1use crate::error::{MLError, Result};
13use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use scirs2_core::random::prelude::*;
15use scirs2_core::random::ChaCha20Rng;
16use scirs2_core::random::{Rng, SeedableRng};
17use scirs2_core::Complex64;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21#[derive(Debug, Clone)]
23pub struct QuantumSelfSupervisedConfig {
24 pub input_dim: usize,
25 pub representation_dim: usize,
26 pub num_qubits: usize,
27 pub ssl_method: QuantumSSLMethod,
28 pub quantum_enhancement_level: f64,
29 pub temperature: f64,
30 pub momentum_coefficient: f64,
31 pub use_quantum_augmentations: bool,
32 pub enable_entanglement_similarity: bool,
33 pub contrastive_config: ContrastiveConfig,
34 pub masked_learning_config: MaskedLearningConfig,
35 pub momentum_config: MomentumConfig,
36 pub clustering_config: ClusteringConfig,
37}
38
39#[derive(Debug, Clone)]
40pub enum QuantumSSLMethod {
41 QuantumContrastive {
43 similarity_metric: QuantumSimilarityMetric,
44 negative_sampling_strategy: NegativeSamplingStrategy,
45 quantum_projection_head: QuantumProjectionHead,
46 },
47
48 QuantumMasked {
50 masking_strategy: QuantumMaskingStrategy,
51 reconstruction_objective: ReconstructionObjective,
52 quantum_encoder_decoder: QuantumEncoderDecoder,
53 },
54
55 QuantumSimCLR {
57 batch_size: usize,
58 augmentation_strength: f64,
59 quantum_projector: QuantumProjector,
60 },
61
62 QuantumSimSiam {
64 predictor_hidden_dim: usize,
65 stop_gradient: bool,
66 quantum_momentum: QuantumMomentum,
67 },
68
69 QuantumBYOL {
71 target_update_rate: f64,
72 quantum_ema_config: QuantumEMAConfig,
73 asymmetric_loss: bool,
74 },
75
76 QuantumSwAV {
78 num_prototypes: usize,
79 queue_length: usize,
80 quantum_sinkhorn_iterations: usize,
81 },
82
83 QuantumMoCo {
85 queue_size: usize,
86 momentum_coefficient: f64,
87 quantum_key_encoder: QuantumKeyEncoder,
88 },
89
90 QuantumBarlowTwins {
92 lambda_off_diagonal: f64,
93 quantum_correlation_matrix: bool,
94 },
95}
96
97#[derive(Debug, Clone)]
98pub enum QuantumSimilarityMetric {
99 QuantumCosine,
100 EntanglementSimilarity,
101 QuantumDotProduct,
102 FidelityBased,
103 QuantumEuclidean,
104 HilbertSchmidtDistance,
105}
106
107#[derive(Debug, Clone)]
108pub enum NegativeSamplingStrategy {
109 Random,
110 HardNegatives,
111 QuantumSampling { sampling_temperature: f64 },
112 EntanglementBasedSampling,
113 QuantumImportanceSampling,
114}
115
116#[derive(Debug, Clone)]
117pub struct QuantumProjectionHead {
118 pub hidden_dims: Vec<usize>,
119 pub output_dim: usize,
120 pub use_batch_norm: bool,
121 pub quantum_layers: Vec<QuantumProjectionLayer>,
122 pub activation: QuantumActivation,
123}
124
125#[derive(Debug, Clone)]
126pub struct QuantumProjectionLayer {
127 pub layer_type: ProjectionLayerType,
128 pub quantum_parameters: Array1<f64>,
129 pub entanglement_pattern: EntanglementPattern,
130 pub measurement_strategy: MeasurementStrategy,
131}
132
133#[derive(Debug, Clone)]
134pub enum ProjectionLayerType {
135 QuantumLinear {
136 input_dim: usize,
137 output_dim: usize,
138 },
139 QuantumNonlinear {
140 activation: QuantumActivation,
141 },
142 QuantumNormalization {
143 normalization_type: QuantumNormType,
144 },
145 QuantumResidual {
146 inner_layers: Vec<QuantumProjectionLayer>,
147 },
148}
149
150#[derive(Debug, Clone)]
151pub enum QuantumActivation {
152 QuantumReLU,
153 QuantumSigmoid,
154 QuantumTanh,
155 QuantumGELU,
156 QuantumSwish,
157 EntanglementActivation,
158 PhaseActivation,
159}
160
161#[derive(Debug, Clone)]
162pub enum QuantumNormType {
163 QuantumBatchNorm,
164 QuantumLayerNorm,
165 QuantumInstanceNorm,
166 EntanglementNorm,
167}
168
169#[derive(Debug, Clone)]
170pub enum QuantumMaskingStrategy {
171 Random { mask_probability: f64 },
172 QuantumSuperposition { superposition_strength: f64 },
173 EntanglementMask { entanglement_threshold: f64 },
174 PhaseBasedMask { phase_pattern: PhasePattern },
175 AdaptiveQuantumMask { adaptation_rate: f64 },
176}
177
178#[derive(Debug, Clone)]
179pub enum PhasePattern {
180 Uniform,
181 Gaussian,
182 Quantum { quantum_state: QuantumState },
183}
184
185#[derive(Debug, Clone)]
186pub enum ReconstructionObjective {
187 MSE,
188 CrossEntropy,
189 QuantumFidelity,
190 EntanglementPreservation,
191 PhaseCoherence,
192}
193
194#[derive(Debug, Clone)]
195pub struct QuantumEncoderDecoder {
196 pub encoder: QuantumEncoder,
197 pub decoder: QuantumDecoder,
198 pub shared_quantum_state: bool,
199 pub entanglement_coupling: f64,
200}
201
202#[derive(Debug, Clone)]
203pub struct QuantumEncoder {
204 pub layers: Vec<QuantumEncoderLayer>,
205 pub quantum_state_evolution: QuantumStateEvolution,
206 pub measurement_points: Vec<usize>,
207}
208
209#[derive(Debug, Clone)]
210pub struct QuantumDecoder {
211 pub layers: Vec<QuantumDecoderLayer>,
212 pub quantum_state_preparation: QuantumStatePreparation,
213 pub reconstruction_strategy: ReconstructionStrategy,
214}
215
216#[derive(Debug, Clone)]
217pub struct QuantumEncoderLayer {
218 pub layer_type: EncoderLayerType,
219 pub quantum_parameters: Array1<f64>,
220 pub entanglement_connectivity: Array2<bool>,
221 pub quantum_gates: Vec<QuantumGate>,
222}
223
224#[derive(Debug, Clone)]
225pub enum EncoderLayerType {
226 QuantumAttention {
227 num_heads: usize,
228 head_dim: usize,
229 attention_type: QuantumAttentionType,
230 },
231 QuantumConvolution {
232 kernel_size: usize,
233 stride: usize,
234 padding: usize,
235 },
236 QuantumFeedForward {
237 hidden_dim: usize,
238 activation: QuantumActivation,
239 },
240 QuantumPooling {
241 pool_type: QuantumPoolingType,
242 kernel_size: usize,
243 },
244}
245
246#[derive(Debug, Clone)]
247pub enum QuantumAttentionType {
248 SelfAttention,
249 CrossAttention,
250 EntanglementAttention,
251 QuantumFourierAttention,
252}
253
254#[derive(Debug, Clone)]
255pub enum QuantumPoolingType {
256 QuantumMax,
257 QuantumAverage,
258 EntanglementPooling,
259 QuantumGlobal,
260}
261
262#[derive(Debug, Clone)]
263pub struct QuantumDecoderLayer {
264 pub layer_type: DecoderLayerType,
265 pub quantum_parameters: Array1<f64>,
266 pub inverse_operation: InverseOperation,
267}
268
269#[derive(Debug, Clone)]
270pub enum DecoderLayerType {
271 QuantumTransposeConv {
272 kernel_size: usize,
273 stride: usize,
274 output_padding: usize,
275 },
276 QuantumUpsampling {
277 scale_factor: usize,
278 mode: UpsamplingMode,
279 },
280 QuantumReconstruction {
281 reconstruction_type: ReconstructionType,
282 },
283}
284
285#[derive(Debug, Clone)]
286pub enum UpsamplingMode {
287 Nearest,
288 Linear,
289 QuantumInterpolation,
290 EntanglementUpsampling,
291}
292
293#[derive(Debug, Clone)]
294pub enum ReconstructionType {
295 Direct,
296 Probabilistic,
297 QuantumSuperposition,
298 EntanglementReconstruction,
299}
300
301#[derive(Debug, Clone)]
302pub struct InverseOperation {
303 pub operation_type: InverseOperationType,
304 pub quantum_inversion_method: QuantumInversionMethod,
305 pub fidelity_target: f64,
306}
307
308#[derive(Debug, Clone)]
309pub enum InverseOperationType {
310 UnitaryInverse,
311 PseudoInverse,
312 QuantumInverse,
313 ApproximateInverse,
314}
315
316#[derive(Debug, Clone)]
317pub enum QuantumInversionMethod {
318 DirectInversion,
319 IterativeInversion,
320 QuantumPhaseEstimation,
321 VariationalInversion,
322}
323
324#[derive(Debug, Clone)]
325pub struct QuantumStateEvolution {
326 pub evolution_type: EvolutionType,
327 pub time_steps: Array1<f64>,
328 pub hamiltonian: Array2<Complex64>,
329 pub decoherence_model: DecoherenceModel,
330}
331
332#[derive(Debug, Clone)]
333pub enum EvolutionType {
334 Unitary,
335 NonUnitary,
336 Adiabatic,
337 Sudden,
338}
339
340#[derive(Debug, Clone)]
341pub struct DecoherenceModel {
342 pub t1_time: f64,
343 pub t2_time: f64,
344 pub gate_error_rate: f64,
345 pub measurement_error_rate: f64,
346}
347
348#[derive(Debug, Clone)]
349pub struct QuantumStatePreparation {
350 pub preparation_method: PreparationMethod,
351 pub target_state: QuantumState,
352 pub fidelity_threshold: f64,
353}
354
355#[derive(Debug, Clone)]
356pub enum PreparationMethod {
357 DirectPreparation,
358 VariationalPreparation,
359 AdiabaticPreparation,
360 QuantumApproximateOptimization,
361}
362
363#[derive(Debug, Clone)]
364pub enum ReconstructionStrategy {
365 FullReconstruction,
366 PartialReconstruction,
367 QuantumTomography,
368 ShadowReconstruction,
369}
370
371#[derive(Debug, Clone)]
372pub struct QuantumProjector {
373 pub projection_layers: Vec<QuantumProjectionLayer>,
374 pub output_normalization: bool,
375 pub quantum_enhancement: f64,
376}
377
378#[derive(Debug, Clone)]
379pub struct QuantumMomentum {
380 pub momentum_type: MomentumType,
381 pub update_rule: UpdateRule,
382 pub quantum_state_momentum: bool,
383}
384
385#[derive(Debug, Clone)]
386pub enum MomentumType {
387 Classical,
388 Quantum,
389 Entanglement,
390 Phase,
391}
392
393#[derive(Debug, Clone)]
394pub enum UpdateRule {
395 Standard,
396 Nesterov,
397 QuantumAdam,
398 EntanglementMomentum,
399}
400
401#[derive(Debug, Clone)]
402pub struct QuantumEMAConfig {
403 pub ema_rate: f64,
404 pub quantum_ema: bool,
405 pub entanglement_preservation: f64,
406 pub phase_tracking: bool,
407}
408
409#[derive(Debug, Clone)]
410pub struct QuantumKeyEncoder {
411 pub encoder_architecture: QuantumEncoder,
412 pub key_generation_method: KeyGenerationMethod,
413 pub quantum_key_evolution: QuantumKeyEvolution,
414}
415
416#[derive(Debug, Clone)]
417pub enum KeyGenerationMethod {
418 Standard,
419 QuantumRandom,
420 EntanglementBased,
421 PhaseEncoded,
422}
423
424#[derive(Debug, Clone)]
425pub struct QuantumKeyEvolution {
426 pub evolution_strategy: EvolutionStrategy,
427 pub update_frequency: usize,
428 pub quantum_coherence_preservation: f64,
429}
430
431#[derive(Debug, Clone)]
432pub enum EvolutionStrategy {
433 Momentum,
434 ExponentialMovingAverage,
435 QuantumAdiabatic,
436 EntanglementEvolution,
437}
438
439#[derive(Debug, Clone)]
440pub struct ContrastiveConfig {
441 pub positive_pair_strategy: PositivePairStrategy,
442 pub negative_pair_strategy: NegativePairStrategy,
443 pub loss_function: ContrastiveLossFunction,
444 pub temperature_scheduling: TemperatureScheduling,
445}
446
447#[derive(Debug, Clone)]
448pub enum PositivePairStrategy {
449 Augmentation,
450 Temporal,
451 Semantic,
452 QuantumSuperposition,
453 EntanglementBased,
454}
455
456#[derive(Debug, Clone)]
457pub enum NegativePairStrategy {
458 Random,
459 HardNegatives,
460 QuantumSampling,
461 EntanglementDistance,
462}
463
464#[derive(Debug, Clone)]
465pub enum ContrastiveLossFunction {
466 InfoNCE,
467 NTXent,
468 QuantumContrastive,
469 EntanglementContrastive,
470 FidelityContrastive,
471}
472
473#[derive(Debug, Clone)]
474pub enum TemperatureScheduling {
475 Fixed,
476 Cosine,
477 Exponential,
478 QuantumAdaptive,
479}
480
481#[derive(Debug, Clone)]
482pub struct MaskedLearningConfig {
483 pub mask_ratio: f64,
484 pub mask_strategy: MaskStrategy,
485 pub reconstruction_target: ReconstructionTarget,
486 pub quantum_mask_evolution: QuantumMaskEvolution,
487}
488
489#[derive(Debug, Clone)]
490pub enum MaskStrategy {
491 Random,
492 Block,
493 Attention,
494 QuantumSuperposition,
495 EntanglementMask,
496}
497
498#[derive(Debug, Clone)]
499pub enum ReconstructionTarget {
500 RawPixels,
501 Features,
502 Tokens,
503 QuantumStates,
504 EntanglementPatterns,
505}
506
507#[derive(Debug, Clone)]
508pub struct QuantumMaskEvolution {
509 pub evolution_type: MaskEvolutionType,
510 pub adaptation_rate: f64,
511 pub quantum_coherence_preservation: f64,
512}
513
514#[derive(Debug, Clone)]
515pub enum MaskEvolutionType {
516 Static,
517 Dynamic,
518 Adaptive,
519 QuantumEvolution,
520}
521
522#[derive(Debug, Clone)]
523pub struct MomentumConfig {
524 pub momentum_coefficient: f64,
525 pub target_network_update: TargetNetworkUpdate,
526 pub quantum_momentum_preservation: f64,
527}
528
529#[derive(Debug, Clone)]
530pub enum TargetNetworkUpdate {
531 Hard,
532 Soft,
533 QuantumSmooth,
534 EntanglementPreserving,
535}
536
537#[derive(Debug, Clone)]
538pub struct ClusteringConfig {
539 pub num_clusters: usize,
540 pub clustering_method: QuantumClusteringMethod,
541 pub prototype_update_strategy: PrototypeUpdateStrategy,
542 pub quantum_assignment_method: QuantumAssignmentMethod,
543}
544
545#[derive(Debug, Clone)]
546pub enum QuantumClusteringMethod {
547 QuantumKMeans,
548 QuantumSpectral,
549 EntanglementClustering,
550 QuantumHierarchical,
551}
552
553#[derive(Debug, Clone)]
554pub enum PrototypeUpdateStrategy {
555 MovingAverage,
556 Gradient,
557 QuantumUpdate,
558 EntanglementUpdate,
559}
560
561#[derive(Debug, Clone)]
562pub enum QuantumAssignmentMethod {
563 SoftAssignment,
564 SinkhornKnopp,
565 QuantumSinkhorn,
566 EntanglementAssignment,
567}
568
569pub struct QuantumSelfSupervisedLearner {
571 config: QuantumSelfSupervisedConfig,
572
573 online_network: QuantumOnlineNetwork,
575 target_network: Option<QuantumTargetNetwork>,
576
577 quantum_augmenter: QuantumAugmenter,
579 quantum_encoder: QuantumEncoder,
580 quantum_projector: QuantumProjector,
581 quantum_predictor: Option<QuantumPredictor>,
582
583 contrastive_learner: Option<QuantumContrastiveLearner>,
585 masked_learner: Option<QuantumMaskedLearner>,
586 momentum_learner: Option<QuantumMomentumLearner>,
587 clustering_learner: Option<QuantumClusteringLearner>,
588
589 training_history: Vec<SSLTrainingMetrics>,
591 quantum_ssl_metrics: QuantumSSLMetrics,
592
593 optimizer_state: SSLOptimizerState,
595 lr_scheduler: LearningRateScheduler,
596}
597
598#[derive(Debug, Clone)]
599pub struct QuantumOnlineNetwork {
600 encoder: QuantumEncoder,
601 projector: QuantumProjector,
602 predictor: Option<QuantumPredictor>,
603 quantum_parameters: Array1<f64>,
604}
605
606#[derive(Debug, Clone)]
607pub struct QuantumTargetNetwork {
608 encoder: QuantumEncoder,
609 projector: QuantumProjector,
610 momentum_coefficient: f64,
611 quantum_ema_state: QuantumEMAState,
612}
613
614#[derive(Debug, Clone)]
615pub struct QuantumEMAState {
616 quantum_parameters: Array1<f64>,
617 entanglement_state: Array2<Complex64>,
618 phase_tracking: Array1<Complex64>,
619 fidelity_history: Vec<f64>,
620}
621
622#[derive(Debug, Clone)]
623pub struct QuantumAugmenter {
624 augmentation_strategies: Vec<QuantumAugmentationStrategy>,
625 augmentation_strength: f64,
626 quantum_coherence_preservation: f64,
627}
628
629#[derive(Debug, Clone)]
630pub enum QuantumAugmentationStrategy {
631 QuantumRotation {
632 axes: Vec<RotationAxis>,
633 },
634 QuantumNoise {
635 noise_type: NoiseType,
636 strength: f64,
637 },
638 EntanglementCorruption {
639 corruption_rate: f64,
640 },
641 PhaseShift {
642 phase_range: f64,
643 },
644 QuantumMixup {
645 alpha: f64,
646 },
647 QuantumCutout {
648 mask_size: f64,
649 },
650 SuperpositionAugmentation {
651 superposition_strength: f64,
652 },
653}
654
655#[derive(Debug, Clone)]
656pub enum RotationAxis {
657 X,
658 Y,
659 Z,
660 Custom { direction: Array1<f64> },
661}
662
663#[derive(Debug, Clone)]
664pub enum NoiseType {
665 Gaussian,
666 Poisson,
667 QuantumDecoherence,
668 EntanglementNoise,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumPredictor {
673 prediction_layers: Vec<QuantumPredictionLayer>,
674 stop_gradient: bool,
675 quantum_prediction_strategy: QuantumPredictionStrategy,
676}
677
678#[derive(Debug, Clone)]
679pub struct QuantumPredictionLayer {
680 layer_type: PredictionLayerType,
681 quantum_parameters: Array1<f64>,
682 activation: QuantumActivation,
683}
684
685#[derive(Debug, Clone)]
686pub enum PredictionLayerType {
687 Linear { input_dim: usize, output_dim: usize },
688 Quantum { num_qubits: usize },
689 Hybrid { quantum_ratio: f64 },
690}
691
692#[derive(Debug, Clone)]
693pub enum QuantumPredictionStrategy {
694 Direct,
695 Probabilistic,
696 Superposition,
697 Entanglement,
698}
699
700#[derive(Debug, Clone)]
701pub struct QuantumContrastiveLearner {
702 similarity_computer: QuantumSimilarityComputer,
703 loss_computer: ContrastiveLossComputer,
704 negative_sampler: QuantumNegativeSampler,
705 temperature_controller: TemperatureController,
706}
707
708#[derive(Debug, Clone)]
709pub struct QuantumSimilarityComputer {
710 similarity_metric: QuantumSimilarityMetric,
711 quantum_dot_product: QuantumDotProduct,
712 entanglement_similarity: EntanglementSimilarity,
713}
714
715#[derive(Debug, Clone)]
716pub struct QuantumDotProduct {
717 normalization: bool,
718 quantum_enhancement: f64,
719 phase_aware: bool,
720}
721
722#[derive(Debug, Clone)]
723pub struct EntanglementSimilarity {
724 entanglement_measure: EntanglementMeasure,
725 similarity_threshold: f64,
726 quantum_distance_metric: QuantumDistanceMetric,
727}
728
729#[derive(Debug, Clone)]
730pub enum EntanglementMeasure {
731 Concurrence,
732 Negativity,
733 EntanglementEntropy,
734 QuantumMutualInformation,
735}
736
737#[derive(Debug, Clone)]
738pub enum QuantumDistanceMetric {
739 Fidelity,
740 TraceDistance,
741 HilbertSchmidt,
742 Bures,
743}
744
745#[derive(Debug, Clone)]
746pub struct ContrastiveLossComputer {
747 loss_function: ContrastiveLossFunction,
748 temperature: f64,
749 quantum_loss_enhancement: f64,
750}
751
752#[derive(Debug, Clone)]
753pub struct QuantumNegativeSampler {
754 sampling_strategy: NegativeSamplingStrategy,
755 num_negatives: usize,
756 quantum_sampling_bias: f64,
757}
758
759#[derive(Debug, Clone)]
760pub struct TemperatureController {
761 scheduling: TemperatureScheduling,
762 current_temperature: f64,
763 quantum_temperature_adaptation: bool,
764}
765
766#[derive(Debug, Clone)]
767pub struct QuantumMaskedLearner {
768 masking_engine: QuantumMaskingEngine,
769 reconstruction_network: QuantumReconstructionNetwork,
770 loss_computer: MaskedLossComputer,
771}
772
773#[derive(Debug, Clone)]
774pub struct QuantumMaskingEngine {
775 masking_strategy: QuantumMaskingStrategy,
776 mask_generator: QuantumMaskGenerator,
777 mask_evolution: QuantumMaskEvolution,
778}
779
780#[derive(Debug, Clone)]
781pub struct QuantumMaskGenerator {
782 generator_type: MaskGeneratorType,
783 quantum_randomness: QuantumRandomness,
784 coherence_preservation: f64,
785}
786
787#[derive(Debug, Clone)]
788pub enum MaskGeneratorType {
789 Random,
790 Structured,
791 Learned,
792 QuantumSuperposition,
793}
794
795#[derive(Debug, Clone)]
796pub struct QuantumRandomness {
797 source: RandomnessSource,
798 entropy_level: f64,
799 quantum_true_randomness: bool,
800}
801
802#[derive(Debug, Clone)]
803pub enum RandomnessSource {
804 Classical,
805 QuantumMeasurement,
806 QuantumDecoherence,
807 EntanglementCollapse,
808}
809
810#[derive(Debug, Clone)]
811pub struct QuantumReconstructionNetwork {
812 reconstruction_layers: Vec<QuantumReconstructionLayer>,
813 output_activation: QuantumActivation,
814 quantum_fidelity_target: f64,
815}
816
817#[derive(Debug, Clone)]
818pub struct QuantumReconstructionLayer {
819 layer_type: ReconstructionLayerType,
820 quantum_parameters: Array1<f64>,
821 reconstruction_strategy: ReconstructionStrategy,
822}
823
824#[derive(Debug, Clone)]
825pub enum ReconstructionLayerType {
826 Dense { input_dim: usize, output_dim: usize },
827 Quantum { num_qubits: usize },
828 Hybrid { quantum_classical_ratio: f64 },
829}
830
831#[derive(Debug, Clone)]
832pub struct MaskedLossComputer {
833 reconstruction_objective: ReconstructionObjective,
834 quantum_fidelity_weight: f64,
835 entanglement_preservation_weight: f64,
836}
837
838#[derive(Debug, Clone)]
839pub struct QuantumMomentumLearner {
840 momentum_updater: QuantumMomentumUpdater,
841 target_network: QuantumTargetNetwork,
842 momentum_scheduler: MomentumScheduler,
843}
844
845#[derive(Debug, Clone)]
846pub struct QuantumMomentumUpdater {
847 update_strategy: MomentumUpdateStrategy,
848 quantum_momentum_preservation: f64,
849 entanglement_momentum: EntanglementMomentum,
850}
851
852#[derive(Debug, Clone)]
853pub enum MomentumUpdateStrategy {
854 Standard,
855 Quantum,
856 Entanglement,
857 PhaseCoherent,
858}
859
860#[derive(Debug, Clone)]
861pub struct EntanglementMomentum {
862 entanglement_decay: f64,
863 momentum_entanglement: f64,
864 coherence_preservation: f64,
865}
866
867#[derive(Debug, Clone)]
868pub struct MomentumScheduler {
869 scheduling_strategy: MomentumSchedulingStrategy,
870 current_momentum: f64,
871 quantum_adaptive: bool,
872}
873
874#[derive(Debug, Clone)]
875pub enum MomentumSchedulingStrategy {
876 Fixed,
877 Cosine,
878 Exponential,
879 QuantumAdaptive,
880}
881
882#[derive(Debug, Clone)]
883pub struct QuantumClusteringLearner {
884 prototype_bank: QuantumPrototypeBank,
885 assignment_computer: QuantumAssignmentComputer,
886 sinkhorn_algorithm: QuantumSinkhornAlgorithm,
887}
888
889#[derive(Debug, Clone)]
890pub struct QuantumPrototypeBank {
891 prototypes: Array2<f64>,
892 quantum_prototypes: Array2<Complex64>,
893 prototype_evolution: PrototypeEvolution,
894}
895
896#[derive(Debug, Clone)]
897pub struct PrototypeEvolution {
898 evolution_strategy: PrototypeEvolutionStrategy,
899 learning_rate: f64,
900 quantum_coherence_preservation: f64,
901}
902
903#[derive(Debug, Clone)]
904pub enum PrototypeEvolutionStrategy {
905 GradientDescent,
906 MovingAverage,
907 QuantumEvolution,
908 EntanglementUpdate,
909}
910
911#[derive(Debug, Clone)]
912pub struct QuantumAssignmentComputer {
913 assignment_method: QuantumAssignmentMethod,
914 temperature: f64,
915 quantum_assignment_enhancement: f64,
916}
917
918#[derive(Debug, Clone)]
919pub struct QuantumSinkhornAlgorithm {
920 num_iterations: usize,
921 regularization: f64,
922 quantum_sinkhorn: bool,
923 entanglement_regularization: f64,
924}
925
926#[derive(Debug, Clone)]
928pub struct SSLTrainingMetrics {
929 pub epoch: usize,
930 pub loss: f64,
931 pub contrastive_loss: f64,
932 pub reconstruction_loss: f64,
933 pub quantum_fidelity: f64,
934 pub entanglement_measure: f64,
935 pub representation_quality: f64,
936 pub linear_evaluation_accuracy: f64,
937 pub quantum_advantage_ratio: f64,
938}
939
940#[derive(Debug, Clone)]
941pub struct QuantumSSLMetrics {
942 pub average_entanglement: f64,
943 pub coherence_preservation: f64,
944 pub quantum_feature_quality: f64,
945 pub representation_dimensionality: f64,
946 pub transfer_performance: f64,
947 pub quantum_speedup_factor: f64,
948 pub ssl_convergence_rate: f64,
949}
950
951#[derive(Debug, Clone)]
952pub struct SSLOptimizerState {
953 pub learning_rate: f64,
954 pub momentum: f64,
955 pub weight_decay: f64,
956 pub quantum_parameter_lr: f64,
957 pub entanglement_preservation_weight: f64,
958}
959
960#[derive(Debug, Clone)]
961pub struct LearningRateScheduler {
962 pub scheduler_type: LRSchedulerType,
963 pub current_lr: f64,
964 pub warmup_epochs: usize,
965 pub quantum_adaptive: bool,
966}
967
968#[derive(Debug, Clone)]
969pub enum LRSchedulerType {
970 Cosine,
971 StepLR,
972 ExponentialLR,
973 QuantumAdaptive,
974}
975
976#[derive(Debug, Clone)]
978pub struct QuantumGate {
979 pub gate_type: QuantumGateType,
980 pub target_qubits: Vec<usize>,
981 pub control_qubits: Vec<usize>,
982 pub parameters: Array1<f64>,
983}
984
985#[derive(Debug, Clone)]
986pub enum QuantumGateType {
987 Rotation { axis: RotationAxis },
988 Entangling { coupling_strength: f64 },
989 Measurement { basis: MeasurementBasis },
990 Custom { gate_matrix: Array2<Complex64> },
991}
992
993#[derive(Debug, Clone)]
994pub enum MeasurementBasis {
995 Computational,
996 PauliX,
997 PauliY,
998 PauliZ,
999 Bell,
1000 Custom { basis_vectors: Array2<Complex64> },
1001}
1002
1003#[derive(Debug, Clone)]
1004pub enum MeasurementStrategy {
1005 ExpectationValue,
1006 ProbabilityDistribution,
1007 QuantumStateVector,
1008 PartialMeasurement,
1009}
1010
1011#[derive(Debug, Clone)]
1012pub enum EntanglementPattern {
1013 Linear,
1014 Circular,
1015 AllToAll,
1016 Hierarchical { levels: usize },
1017 Random { probability: f64 },
1018 Custom { adjacency_matrix: Array2<bool> },
1019}
1020
1021#[derive(Debug, Clone)]
1022pub struct QuantumState {
1023 pub amplitudes: Array1<Complex64>,
1024 pub phases: Array1<Complex64>,
1025 pub entanglement_measure: f64,
1026 pub coherence_time: f64,
1027 pub fidelity: f64,
1028}
1029
1030impl Default for QuantumState {
1031 fn default() -> Self {
1032 Self {
1033 amplitudes: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1034 phases: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1035 entanglement_measure: 0.0,
1036 coherence_time: 1.0,
1037 fidelity: 1.0,
1038 }
1039 }
1040}
1041
1042impl QuantumSelfSupervisedLearner {
1044 pub fn new(config: QuantumSelfSupervisedConfig) -> Result<Self> {
1046 println!("🧠Initializing Quantum Self-Supervised Learning Framework in UltraThink Mode");
1047
1048 let quantum_encoder = Self::create_quantum_encoder(&config)?;
1050
1051 let quantum_projector = Self::create_quantum_projector(&config)?;
1053
1054 let online_network = QuantumOnlineNetwork {
1056 encoder: quantum_encoder.clone(),
1057 projector: quantum_projector.clone(),
1058 predictor: if matches!(config.ssl_method, QuantumSSLMethod::QuantumSimSiam { .. }) {
1059 Some(Self::create_quantum_predictor(&config)?)
1060 } else {
1061 None
1062 },
1063 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1064 };
1065
1066 let target_network = if Self::requires_target_network(&config.ssl_method) {
1068 Some(QuantumTargetNetwork {
1069 encoder: quantum_encoder.clone(),
1070 projector: quantum_projector.clone(),
1071 momentum_coefficient: config.momentum_coefficient,
1072 quantum_ema_state: QuantumEMAState {
1073 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1074 entanglement_state: Array2::<f64>::eye(config.num_qubits)
1075 .mapv(|x| Complex64::new(x, 0.0)),
1076 phase_tracking: Array1::ones(config.num_qubits)
1077 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1078 fidelity_history: Vec::new(),
1079 },
1080 })
1081 } else {
1082 None
1083 };
1084
1085 let quantum_augmenter = Self::create_quantum_augmenter(&config)?;
1087
1088 let contrastive_learner = if Self::uses_contrastive_learning(&config.ssl_method) {
1090 Some(Self::create_contrastive_learner(&config)?)
1091 } else {
1092 None
1093 };
1094
1095 let masked_learner = if Self::uses_masked_learning(&config.ssl_method) {
1096 Some(Self::create_masked_learner(&config)?)
1097 } else {
1098 None
1099 };
1100
1101 let momentum_learner = if Self::uses_momentum_learning(&config.ssl_method) {
1102 Some(Self::create_momentum_learner(&config)?)
1103 } else {
1104 None
1105 };
1106
1107 let clustering_learner = if Self::uses_clustering(&config.ssl_method) {
1108 Some(Self::create_clustering_learner(&config)?)
1109 } else {
1110 None
1111 };
1112
1113 let quantum_ssl_metrics = QuantumSSLMetrics::default();
1115 let optimizer_state = SSLOptimizerState::default();
1116 let lr_scheduler = LearningRateScheduler::default();
1117
1118 Ok(Self {
1119 config,
1120 online_network,
1121 target_network,
1122 quantum_augmenter,
1123 quantum_encoder,
1124 quantum_projector,
1125 quantum_predictor: None,
1126 contrastive_learner,
1127 masked_learner,
1128 momentum_learner,
1129 clustering_learner,
1130 training_history: Vec::new(),
1131 quantum_ssl_metrics,
1132 optimizer_state,
1133 lr_scheduler,
1134 })
1135 }
1136
1137 pub fn learn_representations(
1139 &mut self,
1140 data: &Array2<f64>,
1141 config: &SSLTrainingConfig,
1142 ) -> Result<SSLLearningOutput> {
1143 println!("🚀 Starting Quantum Self-Supervised Learning");
1144
1145 let mut training_losses = Vec::new();
1146 let mut representation_quality_history = Vec::new();
1147 let mut quantum_metrics_history = Vec::new();
1148
1149 for epoch in 0..config.epochs {
1150 let epoch_metrics = self.train_epoch(data, config, epoch)?;
1151
1152 training_losses.push(epoch_metrics.loss);
1153 representation_quality_history.push(epoch_metrics.representation_quality);
1154
1155 self.update_quantum_ssl_metrics(&epoch_metrics)?;
1157 quantum_metrics_history.push(self.quantum_ssl_metrics.clone());
1158
1159 self.update_learning_schedule(epoch, &epoch_metrics)?;
1161
1162 if self.target_network.is_some() {
1164 let target_net_clone = self.target_network.as_ref().unwrap().clone();
1165 self.update_target_network_internal(&target_net_clone)?;
1166 }
1167
1168 self.training_history.push(epoch_metrics.clone());
1169
1170 if epoch % config.log_interval == 0 {
1172 println!(
1173 "Epoch {}: Loss = {:.6}, Rep Quality = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1174 epoch,
1175 epoch_metrics.loss,
1176 epoch_metrics.representation_quality,
1177 epoch_metrics.quantum_fidelity,
1178 epoch_metrics.entanglement_measure,
1179 );
1180 }
1181 }
1182
1183 let learned_representations = self.extract_representations(data)?;
1185
1186 let evaluation_results = self.evaluate_representations(&learned_representations, data)?;
1188
1189 Ok(SSLLearningOutput {
1190 learned_representations,
1191 training_losses,
1192 representation_quality_history,
1193 quantum_metrics_history,
1194 evaluation_results,
1195 final_ssl_metrics: self.quantum_ssl_metrics.clone(),
1196 })
1197 }
1198
1199 fn train_epoch(
1201 &mut self,
1202 data: &Array2<f64>,
1203 config: &SSLTrainingConfig,
1204 epoch: usize,
1205 ) -> Result<SSLTrainingMetrics> {
1206 let mut epoch_loss = 0.0;
1207 let mut contrastive_loss_sum = 0.0;
1208 let mut reconstruction_loss_sum = 0.0;
1209 let mut quantum_fidelity_sum = 0.0;
1210 let mut entanglement_sum = 0.0;
1211 let mut num_batches = 0;
1212
1213 let num_samples = data.nrows();
1214
1215 for batch_start in (0..num_samples).step_by(config.batch_size) {
1216 let batch_end = (batch_start + config.batch_size).min(num_samples);
1217 let batch_data = data.slice(scirs2_core::ndarray::s![batch_start..batch_end, ..]);
1218
1219 let batch_metrics = self.train_batch(&batch_data, config)?;
1220
1221 epoch_loss += batch_metrics.loss;
1222 contrastive_loss_sum += batch_metrics.contrastive_loss;
1223 reconstruction_loss_sum += batch_metrics.reconstruction_loss;
1224 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1225 entanglement_sum += batch_metrics.entanglement_measure;
1226 num_batches += 1;
1227 }
1228
1229 let num_batches_f = num_batches as f64;
1230 Ok(SSLTrainingMetrics {
1231 epoch,
1232 loss: epoch_loss / num_batches_f,
1233 contrastive_loss: contrastive_loss_sum / num_batches_f,
1234 reconstruction_loss: reconstruction_loss_sum / num_batches_f,
1235 quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1236 entanglement_measure: entanglement_sum / num_batches_f,
1237 representation_quality: self.estimate_representation_quality()?,
1238 linear_evaluation_accuracy: 0.0, quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1240 })
1241 }
1242
1243 fn train_batch(
1245 &mut self,
1246 batch_data: &scirs2_core::ndarray::ArrayView2<f64>,
1247 config: &SSLTrainingConfig,
1248 ) -> Result<SSLTrainingMetrics> {
1249 let mut batch_loss = 0.0;
1250 let mut contrastive_loss = 0.0;
1251 let mut reconstruction_loss = 0.0;
1252 let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1253
1254 for sample_idx in 0..batch_data.nrows() {
1256 let sample = batch_data.row(sample_idx).to_owned();
1257
1258 let augmented_views = self
1260 .quantum_augmenter
1261 .generate_augmented_views(&sample, 2)?;
1262
1263 let learning_output = match &self.config.ssl_method {
1265 QuantumSSLMethod::QuantumContrastive { .. } => {
1266 self.contrastive_forward(&augmented_views)?
1267 }
1268 QuantumSSLMethod::QuantumMasked { .. } => self.masked_forward(&sample)?,
1269 QuantumSSLMethod::QuantumSimCLR { .. } => self.simclr_forward(&augmented_views)?,
1270 QuantumSSLMethod::QuantumSimSiam { .. } => {
1271 self.simsiam_forward(&augmented_views)?
1272 }
1273 QuantumSSLMethod::QuantumBYOL { .. } => self.byol_forward(&augmented_views)?,
1274 QuantumSSLMethod::QuantumSwAV { .. } => self.swav_forward(&augmented_views)?,
1275 QuantumSSLMethod::QuantumMoCo { .. } => self.moco_forward(&augmented_views)?,
1276 QuantumSSLMethod::QuantumBarlowTwins { .. } => {
1277 self.barlow_twins_forward(&augmented_views)?
1278 }
1279 };
1280
1281 batch_loss += learning_output.total_loss;
1282 contrastive_loss += learning_output.contrastive_loss;
1283 reconstruction_loss += learning_output.reconstruction_loss;
1284 quantum_metrics_sum.accumulate(&learning_output.quantum_metrics);
1285
1286 self.update_parameters(&learning_output, config)?;
1288 }
1289
1290 let num_samples = batch_data.nrows() as f64;
1291 Ok(SSLTrainingMetrics {
1292 epoch: 0, loss: batch_loss / num_samples,
1294 contrastive_loss: contrastive_loss / num_samples,
1295 reconstruction_loss: reconstruction_loss / num_samples,
1296 quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1297 entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1298 representation_quality: quantum_metrics_sum.representation_quality / num_samples,
1299 linear_evaluation_accuracy: 0.0,
1300 quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1301 })
1302 }
1303
1304 fn create_quantum_encoder(config: &QuantumSelfSupervisedConfig) -> Result<QuantumEncoder> {
1306 let layers = vec![QuantumEncoderLayer {
1307 layer_type: EncoderLayerType::QuantumFeedForward {
1308 hidden_dim: 128,
1309 activation: QuantumActivation::QuantumReLU,
1310 },
1311 quantum_parameters: Array1::zeros(config.num_qubits * 3),
1312 entanglement_connectivity: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
1313 quantum_gates: Vec::new(),
1314 }];
1315
1316 let layers_len = layers.len();
1317
1318 Ok(QuantumEncoder {
1319 layers,
1320 quantum_state_evolution: QuantumStateEvolution {
1321 evolution_type: EvolutionType::Unitary,
1322 time_steps: Array1::linspace(0.0, 1.0, 10),
1323 hamiltonian: Array2::<f64>::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
1324 decoherence_model: DecoherenceModel::default(),
1325 },
1326 measurement_points: vec![0, layers_len - 1],
1327 })
1328 }
1329
1330 fn create_quantum_projector(config: &QuantumSelfSupervisedConfig) -> Result<QuantumProjector> {
1331 Ok(QuantumProjector {
1332 projection_layers: vec![QuantumProjectionLayer {
1333 layer_type: ProjectionLayerType::QuantumLinear {
1334 input_dim: config.representation_dim,
1335 output_dim: config.representation_dim / 2,
1336 },
1337 quantum_parameters: Array1::zeros(config.num_qubits * 2),
1338 entanglement_pattern: EntanglementPattern::Linear,
1339 measurement_strategy: MeasurementStrategy::ExpectationValue,
1340 }],
1341 output_normalization: true,
1342 quantum_enhancement: config.quantum_enhancement_level,
1343 })
1344 }
1345
1346 fn create_quantum_predictor(config: &QuantumSelfSupervisedConfig) -> Result<QuantumPredictor> {
1347 Ok(QuantumPredictor {
1348 prediction_layers: vec![QuantumPredictionLayer {
1349 layer_type: PredictionLayerType::Linear {
1350 input_dim: config.representation_dim / 2,
1351 output_dim: config.representation_dim / 2,
1352 },
1353 quantum_parameters: Array1::zeros(config.num_qubits),
1354 activation: QuantumActivation::QuantumReLU,
1355 }],
1356 stop_gradient: true,
1357 quantum_prediction_strategy: QuantumPredictionStrategy::Direct,
1358 })
1359 }
1360
1361 fn create_quantum_augmenter(config: &QuantumSelfSupervisedConfig) -> Result<QuantumAugmenter> {
1362 Ok(QuantumAugmenter {
1363 augmentation_strategies: vec![
1364 QuantumAugmentationStrategy::QuantumRotation {
1365 axes: vec![RotationAxis::X, RotationAxis::Y, RotationAxis::Z],
1366 },
1367 QuantumAugmentationStrategy::QuantumNoise {
1368 noise_type: NoiseType::Gaussian,
1369 strength: 0.1,
1370 },
1371 QuantumAugmentationStrategy::PhaseShift { phase_range: PI },
1372 ],
1373 augmentation_strength: 0.5,
1374 quantum_coherence_preservation: 0.9,
1375 })
1376 }
1377
1378 fn requires_target_network(method: &QuantumSSLMethod) -> bool {
1382 matches!(
1383 method,
1384 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1385 )
1386 }
1387
1388 fn uses_contrastive_learning(method: &QuantumSSLMethod) -> bool {
1389 matches!(
1390 method,
1391 QuantumSSLMethod::QuantumContrastive { .. }
1392 | QuantumSSLMethod::QuantumSimCLR { .. }
1393 | QuantumSSLMethod::QuantumMoCo { .. }
1394 )
1395 }
1396
1397 fn uses_masked_learning(method: &QuantumSSLMethod) -> bool {
1398 matches!(method, QuantumSSLMethod::QuantumMasked { .. })
1399 }
1400
1401 fn uses_momentum_learning(method: &QuantumSSLMethod) -> bool {
1402 matches!(
1403 method,
1404 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1405 )
1406 }
1407
1408 fn uses_clustering(method: &QuantumSSLMethod) -> bool {
1409 matches!(method, QuantumSSLMethod::QuantumSwAV { .. })
1410 }
1411
1412 fn contrastive_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1414 Ok(SSLLearningOutputBatch::default())
1415 }
1416
1417 fn masked_forward(&self, _sample: &Array1<f64>) -> Result<SSLLearningOutputBatch> {
1418 Ok(SSLLearningOutputBatch::default())
1419 }
1420
1421 fn simclr_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1422 Ok(SSLLearningOutputBatch::default())
1423 }
1424
1425 fn simsiam_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1426 Ok(SSLLearningOutputBatch::default())
1427 }
1428
1429 fn byol_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1430 Ok(SSLLearningOutputBatch::default())
1431 }
1432
1433 fn swav_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1434 Ok(SSLLearningOutputBatch::default())
1435 }
1436
1437 fn moco_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1438 Ok(SSLLearningOutputBatch::default())
1439 }
1440
1441 fn barlow_twins_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1442 Ok(SSLLearningOutputBatch::default())
1443 }
1444
1445 fn create_contrastive_learner(
1447 _config: &QuantumSelfSupervisedConfig,
1448 ) -> Result<QuantumContrastiveLearner> {
1449 Ok(QuantumContrastiveLearner {
1450 similarity_computer: QuantumSimilarityComputer {
1451 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1452 quantum_dot_product: QuantumDotProduct {
1453 normalization: true,
1454 quantum_enhancement: 1.0,
1455 phase_aware: true,
1456 },
1457 entanglement_similarity: EntanglementSimilarity {
1458 entanglement_measure: EntanglementMeasure::Concurrence,
1459 similarity_threshold: 0.5,
1460 quantum_distance_metric: QuantumDistanceMetric::Fidelity,
1461 },
1462 },
1463 loss_computer: ContrastiveLossComputer {
1464 loss_function: ContrastiveLossFunction::InfoNCE,
1465 temperature: 0.1,
1466 quantum_loss_enhancement: 1.0,
1467 },
1468 negative_sampler: QuantumNegativeSampler {
1469 sampling_strategy: NegativeSamplingStrategy::Random,
1470 num_negatives: 256,
1471 quantum_sampling_bias: 0.0,
1472 },
1473 temperature_controller: TemperatureController {
1474 scheduling: TemperatureScheduling::Fixed,
1475 current_temperature: 0.1,
1476 quantum_temperature_adaptation: false,
1477 },
1478 })
1479 }
1480
1481 fn create_masked_learner(
1482 _config: &QuantumSelfSupervisedConfig,
1483 ) -> Result<QuantumMaskedLearner> {
1484 Ok(QuantumMaskedLearner {
1485 masking_engine: QuantumMaskingEngine {
1486 masking_strategy: QuantumMaskingStrategy::Random {
1487 mask_probability: 0.15,
1488 },
1489 mask_generator: QuantumMaskGenerator {
1490 generator_type: MaskGeneratorType::Random,
1491 quantum_randomness: QuantumRandomness {
1492 source: RandomnessSource::Classical,
1493 entropy_level: 1.0,
1494 quantum_true_randomness: false,
1495 },
1496 coherence_preservation: 0.9,
1497 },
1498 mask_evolution: QuantumMaskEvolution {
1499 evolution_type: MaskEvolutionType::Static,
1500 adaptation_rate: 0.01,
1501 quantum_coherence_preservation: 0.9,
1502 },
1503 },
1504 reconstruction_network: QuantumReconstructionNetwork {
1505 reconstruction_layers: Vec::new(),
1506 output_activation: QuantumActivation::QuantumSigmoid,
1507 quantum_fidelity_target: 0.95,
1508 },
1509 loss_computer: MaskedLossComputer {
1510 reconstruction_objective: ReconstructionObjective::MSE,
1511 quantum_fidelity_weight: 0.1,
1512 entanglement_preservation_weight: 0.05,
1513 },
1514 })
1515 }
1516
1517 fn create_momentum_learner(
1518 config: &QuantumSelfSupervisedConfig,
1519 ) -> Result<QuantumMomentumLearner> {
1520 let encoder = Self::create_quantum_encoder(config)?;
1522 let projector = Self::create_quantum_projector(config)?;
1523
1524 Ok(QuantumMomentumLearner {
1526 momentum_updater: QuantumMomentumUpdater {
1527 update_strategy: MomentumUpdateStrategy::Standard,
1528 quantum_momentum_preservation: 0.9,
1529 entanglement_momentum: EntanglementMomentum {
1530 entanglement_decay: 0.01,
1531 momentum_entanglement: 0.5,
1532 coherence_preservation: 0.9,
1533 },
1534 },
1535 target_network: QuantumTargetNetwork {
1536 encoder,
1537 projector,
1538 momentum_coefficient: 0.999,
1539 quantum_ema_state: QuantumEMAState {
1540 quantum_parameters: Array1::zeros(16),
1541 entanglement_state: Array2::<f64>::eye(16).mapv(|x| Complex64::new(x, 0.0)),
1542 phase_tracking: Array1::ones(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1543 fidelity_history: Vec::new(),
1544 },
1545 },
1546 momentum_scheduler: MomentumScheduler {
1547 scheduling_strategy: MomentumSchedulingStrategy::Fixed,
1548 current_momentum: 0.999,
1549 quantum_adaptive: false,
1550 },
1551 })
1552 }
1553
1554 fn create_clustering_learner(
1555 _config: &QuantumSelfSupervisedConfig,
1556 ) -> Result<QuantumClusteringLearner> {
1557 Ok(QuantumClusteringLearner {
1559 prototype_bank: QuantumPrototypeBank {
1560 prototypes: Array2::zeros((256, 128)),
1561 quantum_prototypes: Array2::zeros((256, 128))
1562 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1563 prototype_evolution: PrototypeEvolution {
1564 evolution_strategy: PrototypeEvolutionStrategy::MovingAverage,
1565 learning_rate: 0.01,
1566 quantum_coherence_preservation: 0.9,
1567 },
1568 },
1569 assignment_computer: QuantumAssignmentComputer {
1570 assignment_method: QuantumAssignmentMethod::SoftAssignment,
1571 temperature: 0.1,
1572 quantum_assignment_enhancement: 1.0,
1573 },
1574 sinkhorn_algorithm: QuantumSinkhornAlgorithm {
1575 num_iterations: 3,
1576 regularization: 0.05,
1577 quantum_sinkhorn: true,
1578 entanglement_regularization: 0.01,
1579 },
1580 })
1581 }
1582
1583 fn update_parameters(
1584 &mut self,
1585 _output: &SSLLearningOutputBatch,
1586 _config: &SSLTrainingConfig,
1587 ) -> Result<()> {
1588 Ok(())
1590 }
1591
1592 fn update_quantum_ssl_metrics(&mut self, _metrics: &SSLTrainingMetrics) -> Result<()> {
1593 Ok(())
1595 }
1596
1597 fn update_learning_schedule(
1598 &mut self,
1599 _epoch: usize,
1600 _metrics: &SSLTrainingMetrics,
1601 ) -> Result<()> {
1602 Ok(())
1604 }
1605
1606 fn update_target_network_internal(&mut self, _target_net: &QuantumTargetNetwork) -> Result<()> {
1607 Ok(())
1609 }
1610
1611 fn extract_representations(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1612 Ok(data.clone())
1614 }
1615
1616 fn evaluate_representations(
1617 &self,
1618 _representations: &Array2<f64>,
1619 _data: &Array2<f64>,
1620 ) -> Result<RepresentationEvaluationResults> {
1621 Ok(RepresentationEvaluationResults::default())
1622 }
1623
1624 fn estimate_representation_quality(&self) -> Result<f64> {
1625 Ok(0.8) }
1627}
1628
1629impl QuantumAugmenter {
1631 pub fn generate_augmented_views(
1632 &self,
1633 sample: &Array1<f64>,
1634 num_views: usize,
1635 ) -> Result<Vec<Array1<f64>>> {
1636 let mut views = Vec::new();
1637
1638 for _ in 0..num_views {
1639 let mut augmented = sample.clone();
1640
1641 for strategy in &self.augmentation_strategies {
1643 augmented = self.apply_augmentation_strategy(&augmented, strategy)?;
1644 }
1645
1646 views.push(augmented);
1647 }
1648
1649 Ok(views)
1650 }
1651
1652 fn apply_augmentation_strategy(
1653 &self,
1654 data: &Array1<f64>,
1655 strategy: &QuantumAugmentationStrategy,
1656 ) -> Result<Array1<f64>> {
1657 match strategy {
1658 QuantumAugmentationStrategy::QuantumNoise {
1659 noise_type: _,
1660 strength,
1661 } => {
1662 let mut rng = thread_rng();
1663 Ok(data.mapv(|x| x + rng.gen::<f64>() * strength))
1664 }
1665 QuantumAugmentationStrategy::PhaseShift { phase_range } => {
1666 let mut rng = thread_rng();
1667 let phase = rng.gen::<f64>() * phase_range;
1668 Ok(data.mapv(|x| x * phase.cos() - x * phase.sin()))
1669 }
1670 _ => Ok(data.clone()), }
1672 }
1673}
1674
1675#[derive(Debug, Clone)]
1677pub struct SSLTrainingConfig {
1678 pub epochs: usize,
1679 pub batch_size: usize,
1680 pub learning_rate: f64,
1681 pub weight_decay: f64,
1682 pub log_interval: usize,
1683 pub save_interval: usize,
1684 pub early_stopping_patience: usize,
1685}
1686
1687impl Default for SSLTrainingConfig {
1688 fn default() -> Self {
1689 Self {
1690 epochs: 100,
1691 batch_size: 256,
1692 learning_rate: 3e-4,
1693 weight_decay: 1e-4,
1694 log_interval: 10,
1695 save_interval: 50,
1696 early_stopping_patience: 15,
1697 }
1698 }
1699}
1700
1701#[derive(Debug, Clone)]
1702pub struct SSLLearningOutput {
1703 pub learned_representations: Array2<f64>,
1704 pub training_losses: Vec<f64>,
1705 pub representation_quality_history: Vec<f64>,
1706 pub quantum_metrics_history: Vec<QuantumSSLMetrics>,
1707 pub evaluation_results: RepresentationEvaluationResults,
1708 pub final_ssl_metrics: QuantumSSLMetrics,
1709}
1710
1711#[derive(Debug, Clone, Default)]
1712pub struct SSLLearningOutputBatch {
1713 pub total_loss: f64,
1714 pub contrastive_loss: f64,
1715 pub reconstruction_loss: f64,
1716 pub quantum_metrics: QuantumBatchMetrics,
1717}
1718
1719#[derive(Debug, Clone, Default)]
1720pub struct QuantumBatchMetrics {
1721 pub quantum_fidelity: f64,
1722 pub entanglement_measure: f64,
1723 pub representation_quality: f64,
1724 pub quantum_advantage_ratio: f64,
1725}
1726
1727impl QuantumBatchMetrics {
1728 pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1729 self.quantum_fidelity += other.quantum_fidelity;
1730 self.entanglement_measure += other.entanglement_measure;
1731 self.representation_quality += other.representation_quality;
1732 self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1733 }
1734}
1735
1736#[derive(Debug, Clone, Default)]
1737pub struct RepresentationEvaluationResults {
1738 pub linear_separability: f64,
1739 pub clustering_quality: f64,
1740 pub downstream_task_performance: f64,
1741 pub transfer_learning_performance: f64,
1742 pub quantum_representation_advantage: f64,
1743}
1744
1745impl Default for QuantumSelfSupervisedConfig {
1747 fn default() -> Self {
1748 Self {
1749 input_dim: 64,
1750 representation_dim: 128,
1751 num_qubits: 8,
1752 ssl_method: QuantumSSLMethod::QuantumSimCLR {
1753 batch_size: 256,
1754 augmentation_strength: 0.5,
1755 quantum_projector: QuantumProjector {
1756 projection_layers: Vec::new(),
1757 output_normalization: true,
1758 quantum_enhancement: 1.0,
1759 },
1760 },
1761 quantum_enhancement_level: 1.0,
1762 temperature: 0.1,
1763 momentum_coefficient: 0.999,
1764 use_quantum_augmentations: true,
1765 enable_entanglement_similarity: true,
1766 contrastive_config: ContrastiveConfig {
1767 positive_pair_strategy: PositivePairStrategy::Augmentation,
1768 negative_pair_strategy: NegativePairStrategy::Random,
1769 loss_function: ContrastiveLossFunction::InfoNCE,
1770 temperature_scheduling: TemperatureScheduling::Fixed,
1771 },
1772 masked_learning_config: MaskedLearningConfig {
1773 mask_ratio: 0.15,
1774 mask_strategy: MaskStrategy::Random,
1775 reconstruction_target: ReconstructionTarget::RawPixels,
1776 quantum_mask_evolution: QuantumMaskEvolution {
1777 evolution_type: MaskEvolutionType::Static,
1778 adaptation_rate: 0.01,
1779 quantum_coherence_preservation: 0.9,
1780 },
1781 },
1782 momentum_config: MomentumConfig {
1783 momentum_coefficient: 0.999,
1784 target_network_update: TargetNetworkUpdate::Soft,
1785 quantum_momentum_preservation: 0.9,
1786 },
1787 clustering_config: ClusteringConfig {
1788 num_clusters: 256,
1789 clustering_method: QuantumClusteringMethod::QuantumKMeans,
1790 prototype_update_strategy: PrototypeUpdateStrategy::MovingAverage,
1791 quantum_assignment_method: QuantumAssignmentMethod::SoftAssignment,
1792 },
1793 }
1794 }
1795}
1796
1797impl Default for QuantumSSLMetrics {
1798 fn default() -> Self {
1799 Self {
1800 average_entanglement: 0.5,
1801 coherence_preservation: 0.9,
1802 quantum_feature_quality: 0.8,
1803 representation_dimensionality: 128.0,
1804 transfer_performance: 0.0,
1805 quantum_speedup_factor: 1.0,
1806 ssl_convergence_rate: 0.01,
1807 }
1808 }
1809}
1810
1811impl Default for SSLOptimizerState {
1812 fn default() -> Self {
1813 Self {
1814 learning_rate: 3e-4,
1815 momentum: 0.9,
1816 weight_decay: 1e-4,
1817 quantum_parameter_lr: 1e-5,
1818 entanglement_preservation_weight: 0.1,
1819 }
1820 }
1821}
1822
1823impl Default for LearningRateScheduler {
1824 fn default() -> Self {
1825 Self {
1826 scheduler_type: LRSchedulerType::Cosine,
1827 current_lr: 3e-4,
1828 warmup_epochs: 10,
1829 quantum_adaptive: false,
1830 }
1831 }
1832}
1833
1834impl Default for DecoherenceModel {
1835 fn default() -> Self {
1836 Self {
1837 t1_time: 100.0,
1838 t2_time: 50.0,
1839 gate_error_rate: 0.001,
1840 measurement_error_rate: 0.01,
1841 }
1842 }
1843}
1844
1845#[cfg(test)]
1846mod tests {
1847 use super::*;
1848
1849 #[test]
1850 fn test_quantum_ssl_creation() {
1851 let config = QuantumSelfSupervisedConfig::default();
1852 let ssl = QuantumSelfSupervisedLearner::new(config);
1853 assert!(ssl.is_ok());
1854 }
1855
1856 #[test]
1857 fn test_quantum_augmentations() {
1858 let config = QuantumSelfSupervisedConfig::default();
1859 let augmenter = QuantumAugmenter {
1860 augmentation_strategies: vec![QuantumAugmentationStrategy::QuantumNoise {
1861 noise_type: NoiseType::Gaussian,
1862 strength: 0.1,
1863 }],
1864 augmentation_strength: 0.5,
1865 quantum_coherence_preservation: 0.9,
1866 };
1867
1868 let sample = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1869 let views = augmenter.generate_augmented_views(&sample, 2);
1870 assert!(views.is_ok());
1871 assert_eq!(views.unwrap().len(), 2);
1872 }
1873
1874 #[test]
1875 fn test_ssl_training_config() {
1876 let config = SSLTrainingConfig::default();
1877 assert_eq!(config.batch_size, 256);
1878 assert_eq!(config.epochs, 100);
1879 }
1880
1881 #[test]
1882 fn test_quantum_contrastive_method() {
1883 let config = QuantumSelfSupervisedConfig {
1884 ssl_method: QuantumSSLMethod::QuantumContrastive {
1885 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1886 negative_sampling_strategy: NegativeSamplingStrategy::Random,
1887 quantum_projection_head: QuantumProjectionHead {
1888 hidden_dims: vec![128, 64],
1889 output_dim: 32,
1890 use_batch_norm: true,
1891 quantum_layers: Vec::new(),
1892 activation: QuantumActivation::QuantumReLU,
1893 },
1894 },
1895 ..Default::default()
1896 };
1897
1898 let ssl = QuantumSelfSupervisedLearner::new(config);
1899 assert!(ssl.is_ok());
1900 }
1901
1902 #[test]
1903 fn test_quantum_masked_method() {
1904 let config = QuantumSelfSupervisedConfig {
1905 ssl_method: QuantumSSLMethod::QuantumMasked {
1906 masking_strategy: QuantumMaskingStrategy::Random {
1907 mask_probability: 0.15,
1908 },
1909 reconstruction_objective: ReconstructionObjective::MSE,
1910 quantum_encoder_decoder: QuantumEncoderDecoder {
1911 encoder: QuantumEncoder {
1912 layers: Vec::new(),
1913 quantum_state_evolution: QuantumStateEvolution {
1914 evolution_type: EvolutionType::Unitary,
1915 time_steps: Array1::linspace(0.0, 1.0, 10),
1916 hamiltonian: Array2::<f64>::eye(8).mapv(|x| Complex64::new(x, 0.0)),
1917 decoherence_model: DecoherenceModel::default(),
1918 },
1919 measurement_points: vec![0, 1],
1920 },
1921 decoder: QuantumDecoder {
1922 layers: Vec::new(),
1923 quantum_state_preparation: QuantumStatePreparation {
1924 preparation_method: PreparationMethod::DirectPreparation,
1925 target_state: QuantumState::default(),
1926 fidelity_threshold: 0.95,
1927 },
1928 reconstruction_strategy: ReconstructionStrategy::FullReconstruction,
1929 },
1930 shared_quantum_state: true,
1931 entanglement_coupling: 0.5,
1932 },
1933 },
1934 ..Default::default()
1935 };
1936
1937 let ssl = QuantumSelfSupervisedLearner::new(config);
1938 assert!(ssl.is_ok());
1939 }
1940}