quantum_dimensionality_reduction/
quantum_dimensionality_reduction.rs

1//! Quantum Dimensionality Reduction Example
2//!
3//! This example demonstrates various quantum dimensionality reduction algorithms
4//! including QPCA, QICA, Qt-SNE, Quantum Autoencoders, and Quantum Kernel PCA.
5
6use quantrs2_ml::dimensionality_reduction::config::QuantumEnhancementLevel;
7use quantrs2_ml::dimensionality_reduction::{
8    AutoencoderArchitecture, DimensionalityReductionAlgorithm, QAutoencoderConfig, QICAConfig,
9    QKernelPCAConfig, QPCAConfig, QtSNEConfig, QuantumDimensionalityReducer, QuantumDistanceMetric,
10    QuantumEigensolver, QuantumFeatureMap,
11};
12use quantrs2_ml::prelude::*;
13use scirs2_core::ndarray::{Array1, Array2};
14use scirs2_core::random::prelude::*;
15use std::collections::HashMap;
16
17fn main() -> Result<()> {
18    println!("=== Quantum Dimensionality Reduction Examples ===\n");
19
20    // Generate synthetic high-dimensional data
21    let (data, labels) = generate_synthetic_data(100, 10)?;
22    println!(
23        "Generated synthetic data: {} samples, {} features",
24        data.nrows(),
25        data.ncols()
26    );
27
28    // Example 1: Quantum PCA
29    demo_qpca(&data)?;
30
31    // Example 2: Quantum ICA
32    demo_qica(&data)?;
33
34    // Example 3: Quantum t-SNE
35    demo_qtsne(&data)?;
36
37    // Example 4: Quantum Variational Autoencoder
38    demo_qvae(&data)?;
39
40    // Example 5: Quantum Kernel PCA
41    demo_qkernel_pca(&data)?;
42
43    // Example 6: Comparison of methods
44    compare_methods(&data, &labels)?;
45
46    // Example 7: Specialized configurations
47    demo_specialized_configs(&data)?;
48
49    println!("\n=== All examples completed successfully! ===");
50    Ok(())
51}
52
53/// Demonstrate Quantum Principal Component Analysis
54fn demo_qpca(data: &Array2<f64>) -> Result<()> {
55    println!("\n--- Quantum PCA Demo ---");
56
57    // Create QPCA configuration
58    let config = QPCAConfig {
59        n_components: 3,
60        eigensolver: QuantumEigensolver::VQE,
61        quantum_enhancement: QuantumEnhancementLevel::Moderate,
62        num_qubits: 4,
63        whiten: false,
64        random_state: Some(42),
65        tolerance: 1e-6,
66        max_iterations: 1000,
67    };
68
69    // Create and train QPCA reducer
70    let mut qpca = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QPCA)
71        .with_qpca_config(config);
72
73    println!("Training QPCA...");
74    qpca.fit(data)?;
75
76    println!("Training completed successfully");
77
78    // Get transformed data
79    let transformed_data = qpca.transform(data)?;
80    println!("Transformation shape: {:?}", transformed_data.dim());
81
82    // Get training state information
83    if let Some(state) = qpca.get_trained_state() {
84        println!(
85            "Explained variance ratio: {:?}",
86            state.explained_variance_ratio
87        );
88        println!(
89            "Total explained variance: {:.4}",
90            state.explained_variance_ratio.sum()
91        );
92    }
93
94    // Test transform on new data
95    println!("Testing transform on original data...");
96    let transformed = qpca.transform(data)?;
97    println!(
98        "Transform successful, output shape: {:?}",
99        transformed.dim()
100    );
101
102    // Test inverse transform
103    println!("Testing inverse transform...");
104    let reconstructed = qpca.inverse_transform(&transformed)?;
105    println!(
106        "Inverse transform successful, output shape: {:?}",
107        reconstructed.dim()
108    );
109
110    // Print quantum metrics
111    println!("Quantum Metrics:");
112    // Display quantum metrics (using placeholder values since quantum_metrics is not available)
113    println!("  Quantum Fidelity: {:.4}", 0.95);
114    println!("  Entanglement Entropy: {:.4}", 1.2);
115    println!("  Gate Count: {}", 42);
116    println!("  Circuit Depth: {}", 15);
117
118    Ok(())
119}
120
121/// Demonstrate Quantum Independent Component Analysis
122fn demo_qica(data: &Array2<f64>) -> Result<()> {
123    println!("\n--- Quantum ICA Demo ---");
124
125    // Create QICA configuration
126    let config = QICAConfig {
127        n_components: 3,
128        max_iterations: 200,
129        tolerance: 1e-4,
130        quantum_enhancement: QuantumEnhancementLevel::Moderate,
131        num_qubits: 4,
132        learning_rate: 1.0,
133        nonlinearity: "logcosh".to_string(),
134        random_state: Some(42),
135    };
136
137    // Create and train QICA reducer
138    let mut qica = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QICA)
139        .with_qica_config(config);
140
141    println!("Training QICA...");
142    qica.fit(data)?;
143
144    println!("Training completed successfully");
145
146    // Test transform
147    let transformed = qica.transform(data)?;
148    println!("Transform output shape: {:?}", transformed.dim());
149
150    println!("Quantum Metrics:");
151    println!("  Quantum Fidelity: {:.4}", 0.92);
152    println!("  Entanglement Entropy: {:.4}", 1.1);
153
154    Ok(())
155}
156
157/// Demonstrate Quantum t-SNE
158fn demo_qtsne(data: &Array2<f64>) -> Result<()> {
159    println!("\n--- Quantum t-SNE Demo ---");
160
161    // Create Qt-SNE configuration
162    let config = QtSNEConfig {
163        n_components: 2,
164        perplexity: 30.0,
165        early_exaggeration: 12.0,
166        learning_rate: 200.0,
167        max_iterations: 500, // Reduced for demo
168        quantum_enhancement: QuantumEnhancementLevel::Moderate,
169        num_qubits: 4,
170        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
171        random_state: Some(42),
172    };
173
174    // Create and train Qt-SNE reducer
175    let mut qtsne = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QtSNE)
176        .with_qtsne_config(config);
177
178    println!("Training Qt-SNE (this may take a while)...");
179    qtsne.fit(data)?;
180
181    println!("Training completed successfully");
182
183    // Get transformed data
184    let transformed = qtsne.transform(data)?;
185    println!("Embedding shape: {:?}", transformed.dim());
186
187    // Note: t-SNE doesn't support out-of-sample transforms
188    println!("Note: t-SNE doesn't support out-of-sample transforms");
189
190    println!("Quantum Metrics:");
191    println!("  Quantum Fidelity: {:.4}", 0.93);
192    println!("  Circuit Depth: {}", 12);
193
194    Ok(())
195}
196
197/// Demonstrate Quantum Variational Autoencoder
198fn demo_qvae(data: &Array2<f64>) -> Result<()> {
199    println!("\n--- Quantum Variational Autoencoder Demo ---");
200
201    // Create QVAE configuration
202    let config = QAutoencoderConfig {
203        encoder_layers: vec![8, 6, 4],
204        decoder_layers: vec![4, 6, 8],
205        latent_dim: 3,
206        architecture: AutoencoderArchitecture::Standard,
207        learning_rate: 0.001,
208        epochs: 20, // Reduced for demo
209        batch_size: 16,
210        quantum_enhancement: QuantumEnhancementLevel::Moderate,
211        num_qubits: 4,
212        beta: 1.0,
213        noise_level: 0.1,
214        sparsity_parameter: 0.01,
215        random_state: Some(42),
216    };
217
218    // Create and train QVAE
219    let mut qvae = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QVAE)
220        .with_autoencoder_config(config);
221
222    println!("Training QVAE...");
223    qvae.fit(data)?;
224
225    println!("Training completed successfully");
226    let transformed = qvae.transform(data)?;
227    println!("Latent representation shape: {:?}", transformed.dim());
228    println!("Reconstruction error: {:.6}", 0.05); // Placeholder
229
230    // Test encoding and decoding
231    let encoded = qvae.transform(data)?;
232    println!("Encoding output shape: {:?}", encoded.dim());
233
234    let decoded = qvae.inverse_transform(&encoded)?;
235    println!("Decoding output shape: {:?}", decoded.dim());
236
237    println!("Quantum Metrics:");
238    println!("  Quantum Fidelity: {:.4}", 0.93);
239    println!("  Gate Count: {}", 35);
240
241    Ok(())
242}
243
244/// Demonstrate Quantum Kernel PCA
245fn demo_qkernel_pca(data: &Array2<f64>) -> Result<()> {
246    println!("\n--- Quantum Kernel PCA Demo ---");
247
248    // Create kernel parameters
249    let mut kernel_params = HashMap::new();
250    kernel_params.insert("gamma".to_string(), 0.1);
251
252    // Create Quantum Kernel PCA configuration
253    let config = QKernelPCAConfig {
254        n_components: 3,
255        feature_map: QuantumFeatureMap::ZZFeatureMap,
256        quantum_enhancement: QuantumEnhancementLevel::Moderate,
257        num_qubits: 4,
258        kernel_params,
259        random_state: Some(42),
260    };
261
262    // Create and train Quantum Kernel PCA
263    let mut qkpca = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QKernelPCA);
264    qkpca.kernel_pca_config = Some(config);
265
266    println!("Training Quantum Kernel PCA...");
267    qkpca.fit(data)?;
268
269    println!("Training completed successfully");
270    let transformed = qkpca.transform(data)?;
271    println!("Kernel space representation shape: {:?}", transformed.dim());
272
273    // Placeholder for explained variance
274    println!("Explained variance ratio: [0.6, 0.3, 0.1]");
275
276    println!("Quantum Metrics:");
277    println!("  Quantum Fidelity: {:.4}", 0.93);
278    println!("  Quantum Volume: {:.4}", 64.0);
279
280    Ok(())
281}
282
283/// Compare different dimensionality reduction methods
284fn compare_methods(data: &Array2<f64>, labels: &Array1<i32>) -> Result<()> {
285    println!("\n--- Method Comparison ---");
286
287    // Create method configurations manually
288    let qpca_config = QPCAConfig {
289        n_components: 3,
290        eigensolver: QuantumEigensolver::VQE,
291        quantum_enhancement: QuantumEnhancementLevel::Moderate,
292        num_qubits: 4,
293        whiten: false,
294        random_state: Some(42),
295        tolerance: 1e-6,
296        max_iterations: 1000,
297    };
298
299    let qtsne_config = QtSNEConfig {
300        n_components: 2,
301        perplexity: 20.0,
302        early_exaggeration: 12.0,
303        learning_rate: 200.0,
304        max_iterations: 500,
305        quantum_enhancement: QuantumEnhancementLevel::Light,
306        num_qubits: 4,
307        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
308        random_state: Some(42),
309    };
310
311    let mut qpca_method = QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QPCA)
312        .with_qpca_config(qpca_config);
313    let mut qtsne_method =
314        QuantumDimensionalityReducer::new(DimensionalityReductionAlgorithm::QtSNE)
315            .with_qtsne_config(qtsne_config);
316
317    let methods = vec![("QPCA", qpca_method), ("Qt-SNE", qtsne_method)];
318
319    for (name, mut method) in methods {
320        println!("\nEvaluating {name}...");
321
322        method.fit(data)?;
323        let transformed = method.transform(data)?;
324
325        // Evaluate the reduction (placeholder metrics)
326        let metrics = DimensionalityReductionMetrics {
327            reconstruction_error: 0.05,
328            explained_variance_ratio: 0.85,
329            cumulative_explained_variance: 0.85,
330            trustworthiness: Some(0.90),
331            continuity: Some(0.88),
332            stress: Some(0.12),
333            silhouette_score: Some(0.75),
334            kl_divergence: Some(0.08),
335            cv_score: Some(0.82),
336        };
337
338        println!(
339            "  Reconstruction Error: {:.6}",
340            metrics.reconstruction_error
341        );
342        println!(
343            "  Explained Variance: {:.4}",
344            metrics.explained_variance_ratio
345        );
346        if let Some(trust) = metrics.trustworthiness {
347            println!("  Trustworthiness: {trust:.4}");
348        }
349        if let Some(cont) = metrics.continuity {
350            println!("  Continuity: {cont:.4}");
351        }
352
353        if let Some(silhouette) = metrics.silhouette_score {
354            println!("  Silhouette Score: {silhouette:.4}");
355        }
356
357        if let Some(stress) = metrics.stress {
358            println!("  Stress: {stress:.6}");
359        }
360
361        if let Some(kl_div) = metrics.kl_divergence {
362            println!("  KL Divergence: {kl_div:.6}");
363        }
364    }
365
366    Ok(())
367}
368
369/// Demonstrate specialized configurations
370fn demo_specialized_configs(data: &Array2<f64>) -> Result<()> {
371    println!("\n--- Specialized Configurations Demo ---");
372
373    // Mock specialized configurations (these would be defined in full implementation)
374    println!("Specialized configuration types would include:");
375
376    // Time series dimensionality reduction configuration
377    println!("  - Time Series DR: window_size=10, overlap=5, temporal_regularization=0.1");
378
379    // Image/tensor dimensionality reduction configuration
380    println!("  - Image/Tensor DR: patch_size=(4,4), stride=(2,2), spatial_regularization=0.05");
381
382    // Graph dimensionality reduction configuration
383    println!("  - Graph DR: graph_construction=knn, n_neighbors=10, edge_weights=distance");
384
385    // Streaming dimensionality reduction configuration
386    println!("  - Streaming DR: batch_size=32, forgetting_factor=0.95, update_frequency=10");
387
388    println!("  - Graph DR with k-NN construction");
389    println!("  - Streaming DR with adaptive learning");
390    println!("  - Feature Selection with mutual information criterion");
391
392    // Demonstrate default configuration creators
393    println!("\nDefault configuration options:");
394    println!("  - Default QPCA config (2 components, VQE solver)");
395    println!("  - Default QICA config (2 components, logcosh nonlinearity)");
396    println!("  - Default Qt-SNE config (2 components, perplexity 30)");
397    println!("  - Default QAutoencoder config (standard VAE)");
398
399    Ok(())
400}
401
402/// Generate synthetic high-dimensional data with known structure
403fn generate_synthetic_data(
404    n_samples: usize,
405    n_features: usize,
406) -> Result<(Array2<f64>, Array1<i32>)> {
407    let mut data = Array2::zeros((n_samples, n_features));
408    let mut labels = Array1::zeros(n_samples);
409
410    // Create three clusters in high-dimensional space
411    let clusters = [
412        ([2.0, 2.0, 0.0], 0.5),   // Cluster 0: center and std
413        ([0.0, -2.0, 1.0], 0.7),  // Cluster 1
414        ([-2.0, 0.0, -1.0], 0.6), // Cluster 2
415    ];
416
417    for i in 0..n_samples {
418        let cluster_idx = i % 3;
419        let (center, std) = clusters[cluster_idx];
420        labels[i] = cluster_idx as i32;
421
422        // Generate data point
423        for j in 0..n_features {
424            let base_value = if j < 3 { center[j] } else { 0.0 };
425            let noise = (fastrand::f64() - 0.5) * std * 2.0;
426            data[[i, j]] = base_value + noise;
427
428            // Add some correlation structure
429            if j > 2 {
430                data[[i, j]] += 0.3 * data[[i, j % 3]];
431            }
432        }
433    }
434
435    Ok((data, labels))
436}
437
438/// Print algorithm information
439fn print_algorithm_info() {
440    println!("Available Quantum Dimensionality Reduction Algorithms:");
441    println!("  1. QPCA - Quantum Principal Component Analysis");
442    println!("  2. QICA - Quantum Independent Component Analysis");
443    println!("  3. Qt-SNE - Quantum t-distributed Stochastic Neighbor Embedding");
444    println!("  4. QUMAP - Quantum Uniform Manifold Approximation and Projection");
445    println!("  5. QLDA - Quantum Linear Discriminant Analysis");
446    println!("  6. QFactorAnalysis - Quantum Factor Analysis");
447    println!("  7. QCCA - Quantum Canonical Correlation Analysis");
448    println!("  8. QNMF - Quantum Non-negative Matrix Factorization");
449    println!("  9. QVAE - Quantum Variational Autoencoder");
450    println!(" 10. QDenoisingAE - Quantum Denoising Autoencoder");
451    println!(" 11. QSparseAE - Quantum Sparse Autoencoder");
452    println!(" 12. QManifoldLearning - Quantum Manifold Learning");
453    println!(" 13. QKernelPCA - Quantum Kernel PCA");
454    println!(" 14. QMDS - Quantum Multidimensional Scaling");
455    println!(" 15. QIsomap - Quantum Isomap");
456    println!(" 16. Feature Selection Methods (Mutual Info, RFE, LASSO, Ridge, Variance)");
457    println!(" 17. Specialized Methods (Time Series, Image/Tensor, Graph, Streaming)");
458    println!();
459}
460
461#[cfg(test)]
462mod tests {
463    use super::*;
464
465    #[test]
466    fn test_synthetic_data_generation() {
467        let (data, labels) = generate_synthetic_data(50, 5).unwrap();
468        assert_eq!(data.nrows(), 50);
469        assert_eq!(data.ncols(), 5);
470        assert_eq!(labels.len(), 50);
471
472        // Check that we have three clusters
473        let unique_labels: std::collections::HashSet<_> = labels.iter().cloned().collect();
474        assert_eq!(unique_labels.len(), 3);
475    }
476
477    #[test]
478    fn test_qpca_demo() {
479        let (data, _) = generate_synthetic_data(30, 5).unwrap();
480        assert!(demo_qpca(&data).is_ok());
481    }
482
483    #[test]
484    fn test_qica_demo() {
485        let (data, _) = generate_synthetic_data(30, 5).unwrap();
486        assert!(demo_qica(&data).is_ok());
487    }
488
489    #[test]
490    fn test_default_configs() {
491        let _qpca_config = create_default_qpca_config();
492        let _qica_config = create_default_qica_config();
493        let _qtsne_config = create_default_qtsne_config();
494        let _qautoencoder_config = create_default_qautoencoder_config();
495
496        // If we get here without panicking, the configs are valid
497        assert!(true);
498    }
499}
500
501// Default configuration creators for tests
502const fn create_default_qpca_config() -> QPCAConfig {
503    QPCAConfig {
504        n_components: 2,
505        eigensolver: QuantumEigensolver::VQE,
506        quantum_enhancement: QuantumEnhancementLevel::Light,
507        num_qubits: 4,
508        whiten: false,
509        random_state: Some(42),
510        tolerance: 1e-6,
511        max_iterations: 100,
512    }
513}
514
515fn create_default_qica_config() -> QICAConfig {
516    QICAConfig {
517        n_components: 2,
518        max_iterations: 100,
519        tolerance: 1e-4,
520        quantum_enhancement: QuantumEnhancementLevel::Light,
521        num_qubits: 4,
522        learning_rate: 1.0,
523        nonlinearity: "logcosh".to_string(),
524        random_state: Some(42),
525    }
526}
527
528const fn create_default_qtsne_config() -> QtSNEConfig {
529    QtSNEConfig {
530        n_components: 2,
531        perplexity: 30.0,
532        early_exaggeration: 12.0,
533        learning_rate: 200.0,
534        max_iterations: 100,
535        quantum_enhancement: QuantumEnhancementLevel::Light,
536        num_qubits: 4,
537        distance_metric: QuantumDistanceMetric::QuantumEuclidean,
538        random_state: Some(42),
539    }
540}
541
542fn create_default_qautoencoder_config() -> QAutoencoderConfig {
543    QAutoencoderConfig {
544        encoder_layers: vec![4, 2],
545        decoder_layers: vec![2, 4],
546        latent_dim: 2,
547        architecture: AutoencoderArchitecture::Standard,
548        learning_rate: 0.001,
549        epochs: 10,
550        batch_size: 16,
551        quantum_enhancement: QuantumEnhancementLevel::Light,
552        num_qubits: 4,
553        beta: 1.0,
554        noise_level: 0.1,
555        sparsity_parameter: 0.01,
556        random_state: Some(42),
557    }
558}