quantrs2_ml/
quantum_self_supervised_learning.rs

1//! Quantum Self-Supervised Learning Frameworks
2//!
3//! This module implements cutting-edge quantum self-supervised learning methods that leverage
4//! quantum mechanical principles for enhanced representation learning without labeled data:
5//! - Quantum Contrastive Learning with entanglement-based similarity
6//! - Quantum Masked Learning with superposition encoding
7//! - Quantum SimCLR/SimSiam with quantum augmentations
8//! - Quantum BYOL with quantum momentum updates
9//! - Quantum SwAV with quantum cluster assignments
10//! - Advanced quantum representation learning frameworks
11
12use crate::error::{MLError, Result};
13use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use scirs2_core::random::prelude::*;
15use scirs2_core::random::ChaCha20Rng;
16use scirs2_core::random::{Rng, SeedableRng};
17use scirs2_core::Complex64;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21/// Configuration for Quantum Self-Supervised Learning
22#[derive(Debug, Clone)]
23pub struct QuantumSelfSupervisedConfig {
24    pub input_dim: usize,
25    pub representation_dim: usize,
26    pub num_qubits: usize,
27    pub ssl_method: QuantumSSLMethod,
28    pub quantum_enhancement_level: f64,
29    pub temperature: f64,
30    pub momentum_coefficient: f64,
31    pub use_quantum_augmentations: bool,
32    pub enable_entanglement_similarity: bool,
33    pub contrastive_config: ContrastiveConfig,
34    pub masked_learning_config: MaskedLearningConfig,
35    pub momentum_config: MomentumConfig,
36    pub clustering_config: ClusteringConfig,
37}
38
39#[derive(Debug, Clone)]
40pub enum QuantumSSLMethod {
41    /// Quantum Contrastive Learning with entanglement-based similarity
42    QuantumContrastive {
43        similarity_metric: QuantumSimilarityMetric,
44        negative_sampling_strategy: NegativeSamplingStrategy,
45        quantum_projection_head: QuantumProjectionHead,
46    },
47
48    /// Quantum Masked Learning (language/image modeling)
49    QuantumMasked {
50        masking_strategy: QuantumMaskingStrategy,
51        reconstruction_objective: ReconstructionObjective,
52        quantum_encoder_decoder: QuantumEncoderDecoder,
53    },
54
55    /// Quantum SimCLR - Simple Contrastive Learning
56    QuantumSimCLR {
57        batch_size: usize,
58        augmentation_strength: f64,
59        quantum_projector: QuantumProjector,
60    },
61
62    /// Quantum SimSiam - Simple Siamese Networks
63    QuantumSimSiam {
64        predictor_hidden_dim: usize,
65        stop_gradient: bool,
66        quantum_momentum: QuantumMomentum,
67    },
68
69    /// Quantum BYOL - Bootstrap Your Own Latent
70    QuantumBYOL {
71        target_update_rate: f64,
72        quantum_ema_config: QuantumEMAConfig,
73        asymmetric_loss: bool,
74    },
75
76    /// Quantum SwAV - Swapping Assignments between Views
77    QuantumSwAV {
78        num_prototypes: usize,
79        queue_length: usize,
80        quantum_sinkhorn_iterations: usize,
81    },
82
83    /// Quantum Momentum Contrast (MoCo)
84    QuantumMoCo {
85        queue_size: usize,
86        momentum_coefficient: f64,
87        quantum_key_encoder: QuantumKeyEncoder,
88    },
89
90    /// Quantum Barlow Twins
91    QuantumBarlowTwins {
92        lambda_off_diagonal: f64,
93        quantum_correlation_matrix: bool,
94    },
95}
96
97#[derive(Debug, Clone)]
98pub enum QuantumSimilarityMetric {
99    QuantumCosine,
100    EntanglementSimilarity,
101    QuantumDotProduct,
102    FidelityBased,
103    QuantumEuclidean,
104    HilbertSchmidtDistance,
105}
106
107#[derive(Debug, Clone)]
108pub enum NegativeSamplingStrategy {
109    Random,
110    HardNegatives,
111    QuantumSampling { sampling_temperature: f64 },
112    EntanglementBasedSampling,
113    QuantumImportanceSampling,
114}
115
116#[derive(Debug, Clone)]
117pub struct QuantumProjectionHead {
118    pub hidden_dims: Vec<usize>,
119    pub output_dim: usize,
120    pub use_batch_norm: bool,
121    pub quantum_layers: Vec<QuantumProjectionLayer>,
122    pub activation: QuantumActivation,
123}
124
125#[derive(Debug, Clone)]
126pub struct QuantumProjectionLayer {
127    pub layer_type: ProjectionLayerType,
128    pub quantum_parameters: Array1<f64>,
129    pub entanglement_pattern: EntanglementPattern,
130    pub measurement_strategy: MeasurementStrategy,
131}
132
133#[derive(Debug, Clone)]
134pub enum ProjectionLayerType {
135    QuantumLinear {
136        input_dim: usize,
137        output_dim: usize,
138    },
139    QuantumNonlinear {
140        activation: QuantumActivation,
141    },
142    QuantumNormalization {
143        normalization_type: QuantumNormType,
144    },
145    QuantumResidual {
146        inner_layers: Vec<QuantumProjectionLayer>,
147    },
148}
149
150#[derive(Debug, Clone)]
151pub enum QuantumActivation {
152    QuantumReLU,
153    QuantumSigmoid,
154    QuantumTanh,
155    QuantumGELU,
156    QuantumSwish,
157    EntanglementActivation,
158    PhaseActivation,
159}
160
161#[derive(Debug, Clone)]
162pub enum QuantumNormType {
163    QuantumBatchNorm,
164    QuantumLayerNorm,
165    QuantumInstanceNorm,
166    EntanglementNorm,
167}
168
169#[derive(Debug, Clone)]
170pub enum QuantumMaskingStrategy {
171    Random { mask_probability: f64 },
172    QuantumSuperposition { superposition_strength: f64 },
173    EntanglementMask { entanglement_threshold: f64 },
174    PhaseBasedMask { phase_pattern: PhasePattern },
175    AdaptiveQuantumMask { adaptation_rate: f64 },
176}
177
178#[derive(Debug, Clone)]
179pub enum PhasePattern {
180    Uniform,
181    Gaussian,
182    Quantum { quantum_state: QuantumState },
183}
184
185#[derive(Debug, Clone)]
186pub enum ReconstructionObjective {
187    MSE,
188    CrossEntropy,
189    QuantumFidelity,
190    EntanglementPreservation,
191    PhaseCoherence,
192}
193
194#[derive(Debug, Clone)]
195pub struct QuantumEncoderDecoder {
196    pub encoder: QuantumEncoder,
197    pub decoder: QuantumDecoder,
198    pub shared_quantum_state: bool,
199    pub entanglement_coupling: f64,
200}
201
202#[derive(Debug, Clone)]
203pub struct QuantumEncoder {
204    pub layers: Vec<QuantumEncoderLayer>,
205    pub quantum_state_evolution: QuantumStateEvolution,
206    pub measurement_points: Vec<usize>,
207}
208
209#[derive(Debug, Clone)]
210pub struct QuantumDecoder {
211    pub layers: Vec<QuantumDecoderLayer>,
212    pub quantum_state_preparation: QuantumStatePreparation,
213    pub reconstruction_strategy: ReconstructionStrategy,
214}
215
216#[derive(Debug, Clone)]
217pub struct QuantumEncoderLayer {
218    pub layer_type: EncoderLayerType,
219    pub quantum_parameters: Array1<f64>,
220    pub entanglement_connectivity: Array2<bool>,
221    pub quantum_gates: Vec<QuantumGate>,
222}
223
224#[derive(Debug, Clone)]
225pub enum EncoderLayerType {
226    QuantumAttention {
227        num_heads: usize,
228        head_dim: usize,
229        attention_type: QuantumAttentionType,
230    },
231    QuantumConvolution {
232        kernel_size: usize,
233        stride: usize,
234        padding: usize,
235    },
236    QuantumFeedForward {
237        hidden_dim: usize,
238        activation: QuantumActivation,
239    },
240    QuantumPooling {
241        pool_type: QuantumPoolingType,
242        kernel_size: usize,
243    },
244}
245
246#[derive(Debug, Clone)]
247pub enum QuantumAttentionType {
248    SelfAttention,
249    CrossAttention,
250    EntanglementAttention,
251    QuantumFourierAttention,
252}
253
254#[derive(Debug, Clone)]
255pub enum QuantumPoolingType {
256    QuantumMax,
257    QuantumAverage,
258    EntanglementPooling,
259    QuantumGlobal,
260}
261
262#[derive(Debug, Clone)]
263pub struct QuantumDecoderLayer {
264    pub layer_type: DecoderLayerType,
265    pub quantum_parameters: Array1<f64>,
266    pub inverse_operation: InverseOperation,
267}
268
269#[derive(Debug, Clone)]
270pub enum DecoderLayerType {
271    QuantumTransposeConv {
272        kernel_size: usize,
273        stride: usize,
274        output_padding: usize,
275    },
276    QuantumUpsampling {
277        scale_factor: usize,
278        mode: UpsamplingMode,
279    },
280    QuantumReconstruction {
281        reconstruction_type: ReconstructionType,
282    },
283}
284
285#[derive(Debug, Clone)]
286pub enum UpsamplingMode {
287    Nearest,
288    Linear,
289    QuantumInterpolation,
290    EntanglementUpsampling,
291}
292
293#[derive(Debug, Clone)]
294pub enum ReconstructionType {
295    Direct,
296    Probabilistic,
297    QuantumSuperposition,
298    EntanglementReconstruction,
299}
300
301#[derive(Debug, Clone)]
302pub struct InverseOperation {
303    pub operation_type: InverseOperationType,
304    pub quantum_inversion_method: QuantumInversionMethod,
305    pub fidelity_target: f64,
306}
307
308#[derive(Debug, Clone)]
309pub enum InverseOperationType {
310    UnitaryInverse,
311    PseudoInverse,
312    QuantumInverse,
313    ApproximateInverse,
314}
315
316#[derive(Debug, Clone)]
317pub enum QuantumInversionMethod {
318    DirectInversion,
319    IterativeInversion,
320    QuantumPhaseEstimation,
321    VariationalInversion,
322}
323
324#[derive(Debug, Clone)]
325pub struct QuantumStateEvolution {
326    pub evolution_type: EvolutionType,
327    pub time_steps: Array1<f64>,
328    pub hamiltonian: Array2<Complex64>,
329    pub decoherence_model: DecoherenceModel,
330}
331
332#[derive(Debug, Clone)]
333pub enum EvolutionType {
334    Unitary,
335    NonUnitary,
336    Adiabatic,
337    Sudden,
338}
339
340#[derive(Debug, Clone)]
341pub struct DecoherenceModel {
342    pub t1_time: f64,
343    pub t2_time: f64,
344    pub gate_error_rate: f64,
345    pub measurement_error_rate: f64,
346}
347
348#[derive(Debug, Clone)]
349pub struct QuantumStatePreparation {
350    pub preparation_method: PreparationMethod,
351    pub target_state: QuantumState,
352    pub fidelity_threshold: f64,
353}
354
355#[derive(Debug, Clone)]
356pub enum PreparationMethod {
357    DirectPreparation,
358    VariationalPreparation,
359    AdiabaticPreparation,
360    QuantumApproximateOptimization,
361}
362
363#[derive(Debug, Clone)]
364pub enum ReconstructionStrategy {
365    FullReconstruction,
366    PartialReconstruction,
367    QuantumTomography,
368    ShadowReconstruction,
369}
370
371#[derive(Debug, Clone)]
372pub struct QuantumProjector {
373    pub projection_layers: Vec<QuantumProjectionLayer>,
374    pub output_normalization: bool,
375    pub quantum_enhancement: f64,
376}
377
378#[derive(Debug, Clone)]
379pub struct QuantumMomentum {
380    pub momentum_type: MomentumType,
381    pub update_rule: UpdateRule,
382    pub quantum_state_momentum: bool,
383}
384
385#[derive(Debug, Clone)]
386pub enum MomentumType {
387    Classical,
388    Quantum,
389    Entanglement,
390    Phase,
391}
392
393#[derive(Debug, Clone)]
394pub enum UpdateRule {
395    Standard,
396    Nesterov,
397    QuantumAdam,
398    EntanglementMomentum,
399}
400
401#[derive(Debug, Clone)]
402pub struct QuantumEMAConfig {
403    pub ema_rate: f64,
404    pub quantum_ema: bool,
405    pub entanglement_preservation: f64,
406    pub phase_tracking: bool,
407}
408
409#[derive(Debug, Clone)]
410pub struct QuantumKeyEncoder {
411    pub encoder_architecture: QuantumEncoder,
412    pub key_generation_method: KeyGenerationMethod,
413    pub quantum_key_evolution: QuantumKeyEvolution,
414}
415
416#[derive(Debug, Clone)]
417pub enum KeyGenerationMethod {
418    Standard,
419    QuantumRandom,
420    EntanglementBased,
421    PhaseEncoded,
422}
423
424#[derive(Debug, Clone)]
425pub struct QuantumKeyEvolution {
426    pub evolution_strategy: EvolutionStrategy,
427    pub update_frequency: usize,
428    pub quantum_coherence_preservation: f64,
429}
430
431#[derive(Debug, Clone)]
432pub enum EvolutionStrategy {
433    Momentum,
434    ExponentialMovingAverage,
435    QuantumAdiabatic,
436    EntanglementEvolution,
437}
438
439#[derive(Debug, Clone)]
440pub struct ContrastiveConfig {
441    pub positive_pair_strategy: PositivePairStrategy,
442    pub negative_pair_strategy: NegativePairStrategy,
443    pub loss_function: ContrastiveLossFunction,
444    pub temperature_scheduling: TemperatureScheduling,
445}
446
447#[derive(Debug, Clone)]
448pub enum PositivePairStrategy {
449    Augmentation,
450    Temporal,
451    Semantic,
452    QuantumSuperposition,
453    EntanglementBased,
454}
455
456#[derive(Debug, Clone)]
457pub enum NegativePairStrategy {
458    Random,
459    HardNegatives,
460    QuantumSampling,
461    EntanglementDistance,
462}
463
464#[derive(Debug, Clone)]
465pub enum ContrastiveLossFunction {
466    InfoNCE,
467    NTXent,
468    QuantumContrastive,
469    EntanglementContrastive,
470    FidelityContrastive,
471}
472
473#[derive(Debug, Clone)]
474pub enum TemperatureScheduling {
475    Fixed,
476    Cosine,
477    Exponential,
478    QuantumAdaptive,
479}
480
481#[derive(Debug, Clone)]
482pub struct MaskedLearningConfig {
483    pub mask_ratio: f64,
484    pub mask_strategy: MaskStrategy,
485    pub reconstruction_target: ReconstructionTarget,
486    pub quantum_mask_evolution: QuantumMaskEvolution,
487}
488
489#[derive(Debug, Clone)]
490pub enum MaskStrategy {
491    Random,
492    Block,
493    Attention,
494    QuantumSuperposition,
495    EntanglementMask,
496}
497
498#[derive(Debug, Clone)]
499pub enum ReconstructionTarget {
500    RawPixels,
501    Features,
502    Tokens,
503    QuantumStates,
504    EntanglementPatterns,
505}
506
507#[derive(Debug, Clone)]
508pub struct QuantumMaskEvolution {
509    pub evolution_type: MaskEvolutionType,
510    pub adaptation_rate: f64,
511    pub quantum_coherence_preservation: f64,
512}
513
514#[derive(Debug, Clone)]
515pub enum MaskEvolutionType {
516    Static,
517    Dynamic,
518    Adaptive,
519    QuantumEvolution,
520}
521
522#[derive(Debug, Clone)]
523pub struct MomentumConfig {
524    pub momentum_coefficient: f64,
525    pub target_network_update: TargetNetworkUpdate,
526    pub quantum_momentum_preservation: f64,
527}
528
529#[derive(Debug, Clone)]
530pub enum TargetNetworkUpdate {
531    Hard,
532    Soft,
533    QuantumSmooth,
534    EntanglementPreserving,
535}
536
537#[derive(Debug, Clone)]
538pub struct ClusteringConfig {
539    pub num_clusters: usize,
540    pub clustering_method: QuantumClusteringMethod,
541    pub prototype_update_strategy: PrototypeUpdateStrategy,
542    pub quantum_assignment_method: QuantumAssignmentMethod,
543}
544
545#[derive(Debug, Clone)]
546pub enum QuantumClusteringMethod {
547    QuantumKMeans,
548    QuantumSpectral,
549    EntanglementClustering,
550    QuantumHierarchical,
551}
552
553#[derive(Debug, Clone)]
554pub enum PrototypeUpdateStrategy {
555    MovingAverage,
556    Gradient,
557    QuantumUpdate,
558    EntanglementUpdate,
559}
560
561#[derive(Debug, Clone)]
562pub enum QuantumAssignmentMethod {
563    SoftAssignment,
564    SinkhornKnopp,
565    QuantumSinkhorn,
566    EntanglementAssignment,
567}
568
569/// Main Quantum Self-Supervised Learning Framework
570pub struct QuantumSelfSupervisedLearner {
571    config: QuantumSelfSupervisedConfig,
572
573    // Core components
574    online_network: QuantumOnlineNetwork,
575    target_network: Option<QuantumTargetNetwork>,
576
577    // Quantum components
578    quantum_augmenter: QuantumAugmenter,
579    quantum_encoder: QuantumEncoder,
580    quantum_projector: QuantumProjector,
581    quantum_predictor: Option<QuantumPredictor>,
582
583    // Self-supervised learning components
584    contrastive_learner: Option<QuantumContrastiveLearner>,
585    masked_learner: Option<QuantumMaskedLearner>,
586    momentum_learner: Option<QuantumMomentumLearner>,
587    clustering_learner: Option<QuantumClusteringLearner>,
588
589    // Training state
590    training_history: Vec<SSLTrainingMetrics>,
591    quantum_ssl_metrics: QuantumSSLMetrics,
592
593    // Optimization state
594    optimizer_state: SSLOptimizerState,
595    lr_scheduler: LearningRateScheduler,
596}
597
598#[derive(Debug, Clone)]
599pub struct QuantumOnlineNetwork {
600    encoder: QuantumEncoder,
601    projector: QuantumProjector,
602    predictor: Option<QuantumPredictor>,
603    quantum_parameters: Array1<f64>,
604}
605
606#[derive(Debug, Clone)]
607pub struct QuantumTargetNetwork {
608    encoder: QuantumEncoder,
609    projector: QuantumProjector,
610    momentum_coefficient: f64,
611    quantum_ema_state: QuantumEMAState,
612}
613
614#[derive(Debug, Clone)]
615pub struct QuantumEMAState {
616    quantum_parameters: Array1<f64>,
617    entanglement_state: Array2<Complex64>,
618    phase_tracking: Array1<Complex64>,
619    fidelity_history: Vec<f64>,
620}
621
622#[derive(Debug, Clone)]
623pub struct QuantumAugmenter {
624    augmentation_strategies: Vec<QuantumAugmentationStrategy>,
625    augmentation_strength: f64,
626    quantum_coherence_preservation: f64,
627}
628
629#[derive(Debug, Clone)]
630pub enum QuantumAugmentationStrategy {
631    QuantumRotation {
632        axes: Vec<RotationAxis>,
633    },
634    QuantumNoise {
635        noise_type: NoiseType,
636        strength: f64,
637    },
638    EntanglementCorruption {
639        corruption_rate: f64,
640    },
641    PhaseShift {
642        phase_range: f64,
643    },
644    QuantumMixup {
645        alpha: f64,
646    },
647    QuantumCutout {
648        mask_size: f64,
649    },
650    SuperpositionAugmentation {
651        superposition_strength: f64,
652    },
653}
654
655#[derive(Debug, Clone)]
656pub enum RotationAxis {
657    X,
658    Y,
659    Z,
660    Custom { direction: Array1<f64> },
661}
662
663#[derive(Debug, Clone)]
664pub enum NoiseType {
665    Gaussian,
666    Poisson,
667    QuantumDecoherence,
668    EntanglementNoise,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumPredictor {
673    prediction_layers: Vec<QuantumPredictionLayer>,
674    stop_gradient: bool,
675    quantum_prediction_strategy: QuantumPredictionStrategy,
676}
677
678#[derive(Debug, Clone)]
679pub struct QuantumPredictionLayer {
680    layer_type: PredictionLayerType,
681    quantum_parameters: Array1<f64>,
682    activation: QuantumActivation,
683}
684
685#[derive(Debug, Clone)]
686pub enum PredictionLayerType {
687    Linear { input_dim: usize, output_dim: usize },
688    Quantum { num_qubits: usize },
689    Hybrid { quantum_ratio: f64 },
690}
691
692#[derive(Debug, Clone)]
693pub enum QuantumPredictionStrategy {
694    Direct,
695    Probabilistic,
696    Superposition,
697    Entanglement,
698}
699
700#[derive(Debug, Clone)]
701pub struct QuantumContrastiveLearner {
702    similarity_computer: QuantumSimilarityComputer,
703    loss_computer: ContrastiveLossComputer,
704    negative_sampler: QuantumNegativeSampler,
705    temperature_controller: TemperatureController,
706}
707
708#[derive(Debug, Clone)]
709pub struct QuantumSimilarityComputer {
710    similarity_metric: QuantumSimilarityMetric,
711    quantum_dot_product: QuantumDotProduct,
712    entanglement_similarity: EntanglementSimilarity,
713}
714
715#[derive(Debug, Clone)]
716pub struct QuantumDotProduct {
717    normalization: bool,
718    quantum_enhancement: f64,
719    phase_aware: bool,
720}
721
722#[derive(Debug, Clone)]
723pub struct EntanglementSimilarity {
724    entanglement_measure: EntanglementMeasure,
725    similarity_threshold: f64,
726    quantum_distance_metric: QuantumDistanceMetric,
727}
728
729#[derive(Debug, Clone)]
730pub enum EntanglementMeasure {
731    Concurrence,
732    Negativity,
733    EntanglementEntropy,
734    QuantumMutualInformation,
735}
736
737#[derive(Debug, Clone)]
738pub enum QuantumDistanceMetric {
739    Fidelity,
740    TraceDistance,
741    HilbertSchmidt,
742    Bures,
743}
744
745#[derive(Debug, Clone)]
746pub struct ContrastiveLossComputer {
747    loss_function: ContrastiveLossFunction,
748    temperature: f64,
749    quantum_loss_enhancement: f64,
750}
751
752#[derive(Debug, Clone)]
753pub struct QuantumNegativeSampler {
754    sampling_strategy: NegativeSamplingStrategy,
755    num_negatives: usize,
756    quantum_sampling_bias: f64,
757}
758
759#[derive(Debug, Clone)]
760pub struct TemperatureController {
761    scheduling: TemperatureScheduling,
762    current_temperature: f64,
763    quantum_temperature_adaptation: bool,
764}
765
766#[derive(Debug, Clone)]
767pub struct QuantumMaskedLearner {
768    masking_engine: QuantumMaskingEngine,
769    reconstruction_network: QuantumReconstructionNetwork,
770    loss_computer: MaskedLossComputer,
771}
772
773#[derive(Debug, Clone)]
774pub struct QuantumMaskingEngine {
775    masking_strategy: QuantumMaskingStrategy,
776    mask_generator: QuantumMaskGenerator,
777    mask_evolution: QuantumMaskEvolution,
778}
779
780#[derive(Debug, Clone)]
781pub struct QuantumMaskGenerator {
782    generator_type: MaskGeneratorType,
783    quantum_randomness: QuantumRandomness,
784    coherence_preservation: f64,
785}
786
787#[derive(Debug, Clone)]
788pub enum MaskGeneratorType {
789    Random,
790    Structured,
791    Learned,
792    QuantumSuperposition,
793}
794
795#[derive(Debug, Clone)]
796pub struct QuantumRandomness {
797    source: RandomnessSource,
798    entropy_level: f64,
799    quantum_true_randomness: bool,
800}
801
802#[derive(Debug, Clone)]
803pub enum RandomnessSource {
804    Classical,
805    QuantumMeasurement,
806    QuantumDecoherence,
807    EntanglementCollapse,
808}
809
810#[derive(Debug, Clone)]
811pub struct QuantumReconstructionNetwork {
812    reconstruction_layers: Vec<QuantumReconstructionLayer>,
813    output_activation: QuantumActivation,
814    quantum_fidelity_target: f64,
815}
816
817#[derive(Debug, Clone)]
818pub struct QuantumReconstructionLayer {
819    layer_type: ReconstructionLayerType,
820    quantum_parameters: Array1<f64>,
821    reconstruction_strategy: ReconstructionStrategy,
822}
823
824#[derive(Debug, Clone)]
825pub enum ReconstructionLayerType {
826    Dense { input_dim: usize, output_dim: usize },
827    Quantum { num_qubits: usize },
828    Hybrid { quantum_classical_ratio: f64 },
829}
830
831#[derive(Debug, Clone)]
832pub struct MaskedLossComputer {
833    reconstruction_objective: ReconstructionObjective,
834    quantum_fidelity_weight: f64,
835    entanglement_preservation_weight: f64,
836}
837
838#[derive(Debug, Clone)]
839pub struct QuantumMomentumLearner {
840    momentum_updater: QuantumMomentumUpdater,
841    target_network: QuantumTargetNetwork,
842    momentum_scheduler: MomentumScheduler,
843}
844
845#[derive(Debug, Clone)]
846pub struct QuantumMomentumUpdater {
847    update_strategy: MomentumUpdateStrategy,
848    quantum_momentum_preservation: f64,
849    entanglement_momentum: EntanglementMomentum,
850}
851
852#[derive(Debug, Clone)]
853pub enum MomentumUpdateStrategy {
854    Standard,
855    Quantum,
856    Entanglement,
857    PhaseCoherent,
858}
859
860#[derive(Debug, Clone)]
861pub struct EntanglementMomentum {
862    entanglement_decay: f64,
863    momentum_entanglement: f64,
864    coherence_preservation: f64,
865}
866
867#[derive(Debug, Clone)]
868pub struct MomentumScheduler {
869    scheduling_strategy: MomentumSchedulingStrategy,
870    current_momentum: f64,
871    quantum_adaptive: bool,
872}
873
874#[derive(Debug, Clone)]
875pub enum MomentumSchedulingStrategy {
876    Fixed,
877    Cosine,
878    Exponential,
879    QuantumAdaptive,
880}
881
882#[derive(Debug, Clone)]
883pub struct QuantumClusteringLearner {
884    prototype_bank: QuantumPrototypeBank,
885    assignment_computer: QuantumAssignmentComputer,
886    sinkhorn_algorithm: QuantumSinkhornAlgorithm,
887}
888
889#[derive(Debug, Clone)]
890pub struct QuantumPrototypeBank {
891    prototypes: Array2<f64>,
892    quantum_prototypes: Array2<Complex64>,
893    prototype_evolution: PrototypeEvolution,
894}
895
896#[derive(Debug, Clone)]
897pub struct PrototypeEvolution {
898    evolution_strategy: PrototypeEvolutionStrategy,
899    learning_rate: f64,
900    quantum_coherence_preservation: f64,
901}
902
903#[derive(Debug, Clone)]
904pub enum PrototypeEvolutionStrategy {
905    GradientDescent,
906    MovingAverage,
907    QuantumEvolution,
908    EntanglementUpdate,
909}
910
911#[derive(Debug, Clone)]
912pub struct QuantumAssignmentComputer {
913    assignment_method: QuantumAssignmentMethod,
914    temperature: f64,
915    quantum_assignment_enhancement: f64,
916}
917
918#[derive(Debug, Clone)]
919pub struct QuantumSinkhornAlgorithm {
920    num_iterations: usize,
921    regularization: f64,
922    quantum_sinkhorn: bool,
923    entanglement_regularization: f64,
924}
925
926/// Training and evaluation structures
927#[derive(Debug, Clone)]
928pub struct SSLTrainingMetrics {
929    pub epoch: usize,
930    pub loss: f64,
931    pub contrastive_loss: f64,
932    pub reconstruction_loss: f64,
933    pub quantum_fidelity: f64,
934    pub entanglement_measure: f64,
935    pub representation_quality: f64,
936    pub linear_evaluation_accuracy: f64,
937    pub quantum_advantage_ratio: f64,
938}
939
940#[derive(Debug, Clone)]
941pub struct QuantumSSLMetrics {
942    pub average_entanglement: f64,
943    pub coherence_preservation: f64,
944    pub quantum_feature_quality: f64,
945    pub representation_dimensionality: f64,
946    pub transfer_performance: f64,
947    pub quantum_speedup_factor: f64,
948    pub ssl_convergence_rate: f64,
949}
950
951#[derive(Debug, Clone)]
952pub struct SSLOptimizerState {
953    pub learning_rate: f64,
954    pub momentum: f64,
955    pub weight_decay: f64,
956    pub quantum_parameter_lr: f64,
957    pub entanglement_preservation_weight: f64,
958}
959
960#[derive(Debug, Clone)]
961pub struct LearningRateScheduler {
962    pub scheduler_type: LRSchedulerType,
963    pub current_lr: f64,
964    pub warmup_epochs: usize,
965    pub quantum_adaptive: bool,
966}
967
968#[derive(Debug, Clone)]
969pub enum LRSchedulerType {
970    Cosine,
971    StepLR,
972    ExponentialLR,
973    QuantumAdaptive,
974}
975
976// Additional supporting structures
977#[derive(Debug, Clone)]
978pub struct QuantumGate {
979    pub gate_type: QuantumGateType,
980    pub target_qubits: Vec<usize>,
981    pub control_qubits: Vec<usize>,
982    pub parameters: Array1<f64>,
983}
984
985#[derive(Debug, Clone)]
986pub enum QuantumGateType {
987    Rotation { axis: RotationAxis },
988    Entangling { coupling_strength: f64 },
989    Measurement { basis: MeasurementBasis },
990    Custom { gate_matrix: Array2<Complex64> },
991}
992
993#[derive(Debug, Clone)]
994pub enum MeasurementBasis {
995    Computational,
996    PauliX,
997    PauliY,
998    PauliZ,
999    Bell,
1000    Custom { basis_vectors: Array2<Complex64> },
1001}
1002
1003#[derive(Debug, Clone)]
1004pub enum MeasurementStrategy {
1005    ExpectationValue,
1006    ProbabilityDistribution,
1007    QuantumStateVector,
1008    PartialMeasurement,
1009}
1010
1011#[derive(Debug, Clone)]
1012pub enum EntanglementPattern {
1013    Linear,
1014    Circular,
1015    AllToAll,
1016    Hierarchical { levels: usize },
1017    Random { probability: f64 },
1018    Custom { adjacency_matrix: Array2<bool> },
1019}
1020
1021#[derive(Debug, Clone)]
1022pub struct QuantumState {
1023    pub amplitudes: Array1<Complex64>,
1024    pub phases: Array1<Complex64>,
1025    pub entanglement_measure: f64,
1026    pub coherence_time: f64,
1027    pub fidelity: f64,
1028}
1029
1030impl Default for QuantumState {
1031    fn default() -> Self {
1032        Self {
1033            amplitudes: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1034            phases: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1035            entanglement_measure: 0.0,
1036            coherence_time: 1.0,
1037            fidelity: 1.0,
1038        }
1039    }
1040}
1041
1042// Main implementation
1043impl QuantumSelfSupervisedLearner {
1044    /// Create a new Quantum Self-Supervised Learner
1045    pub fn new(config: QuantumSelfSupervisedConfig) -> Result<Self> {
1046        println!("🧠 Initializing Quantum Self-Supervised Learning Framework in UltraThink Mode");
1047
1048        // Initialize quantum encoder
1049        let quantum_encoder = Self::create_quantum_encoder(&config)?;
1050
1051        // Initialize quantum projector
1052        let quantum_projector = Self::create_quantum_projector(&config)?;
1053
1054        // Initialize online network
1055        let online_network = QuantumOnlineNetwork {
1056            encoder: quantum_encoder.clone(),
1057            projector: quantum_projector.clone(),
1058            predictor: if matches!(config.ssl_method, QuantumSSLMethod::QuantumSimSiam { .. }) {
1059                Some(Self::create_quantum_predictor(&config)?)
1060            } else {
1061                None
1062            },
1063            quantum_parameters: Array1::zeros(config.num_qubits * 6),
1064        };
1065
1066        // Initialize target network (if needed)
1067        let target_network = if Self::requires_target_network(&config.ssl_method) {
1068            Some(QuantumTargetNetwork {
1069                encoder: quantum_encoder.clone(),
1070                projector: quantum_projector.clone(),
1071                momentum_coefficient: config.momentum_coefficient,
1072                quantum_ema_state: QuantumEMAState {
1073                    quantum_parameters: Array1::zeros(config.num_qubits * 6),
1074                    entanglement_state: Array2::<f64>::eye(config.num_qubits)
1075                        .mapv(|x| Complex64::new(x, 0.0)),
1076                    phase_tracking: Array1::ones(config.num_qubits)
1077                        .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1078                    fidelity_history: Vec::new(),
1079                },
1080            })
1081        } else {
1082            None
1083        };
1084
1085        // Initialize quantum augmenter
1086        let quantum_augmenter = Self::create_quantum_augmenter(&config)?;
1087
1088        // Initialize SSL method-specific components
1089        let contrastive_learner = if Self::uses_contrastive_learning(&config.ssl_method) {
1090            Some(Self::create_contrastive_learner(&config)?)
1091        } else {
1092            None
1093        };
1094
1095        let masked_learner = if Self::uses_masked_learning(&config.ssl_method) {
1096            Some(Self::create_masked_learner(&config)?)
1097        } else {
1098            None
1099        };
1100
1101        let momentum_learner = if Self::uses_momentum_learning(&config.ssl_method) {
1102            Some(Self::create_momentum_learner(&config)?)
1103        } else {
1104            None
1105        };
1106
1107        let clustering_learner = if Self::uses_clustering(&config.ssl_method) {
1108            Some(Self::create_clustering_learner(&config)?)
1109        } else {
1110            None
1111        };
1112
1113        // Initialize metrics and optimization
1114        let quantum_ssl_metrics = QuantumSSLMetrics::default();
1115        let optimizer_state = SSLOptimizerState::default();
1116        let lr_scheduler = LearningRateScheduler::default();
1117
1118        Ok(Self {
1119            config,
1120            online_network,
1121            target_network,
1122            quantum_augmenter,
1123            quantum_encoder,
1124            quantum_projector,
1125            quantum_predictor: None,
1126            contrastive_learner,
1127            masked_learner,
1128            momentum_learner,
1129            clustering_learner,
1130            training_history: Vec::new(),
1131            quantum_ssl_metrics,
1132            optimizer_state,
1133            lr_scheduler,
1134        })
1135    }
1136
1137    /// Learn representations from unlabeled data
1138    pub fn learn_representations(
1139        &mut self,
1140        data: &Array2<f64>,
1141        config: &SSLTrainingConfig,
1142    ) -> Result<SSLLearningOutput> {
1143        println!("🚀 Starting Quantum Self-Supervised Learning");
1144
1145        let mut training_losses = Vec::new();
1146        let mut representation_quality_history = Vec::new();
1147        let mut quantum_metrics_history = Vec::new();
1148
1149        for epoch in 0..config.epochs {
1150            let epoch_metrics = self.train_epoch(data, config, epoch)?;
1151
1152            training_losses.push(epoch_metrics.loss);
1153            representation_quality_history.push(epoch_metrics.representation_quality);
1154
1155            // Update quantum metrics
1156            self.update_quantum_ssl_metrics(&epoch_metrics)?;
1157            quantum_metrics_history.push(self.quantum_ssl_metrics.clone());
1158
1159            // Update learning rate and momentum
1160            self.update_learning_schedule(epoch, &epoch_metrics)?;
1161
1162            // Update target network (if applicable)
1163            if self.target_network.is_some() {
1164                let target_net_clone = self.target_network.as_ref().unwrap().clone();
1165                self.update_target_network_internal(&target_net_clone)?;
1166            }
1167
1168            self.training_history.push(epoch_metrics.clone());
1169
1170            // Logging
1171            if epoch % config.log_interval == 0 {
1172                println!(
1173                    "Epoch {}: Loss = {:.6}, Rep Quality = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1174                    epoch,
1175                    epoch_metrics.loss,
1176                    epoch_metrics.representation_quality,
1177                    epoch_metrics.quantum_fidelity,
1178                    epoch_metrics.entanglement_measure,
1179                );
1180            }
1181        }
1182
1183        // Extract learned representations
1184        let learned_representations = self.extract_representations(data)?;
1185
1186        // Evaluate representation quality
1187        let evaluation_results = self.evaluate_representations(&learned_representations, data)?;
1188
1189        Ok(SSLLearningOutput {
1190            learned_representations,
1191            training_losses,
1192            representation_quality_history,
1193            quantum_metrics_history,
1194            evaluation_results,
1195            final_ssl_metrics: self.quantum_ssl_metrics.clone(),
1196        })
1197    }
1198
1199    /// Train single epoch
1200    fn train_epoch(
1201        &mut self,
1202        data: &Array2<f64>,
1203        config: &SSLTrainingConfig,
1204        epoch: usize,
1205    ) -> Result<SSLTrainingMetrics> {
1206        let mut epoch_loss = 0.0;
1207        let mut contrastive_loss_sum = 0.0;
1208        let mut reconstruction_loss_sum = 0.0;
1209        let mut quantum_fidelity_sum = 0.0;
1210        let mut entanglement_sum = 0.0;
1211        let mut num_batches = 0;
1212
1213        let num_samples = data.nrows();
1214
1215        for batch_start in (0..num_samples).step_by(config.batch_size) {
1216            let batch_end = (batch_start + config.batch_size).min(num_samples);
1217            let batch_data = data.slice(scirs2_core::ndarray::s![batch_start..batch_end, ..]);
1218
1219            let batch_metrics = self.train_batch(&batch_data, config)?;
1220
1221            epoch_loss += batch_metrics.loss;
1222            contrastive_loss_sum += batch_metrics.contrastive_loss;
1223            reconstruction_loss_sum += batch_metrics.reconstruction_loss;
1224            quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1225            entanglement_sum += batch_metrics.entanglement_measure;
1226            num_batches += 1;
1227        }
1228
1229        let num_batches_f = num_batches as f64;
1230        Ok(SSLTrainingMetrics {
1231            epoch,
1232            loss: epoch_loss / num_batches_f,
1233            contrastive_loss: contrastive_loss_sum / num_batches_f,
1234            reconstruction_loss: reconstruction_loss_sum / num_batches_f,
1235            quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1236            entanglement_measure: entanglement_sum / num_batches_f,
1237            representation_quality: self.estimate_representation_quality()?,
1238            linear_evaluation_accuracy: 0.0, // Would be computed with downstream task
1239            quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1240        })
1241    }
1242
1243    /// Train single batch
1244    fn train_batch(
1245        &mut self,
1246        batch_data: &scirs2_core::ndarray::ArrayView2<f64>,
1247        config: &SSLTrainingConfig,
1248    ) -> Result<SSLTrainingMetrics> {
1249        let mut batch_loss = 0.0;
1250        let mut contrastive_loss = 0.0;
1251        let mut reconstruction_loss = 0.0;
1252        let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1253
1254        // Process each sample in the batch
1255        for sample_idx in 0..batch_data.nrows() {
1256            let sample = batch_data.row(sample_idx).to_owned();
1257
1258            // Apply quantum augmentations
1259            let augmented_views = self
1260                .quantum_augmenter
1261                .generate_augmented_views(&sample, 2)?;
1262
1263            // Forward pass through the method-specific learning
1264            let learning_output = match &self.config.ssl_method {
1265                QuantumSSLMethod::QuantumContrastive { .. } => {
1266                    self.contrastive_forward(&augmented_views)?
1267                }
1268                QuantumSSLMethod::QuantumMasked { .. } => self.masked_forward(&sample)?,
1269                QuantumSSLMethod::QuantumSimCLR { .. } => self.simclr_forward(&augmented_views)?,
1270                QuantumSSLMethod::QuantumSimSiam { .. } => {
1271                    self.simsiam_forward(&augmented_views)?
1272                }
1273                QuantumSSLMethod::QuantumBYOL { .. } => self.byol_forward(&augmented_views)?,
1274                QuantumSSLMethod::QuantumSwAV { .. } => self.swav_forward(&augmented_views)?,
1275                QuantumSSLMethod::QuantumMoCo { .. } => self.moco_forward(&augmented_views)?,
1276                QuantumSSLMethod::QuantumBarlowTwins { .. } => {
1277                    self.barlow_twins_forward(&augmented_views)?
1278                }
1279            };
1280
1281            batch_loss += learning_output.total_loss;
1282            contrastive_loss += learning_output.contrastive_loss;
1283            reconstruction_loss += learning_output.reconstruction_loss;
1284            quantum_metrics_sum.accumulate(&learning_output.quantum_metrics);
1285
1286            // Backward pass and parameter update (placeholder)
1287            self.update_parameters(&learning_output, config)?;
1288        }
1289
1290        let num_samples = batch_data.nrows() as f64;
1291        Ok(SSLTrainingMetrics {
1292            epoch: 0, // Will be set by caller
1293            loss: batch_loss / num_samples,
1294            contrastive_loss: contrastive_loss / num_samples,
1295            reconstruction_loss: reconstruction_loss / num_samples,
1296            quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1297            entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1298            representation_quality: quantum_metrics_sum.representation_quality / num_samples,
1299            linear_evaluation_accuracy: 0.0,
1300            quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1301        })
1302    }
1303
1304    /// Helper method implementations (simplified for space)
1305    fn create_quantum_encoder(config: &QuantumSelfSupervisedConfig) -> Result<QuantumEncoder> {
1306        let layers = vec![QuantumEncoderLayer {
1307            layer_type: EncoderLayerType::QuantumFeedForward {
1308                hidden_dim: 128,
1309                activation: QuantumActivation::QuantumReLU,
1310            },
1311            quantum_parameters: Array1::zeros(config.num_qubits * 3),
1312            entanglement_connectivity: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
1313            quantum_gates: Vec::new(),
1314        }];
1315
1316        let layers_len = layers.len();
1317
1318        Ok(QuantumEncoder {
1319            layers,
1320            quantum_state_evolution: QuantumStateEvolution {
1321                evolution_type: EvolutionType::Unitary,
1322                time_steps: Array1::linspace(0.0, 1.0, 10),
1323                hamiltonian: Array2::<f64>::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
1324                decoherence_model: DecoherenceModel::default(),
1325            },
1326            measurement_points: vec![0, layers_len - 1],
1327        })
1328    }
1329
1330    fn create_quantum_projector(config: &QuantumSelfSupervisedConfig) -> Result<QuantumProjector> {
1331        Ok(QuantumProjector {
1332            projection_layers: vec![QuantumProjectionLayer {
1333                layer_type: ProjectionLayerType::QuantumLinear {
1334                    input_dim: config.representation_dim,
1335                    output_dim: config.representation_dim / 2,
1336                },
1337                quantum_parameters: Array1::zeros(config.num_qubits * 2),
1338                entanglement_pattern: EntanglementPattern::Linear,
1339                measurement_strategy: MeasurementStrategy::ExpectationValue,
1340            }],
1341            output_normalization: true,
1342            quantum_enhancement: config.quantum_enhancement_level,
1343        })
1344    }
1345
1346    fn create_quantum_predictor(config: &QuantumSelfSupervisedConfig) -> Result<QuantumPredictor> {
1347        Ok(QuantumPredictor {
1348            prediction_layers: vec![QuantumPredictionLayer {
1349                layer_type: PredictionLayerType::Linear {
1350                    input_dim: config.representation_dim / 2,
1351                    output_dim: config.representation_dim / 2,
1352                },
1353                quantum_parameters: Array1::zeros(config.num_qubits),
1354                activation: QuantumActivation::QuantumReLU,
1355            }],
1356            stop_gradient: true,
1357            quantum_prediction_strategy: QuantumPredictionStrategy::Direct,
1358        })
1359    }
1360
1361    fn create_quantum_augmenter(config: &QuantumSelfSupervisedConfig) -> Result<QuantumAugmenter> {
1362        Ok(QuantumAugmenter {
1363            augmentation_strategies: vec![
1364                QuantumAugmentationStrategy::QuantumRotation {
1365                    axes: vec![RotationAxis::X, RotationAxis::Y, RotationAxis::Z],
1366                },
1367                QuantumAugmentationStrategy::QuantumNoise {
1368                    noise_type: NoiseType::Gaussian,
1369                    strength: 0.1,
1370                },
1371                QuantumAugmentationStrategy::PhaseShift { phase_range: PI },
1372            ],
1373            augmentation_strength: 0.5,
1374            quantum_coherence_preservation: 0.9,
1375        })
1376    }
1377
1378    // Additional helper methods would be implemented here
1379    // (Simplified for space constraints)
1380
1381    fn requires_target_network(method: &QuantumSSLMethod) -> bool {
1382        matches!(
1383            method,
1384            QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1385        )
1386    }
1387
1388    fn uses_contrastive_learning(method: &QuantumSSLMethod) -> bool {
1389        matches!(
1390            method,
1391            QuantumSSLMethod::QuantumContrastive { .. }
1392                | QuantumSSLMethod::QuantumSimCLR { .. }
1393                | QuantumSSLMethod::QuantumMoCo { .. }
1394        )
1395    }
1396
1397    fn uses_masked_learning(method: &QuantumSSLMethod) -> bool {
1398        matches!(method, QuantumSSLMethod::QuantumMasked { .. })
1399    }
1400
1401    fn uses_momentum_learning(method: &QuantumSSLMethod) -> bool {
1402        matches!(
1403            method,
1404            QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1405        )
1406    }
1407
1408    fn uses_clustering(method: &QuantumSSLMethod) -> bool {
1409        matches!(method, QuantumSSLMethod::QuantumSwAV { .. })
1410    }
1411
1412    // Placeholder implementations for various SSL methods
1413    fn contrastive_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1414        Ok(SSLLearningOutputBatch::default())
1415    }
1416
1417    fn masked_forward(&self, _sample: &Array1<f64>) -> Result<SSLLearningOutputBatch> {
1418        Ok(SSLLearningOutputBatch::default())
1419    }
1420
1421    fn simclr_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1422        Ok(SSLLearningOutputBatch::default())
1423    }
1424
1425    fn simsiam_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1426        Ok(SSLLearningOutputBatch::default())
1427    }
1428
1429    fn byol_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1430        Ok(SSLLearningOutputBatch::default())
1431    }
1432
1433    fn swav_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1434        Ok(SSLLearningOutputBatch::default())
1435    }
1436
1437    fn moco_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1438        Ok(SSLLearningOutputBatch::default())
1439    }
1440
1441    fn barlow_twins_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1442        Ok(SSLLearningOutputBatch::default())
1443    }
1444
1445    // Additional method stubs
1446    fn create_contrastive_learner(
1447        _config: &QuantumSelfSupervisedConfig,
1448    ) -> Result<QuantumContrastiveLearner> {
1449        Ok(QuantumContrastiveLearner {
1450            similarity_computer: QuantumSimilarityComputer {
1451                similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1452                quantum_dot_product: QuantumDotProduct {
1453                    normalization: true,
1454                    quantum_enhancement: 1.0,
1455                    phase_aware: true,
1456                },
1457                entanglement_similarity: EntanglementSimilarity {
1458                    entanglement_measure: EntanglementMeasure::Concurrence,
1459                    similarity_threshold: 0.5,
1460                    quantum_distance_metric: QuantumDistanceMetric::Fidelity,
1461                },
1462            },
1463            loss_computer: ContrastiveLossComputer {
1464                loss_function: ContrastiveLossFunction::InfoNCE,
1465                temperature: 0.1,
1466                quantum_loss_enhancement: 1.0,
1467            },
1468            negative_sampler: QuantumNegativeSampler {
1469                sampling_strategy: NegativeSamplingStrategy::Random,
1470                num_negatives: 256,
1471                quantum_sampling_bias: 0.0,
1472            },
1473            temperature_controller: TemperatureController {
1474                scheduling: TemperatureScheduling::Fixed,
1475                current_temperature: 0.1,
1476                quantum_temperature_adaptation: false,
1477            },
1478        })
1479    }
1480
1481    fn create_masked_learner(
1482        _config: &QuantumSelfSupervisedConfig,
1483    ) -> Result<QuantumMaskedLearner> {
1484        Ok(QuantumMaskedLearner {
1485            masking_engine: QuantumMaskingEngine {
1486                masking_strategy: QuantumMaskingStrategy::Random {
1487                    mask_probability: 0.15,
1488                },
1489                mask_generator: QuantumMaskGenerator {
1490                    generator_type: MaskGeneratorType::Random,
1491                    quantum_randomness: QuantumRandomness {
1492                        source: RandomnessSource::Classical,
1493                        entropy_level: 1.0,
1494                        quantum_true_randomness: false,
1495                    },
1496                    coherence_preservation: 0.9,
1497                },
1498                mask_evolution: QuantumMaskEvolution {
1499                    evolution_type: MaskEvolutionType::Static,
1500                    adaptation_rate: 0.01,
1501                    quantum_coherence_preservation: 0.9,
1502                },
1503            },
1504            reconstruction_network: QuantumReconstructionNetwork {
1505                reconstruction_layers: Vec::new(),
1506                output_activation: QuantumActivation::QuantumSigmoid,
1507                quantum_fidelity_target: 0.95,
1508            },
1509            loss_computer: MaskedLossComputer {
1510                reconstruction_objective: ReconstructionObjective::MSE,
1511                quantum_fidelity_weight: 0.1,
1512                entanglement_preservation_weight: 0.05,
1513            },
1514        })
1515    }
1516
1517    fn create_momentum_learner(
1518        config: &QuantumSelfSupervisedConfig,
1519    ) -> Result<QuantumMomentumLearner> {
1520        // Create encoder and projector for target network
1521        let encoder = Self::create_quantum_encoder(config)?;
1522        let projector = Self::create_quantum_projector(config)?;
1523
1524        // Placeholder implementation
1525        Ok(QuantumMomentumLearner {
1526            momentum_updater: QuantumMomentumUpdater {
1527                update_strategy: MomentumUpdateStrategy::Standard,
1528                quantum_momentum_preservation: 0.9,
1529                entanglement_momentum: EntanglementMomentum {
1530                    entanglement_decay: 0.01,
1531                    momentum_entanglement: 0.5,
1532                    coherence_preservation: 0.9,
1533                },
1534            },
1535            target_network: QuantumTargetNetwork {
1536                encoder,
1537                projector,
1538                momentum_coefficient: 0.999,
1539                quantum_ema_state: QuantumEMAState {
1540                    quantum_parameters: Array1::zeros(16),
1541                    entanglement_state: Array2::<f64>::eye(16).mapv(|x| Complex64::new(x, 0.0)),
1542                    phase_tracking: Array1::ones(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1543                    fidelity_history: Vec::new(),
1544                },
1545            },
1546            momentum_scheduler: MomentumScheduler {
1547                scheduling_strategy: MomentumSchedulingStrategy::Fixed,
1548                current_momentum: 0.999,
1549                quantum_adaptive: false,
1550            },
1551        })
1552    }
1553
1554    fn create_clustering_learner(
1555        _config: &QuantumSelfSupervisedConfig,
1556    ) -> Result<QuantumClusteringLearner> {
1557        // Placeholder implementation
1558        Ok(QuantumClusteringLearner {
1559            prototype_bank: QuantumPrototypeBank {
1560                prototypes: Array2::zeros((256, 128)),
1561                quantum_prototypes: Array2::zeros((256, 128))
1562                    .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1563                prototype_evolution: PrototypeEvolution {
1564                    evolution_strategy: PrototypeEvolutionStrategy::MovingAverage,
1565                    learning_rate: 0.01,
1566                    quantum_coherence_preservation: 0.9,
1567                },
1568            },
1569            assignment_computer: QuantumAssignmentComputer {
1570                assignment_method: QuantumAssignmentMethod::SoftAssignment,
1571                temperature: 0.1,
1572                quantum_assignment_enhancement: 1.0,
1573            },
1574            sinkhorn_algorithm: QuantumSinkhornAlgorithm {
1575                num_iterations: 3,
1576                regularization: 0.05,
1577                quantum_sinkhorn: true,
1578                entanglement_regularization: 0.01,
1579            },
1580        })
1581    }
1582
1583    fn update_parameters(
1584        &mut self,
1585        _output: &SSLLearningOutputBatch,
1586        _config: &SSLTrainingConfig,
1587    ) -> Result<()> {
1588        // Placeholder for parameter updates
1589        Ok(())
1590    }
1591
1592    fn update_quantum_ssl_metrics(&mut self, _metrics: &SSLTrainingMetrics) -> Result<()> {
1593        // Placeholder for metrics updates
1594        Ok(())
1595    }
1596
1597    fn update_learning_schedule(
1598        &mut self,
1599        _epoch: usize,
1600        _metrics: &SSLTrainingMetrics,
1601    ) -> Result<()> {
1602        // Placeholder for schedule updates
1603        Ok(())
1604    }
1605
1606    fn update_target_network_internal(&mut self, _target_net: &QuantumTargetNetwork) -> Result<()> {
1607        // Placeholder for target network updates
1608        Ok(())
1609    }
1610
1611    fn extract_representations(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1612        // Simplified representation extraction
1613        Ok(data.clone())
1614    }
1615
1616    fn evaluate_representations(
1617        &self,
1618        _representations: &Array2<f64>,
1619        _data: &Array2<f64>,
1620    ) -> Result<RepresentationEvaluationResults> {
1621        Ok(RepresentationEvaluationResults::default())
1622    }
1623
1624    fn estimate_representation_quality(&self) -> Result<f64> {
1625        Ok(0.8) // Placeholder
1626    }
1627}
1628
1629// Implementation for QuantumAugmenter
1630impl QuantumAugmenter {
1631    pub fn generate_augmented_views(
1632        &self,
1633        sample: &Array1<f64>,
1634        num_views: usize,
1635    ) -> Result<Vec<Array1<f64>>> {
1636        let mut views = Vec::new();
1637
1638        for _ in 0..num_views {
1639            let mut augmented = sample.clone();
1640
1641            // Apply quantum augmentations
1642            for strategy in &self.augmentation_strategies {
1643                augmented = self.apply_augmentation_strategy(&augmented, strategy)?;
1644            }
1645
1646            views.push(augmented);
1647        }
1648
1649        Ok(views)
1650    }
1651
1652    fn apply_augmentation_strategy(
1653        &self,
1654        data: &Array1<f64>,
1655        strategy: &QuantumAugmentationStrategy,
1656    ) -> Result<Array1<f64>> {
1657        match strategy {
1658            QuantumAugmentationStrategy::QuantumNoise {
1659                noise_type: _,
1660                strength,
1661            } => {
1662                let mut rng = thread_rng();
1663                Ok(data.mapv(|x| x + rng.gen::<f64>() * strength))
1664            }
1665            QuantumAugmentationStrategy::PhaseShift { phase_range } => {
1666                let mut rng = thread_rng();
1667                let phase = rng.gen::<f64>() * phase_range;
1668                Ok(data.mapv(|x| x * phase.cos() - x * phase.sin()))
1669            }
1670            _ => Ok(data.clone()), // Simplified for other strategies
1671        }
1672    }
1673}
1674
1675// Output and configuration structures
1676#[derive(Debug, Clone)]
1677pub struct SSLTrainingConfig {
1678    pub epochs: usize,
1679    pub batch_size: usize,
1680    pub learning_rate: f64,
1681    pub weight_decay: f64,
1682    pub log_interval: usize,
1683    pub save_interval: usize,
1684    pub early_stopping_patience: usize,
1685}
1686
1687impl Default for SSLTrainingConfig {
1688    fn default() -> Self {
1689        Self {
1690            epochs: 100,
1691            batch_size: 256,
1692            learning_rate: 3e-4,
1693            weight_decay: 1e-4,
1694            log_interval: 10,
1695            save_interval: 50,
1696            early_stopping_patience: 15,
1697        }
1698    }
1699}
1700
1701#[derive(Debug, Clone)]
1702pub struct SSLLearningOutput {
1703    pub learned_representations: Array2<f64>,
1704    pub training_losses: Vec<f64>,
1705    pub representation_quality_history: Vec<f64>,
1706    pub quantum_metrics_history: Vec<QuantumSSLMetrics>,
1707    pub evaluation_results: RepresentationEvaluationResults,
1708    pub final_ssl_metrics: QuantumSSLMetrics,
1709}
1710
1711#[derive(Debug, Clone, Default)]
1712pub struct SSLLearningOutputBatch {
1713    pub total_loss: f64,
1714    pub contrastive_loss: f64,
1715    pub reconstruction_loss: f64,
1716    pub quantum_metrics: QuantumBatchMetrics,
1717}
1718
1719#[derive(Debug, Clone, Default)]
1720pub struct QuantumBatchMetrics {
1721    pub quantum_fidelity: f64,
1722    pub entanglement_measure: f64,
1723    pub representation_quality: f64,
1724    pub quantum_advantage_ratio: f64,
1725}
1726
1727impl QuantumBatchMetrics {
1728    pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1729        self.quantum_fidelity += other.quantum_fidelity;
1730        self.entanglement_measure += other.entanglement_measure;
1731        self.representation_quality += other.representation_quality;
1732        self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1733    }
1734}
1735
1736#[derive(Debug, Clone, Default)]
1737pub struct RepresentationEvaluationResults {
1738    pub linear_separability: f64,
1739    pub clustering_quality: f64,
1740    pub downstream_task_performance: f64,
1741    pub transfer_learning_performance: f64,
1742    pub quantum_representation_advantage: f64,
1743}
1744
1745// Default implementations
1746impl Default for QuantumSelfSupervisedConfig {
1747    fn default() -> Self {
1748        Self {
1749            input_dim: 64,
1750            representation_dim: 128,
1751            num_qubits: 8,
1752            ssl_method: QuantumSSLMethod::QuantumSimCLR {
1753                batch_size: 256,
1754                augmentation_strength: 0.5,
1755                quantum_projector: QuantumProjector {
1756                    projection_layers: Vec::new(),
1757                    output_normalization: true,
1758                    quantum_enhancement: 1.0,
1759                },
1760            },
1761            quantum_enhancement_level: 1.0,
1762            temperature: 0.1,
1763            momentum_coefficient: 0.999,
1764            use_quantum_augmentations: true,
1765            enable_entanglement_similarity: true,
1766            contrastive_config: ContrastiveConfig {
1767                positive_pair_strategy: PositivePairStrategy::Augmentation,
1768                negative_pair_strategy: NegativePairStrategy::Random,
1769                loss_function: ContrastiveLossFunction::InfoNCE,
1770                temperature_scheduling: TemperatureScheduling::Fixed,
1771            },
1772            masked_learning_config: MaskedLearningConfig {
1773                mask_ratio: 0.15,
1774                mask_strategy: MaskStrategy::Random,
1775                reconstruction_target: ReconstructionTarget::RawPixels,
1776                quantum_mask_evolution: QuantumMaskEvolution {
1777                    evolution_type: MaskEvolutionType::Static,
1778                    adaptation_rate: 0.01,
1779                    quantum_coherence_preservation: 0.9,
1780                },
1781            },
1782            momentum_config: MomentumConfig {
1783                momentum_coefficient: 0.999,
1784                target_network_update: TargetNetworkUpdate::Soft,
1785                quantum_momentum_preservation: 0.9,
1786            },
1787            clustering_config: ClusteringConfig {
1788                num_clusters: 256,
1789                clustering_method: QuantumClusteringMethod::QuantumKMeans,
1790                prototype_update_strategy: PrototypeUpdateStrategy::MovingAverage,
1791                quantum_assignment_method: QuantumAssignmentMethod::SoftAssignment,
1792            },
1793        }
1794    }
1795}
1796
1797impl Default for QuantumSSLMetrics {
1798    fn default() -> Self {
1799        Self {
1800            average_entanglement: 0.5,
1801            coherence_preservation: 0.9,
1802            quantum_feature_quality: 0.8,
1803            representation_dimensionality: 128.0,
1804            transfer_performance: 0.0,
1805            quantum_speedup_factor: 1.0,
1806            ssl_convergence_rate: 0.01,
1807        }
1808    }
1809}
1810
1811impl Default for SSLOptimizerState {
1812    fn default() -> Self {
1813        Self {
1814            learning_rate: 3e-4,
1815            momentum: 0.9,
1816            weight_decay: 1e-4,
1817            quantum_parameter_lr: 1e-5,
1818            entanglement_preservation_weight: 0.1,
1819        }
1820    }
1821}
1822
1823impl Default for LearningRateScheduler {
1824    fn default() -> Self {
1825        Self {
1826            scheduler_type: LRSchedulerType::Cosine,
1827            current_lr: 3e-4,
1828            warmup_epochs: 10,
1829            quantum_adaptive: false,
1830        }
1831    }
1832}
1833
1834impl Default for DecoherenceModel {
1835    fn default() -> Self {
1836        Self {
1837            t1_time: 100.0,
1838            t2_time: 50.0,
1839            gate_error_rate: 0.001,
1840            measurement_error_rate: 0.01,
1841        }
1842    }
1843}
1844
1845#[cfg(test)]
1846mod tests {
1847    use super::*;
1848
1849    #[test]
1850    fn test_quantum_ssl_creation() {
1851        let config = QuantumSelfSupervisedConfig::default();
1852        let ssl = QuantumSelfSupervisedLearner::new(config);
1853        assert!(ssl.is_ok());
1854    }
1855
1856    #[test]
1857    fn test_quantum_augmentations() {
1858        let config = QuantumSelfSupervisedConfig::default();
1859        let augmenter = QuantumAugmenter {
1860            augmentation_strategies: vec![QuantumAugmentationStrategy::QuantumNoise {
1861                noise_type: NoiseType::Gaussian,
1862                strength: 0.1,
1863            }],
1864            augmentation_strength: 0.5,
1865            quantum_coherence_preservation: 0.9,
1866        };
1867
1868        let sample = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1869        let views = augmenter.generate_augmented_views(&sample, 2);
1870        assert!(views.is_ok());
1871        assert_eq!(views.unwrap().len(), 2);
1872    }
1873
1874    #[test]
1875    fn test_ssl_training_config() {
1876        let config = SSLTrainingConfig::default();
1877        assert_eq!(config.batch_size, 256);
1878        assert_eq!(config.epochs, 100);
1879    }
1880
1881    #[test]
1882    fn test_quantum_contrastive_method() {
1883        let config = QuantumSelfSupervisedConfig {
1884            ssl_method: QuantumSSLMethod::QuantumContrastive {
1885                similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1886                negative_sampling_strategy: NegativeSamplingStrategy::Random,
1887                quantum_projection_head: QuantumProjectionHead {
1888                    hidden_dims: vec![128, 64],
1889                    output_dim: 32,
1890                    use_batch_norm: true,
1891                    quantum_layers: Vec::new(),
1892                    activation: QuantumActivation::QuantumReLU,
1893                },
1894            },
1895            ..Default::default()
1896        };
1897
1898        let ssl = QuantumSelfSupervisedLearner::new(config);
1899        assert!(ssl.is_ok());
1900    }
1901
1902    #[test]
1903    fn test_quantum_masked_method() {
1904        let config = QuantumSelfSupervisedConfig {
1905            ssl_method: QuantumSSLMethod::QuantumMasked {
1906                masking_strategy: QuantumMaskingStrategy::Random {
1907                    mask_probability: 0.15,
1908                },
1909                reconstruction_objective: ReconstructionObjective::MSE,
1910                quantum_encoder_decoder: QuantumEncoderDecoder {
1911                    encoder: QuantumEncoder {
1912                        layers: Vec::new(),
1913                        quantum_state_evolution: QuantumStateEvolution {
1914                            evolution_type: EvolutionType::Unitary,
1915                            time_steps: Array1::linspace(0.0, 1.0, 10),
1916                            hamiltonian: Array2::<f64>::eye(8).mapv(|x| Complex64::new(x, 0.0)),
1917                            decoherence_model: DecoherenceModel::default(),
1918                        },
1919                        measurement_points: vec![0, 1],
1920                    },
1921                    decoder: QuantumDecoder {
1922                        layers: Vec::new(),
1923                        quantum_state_preparation: QuantumStatePreparation {
1924                            preparation_method: PreparationMethod::DirectPreparation,
1925                            target_state: QuantumState::default(),
1926                            fidelity_threshold: 0.95,
1927                        },
1928                        reconstruction_strategy: ReconstructionStrategy::FullReconstruction,
1929                    },
1930                    shared_quantum_state: true,
1931                    entanglement_coupling: 0.5,
1932                },
1933            },
1934            ..Default::default()
1935        };
1936
1937        let ssl = QuantumSelfSupervisedLearner::new(config);
1938        assert!(ssl.is_ok());
1939    }
1940}