quantrs2_ml/time_series/
features.rs

1//! Quantum feature extraction and engineering for time series
2
3use super::config::*;
4use crate::error::{MLError, Result};
5use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
6use scirs2_core::ndarray::{s, Array1, Array2};
7use serde::{Deserialize, Serialize};
8use std::collections::HashMap;
9use std::f64::consts::PI;
10
11/// Quantum feature extractor for time series
12#[derive(Debug, Clone)]
13pub struct QuantumFeatureExtractor {
14    /// Feature configuration
15    config: FeatureEngineeringConfig,
16
17    /// Quantum circuit parameters for feature extraction
18    feature_circuits: Vec<Vec<f64>>,
19
20    /// Feature transformation network
21    transform_network: QuantumNeuralNetwork,
22
23    /// Fourier feature generator
24    fourier_generator: Option<QuantumFourierFeatures>,
25
26    /// Wavelet transformer
27    wavelet_transformer: Option<QuantumWaveletTransform>,
28
29    /// Feature statistics for normalization
30    feature_stats: FeatureStatistics,
31}
32
33/// Quantum Fourier features for frequency domain analysis
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct QuantumFourierFeatures {
36    /// Number of Fourier components
37    num_components: usize,
38
39    /// Frequency ranges for analysis
40    frequency_ranges: Vec<(f64, f64)>,
41
42    /// Quantum Fourier transform circuit parameters
43    qft_circuit: Vec<f64>,
44
45    /// Learned frequency components
46    learned_frequencies: Array1<f64>,
47
48    /// Phase relationships
49    phase_relationships: Array2<f64>,
50}
51
52/// Quantum wavelet transform for multi-resolution analysis
53#[derive(Debug, Clone, Serialize, Deserialize)]
54pub struct QuantumWaveletTransform {
55    /// Wavelet type
56    wavelet_type: WaveletType,
57
58    /// Number of decomposition levels
59    num_levels: usize,
60
61    /// Quantum wavelet circuits
62    wavelet_circuits: Vec<Vec<f64>>,
63
64    /// Threshold for denoising
65    threshold: f64,
66
67    /// Decomposition coefficients
68    coefficients: Vec<Array2<f64>>,
69}
70
71/// Feature statistics for normalization and analysis
72#[derive(Debug, Clone, Serialize, Deserialize)]
73pub struct FeatureStatistics {
74    /// Feature means
75    pub means: Array1<f64>,
76
77    /// Feature standard deviations
78    pub stds: Array1<f64>,
79
80    /// Feature ranges
81    pub ranges: Array1<f64>,
82
83    /// Correlation matrix
84    pub correlations: Array2<f64>,
85
86    /// Quantum entanglement measures
87    pub entanglement_measures: Array1<f64>,
88}
89
90/// Lag feature generator
91#[derive(Debug, Clone)]
92pub struct LagFeatureGenerator {
93    lag_periods: Vec<usize>,
94    feature_names: Vec<String>,
95}
96
97/// Rolling statistics calculator
98#[derive(Debug, Clone)]
99pub struct RollingStatsCalculator {
100    window_sizes: Vec<usize>,
101    stats_types: Vec<StatType>,
102}
103
104/// Statistical types for rolling calculations
105#[derive(Debug, Clone, Serialize, Deserialize)]
106pub enum StatType {
107    Mean,
108    Std,
109    Min,
110    Max,
111    Median,
112    Quantile(f64),
113    Skewness,
114    Kurtosis,
115}
116
117/// Interaction feature generator
118#[derive(Debug, Clone)]
119pub struct InteractionFeatureGenerator {
120    max_interaction_order: usize,
121    interaction_types: Vec<InteractionType>,
122}
123
124/// Types of feature interactions
125#[derive(Debug, Clone, Serialize, Deserialize)]
126pub enum InteractionType {
127    Multiplication,
128    Division,
129    Addition,
130    Subtraction,
131    QuantumEntanglement,
132}
133
134impl QuantumFeatureExtractor {
135    /// Create new quantum feature extractor
136    pub fn new(config: FeatureEngineeringConfig, num_qubits: usize) -> Result<Self> {
137        // Create quantum circuits for feature extraction
138        let mut feature_circuits = Vec::new();
139
140        for circuit_idx in 0..5 {
141            let mut circuit_params = Vec::new();
142
143            // Feature extraction gates
144            for qubit_idx in 0..num_qubits {
145                circuit_params.push(1.0); // H gate marker
146                circuit_params.push(PI * circuit_idx as f64 / 5.0); // RY angle
147            }
148
149            // Entanglement for feature correlation
150            for qubit_idx in 0..num_qubits.saturating_sub(1) {
151                circuit_params.push(2.0); // CNOT marker
152                circuit_params.push(PI / 4.0 * qubit_idx as f64); // Controlled rotation
153            }
154
155            feature_circuits.push(circuit_params);
156        }
157
158        // Create transformation network
159        let layers = vec![
160            QNNLayerType::EncodingLayer { num_features: 100 },
161            QNNLayerType::VariationalLayer { num_params: 50 },
162            QNNLayerType::MeasurementLayer {
163                measurement_basis: "computational".to_string(),
164            },
165        ];
166
167        let transform_network = QuantumNeuralNetwork::new(layers, num_qubits, 100, 50)?;
168
169        // Create Fourier feature generator if enabled
170        let fourier_generator = if config.quantum_fourier_features {
171            Some(QuantumFourierFeatures::new(
172                20,
173                vec![(0.1, 10.0), (10.0, 100.0)],
174                num_qubits,
175            )?)
176        } else {
177            None
178        };
179
180        // Create wavelet transformer if enabled
181        let wavelet_transformer = if config.wavelet_decomposition {
182            Some(QuantumWaveletTransform::new(
183                WaveletType::Daubechies(4),
184                3,
185                num_qubits,
186            )?)
187        } else {
188            None
189        };
190
191        // Initialize feature statistics
192        let feature_stats = FeatureStatistics::new();
193
194        Ok(Self {
195            config,
196            feature_circuits,
197            transform_network,
198            fourier_generator,
199            wavelet_transformer,
200            feature_stats,
201        })
202    }
203
204    /// Extract comprehensive features from time series data
205    pub fn extract_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
206        let mut features = data.clone();
207
208        // Apply lag features
209        features = self.add_lag_features(&features)?;
210
211        // Apply rolling statistics
212        features = self.add_rolling_features(&features)?;
213
214        // Apply quantum Fourier features
215        if let Some(ref fourier_gen) = self.fourier_generator {
216            features = fourier_gen.transform(&features)?;
217        }
218
219        // Apply wavelet decomposition
220        if let Some(ref wavelet_trans) = self.wavelet_transformer {
221            features = wavelet_trans.decompose(&features)?;
222        }
223
224        // Apply interaction features
225        if self.config.interaction_features {
226            features = self.add_interaction_features(&features)?;
227        }
228
229        // Apply quantum transformation
230        features = self.apply_quantum_transformation(&features)?;
231
232        // Normalize features
233        features = self.normalize_features(&features)?;
234
235        Ok(features)
236    }
237
238    /// Add lag features to the dataset
239    fn add_lag_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
240        if self.config.lag_features.is_empty() {
241            return Ok(data.clone());
242        }
243
244        let (n_samples, n_features) = data.dim();
245        let total_lag_features = self.config.lag_features.len() * n_features;
246        let mut enhanced_data = Array2::zeros((n_samples, n_features + total_lag_features));
247
248        // Copy original features
249        enhanced_data.slice_mut(s![.., 0..n_features]).assign(data);
250
251        // Add lag features
252        let mut feature_offset = n_features;
253        for &lag in &self.config.lag_features {
254            for feature_idx in 0..n_features {
255                for sample_idx in lag..n_samples {
256                    enhanced_data[[sample_idx, feature_offset]] =
257                        data[[sample_idx - lag, feature_idx]];
258                }
259                feature_offset += 1;
260            }
261        }
262
263        Ok(enhanced_data)
264    }
265
266    /// Add rolling statistical features
267    fn add_rolling_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
268        if self.config.rolling_windows.is_empty() {
269            return Ok(data.clone());
270        }
271
272        let (n_samples, n_features) = data.dim();
273        let stats_per_window = 3; // mean, std, max
274        let total_rolling_features =
275            self.config.rolling_windows.len() * n_features * stats_per_window;
276        let mut enhanced_data = Array2::zeros((n_samples, n_features + total_rolling_features));
277
278        // Copy original features
279        enhanced_data.slice_mut(s![.., 0..n_features]).assign(data);
280
281        // Add rolling features
282        let mut feature_offset = n_features;
283        for &window_size in &self.config.rolling_windows {
284            for feature_idx in 0..n_features {
285                for sample_idx in window_size..n_samples {
286                    let window_start = sample_idx.saturating_sub(window_size);
287                    let window_data = data.slice(s![window_start..sample_idx, feature_idx]);
288
289                    // Rolling mean
290                    enhanced_data[[sample_idx, feature_offset]] = window_data.mean().unwrap_or(0.0);
291
292                    // Rolling std
293                    enhanced_data[[sample_idx, feature_offset + 1]] = window_data.std(1.0);
294
295                    // Rolling max
296                    enhanced_data[[sample_idx, feature_offset + 2]] =
297                        window_data.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
298                }
299                feature_offset += stats_per_window;
300            }
301        }
302
303        Ok(enhanced_data)
304    }
305
306    /// Add interaction features between different variables
307    fn add_interaction_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
308        let (n_samples, n_features) = data.dim();
309
310        if n_features < 2 {
311            return Ok(data.clone());
312        }
313
314        // Calculate number of pairwise interactions
315        let n_interactions = n_features * (n_features - 1) / 2;
316        let mut enhanced_data = Array2::zeros((n_samples, n_features + n_interactions));
317
318        // Copy original features
319        enhanced_data.slice_mut(s![.., 0..n_features]).assign(data);
320
321        // Add interaction features
322        let mut interaction_idx = n_features;
323        for i in 0..n_features {
324            for j in (i + 1)..n_features {
325                for sample_idx in 0..n_samples {
326                    // Multiplicative interaction
327                    enhanced_data[[sample_idx, interaction_idx]] =
328                        data[[sample_idx, i]] * data[[sample_idx, j]];
329                }
330                interaction_idx += 1;
331            }
332        }
333
334        Ok(enhanced_data)
335    }
336
337    /// Apply quantum transformation to features
338    fn apply_quantum_transformation(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
339        if !self.config.quantum_features {
340            return Ok(data.clone());
341        }
342
343        let mut quantum_features = Array2::zeros((data.nrows(), self.transform_network.output_dim));
344
345        for (i, row) in data.rows().into_iter().enumerate() {
346            let row_vec = row.to_owned();
347            let transformed = self.transform_network.forward(&row_vec)?;
348            quantum_features.row_mut(i).assign(&transformed);
349        }
350
351        // Combine original and quantum features
352        let (n_samples, n_features) = data.dim();
353        let mut combined_features =
354            Array2::zeros((n_samples, n_features + quantum_features.ncols()));
355
356        combined_features
357            .slice_mut(s![.., 0..n_features])
358            .assign(data);
359        combined_features
360            .slice_mut(s![.., n_features..])
361            .assign(&quantum_features);
362
363        Ok(combined_features)
364    }
365
366    /// Normalize features using learned statistics
367    fn normalize_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
368        // Simple standardization (in practice would use learned statistics)
369        let mut normalized = data.clone();
370
371        for j in 0..data.ncols() {
372            let column = data.column(j);
373            let mean = column.mean().unwrap_or(0.0);
374            let std = column.std(1.0).max(1e-8); // Avoid division by zero
375
376            for i in 0..data.nrows() {
377                normalized[[i, j]] = (data[[i, j]] - mean) / std;
378            }
379        }
380
381        Ok(normalized)
382    }
383
384    /// Update feature statistics from training data
385    pub fn fit_statistics(&mut self, data: &Array2<f64>) -> Result<()> {
386        self.feature_stats.compute_statistics(data)?;
387        Ok(())
388    }
389
390    /// Get feature importance scores
391    pub fn get_feature_importance(&self) -> Result<Array1<f64>> {
392        // Simplified feature importance based on quantum entanglement
393        Ok(self.feature_stats.entanglement_measures.clone())
394    }
395}
396
397impl QuantumFourierFeatures {
398    /// Create new quantum Fourier feature generator
399    pub fn new(
400        num_components: usize,
401        frequency_ranges: Vec<(f64, f64)>,
402        num_qubits: usize,
403    ) -> Result<Self> {
404        let mut qft_circuit = Vec::new();
405
406        // Create quantum Fourier transform circuit parameters
407        for qubit_idx in 0..num_qubits {
408            qft_circuit.push(1.0); // H gate marker
409        }
410
411        // Controlled phase gates for QFT
412        for i in 0..num_qubits {
413            for j in (i + 1)..num_qubits {
414                let phase = PI / 2_f64.powi((j - i) as i32);
415                qft_circuit.push(phase);
416            }
417        }
418
419        // Initialize learned frequencies
420        let learned_frequencies = Array1::from_shape_fn(num_components, |i| 0.1 + i as f64 * 0.1);
421
422        // Initialize phase relationships
423        let phase_relationships = Array2::zeros((num_components, num_components));
424
425        Ok(Self {
426            num_components,
427            frequency_ranges,
428            qft_circuit,
429            learned_frequencies,
430            phase_relationships,
431        })
432    }
433
434    /// Transform data with quantum Fourier features
435    pub fn transform(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
436        let (n_samples, n_features) = data.dim();
437        let fourier_features_count = self.num_components * 2; // sin and cos components
438        let mut fourier_features = Array2::zeros((n_samples, n_features + fourier_features_count));
439
440        // Copy original features
441        fourier_features
442            .slice_mut(s![.., 0..n_features])
443            .assign(data);
444
445        // Add Fourier features
446        for i in 0..n_samples {
447            for (j, &freq) in self.learned_frequencies.iter().enumerate() {
448                let phase = i as f64 * freq * 2.0 * PI / n_samples as f64;
449
450                // Apply quantum enhancement to phase
451                let quantum_phase = self.apply_quantum_phase_enhancement(phase, j)?;
452
453                fourier_features[[i, n_features + 2 * j]] = quantum_phase.sin();
454                fourier_features[[i, n_features + 2 * j + 1]] = quantum_phase.cos();
455            }
456        }
457
458        Ok(fourier_features)
459    }
460
461    /// Apply quantum enhancement to phase calculations
462    fn apply_quantum_phase_enhancement(&self, phase: f64, component_idx: usize) -> Result<f64> {
463        // Apply quantum circuit parameters to enhance phase
464        let mut enhanced_phase = phase;
465
466        if component_idx < self.qft_circuit.len() {
467            let circuit_param = self.qft_circuit[component_idx % self.qft_circuit.len()];
468            enhanced_phase = phase * circuit_param + 0.1 * (phase * circuit_param).sin();
469        }
470
471        Ok(enhanced_phase)
472    }
473
474    /// Learn optimal frequencies from data
475    pub fn learn_frequencies(&mut self, data: &Array2<f64>) -> Result<()> {
476        // Simplified frequency learning using spectral analysis
477        for i in 0..self.num_components.min(data.ncols()) {
478            // Estimate dominant frequency in each column
479            let column = data.column(i % data.ncols());
480            let estimated_freq = self.estimate_dominant_frequency(&column)?;
481            self.learned_frequencies[i] = estimated_freq;
482        }
483
484        Ok(())
485    }
486
487    /// Estimate dominant frequency in a signal
488    fn estimate_dominant_frequency(
489        &self,
490        signal: &scirs2_core::ndarray::ArrayView1<f64>,
491    ) -> Result<f64> {
492        // Simplified frequency estimation (in practice would use FFT)
493        let n = signal.len();
494        let mut max_power = 0.0;
495        let mut dominant_freq = 0.1;
496
497        for k in 1..n / 2 {
498            let freq = k as f64 / n as f64;
499            let mut power = 0.0;
500
501            for (i, &value) in signal.iter().enumerate() {
502                power += value * (2.0 * PI * freq * i as f64).cos();
503            }
504
505            if power.abs() > max_power {
506                max_power = power.abs();
507                dominant_freq = freq;
508            }
509        }
510
511        Ok(dominant_freq)
512    }
513}
514
515impl QuantumWaveletTransform {
516    /// Create new quantum wavelet transformer
517    pub fn new(wavelet_type: WaveletType, num_levels: usize, num_qubits: usize) -> Result<Self> {
518        let mut wavelet_circuits = Vec::new();
519
520        for level in 0..num_levels {
521            let mut circuit_params = Vec::new();
522
523            // Wavelet decomposition gates
524            for qubit_idx in 0..num_qubits / 2 {
525                circuit_params.push(1.0); // H gate marker
526                circuit_params.push(PI / 4.0 * (level + 1) as f64); // Level-dependent phase rotation
527            }
528
529            // Quantum scaling parameters
530            for qubit_idx in 0..num_qubits / 2 {
531                circuit_params.push(2.0_f64.powi(-(level as i32))); // Dyadic scaling
532            }
533
534            wavelet_circuits.push(circuit_params);
535        }
536
537        Ok(Self {
538            wavelet_type,
539            num_levels,
540            wavelet_circuits,
541            threshold: 0.1,
542            coefficients: Vec::new(),
543        })
544    }
545
546    /// Decompose signal using quantum wavelets
547    pub fn decompose(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
548        let mut decomposed = data.clone();
549
550        // Apply wavelet decomposition at each level
551        for level in 0..self.num_levels {
552            decomposed = self.apply_wavelet_level(&decomposed, level)?;
553        }
554
555        // Apply denoising threshold
556        self.apply_threshold(&mut decomposed);
557
558        Ok(decomposed)
559    }
560
561    /// Apply wavelet decomposition at specific level
562    fn apply_wavelet_level(&self, data: &Array2<f64>, level: usize) -> Result<Array2<f64>> {
563        if level >= self.wavelet_circuits.len() {
564            return Ok(data.clone());
565        }
566
567        let circuit = &self.wavelet_circuits[level];
568        let mut result = data.clone();
569
570        // Apply quantum wavelet transformation
571        for i in 0..data.nrows() {
572            for j in 0..data.ncols() {
573                let mut value = data[[i, j]];
574
575                // Apply wavelet basis function with quantum enhancement
576                for (k, &param) in circuit.iter().enumerate() {
577                    let scale = 2.0_f64.powi(-(level as i32));
578                    let wavelet_value = self.wavelet_function(value * scale, param)?;
579                    value = value * 0.7 + wavelet_value * 0.3; // Blend original and wavelet
580                }
581
582                result[[i, j]] = value;
583            }
584        }
585
586        Ok(result)
587    }
588
589    /// Quantum-enhanced wavelet basis function
590    fn wavelet_function(&self, x: f64, quantum_param: f64) -> Result<f64> {
591        match self.wavelet_type {
592            WaveletType::Haar => {
593                // Quantum-enhanced Haar wavelet
594                let classical_haar = if x >= 0.0 && x < 0.5 {
595                    1.0
596                } else if x >= 0.5 && x < 1.0 {
597                    -1.0
598                } else {
599                    0.0
600                };
601
602                let quantum_enhancement = (quantum_param * x).sin() * 0.1;
603                Ok(classical_haar + quantum_enhancement)
604            }
605            WaveletType::Daubechies(_) => {
606                // Simplified Daubechies with quantum enhancement
607                let classical = (PI * x).sin() * (-x * x / 2.0).exp();
608                let quantum_enhancement = (quantum_param * x * PI).cos() * 0.05;
609                Ok(classical + quantum_enhancement)
610            }
611            WaveletType::Quantum => {
612                // Fully quantum wavelet
613                let quantum_phase = quantum_param * x * PI;
614                Ok(quantum_phase.sin() * (-x * x).exp())
615            }
616            _ => {
617                // Default to Gaussian-like wavelet
618                Ok((PI * x).sin() * (-x * x / 2.0).exp())
619            }
620        }
621    }
622
623    /// Apply denoising threshold
624    fn apply_threshold(&self, data: &mut Array2<f64>) {
625        for value in data.iter_mut() {
626            if value.abs() < self.threshold {
627                *value = 0.0;
628            }
629        }
630    }
631}
632
633impl FeatureStatistics {
634    /// Create new feature statistics
635    pub fn new() -> Self {
636        Self {
637            means: Array1::zeros(0),
638            stds: Array1::zeros(0),
639            ranges: Array1::zeros(0),
640            correlations: Array2::zeros((0, 0)),
641            entanglement_measures: Array1::zeros(0),
642        }
643    }
644
645    /// Compute comprehensive statistics from data
646    pub fn compute_statistics(&mut self, data: &Array2<f64>) -> Result<()> {
647        let (n_samples, n_features) = data.dim();
648
649        // Compute basic statistics
650        self.means = Array1::zeros(n_features);
651        self.stds = Array1::zeros(n_features);
652        self.ranges = Array1::zeros(n_features);
653
654        for j in 0..n_features {
655            let column = data.column(j);
656            self.means[j] = column.mean().unwrap_or(0.0);
657            self.stds[j] = column.std(1.0);
658
659            let min_val = column.iter().fold(f64::INFINITY, |a, &b| a.min(b));
660            let max_val = column.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
661            self.ranges[j] = max_val - min_val;
662        }
663
664        // Compute correlation matrix
665        self.correlations = Array2::zeros((n_features, n_features));
666        for i in 0..n_features {
667            for j in 0..n_features {
668                let corr = self.compute_correlation(data, i, j)?;
669                self.correlations[[i, j]] = corr;
670            }
671        }
672
673        // Compute quantum entanglement measures
674        self.entanglement_measures = Array1::zeros(n_features);
675        for j in 0..n_features {
676            let entanglement = self.compute_quantum_entanglement(data, j)?;
677            self.entanglement_measures[j] = entanglement;
678        }
679
680        Ok(())
681    }
682
683    /// Compute correlation between two features
684    fn compute_correlation(&self, data: &Array2<f64>, i: usize, j: usize) -> Result<f64> {
685        let col_i = data.column(i);
686        let col_j = data.column(j);
687
688        let mean_i = col_i.mean().unwrap_or(0.0);
689        let mean_j = col_j.mean().unwrap_or(0.0);
690
691        let mut numerator = 0.0;
692        let mut sum_sq_i = 0.0;
693        let mut sum_sq_j = 0.0;
694
695        for (val_i, val_j) in col_i.iter().zip(col_j.iter()) {
696            let dev_i = val_i - mean_i;
697            let dev_j = val_j - mean_j;
698
699            numerator += dev_i * dev_j;
700            sum_sq_i += dev_i * dev_i;
701            sum_sq_j += dev_j * dev_j;
702        }
703
704        let denominator = (sum_sq_i * sum_sq_j).sqrt();
705        if denominator < 1e-10 {
706            Ok(0.0)
707        } else {
708            Ok(numerator / denominator)
709        }
710    }
711
712    /// Compute quantum entanglement measure for a feature
713    fn compute_quantum_entanglement(&self, data: &Array2<f64>, feature_idx: usize) -> Result<f64> {
714        let column = data.column(feature_idx);
715
716        // Simplified quantum entanglement measure based on entropy
717        let mut entropy = 0.0;
718        let n_bins = 10;
719        let min_val = column.iter().fold(f64::INFINITY, |a, &b| a.min(b));
720        let max_val = column.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
721        let range = max_val - min_val;
722
723        if range > 1e-10 {
724            let mut bin_counts = vec![0; n_bins];
725
726            for &value in column.iter() {
727                let bin_idx = ((value - min_val) / range * (n_bins - 1) as f64) as usize;
728                let bin_idx = bin_idx.min(n_bins - 1);
729                bin_counts[bin_idx] += 1;
730            }
731
732            let n_total = column.len() as f64;
733            for &count in &bin_counts {
734                if count > 0 {
735                    let prob = count as f64 / n_total;
736                    entropy -= prob * prob.ln();
737                }
738            }
739        }
740
741        Ok(entropy / n_bins as f64) // Normalized entanglement measure
742    }
743}
744
745/// Feature selection utilities
746pub struct QuantumFeatureSelector {
747    selection_method: FeatureSelectionMethod,
748    max_features: Option<usize>,
749}
750
751/// Methods for quantum feature selection
752#[derive(Debug, Clone, Serialize, Deserialize)]
753pub enum FeatureSelectionMethod {
754    QuantumMutualInformation,
755    QuantumEntanglement,
756    VariationalImportance,
757    HybridSelection,
758}
759
760impl QuantumFeatureSelector {
761    /// Create new quantum feature selector
762    pub fn new(method: FeatureSelectionMethod, max_features: Option<usize>) -> Self {
763        Self {
764            selection_method: method,
765            max_features,
766        }
767    }
768
769    /// Select most important features using quantum methods
770    pub fn select_features(&self, data: &Array2<f64>, target: &Array1<f64>) -> Result<Vec<usize>> {
771        match self.selection_method {
772            FeatureSelectionMethod::QuantumMutualInformation => {
773                self.quantum_mutual_information_selection(data, target)
774            }
775            FeatureSelectionMethod::QuantumEntanglement => {
776                self.quantum_entanglement_selection(data, target)
777            }
778            FeatureSelectionMethod::VariationalImportance => {
779                self.variational_importance_selection(data, target)
780            }
781            FeatureSelectionMethod::HybridSelection => self.hybrid_selection(data, target),
782        }
783    }
784
785    /// Select features based on quantum mutual information
786    fn quantum_mutual_information_selection(
787        &self,
788        data: &Array2<f64>,
789        target: &Array1<f64>,
790    ) -> Result<Vec<usize>> {
791        let n_features = data.ncols();
792        let mut feature_scores = Vec::new();
793
794        for feature_idx in 0..n_features {
795            let column = data.column(feature_idx);
796            let mutual_info = self.compute_quantum_mutual_information(&column, target)?;
797            feature_scores.push((feature_idx, mutual_info));
798        }
799
800        // Sort by score and select top features
801        feature_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
802
803        let num_to_select = self.max_features.unwrap_or(n_features).min(n_features);
804        Ok(feature_scores
805            .into_iter()
806            .take(num_to_select)
807            .map(|(idx, _)| idx)
808            .collect())
809    }
810
811    /// Compute quantum mutual information between feature and target
812    fn compute_quantum_mutual_information(
813        &self,
814        feature: &scirs2_core::ndarray::ArrayView1<f64>,
815        target: &Array1<f64>,
816    ) -> Result<f64> {
817        // Simplified quantum mutual information calculation
818        let mut mutual_info = 0.0;
819
820        // Discretize values for mutual information calculation
821        let n_bins = 5;
822        let feature_bins = self.discretize_values(feature, n_bins)?;
823        let target_bins = self.discretize_values(&target.view(), n_bins)?;
824
825        // Calculate joint and marginal probabilities
826        let n_samples = feature.len();
827        let mut joint_counts = HashMap::new();
828        let mut feature_counts = HashMap::new();
829        let mut target_counts = HashMap::new();
830
831        for i in 0..n_samples {
832            let f_bin = feature_bins[i];
833            let t_bin = target_bins[i];
834
835            *joint_counts.entry((f_bin, t_bin)).or_insert(0) += 1;
836            *feature_counts.entry(f_bin).or_insert(0) += 1;
837            *target_counts.entry(t_bin).or_insert(0) += 1;
838        }
839
840        // Calculate mutual information with quantum enhancement
841        for ((f_bin, t_bin), &joint_count) in &joint_counts {
842            let joint_prob = joint_count as f64 / n_samples as f64;
843            let feature_prob = *feature_counts.get(f_bin).unwrap_or(&0) as f64 / n_samples as f64;
844            let target_prob = *target_counts.get(t_bin).unwrap_or(&0) as f64 / n_samples as f64;
845
846            if joint_prob > 0.0 && feature_prob > 0.0 && target_prob > 0.0 {
847                let classical_mi = joint_prob * (joint_prob / (feature_prob * target_prob)).ln();
848
849                // Quantum enhancement factor
850                let quantum_factor = 1.0 + 0.1 * (joint_prob * PI).sin().abs();
851                mutual_info += classical_mi * quantum_factor;
852            }
853        }
854
855        Ok(mutual_info)
856    }
857
858    /// Discretize continuous values into bins
859    fn discretize_values(
860        &self,
861        values: &scirs2_core::ndarray::ArrayView1<f64>,
862        n_bins: usize,
863    ) -> Result<Vec<usize>> {
864        let min_val = values.iter().fold(f64::INFINITY, |a, &b| a.min(b));
865        let max_val = values.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
866        let range = max_val - min_val;
867
868        let mut bins = Vec::new();
869        for &value in values.iter() {
870            let bin_idx = if range > 1e-10 {
871                ((value - min_val) / range * (n_bins - 1) as f64) as usize
872            } else {
873                0
874            };
875            bins.push(bin_idx.min(n_bins - 1));
876        }
877
878        Ok(bins)
879    }
880
881    /// Placeholder implementations for other selection methods
882    fn quantum_entanglement_selection(
883        &self,
884        data: &Array2<f64>,
885        target: &Array1<f64>,
886    ) -> Result<Vec<usize>> {
887        // Simplified: select all features
888        Ok((0..data.ncols()).collect())
889    }
890
891    fn variational_importance_selection(
892        &self,
893        data: &Array2<f64>,
894        target: &Array1<f64>,
895    ) -> Result<Vec<usize>> {
896        // Simplified: select all features
897        Ok((0..data.ncols()).collect())
898    }
899
900    fn hybrid_selection(&self, data: &Array2<f64>, target: &Array1<f64>) -> Result<Vec<usize>> {
901        // Combine multiple methods
902        self.quantum_mutual_information_selection(data, target)
903    }
904}