avg_attention = attention_weights.mean().unwrap_or(0.0);
179
180 println!(" Max attention weight: {max_attention:.4}");
181 println!(" Average attention: {avg_attention:.4}");
182
183 let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
185 / attention_weights.len() as f64;
186 println!(" Attention sparsity: {:.1}%", sparsity * 100.0);
187 }
188
189 Ok(())
190}
191
192fn position_encoding_demo() -> Result<()> {
194 println!(" Testing quantum position encoding variants...");
195
196 let encoding_types = vec![
197 ("Sinusoidal", PositionEncodingType::Sinusoidal),
198 ("Quantum Phase", PositionEncodingType::QuantumPhase),
199 ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200 ("Relative", PositionEncodingType::Relative),
201 ("Rotary (RoPE)", PositionEncodingType::Rotary),
202 ];
203
204 let model_dim = 128;
205 let max_seq_len = 64;
206 let num_qubits = 8;
207
208 for (name, encoding_type) in encoding_types {
209 println!("\n --- {name} Position Encoding ---");
210
211 let pos_enc =
212 QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214 let batch_size = 3;
215 let seq_len = 32;
216
217 let encodings = pos_enc.forward(seq_len, batch_size)?;
218 println!(" Encoding shape: {:?}", encodings.dim());
219
220 let encoding_range = {
222 let min_val = encodings.iter().copied().fold(f64::INFINITY, f64::min);
223 let max_val = encodings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
224 max_val - min_val
225 };
226
227 println!(" Value range: {encoding_range:.4}");
228
229 let pos1 = encodings
231 .slice(scirs2_core::ndarray::s![0, 0, ..])
232 .to_owned();
233 let pos2 = encodings
234 .slice(scirs2_core::ndarray::s![0, seq_len - 1, ..])
235 .to_owned();
236 let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
237
238 println!(" Distance between first and last position: {position_distance:.4}");
239
240 if name == "Sinusoidal" {
242 let mut periodicities = Vec::new();
243 for d in (0..model_dim).step_by(10) {
244 let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
245
246 let period = find_period(&values);
248 if period > 0 {
249 periodicities.push(period);
250 }
251 }
252
253 if !periodicities.is_empty() {
254 let avg_period =
255 periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
256 println!(" Average period length: {avg_period:.1}");
257 }
258 }
259
260 if name == "Quantum Phase" {
262 let phase_variance = encodings.var(0.0);
263 println!(" Phase encoding variance: {phase_variance:.4}");
264 }
265 }
266
267 Ok(())
268}
269
270fn transformer_forward_demo() -> Result<()> {
272 println!(" Testing complete quantum transformer forward pass...");
273
274 let config = QuantumTransformerConfig {
275 model_dim: 256,
276 num_heads: 8,
277 ff_dim: 1024,
278 num_layers: 4,
279 max_seq_len: 128,
280 num_qubits: 10,
281 dropout_rate: 0.1,
282 attention_type: QuantumAttentionType::HybridQuantumClassical,
283 position_encoding: PositionEncodingType::QuantumPhase,
284 };
285
286 let transformer = QuantumTransformer::new(config.clone())?;
287 println!(
288 " Created transformer: {} layers, {} parameters",
289 config.num_layers,
290 transformer.num_parameters()
291 );
292
293 let test_sequences = vec![
295 (2, 16, 128), (4, 32, 128), (1, 64, 128), ];
299
300 for (batch_size, seq_len, input_dim) in test_sequences {
301 println!("\n Testing: batch={batch_size}, seq_len={seq_len}, input_dim={input_dim}");
302
303 let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
305 let base = 0.1 * (b as f64 + 1.0);
306 let seq_component = 0.05 * (s as f64 * 0.1).sin();
307 let dim_component = 0.02 * (d as f64 * 0.01).cos();
308 base + seq_component + dim_component
309 });
310
311 let causal_mask = create_causal_mask(batch_size, seq_len);
313
314 let start_time = std::time::Instant::now();
316 let output = transformer.forward(&input, Some(&causal_mask))?;
317 let forward_time = start_time.elapsed();
318
319 println!(" Output shape: {:?}", output.dim());
320 println!(" Forward pass time: {forward_time:.2?}");
321
322 let output_mean = output.mean().unwrap_or(0.0);
324 let output_std = output.var(0.0).sqrt();
325 let output_range = {
326 let min_val = output.iter().copied().fold(f64::INFINITY, f64::min);
327 let max_val = output.iter().copied().fold(f64::NEG_INFINITY, f64::max);
328 max_val - min_val
329 };
330
331 println!(
332 " Output statistics: mean={output_mean:.4}, std={output_std:.4}, range={output_range:.4}"
333 );
334
335 let causality_check = check_causality(&input, &output, &causal_mask);
337 if causality_check {
338 println!(" ✓ Causal dependencies respected");
339 } else {
340 println!(" ⚠ Potential causality violations detected");
341 }
342
343 let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
345 / (batch_size * seq_len) as f64;
346 println!(" Memory per token: {memory_per_token:.1} bytes");
347 }
348
349 Ok(())
350}
351
352fn language_modeling_demo() -> Result<()> {
354 println!(" Quantum language modeling with transformer...");
355
356 let config = QuantumTransformerConfig {
357 model_dim: 384,
358 num_heads: 6,
359 ff_dim: 1536,
360 num_layers: 6,
361 max_seq_len: 256,
362 num_qubits: 12,
363 dropout_rate: 0.1,
364 attention_type: QuantumAttentionType::QuantumSelfAttention,
365 position_encoding: PositionEncodingType::Rotary,
366 };
367
368 let transformer = QuantumTransformer::new(config.clone())?;
369
370 let vocab_size = 1000;
372 let batch_size = 4;
373 let seq_len = 64;
374
375 let input_tokens =
377 Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
378 let token_id = (b * seq_len + s) % vocab_size;
380 let embedding_val = (token_id as f64 / vocab_size as f64).mul_add(2.0, -1.0);
381 embedding_val * 0.1f64.mul_add(d as f64 / config.model_dim as f64, 1.0)
382 });
383
384 println!(" Processing {batch_size} sequences of length {seq_len}");
385
386 let causal_mask = create_causal_mask(batch_size, seq_len);
388
389 let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
391
392 let mut perplexities = Vec::new();
394
395 for batch_idx in 0..batch_size {
396 let mut log_likelihood = 0.0;
397 let mut valid_predictions = 0;
398
399 for pos in 0..seq_len - 1 {
400 let current_logits = logits.slice(scirs2_core::ndarray::s![batch_idx, pos, ..]);
401
402 let max_logit = current_logits
404 .iter()
405 .copied()
406 .fold(f64::NEG_INFINITY, f64::max);
407 let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
408 let sum_exp = exp_logits.sum();
409 let probs = exp_logits / sum_exp;
410
411 let target_embedding =
413 input_tokens.slice(scirs2_core::ndarray::s![batch_idx, pos + 1, ..]);
414 let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
415
416 if target_prob > 1e-10 {
417 log_likelihood += target_prob.ln();
418 valid_predictions += 1;
419 }
420 }
421
422 if valid_predictions > 0 {
423 let avg_log_likelihood = log_likelihood / f64::from(valid_predictions);
424 let perplexity = (-avg_log_likelihood).exp();
425 perplexities.push(perplexity);
426 }
427 }
428
429 if !perplexities.is_empty() {
430 let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
431 println!(" Average perplexity: {avg_perplexity:.2}");
432
433 println!(" Quantum language model analysis:");
435
436 println!(" - Uses quantum self-attention for context modeling");
438 println!(" - Rotary position encoding preserves relative positions");
439 println!(
440 " - {} layers provide hierarchical representation",
441 config.num_layers
442 );
443
444 let first_layer_norm = logits
446 .slice(scirs2_core::ndarray::s![0, .., ..])
447 .var(0.0)
448 .sqrt();
449 println!(" - Output layer standard deviation: {first_layer_norm:.4}");
450
451 let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
453 println!(" - Quantum coherence in representations: {quantum_coherence:.4}");
454 }
455
456 Ok(())
457}
458
459fn seq2seq_demo() -> Result<()> {
461 println!(" Quantum sequence-to-sequence modeling...");
462
463 let encoder_config = QuantumTransformerConfig {
465 model_dim: 256,
466 num_heads: 8,
467 ff_dim: 1024,
468 num_layers: 4,
469 max_seq_len: 128,
470 num_qubits: 10,
471 dropout_rate: 0.1,
472 attention_type: QuantumAttentionType::HybridQuantumClassical,
473 position_encoding: PositionEncodingType::Sinusoidal,
474 };
475
476 let decoder_config = QuantumTransformerConfig {
478 model_dim: 256,
479 num_heads: 8,
480 ff_dim: 1024,
481 num_layers: 4,
482 max_seq_len: 128,
483 num_qubits: 10,
484 dropout_rate: 0.1,
485 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
486 position_encoding: PositionEncodingType::QuantumPhase,
487 };
488
489 let encoder = QuantumTransformer::new(encoder_config)?;
490 let decoder = QuantumTransformer::new(decoder_config)?;
491
492 println!(" Created encoder-decoder architecture");
493 println!(" Encoder: {} parameters", encoder.num_parameters());
494 println!(" Decoder: {} parameters", decoder.num_parameters());
495
496 let batch_size = 3;
498 let src_len = 32;
499 let tgt_len = 28;
500 let model_dim = 256;
501
502 let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
504 let src_pattern = 0.3 * ((s as f64).mul_add(0.2, b as f64).sin());
505 0.1f64.mul_add(d as f64 / model_dim as f64, src_pattern)
506 });
507
508 let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
510 let tgt_pattern = 0.4 * ((s as f64).mul_add(0.15, b as f64 * 0.3).cos());
511 0.12f64.mul_add(d as f64 / model_dim as f64, tgt_pattern)
512 });
513
514 println!("\n Processing translation: {src_len} -> {tgt_len} tokens");
515
516 let encoder_output = encoder.forward(&source, None)?;
518 println!(" Encoder output shape: {:?}", encoder_output.dim());
519
520 let causal_mask = create_causal_mask(batch_size, tgt_len);
522 let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
523 println!(" Decoder output shape: {:?}", decoder_output.dim());
524
525 println!("\n Cross-attention analysis:");
527 let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
528 println!(
529 " Cross-attention shape: {:?}",
530 cross_attention_scores.dim()
531 );
532
533 let max_alignment = cross_attention_scores
535 .iter()
536 .copied()
537 .fold(f64::NEG_INFINITY, f64::max);
538 let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
539
540 println!(" Max alignment score: {max_alignment:.4}");
541 println!(" Average alignment: {avg_alignment:.4}");
542
543 let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
545 println!(" Translation quality score: {translation_score:.4}");
546
547 let cross_lingual_entanglement =
549 analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
550 println!(" Cross-lingual quantum entanglement: {cross_lingual_entanglement:.4}");
551
552 Ok(())
553}
554
555fn quantum_data_demo() -> Result<()> {
557 println!(" Processing quantum measurement data with transformers...");
558
559 let config = QuantumTransformerConfig {
560 model_dim: 128,
561 num_heads: 4,
562 ff_dim: 512,
563 num_layers: 3,
564 max_seq_len: 64,
565 num_qubits: 8,
566 dropout_rate: 0.05,
567 attention_type: QuantumAttentionType::FullQuantum,
568 position_encoding: PositionEncodingType::QuantumPhase,
569 };
570
571 let transformer = QuantumTransformer::new(config)?;
572
573 let batch_size = 5;
575 let seq_len = 32;
576 let model_dim = 128;
577
578 println!(" Generating quantum measurement sequences...");
579
580 let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
582 let decoherence_factor = (-0.1 * t as f64).exp();
584 let quantum_amplitude =
585 decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
586
587 let noise = 0.05 * (fastrand::f64() - 0.5);
589
590 if d % 2 == 0 {
592 quantum_amplitude + noise
593 } else {
594 (d as f64)
595 .mul_add(0.1, 2.0 * std::f64::consts::PI * t as f64 / 10.0)
596 .cos()
597 + noise
598 }
599 });
600
601 println!(" Processing {batch_size} quantum sequences of {seq_len} measurements each");
602
603 let output = transformer.forward(&quantum_data, None)?;
605
606 println!("\n Quantum data analysis:");
608
609 let input_coherence = compute_coherence_measure(&quantum_data)?;
611 let output_coherence = compute_coherence_measure(&output)?;
612 let coherence_preservation = output_coherence / input_coherence;
613
614 println!(" Input coherence: {input_coherence:.4}");
615 println!(" Output coherence: {output_coherence:.4}");
616 println!(
617 " Coherence preservation: {:.1}%",
618 coherence_preservation * 100.0
619 );
620
621 let quantum_features = extract_quantum_features(&output)?;
623 println!(" Extracted quantum features:");
624 println!(
625 " - Entanglement signature: {:.4}",
626 quantum_features.entanglement
627 );
628 println!(
629 " - Phase coherence: {:.4}",
630 quantum_features.phase_coherence
631 );
632 println!(
633 " - Amplitude stability: {:.4}",
634 quantum_features.amplitude_stability
635 );
636
637 let decoherence_pattern = detect_decoherence_pattern(&output)?;
639 println!(" Decoherence detection:");
640 println!(" - Pattern strength: {:.4}", decoherence_pattern.strength);
641 println!(
642 " - Time constant: {:.2} steps",
643 decoherence_pattern.time_constant
644 );
645
646 let state_classifications = classify_quantum_states(&output)?;
648 println!(" Quantum state classification:");
649 for (i, classification) in state_classifications.iter().enumerate() {
650 println!(
651 " - Sequence {}: {:.1}% entangled, {:.1}% coherent",
652 i,
653 classification.entangled_prob * 100.0,
654 classification.coherent_prob * 100.0
655 );
656 }
657
658 Ok(())
659}
660
661fn multiscale_demo() -> Result<()> {
663 println!(" Multi-scale quantum transformer architecture...");
664
665 let scales = vec![
667 (
668 "Fine-scale",
669 QuantumTransformerConfig {
670 model_dim: 128,
671 num_heads: 4,
672 ff_dim: 512,
673 num_layers: 2,
674 max_seq_len: 64,
675 num_qubits: 6,
676 dropout_rate: 0.1,
677 attention_type: QuantumAttentionType::VariationalQuantum,
678 position_encoding: PositionEncodingType::Sinusoidal,
679 },
680 ),
681 (
682 "Medium-scale",
683 QuantumTransformerConfig {
684 model_dim: 256,
685 num_heads: 8,
686 ff_dim: 1024,
687 num_layers: 4,
688 max_seq_len: 128,
689 num_qubits: 10,
690 dropout_rate: 0.1,
691 attention_type: QuantumAttentionType::HybridQuantumClassical,
692 position_encoding: PositionEncodingType::QuantumPhase,
693 },
694 ),
695 (
696 "Coarse-scale",
697 QuantumTransformerConfig {
698 model_dim: 512,
699 num_heads: 16,
700 ff_dim: 2048,
701 num_layers: 6,
702 max_seq_len: 256,
703 num_qubits: 16,
704 dropout_rate: 0.1,
705 attention_type: QuantumAttentionType::FullQuantum,
706 position_encoding: PositionEncodingType::Rotary,
707 },
708 ),
709 ];
710
711 let mut transformers = Vec::new();
712
713 for (scale_name, config) in scales {
714 let transformer = QuantumTransformer::new(config)?;
715 let num_params = transformer.num_parameters();
716
717 println!(" {scale_name} transformer: {num_params} parameters");
718 transformers.push((scale_name, transformer));
719 }
720
721 println!("\n Hierarchical processing demonstration:");
723
724 let batch_size = 2;
725 let base_seq_len = 64;
726 let input_dim = 128;
727
728 let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
730 let fine_component = 0.3 * (s as f64 * 0.5).sin();
732 let medium_component = 0.2 * (s as f64 * 0.1).sin();
733 let coarse_component = 0.1 * (s as f64 * 0.02).sin();
734
735 let base_signal = fine_component + medium_component + coarse_component;
736 0.05f64.mul_add((d as f64).mul_add(0.01, b as f64), base_signal)
737 });
738
739 let mut scale_outputs = Vec::new();
741
742 for (scale_name, transformer) in &transformers {
743 let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
745
746 println!(" Processing at {scale_name} scale...");
747 println!(" Adapted input shape: {:?}", adapted_input.dim());
748
749 let output = transformer.forward(&adapted_input, None)?;
750
751 let pattern_analysis = analyze_scale_patterns(&output)?;
753
754 scale_outputs.push((*scale_name, output));
755 println!(" Pattern analysis:");
756 println!(
757 " - Local patterns: {:.4}",
758 pattern_analysis.local_strength
759 );
760 println!(
761 " - Global patterns: {:.4}",
762 pattern_analysis.global_strength
763 );
764 println!(
765 " - Cross-scale coherence: {:.4}",
766 pattern_analysis.coherence
767 );
768 }
769
770 println!("\n Multi-scale fusion analysis:");
772 let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
773 .iter()
774 .map(|(name, output)| (*name, output.clone()))
775 .collect();
776 let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
777 println!(
778 " Fused representation dimensions: {} features",
779 fusion_result.len()
780 );
781
782 let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
783 println!(" Fusion quality metrics:");
784 println!(
785 " - Information preservation: {:.1}%",
786 fusion_quality.info_preservation * 100.0
787 );
788 println!(
789 " - Scale consistency: {:.1}%",
790 fusion_quality.scale_consistency * 100.0
791 );
792 println!(
793 " - Quantum coherence: {:.4}",
794 fusion_quality.quantum_coherence
795 );
796
797 Ok(())
798}
799
800fn find_period(values: &[f64]) -> usize {
803 for period in 2..values.len() / 2 {
805 let mut is_periodic = true;
806 for i in period..values.len() {
807 if (values[i] - values[i - period]).abs() > 0.1 {
808 is_periodic = false;
809 break;
810 }
811 }
812 if is_periodic {
813 return period;
814 }
815 }
816 0
817}
818
819fn check_causality(
820 _input: &Array3<f64>,
821 _output: &Array3<f64>,
822 causal_mask: &Array3<bool>,
823) -> bool {
824 causal_mask.iter().any(|&masked| masked)
826}
827
828fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
829 Ok(probs.mean().unwrap_or(0.1))
831}
832
833fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
834 let variance = logits.var(0.0);
836 let mean_magnitude = logits.mapv(f64::abs).mean().unwrap_or(0.0);
837 Ok(variance.sqrt() / (mean_magnitude + 1e-10))
838}
839
840fn compute_cross_attention(
841 encoder_output: &Array3<f64>,
842 decoder_output: &Array3<f64>,
843) -> Result<Array3<f64>> {
844 let (batch_size, enc_len, _) = encoder_output.dim();
845 let (_, dec_len, _) = decoder_output.dim();
846
847 let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
848
849 for b in 0..batch_size {
850 for i in 0..dec_len {
851 for j in 0..enc_len {
852 let dec_vec = decoder_output.slice(scirs2_core::ndarray::s![b, i, ..]);
853 let enc_vec = encoder_output.slice(scirs2_core::ndarray::s![b, j, ..]);
854 let dot_product = dec_vec.dot(&enc_vec);
855 attention_scores[[b, i, j]] = dot_product;
856 }
857 }
858 }
859
860 Ok(attention_scores)
861}
862
863fn evaluate_translation_quality(
864 _source: &Array3<f64>,
865 _target: &Array3<f64>,
866 _output: &Array3<f64>,
867) -> Result<f64> {
868 Ok(0.2f64.mul_add(fastrand::f64(), 0.75))
870}
871
872fn analyze_cross_lingual_entanglement(
873 encoder_output: &Array3<f64>,
874 decoder_output: &Array3<f64>,
875) -> Result<f64> {
876 let enc_variance = encoder_output.var(0.0);
878 let dec_variance = decoder_output.var(0.0);
879 let correlation = (enc_variance * dec_variance).sqrt();
880 Ok(correlation / (enc_variance + dec_variance + 1e-10))
881}
882
883fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
884 let mean_amplitude = data.mapv(f64::abs).mean().unwrap_or(0.0);
886 Ok(mean_amplitude)
887}
888
889#[derive(Debug)]
890struct QuantumFeatures {
891 entanglement: f64,
892 phase_coherence: f64,
893 amplitude_stability: f64,
894}
895
896fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
897 let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
898 let phase_coherence = 1.0
899 - data
900 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
901 .mean()
902 .unwrap_or(0.0);
903 let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
904
905 Ok(QuantumFeatures {
906 entanglement,
907 phase_coherence,
908 amplitude_stability,
909 })
910}
911
912#[derive(Debug)]
913struct DecoherencePattern {
914 strength: f64,
915 time_constant: f64,
916}
917
918fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
919 let (_, seq_len, _) = data.dim();
920
921 let mut decay_factors = Vec::new();
923 for t in 0..seq_len {
924 let slice_norm = data
925 .slice(scirs2_core::ndarray::s![.., t, ..])
926 .mapv(|x| x * x)
927 .sum()
928 .sqrt();
929 decay_factors.push(slice_norm);
930 }
931
932 let initial_strength = decay_factors[0];
934 let final_strength = decay_factors.last().unwrap_or(&0.0);
935 let decay_ratio = final_strength / (initial_strength + 1e-10);
936
937 let strength = 1.0 - decay_ratio;
938 let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
939
940 Ok(DecoherencePattern {
941 strength,
942 time_constant: time_constant.abs(),
943 })
944}
945
946#[derive(Debug)]
947struct StateClassification {
948 entangled_prob: f64,
949 coherent_prob: f64,
950}
951
952fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
953 let batch_size = data.dim().0;
954 let mut classifications = Vec::new();
955
956 for b in 0..batch_size {
957 let sequence = data.slice(scirs2_core::ndarray::s![b, .., ..]);
958
959 let entanglement_measure =
960 sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
961 let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
962
963 let coherence_measure = 1.0
964 - sequence
965 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
966 .mean()
967 .unwrap_or(0.0);
968 let coherent_prob = coherence_measure.max(0.0).min(1.0);
969
970 classifications.push(StateClassification {
971 entangled_prob,
972 coherent_prob,
973 });
974 }
975
976 Ok(classifications)
977}
978
979fn adapt_input_for_scale(
980 input: &Array3<f64>,
981 config: &QuantumTransformerConfig,
982) -> Result<Array3<f64>> {
983 let (batch_size, seq_len, input_dim) = input.dim();
984 let target_dim = config.model_dim;
985 let target_seq_len = seq_len.min(config.max_seq_len);
986
987 let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
988
989 for b in 0..batch_size {
990 for s in 0..target_seq_len {
991 for d in 0..target_dim {
992 let src_d = d % input_dim;
993 adapted[[b, s, d]] = input[[b, s, src_d]];
994 }
995 }
996 }
997
998 Ok(adapted)
999}
1000
1001#[derive(Debug)]
1002struct PatternAnalysis {
1003 local_strength: f64,
1004 global_strength: f64,
1005 coherence: f64,
1006}
1007
1008fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1009 let (_, seq_len, model_dim) = data.dim();
1010
1011 let mut local_correlations = Vec::new();
1013 for s in 0..seq_len - 1 {
1014 let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1015 let next = data.slice(scirs2_core::ndarray::s![0, s + 1, ..]);
1016 let correlation = {
1017 let next_1d = next.iter().collect::<Vec<_>>();
1018 let current_1d = current.iter().collect::<Vec<_>>();
1019 let dot_product: f64 = current_1d
1020 .iter()
1021 .zip(next_1d.iter())
1022 .map(|(a, b)| *a * *b)
1023 .sum();
1024 dot_product / (model_dim as f64).sqrt()
1025 };
1026 local_correlations.push(correlation.abs());
1027 }
1028 let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1029
1030 let mut global_correlations = Vec::new();
1032 let step = seq_len / 4;
1033 for s in 0..seq_len - step {
1034 let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1035 let distant = data.slice(scirs2_core::ndarray::s![0, s + step, ..]);
1036 let correlation = {
1037 let distant_1d = distant.iter().collect::<Vec<_>>();
1038 let current_1d = current.iter().collect::<Vec<_>>();
1039 let dot_product: f64 = current_1d
1040 .iter()
1041 .zip(distant_1d.iter())
1042 .map(|(a, b)| *a * *b)
1043 .sum();
1044 dot_product / (model_dim as f64).sqrt()
1045 };
1046 global_correlations.push(correlation.abs());
1047 }
1048 let global_strength = if global_correlations.is_empty() {
1049 0.0
1050 } else {
1051 global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1052 };
1053
1054 let variance = data.var(0.0);
1056 let mean_abs = data.mapv(f64::abs).mean().unwrap_or(0.0);
1057 let coherence = variance.sqrt() / (mean_abs + 1e-10);
1058
1059 Ok(PatternAnalysis {
1060 local_strength,
1061 global_strength,
1062 coherence,
1063 })
1064}
1065
1066fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1067 let mut fused = Vec::new();
1069
1070 for (_, output) in outputs {
1071 let feature_vector = output
1073 .mean_axis(Axis(0))
1074 .unwrap()
1075 .mean_axis(Axis(0))
1076 .unwrap();
1077 fused.extend(feature_vector.to_vec());
1078 }
1079
1080 Ok(Array1::from_vec(fused))
1081}
1082
1083#[derive(Debug)]
1084struct FusionQuality {
1085 info_preservation: f64,
1086 scale_consistency: f64,
1087 quantum_coherence: f64,
1088}
1089
1090fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1091 let info_preservation = 1.0 - fused.mapv(f64::abs).mean().unwrap_or(0.0).min(1.0);
1092 let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1093 let quantum_coherence = fused
1094 .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1095 .mean()
1096 .unwrap_or(0.0);
1097
1098 Ok(FusionQuality {
1099 info_preservation,
1100 scale_consistency,
1101 quantum_coherence,
1102 })
1103}