1use super::config::*;
4use crate::error::{MLError, Result};
5use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
6use crate::quantum_transformer::{
7 PositionEncodingType, QuantumAttentionType, QuantumTransformer, QuantumTransformerConfig,
8};
9use scirs2_core::ndarray::{Array1, Array2};
10use serde::{Deserialize, Serialize};
11
12pub trait TimeSeriesModelTrait: std::fmt::Debug + Send + Sync {
14 fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()>;
16
17 fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>>;
19
20 fn parameters(&self) -> &Array1<f64>;
22
23 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
25
26 fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait>;
28
29 fn model_type(&self) -> &'static str;
31
32 fn complexity(&self) -> usize {
34 self.parameters().len()
35 }
36}
37
38impl Clone for Box<dyn TimeSeriesModelTrait> {
39 fn clone(&self) -> Self {
40 self.clone_box()
41 }
42}
43
44#[derive(Debug, Clone, Serialize, Deserialize)]
46struct QuantumLSTM {
47 hidden_size: usize,
48 num_layers: usize,
49 num_qubits: usize,
50}
51
52impl QuantumLSTM {
53 fn new(hidden_size: usize, num_layers: usize, num_qubits: usize) -> Result<Self> {
54 Ok(Self {
55 hidden_size,
56 num_layers,
57 num_qubits,
58 })
59 }
60}
61
62#[derive(Debug, Clone, Serialize, Deserialize)]
64pub struct QuantumARIMAModel {
65 p: usize,
66 d: usize,
67 q: usize,
68 seasonal: Option<(usize, usize, usize, usize)>,
69 num_qubits: usize,
70 parameters: Array1<f64>,
71 quantum_circuits: Vec<Vec<f64>>,
72}
73
74impl QuantumARIMAModel {
75 pub fn new(
76 p: usize,
77 d: usize,
78 q: usize,
79 seasonal: Option<(usize, usize, usize, usize)>,
80 num_qubits: usize,
81 ) -> Result<Self> {
82 let num_params = p + q + seasonal.as_ref().map(|(P, _, Q, _)| P + Q).unwrap_or(0);
83 let mut quantum_circuits = Vec::new();
84
85 for _ in 0..num_params {
87 let circuit = vec![1.0; num_qubits]; quantum_circuits.push(circuit);
89 }
90
91 Ok(Self {
92 p,
93 d,
94 q,
95 seasonal,
96 num_qubits,
97 parameters: Array1::zeros(num_params.max(1)),
98 quantum_circuits,
99 })
100 }
101
102 fn difference(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
104 if self.d == 0 {
105 return Ok(data.clone());
106 }
107
108 let mut diff_data = data.clone();
109 for _ in 0..self.d {
110 let mut new_data =
111 Array2::zeros((diff_data.nrows().saturating_sub(1), diff_data.ncols()));
112 for i in 1..diff_data.nrows() {
113 for j in 0..diff_data.ncols() {
114 new_data[[i - 1, j]] = diff_data[[i, j]] - diff_data[[i - 1, j]];
115 }
116 }
117 diff_data = new_data;
118 }
119 Ok(diff_data)
120 }
121
122 fn quantum_enhance_parameters(&mut self) -> Result<()> {
124 for (i, param) in self.parameters.iter_mut().enumerate() {
126 if i < self.quantum_circuits.len() {
127 let circuit = &self.quantum_circuits[i];
128 *param *= circuit.iter().sum::<f64>() / circuit.len() as f64;
130 }
131 }
132 Ok(())
133 }
134}
135
136impl TimeSeriesModelTrait for QuantumARIMAModel {
137 fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
138 let diff_data = self.difference(data)?;
140
141 let num_features = diff_data.ncols();
143 for i in 0..self.parameters.len() {
144 self.parameters[i] = 0.5 + 0.1 * (i as f64);
145 }
146
147 self.quantum_enhance_parameters()?;
149
150 Ok(())
151 }
152
153 fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
154 let prediction = Array2::zeros((data.nrows(), horizon));
155
156 for i in 0..data.nrows() {
158 for h in 0..horizon {
159 let mut value = 0.0;
160
161 for p in 0..self.p.min(self.parameters.len()) {
163 if p < data.ncols() {
164 value += self.parameters[p] * data[[i, data.ncols().saturating_sub(p + 1)]];
165 }
166 }
167
168 let quantum_factor = 1.0 + 0.1 * (h as f64 + 1.0).ln();
170 value *= quantum_factor;
171
172 if h < prediction.ncols() {
174 }
176 }
177 }
178
179 Ok(prediction)
180 }
181
182 fn parameters(&self) -> &Array1<f64> {
183 &self.parameters
184 }
185
186 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
187 if params.len() != self.parameters.len() {
188 return Err(MLError::DimensionMismatch(format!(
189 "Expected {} parameters, got {}",
190 self.parameters.len(),
191 params.len()
192 )));
193 }
194 self.parameters = params.clone();
195 Ok(())
196 }
197
198 fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
199 Box::new(self.clone())
200 }
201
202 fn model_type(&self) -> &'static str {
203 "QuantumARIMA"
204 }
205}
206
207#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct QuantumLSTMModel {
210 lstm: QuantumLSTM,
211 parameters: Array1<f64>,
212 quantum_gates: Vec<Vec<f64>>,
213 hidden_size: usize,
214 num_layers: usize,
215}
216
217impl QuantumLSTMModel {
218 pub fn new(
219 hidden_size: usize,
220 num_layers: usize,
221 dropout: f64,
222 num_qubits: usize,
223 ) -> Result<Self> {
224 let lstm = QuantumLSTM::new(hidden_size, num_layers, num_qubits)?;
225 let param_count = hidden_size * num_layers * 4; let parameters = Array1::zeros(param_count);
227
228 let mut quantum_gates = Vec::new();
230 for _ in 0..num_layers {
231 let gates = vec![1.0; num_qubits * 2]; quantum_gates.push(gates);
233 }
234
235 Ok(Self {
236 lstm,
237 parameters,
238 quantum_gates,
239 hidden_size,
240 num_layers,
241 })
242 }
243
244 fn quantum_forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
246 let mut output = input.clone();
247
248 for layer_idx in 0..self.num_layers {
250 output = self.apply_quantum_lstm_layer(&output, layer_idx)?;
251 }
252
253 Ok(output)
254 }
255
256 fn apply_quantum_lstm_layer(
258 &self,
259 input: &Array2<f64>,
260 layer_idx: usize,
261 ) -> Result<Array2<f64>> {
262 if layer_idx >= self.quantum_gates.len() {
263 return Ok(input.clone());
264 }
265
266 let gates = &self.quantum_gates[layer_idx];
267 let mut output = Array2::zeros(input.dim());
268
269 for i in 0..input.nrows() {
271 for j in 0..input.ncols() {
272 let mut value = input[[i, j]];
273
274 for (k, &gate_param) in gates.iter().enumerate() {
276 let phase = gate_param * value * std::f64::consts::PI;
277 value = value * phase.cos() + 0.1 * phase.sin();
278 }
279
280 output[[i, j]] = value.tanh(); }
282 }
283
284 Ok(output)
285 }
286}
287
288impl TimeSeriesModelTrait for QuantumLSTMModel {
289 fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
290 for i in 0..self.parameters.len() {
292 self.parameters[i] = (fastrand::f64() - 0.5) * 0.1;
293 }
294
295 for gates in &mut self.quantum_gates {
297 for gate in gates {
298 *gate = fastrand::f64() * 2.0 - 1.0;
299 }
300 }
301
302 Ok(())
303 }
304
305 fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
306 let enhanced_data = self.quantum_forward(data)?;
307 let prediction = Array2::zeros((data.nrows(), horizon));
308
309 Ok(prediction)
312 }
313
314 fn parameters(&self) -> &Array1<f64> {
315 &self.parameters
316 }
317
318 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
319 if params.len() != self.parameters.len() {
320 return Err(MLError::DimensionMismatch(format!(
321 "Expected {} parameters, got {}",
322 self.parameters.len(),
323 params.len()
324 )));
325 }
326 self.parameters = params.clone();
327 Ok(())
328 }
329
330 fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
331 Box::new(self.clone())
332 }
333
334 fn model_type(&self) -> &'static str {
335 "QuantumLSTM"
336 }
337}
338
339#[derive(Debug, Clone)]
341pub struct QuantumTransformerTSModel {
342 transformer: QuantumTransformer,
343 parameters: Array1<f64>,
344 model_dim: usize,
345 num_heads: usize,
346 num_layers: usize,
347}
348
349impl QuantumTransformerTSModel {
350 pub fn new(
351 model_dim: usize,
352 num_heads: usize,
353 num_layers: usize,
354 num_qubits: usize,
355 ) -> Result<Self> {
356 let config = QuantumTransformerConfig {
357 model_dim,
358 num_heads,
359 ff_dim: model_dim * 4,
360 num_layers,
361 max_seq_len: 1024,
362 num_qubits,
363 dropout_rate: 0.1,
364 attention_type: QuantumAttentionType::HybridQuantumClassical,
365 position_encoding: PositionEncodingType::Sinusoidal,
366 };
367 let transformer = QuantumTransformer::new(config)?;
368 let parameters = Array1::zeros(model_dim * num_heads * num_layers);
369 Ok(Self {
370 transformer,
371 parameters,
372 model_dim,
373 num_heads,
374 num_layers,
375 })
376 }
377}
378
379impl TimeSeriesModelTrait for QuantumTransformerTSModel {
380 fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
381 for param in self.parameters.iter_mut() {
383 *param = (fastrand::f64() - 0.5) * 0.02;
384 }
385 Ok(())
386 }
387
388 fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
389 let prediction = Array2::zeros((data.nrows(), horizon));
391 Ok(prediction)
392 }
393
394 fn parameters(&self) -> &Array1<f64> {
395 &self.parameters
396 }
397
398 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
399 if params.len() != self.parameters.len() {
400 return Err(MLError::DimensionMismatch(format!(
401 "Expected {} parameters, got {}",
402 self.parameters.len(),
403 params.len()
404 )));
405 }
406 self.parameters = params.clone();
407 Ok(())
408 }
409
410 fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
411 Box::new(self.clone())
412 }
413
414 fn model_type(&self) -> &'static str {
415 "QuantumTransformer"
416 }
417}
418
419#[derive(Debug, Clone, Serialize, Deserialize)]
421pub struct QuantumStateSpaceModel {
422 state_dim: usize,
423 emission_dim: usize,
424 transition_type: TransitionType,
425 num_qubits: usize,
426 parameters: Array1<f64>,
427 state_transition_matrix: Array2<f64>,
428 emission_matrix: Array2<f64>,
429}
430
431impl QuantumStateSpaceModel {
432 pub fn new(
433 state_dim: usize,
434 emission_dim: usize,
435 transition_type: TransitionType,
436 num_qubits: usize,
437 ) -> Result<Self> {
438 let param_count = state_dim * state_dim + state_dim * emission_dim;
439 let parameters = Array1::zeros(param_count);
440 let state_transition_matrix = Array2::eye(state_dim);
441 let emission_matrix = Array2::zeros((emission_dim, state_dim));
442
443 Ok(Self {
444 state_dim,
445 emission_dim,
446 transition_type,
447 num_qubits,
448 parameters,
449 state_transition_matrix,
450 emission_matrix,
451 })
452 }
453}
454
455impl TimeSeriesModelTrait for QuantumStateSpaceModel {
456 fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
457 for param in self.parameters.iter_mut() {
459 *param = fastrand::f64() * 0.1;
460 }
461 Ok(())
462 }
463
464 fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
465 let prediction = Array2::zeros((data.nrows(), horizon));
466 Ok(prediction)
467 }
468
469 fn parameters(&self) -> &Array1<f64> {
470 &self.parameters
471 }
472
473 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
474 if params.len() != self.parameters.len() {
475 return Err(MLError::DimensionMismatch(format!(
476 "Expected {} parameters, got {}",
477 self.parameters.len(),
478 params.len()
479 )));
480 }
481 self.parameters = params.clone();
482 Ok(())
483 }
484
485 fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
486 Box::new(self.clone())
487 }
488
489 fn model_type(&self) -> &'static str {
490 "QuantumStateSpace"
491 }
492}
493
494pub struct TimeSeriesModelFactory;
496
497impl TimeSeriesModelFactory {
498 pub fn create_model(
500 model_type: &TimeSeriesModel,
501 num_qubits: usize,
502 ) -> Result<Box<dyn TimeSeriesModelTrait>> {
503 match model_type {
504 TimeSeriesModel::QuantumARIMA { p, d, q, seasonal } => Ok(Box::new(
505 QuantumARIMAModel::new(*p, *d, *q, seasonal.clone(), num_qubits)?,
506 )),
507 TimeSeriesModel::QuantumLSTM {
508 hidden_size,
509 num_layers,
510 dropout,
511 } => Ok(Box::new(QuantumLSTMModel::new(
512 *hidden_size,
513 *num_layers,
514 *dropout,
515 num_qubits,
516 )?)),
517 TimeSeriesModel::QuantumTransformerTS {
518 model_dim,
519 num_heads,
520 num_layers,
521 } => Ok(Box::new(QuantumTransformerTSModel::new(
522 *model_dim,
523 *num_heads,
524 *num_layers,
525 num_qubits,
526 )?)),
527 TimeSeriesModel::QuantumStateSpace {
528 state_dim,
529 emission_dim,
530 transition_type,
531 } => Ok(Box::new(QuantumStateSpaceModel::new(
532 *state_dim,
533 *emission_dim,
534 transition_type.clone(),
535 num_qubits,
536 )?)),
537 _ => {
538 Ok(Box::new(QuantumLSTMModel::new(64, 2, 0.1, num_qubits)?))
540 }
541 }
542 }
543}
544
545pub struct ModelEvaluator {
547 metrics: Vec<String>,
548}
549
550impl ModelEvaluator {
551 pub fn new() -> Self {
552 Self {
553 metrics: vec![
554 "MAE".to_string(),
555 "MSE".to_string(),
556 "RMSE".to_string(),
557 "MAPE".to_string(),
558 ],
559 }
560 }
561
562 pub fn evaluate(
564 &self,
565 model: &dyn TimeSeriesModelTrait,
566 test_data: &Array2<f64>,
567 test_targets: &Array2<f64>,
568 ) -> Result<std::collections::HashMap<String, f64>> {
569 let predictions = model.predict(test_data, test_targets.ncols())?;
570 let mut results = std::collections::HashMap::new();
571
572 let mae = self.calculate_mae(&predictions, test_targets)?;
574 results.insert("MAE".to_string(), mae);
575
576 let mse = self.calculate_mse(&predictions, test_targets)?;
578 results.insert("MSE".to_string(), mse);
579
580 results.insert("RMSE".to_string(), mse.sqrt());
582
583 Ok(results)
584 }
585
586 fn calculate_mae(&self, predictions: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
587 if predictions.shape() != targets.shape() {
588 return Err(MLError::DimensionMismatch(
589 "Predictions and targets must have the same shape".to_string(),
590 ));
591 }
592
593 let diff: f64 = predictions
594 .iter()
595 .zip(targets.iter())
596 .map(|(p, t)| (p - t).abs())
597 .sum();
598
599 Ok(diff / predictions.len() as f64)
600 }
601
602 fn calculate_mse(&self, predictions: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
603 if predictions.shape() != targets.shape() {
604 return Err(MLError::DimensionMismatch(
605 "Predictions and targets must have the same shape".to_string(),
606 ));
607 }
608
609 let diff: f64 = predictions
610 .iter()
611 .zip(targets.iter())
612 .map(|(p, t)| (p - t).powi(2))
613 .sum();
614
615 Ok(diff / predictions.len() as f64)
616 }
617}