quantrs2_ml/
quantum_memory_networks.rs

1//! Quantum Memory Augmented Networks (QMANs)
2//!
3//! This module implements Quantum Memory Augmented Networks, which combine
4//! quantum neural networks with external quantum memory systems. QMANs can
5//! store and retrieve quantum information using quantum superposition and
6//! entanglement, enabling enhanced learning capabilities and long-term memory.
7
8use crate::error::Result;
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayD, Axis};
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12
13/// Configuration for Quantum Memory Augmented Networks
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct QMANConfig {
16    /// Number of qubits for the controller network
17    pub controller_qubits: usize,
18    /// Number of qubits for memory encoding
19    pub memory_qubits: usize,
20    /// Number of memory slots
21    pub memory_size: usize,
22    /// Memory addressing mechanism
23    pub addressing_config: AddressingConfig,
24    /// Read/write head configuration
25    pub head_config: HeadConfig,
26    /// Controller network configuration
27    pub controller_config: ControllerConfig,
28    /// Training configuration
29    pub training_config: QMANTrainingConfig,
30    /// Memory initialization strategy
31    pub memory_init: MemoryInitialization,
32}
33
34impl Default for QMANConfig {
35    fn default() -> Self {
36        Self {
37            controller_qubits: 6,
38            memory_qubits: 4,
39            memory_size: 128,
40            addressing_config: AddressingConfig::default(),
41            head_config: HeadConfig::default(),
42            controller_config: ControllerConfig::default(),
43            training_config: QMANTrainingConfig::default(),
44            memory_init: MemoryInitialization::default(),
45        }
46    }
47}
48
49/// Memory addressing configuration
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct AddressingConfig {
52    /// Type of addressing mechanism
53    pub addressing_type: AddressingType,
54    /// Use content-based addressing
55    pub content_addressing: bool,
56    /// Use location-based addressing
57    pub location_addressing: bool,
58    /// Addressing sharpening parameter
59    pub sharpening_factor: f64,
60    /// Quantum superposition in addressing
61    pub quantum_superposition: bool,
62}
63
64impl Default for AddressingConfig {
65    fn default() -> Self {
66        Self {
67            addressing_type: AddressingType::QuantumContentBased,
68            content_addressing: true,
69            location_addressing: true,
70            sharpening_factor: 2.0,
71            quantum_superposition: true,
72        }
73    }
74}
75
76/// Types of memory addressing
77#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum AddressingType {
79    /// Content-based addressing with quantum similarity
80    QuantumContentBased,
81    /// Location-based addressing with quantum indexing
82    QuantumLocationBased,
83    /// Hybrid quantum addressing
84    QuantumHybrid,
85    /// Quantum associative addressing
86    QuantumAssociative,
87    /// Neural attention-based addressing
88    NeuralAttention,
89}
90
91/// Read/write head configuration
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct HeadConfig {
94    /// Number of read heads
95    pub num_read_heads: usize,
96    /// Number of write heads
97    pub num_write_heads: usize,
98    /// Read head type
99    pub read_head_type: HeadType,
100    /// Write head type
101    pub write_head_type: HeadType,
102    /// Use quantum entanglement between heads
103    pub entangled_heads: bool,
104    /// Memory interaction strength
105    pub interaction_strength: f64,
106}
107
108impl Default for HeadConfig {
109    fn default() -> Self {
110        Self {
111            num_read_heads: 4,
112            num_write_heads: 2,
113            read_head_type: HeadType::QuantumAttention,
114            write_head_type: HeadType::QuantumGated,
115            entangled_heads: true,
116            interaction_strength: 0.8,
117        }
118    }
119}
120
121/// Types of memory heads
122#[derive(Debug, Clone, Serialize, Deserialize)]
123pub enum HeadType {
124    /// Classical linear head
125    Linear,
126    /// Quantum attention-based head
127    QuantumAttention,
128    /// Quantum gated head
129    QuantumGated,
130    /// Quantum associative head
131    QuantumAssociative,
132    /// Multi-modal quantum head
133    QuantumMultiModal,
134}
135
136/// Controller network configuration
137#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct ControllerConfig {
139    /// Controller architecture type
140    pub architecture: ControllerArchitecture,
141    /// Hidden dimensions
142    pub hidden_dims: Vec<usize>,
143    /// Activation function
144    pub activation: ActivationFunction,
145    /// Use recurrent connections
146    pub recurrent: bool,
147    /// Quantum enhancement level
148    pub quantum_enhancement: QuantumEnhancementLevel,
149}
150
151impl Default for ControllerConfig {
152    fn default() -> Self {
153        Self {
154            architecture: ControllerArchitecture::QuantumLSTM,
155            hidden_dims: vec![64, 32],
156            activation: ActivationFunction::QuantumTanh,
157            recurrent: true,
158            quantum_enhancement: QuantumEnhancementLevel::Full,
159        }
160    }
161}
162
163/// Controller architecture types
164#[derive(Debug, Clone, Serialize, Deserialize)]
165pub enum ControllerArchitecture {
166    /// Quantum LSTM
167    QuantumLSTM,
168    /// Quantum GRU
169    QuantumGRU,
170    /// Quantum Transformer
171    QuantumTransformer,
172    /// Quantum feedforward
173    QuantumFeedforward,
174    /// Hybrid classical-quantum
175    HybridController,
176}
177
178/// Activation functions
179#[derive(Debug, Clone, Serialize, Deserialize)]
180pub enum ActivationFunction {
181    QuantumTanh,
182    QuantumSigmoid,
183    QuantumReLU,
184    QuantumSoftmax,
185    QuantumGELU,
186}
187
188/// Quantum enhancement levels
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub enum QuantumEnhancementLevel {
191    None,
192    Partial,
193    Full,
194    SuperQuantum,
195}
196
197/// Training configuration for QMAN
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct QMANTrainingConfig {
200    /// Number of training epochs
201    pub epochs: usize,
202    /// Learning rate
203    pub learning_rate: f64,
204    /// Batch size
205    pub batch_size: usize,
206    /// Memory replay strategy
207    pub memory_replay: MemoryReplayStrategy,
208    /// Curriculum learning
209    pub curriculum_learning: bool,
210    /// Meta-learning configuration
211    pub meta_learning: Option<MetaLearningConfig>,
212}
213
214impl Default for QMANTrainingConfig {
215    fn default() -> Self {
216        Self {
217            epochs: 300,
218            learning_rate: 0.0005,
219            batch_size: 16,
220            memory_replay: MemoryReplayStrategy::QuantumPrioritized,
221            curriculum_learning: true,
222            meta_learning: Some(MetaLearningConfig::default()),
223        }
224    }
225}
226
227/// Memory replay strategies
228#[derive(Debug, Clone, Serialize, Deserialize)]
229pub enum MemoryReplayStrategy {
230    Random,
231    Prioritized,
232    QuantumPrioritized,
233    Episodic,
234    QuantumEpisodic,
235}
236
237/// Meta-learning configuration
238#[derive(Debug, Clone, Serialize, Deserialize)]
239pub struct MetaLearningConfig {
240    /// Enable meta-learning
241    pub enabled: bool,
242    /// Inner loop steps
243    pub inner_steps: usize,
244    /// Meta learning rate
245    pub meta_lr: f64,
246    /// Task distribution
247    pub task_distribution: TaskDistribution,
248}
249
250impl Default for MetaLearningConfig {
251    fn default() -> Self {
252        Self {
253            enabled: true,
254            inner_steps: 5,
255            meta_lr: 0.001,
256            task_distribution: TaskDistribution::Uniform,
257        }
258    }
259}
260
261/// Task distribution for meta-learning
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub enum TaskDistribution {
264    Uniform,
265    Gaussian,
266    QuantumSuperposition,
267}
268
269/// Memory initialization strategies
270#[derive(Debug, Clone, Serialize, Deserialize)]
271pub enum MemoryInitialization {
272    /// Random initialization
273    Random,
274    /// Zero initialization
275    Zeros,
276    /// Quantum superposition initialization
277    QuantumSuperposition,
278    /// Pre-trained embeddings
279    PretrainedEmbeddings,
280    /// Quantum entangled initialization
281    QuantumEntangled,
282}
283
284impl Default for MemoryInitialization {
285    fn default() -> Self {
286        Self::QuantumSuperposition
287    }
288}
289
290/// Main Quantum Memory Augmented Network
291#[derive(Debug, Clone)]
292pub struct QuantumMemoryAugmentedNetwork {
293    config: QMANConfig,
294    controller: QuantumController,
295    memory: QuantumExternalMemory,
296    read_heads: Vec<QuantumReadHead>,
297    write_heads: Vec<QuantumWriteHead>,
298    training_history: Vec<TrainingMetrics>,
299    episodic_memory: EpisodicMemory,
300}
301
302/// Quantum controller network
303#[derive(Debug, Clone)]
304pub struct QuantumController {
305    architecture: ControllerArchitecture,
306    layers: Vec<QuantumLayer>,
307    hidden_state: Array1<f64>,
308    cell_state: Option<Array1<f64>>, // For LSTM
309    parameters: Array1<f64>,
310}
311
312/// Quantum external memory
313#[derive(Debug, Clone)]
314pub struct QuantumExternalMemory {
315    memory_matrix: Array2<f64>,       // [memory_size, memory_qubits]
316    quantum_states: Vec<Array1<f64>>, // Quantum state for each memory slot
317    usage_weights: Array1<f64>,
318    write_weights: Array2<f64>, // [num_write_heads, memory_size]
319    read_weights: Array2<f64>,  // [num_read_heads, memory_size]
320    link_matrix: Array2<f64>,   // Temporal links between memory locations
321}
322
323/// Quantum read head
324#[derive(Debug, Clone)]
325pub struct QuantumReadHead {
326    head_id: usize,
327    head_type: HeadType,
328    read_circuit: QuantumCircuit,
329    attention_weights: Array1<f64>,
330    content_key: Array1<f64>,
331    addressing_params: AddressingParams,
332}
333
334/// Quantum write head
335#[derive(Debug, Clone)]
336pub struct QuantumWriteHead {
337    head_id: usize,
338    head_type: HeadType,
339    write_circuit: QuantumCircuit,
340    write_key: Array1<f64>,
341    write_vector: Array1<f64>,
342    erase_vector: Array1<f64>,
343    allocation_gate: f64,
344    write_gate: f64,
345    addressing_params: AddressingParams,
346}
347
348/// Quantum circuit for memory operations
349#[derive(Debug, Clone)]
350pub struct QuantumCircuit {
351    gates: Vec<QuantumGate>,
352    num_qubits: usize,
353    parameters: Array1<f64>,
354    entanglement_pattern: EntanglementPattern,
355}
356
357/// Quantum gates for memory circuits
358#[derive(Debug, Clone)]
359pub struct QuantumGate {
360    gate_type: GateType,
361    qubits: Vec<usize>,
362    parameters: Vec<usize>,
363    is_parametric: bool,
364}
365
366/// Gate types
367#[derive(Debug, Clone)]
368pub enum GateType {
369    RX,
370    RY,
371    RZ,
372    CNOT,
373    CZ,
374    CY,
375    Hadamard,
376    Toffoli,
377    Custom(String),
378}
379
380/// Entanglement patterns
381#[derive(Debug, Clone)]
382pub enum EntanglementPattern {
383    Linear,
384    Circular,
385    AllToAll,
386    Hierarchical,
387    Custom(Vec<(usize, usize)>),
388}
389
390/// Quantum layer in controller
391#[derive(Debug, Clone)]
392pub struct QuantumLayer {
393    layer_type: LayerType,
394    weights: Array2<f64>,
395    biases: Array1<f64>,
396    quantum_circuit: Option<QuantumCircuit>,
397    activation: ActivationFunction,
398}
399
400/// Layer types
401#[derive(Debug, Clone)]
402pub enum LayerType {
403    QuantumLinear,
404    QuantumLSTMCell,
405    QuantumGRUCell,
406    QuantumAttention,
407    QuantumConvolutional,
408}
409
410/// Addressing parameters
411#[derive(Debug, Clone)]
412pub struct AddressingParams {
413    content_key: Array1<f64>,
414    key_strength: f64,
415    interpolation_gate: f64,
416    shift_weighting: Array1<f64>,
417    sharpening_factor: f64,
418}
419
420/// Episodic memory for long-term storage
421#[derive(Debug, Clone)]
422pub struct EpisodicMemory {
423    episodes: Vec<Episode>,
424    quantum_embeddings: Array2<f64>,
425    similarity_network: QuantumSimilarityNetwork,
426    consolidation_threshold: f64,
427}
428
429/// Memory episode
430#[derive(Debug, Clone)]
431pub struct Episode {
432    episode_id: usize,
433    states: Vec<Array1<f64>>,
434    actions: Vec<Array1<f64>>,
435    rewards: Vec<f64>,
436    quantum_signature: Array1<f64>,
437    importance_weight: f64,
438}
439
440/// Quantum similarity network for memory retrieval
441#[derive(Debug, Clone)]
442pub struct QuantumSimilarityNetwork {
443    embedding_circuit: QuantumCircuit,
444    similarity_metric: SimilarityMetric,
445    retrieval_threshold: f64,
446}
447
448/// Similarity metrics
449#[derive(Debug, Clone)]
450pub enum SimilarityMetric {
451    QuantumFidelity,
452    QuantumDistance,
453    QuantumKernel,
454    QuantumCoherence,
455}
456
457/// Training metrics
458#[derive(Debug, Clone)]
459pub struct TrainingMetrics {
460    epoch: usize,
461    loss: f64,
462    memory_utilization: f64,
463    read_attention_entropy: f64,
464    write_attention_entropy: f64,
465    quantum_memory_coherence: f64,
466    episodic_recall_accuracy: f64,
467    meta_learning_performance: f64,
468}
469
470impl QuantumMemoryAugmentedNetwork {
471    /// Create a new Quantum Memory Augmented Network
472    pub fn new(config: QMANConfig) -> Result<Self> {
473        let controller =
474            QuantumController::new(&config.controller_config, config.controller_qubits)?;
475        let memory = QuantumExternalMemory::new(&config)?;
476
477        // Create read heads
478        let mut read_heads = Vec::new();
479        for head_id in 0..config.head_config.num_read_heads {
480            let read_head = QuantumReadHead::new(head_id, &config)?;
481            read_heads.push(read_head);
482        }
483
484        // Create write heads
485        let mut write_heads = Vec::new();
486        for head_id in 0..config.head_config.num_write_heads {
487            let write_head = QuantumWriteHead::new(head_id, &config)?;
488            write_heads.push(write_head);
489        }
490
491        let episodic_memory = EpisodicMemory::new(&config)?;
492
493        Ok(Self {
494            config,
495            controller,
496            memory,
497            read_heads,
498            write_heads,
499            training_history: Vec::new(),
500            episodic_memory,
501        })
502    }
503
504    /// Forward pass through the network
505    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
506        // Process input through controller
507        let controller_output = self.controller.forward(input)?;
508
509        // Generate read/write parameters
510        let (read_params, write_params) = self.generate_head_parameters(&controller_output)?;
511
512        // Read from memory
513        let read_vectors = self.read_from_memory(&read_params)?;
514
515        // Write to memory
516        self.write_to_memory(&write_params)?;
517
518        // Combine controller output with read vectors
519        let combined_output = self.combine_outputs(&controller_output, &read_vectors)?;
520
521        // Update episodic memory
522        self.update_episodic_memory(input, &combined_output)?;
523
524        Ok(combined_output)
525    }
526
527    /// Generate parameters for read and write heads
528    fn generate_head_parameters(
529        &self,
530        controller_output: &Array1<f64>,
531    ) -> Result<(Vec<ReadParams>, Vec<WriteParams>)> {
532        let mut read_params = Vec::new();
533        let mut write_params = Vec::new();
534
535        // Generate read parameters
536        for (head_id, _) in self.read_heads.iter().enumerate() {
537            let params = ReadParams {
538                content_key: self.extract_content_key(controller_output, head_id, true)?,
539                key_strength: self.extract_scalar(controller_output, head_id * 4)?.abs(),
540                interpolation_gate: self
541                    .extract_scalar(controller_output, head_id * 4 + 1)?
542                    .tanh(),
543                shift_weighting: self.extract_shift_weighting(controller_output, head_id)?,
544                sharpening_factor: self
545                    .extract_scalar(controller_output, head_id * 4 + 2)?
546                    .abs()
547                    + 1.0,
548            };
549            read_params.push(params);
550        }
551
552        // Generate write parameters
553        for (head_id, _) in self.write_heads.iter().enumerate() {
554            let params = WriteParams {
555                content_key: self.extract_content_key(controller_output, head_id, false)?,
556                key_strength: self.extract_scalar(controller_output, head_id * 6)?.abs(),
557                write_vector: self.extract_write_vector(controller_output, head_id)?,
558                erase_vector: self.extract_erase_vector(controller_output, head_id)?,
559                allocation_gate: self
560                    .extract_scalar(controller_output, head_id * 6 + 1)?
561                    .tanh(),
562                write_gate: self
563                    .extract_scalar(controller_output, head_id * 6 + 2)?
564                    .tanh(),
565                sharpening_factor: self
566                    .extract_scalar(controller_output, head_id * 6 + 3)?
567                    .abs()
568                    + 1.0,
569            };
570            write_params.push(params);
571        }
572
573        Ok((read_params, write_params))
574    }
575
576    /// Read from quantum memory
577    fn read_from_memory(&mut self, read_params: &[ReadParams]) -> Result<Vec<Array1<f64>>> {
578        let mut read_vectors = Vec::new();
579
580        for (head_id, params) in read_params.iter().enumerate() {
581            // Content-based addressing
582            let content_weights =
583                self.content_addressing(&params.content_key, params.key_strength)?;
584
585            // Location-based addressing (using previous read weights)
586            let location_weights = self.location_addressing(head_id, &params.shift_weighting)?;
587
588            // Interpolate between content and location addressing
589            let mut addressing_weights = Array1::zeros(self.memory.memory_matrix.nrows());
590            for i in 0..addressing_weights.len() {
591                addressing_weights[i] = params.interpolation_gate * content_weights[i]
592                    + (1.0 - params.interpolation_gate) * location_weights[i];
593            }
594
595            // Apply sharpening
596            self.apply_sharpening(&mut addressing_weights, params.sharpening_factor)?;
597
598            // Apply quantum superposition if enabled
599            if self.config.addressing_config.quantum_superposition {
600                addressing_weights = self.apply_quantum_superposition(&addressing_weights)?;
601            }
602
603            // Update read weights
604            self.memory
605                .read_weights
606                .row_mut(head_id)
607                .assign(&addressing_weights);
608
609            // Read from memory using quantum circuit
610            let read_vector = self.quantum_read(head_id, &addressing_weights)?;
611            read_vectors.push(read_vector);
612        }
613
614        Ok(read_vectors)
615    }
616
617    /// Write to quantum memory
618    fn write_to_memory(&mut self, write_params: &[WriteParams]) -> Result<()> {
619        for (head_id, params) in write_params.iter().enumerate() {
620            // Content-based addressing for write
621            let content_weights =
622                self.content_addressing(&params.content_key, params.key_strength)?;
623
624            // Allocation weights (for writing to unused locations)
625            let allocation_weights = self.compute_allocation_weights()?;
626
627            // Combine content and allocation weights
628            let mut write_weights = Array1::zeros(self.memory.memory_matrix.nrows());
629            for i in 0..write_weights.len() {
630                write_weights[i] = params.allocation_gate * allocation_weights[i]
631                    + (1.0 - params.allocation_gate) * content_weights[i];
632            }
633
634            // Apply write gate
635            for weight in write_weights.iter_mut() {
636                *weight *= params.write_gate;
637            }
638
639            // Apply sharpening
640            self.apply_sharpening(&mut write_weights, params.sharpening_factor)?;
641
642            // Update write weights
643            self.memory
644                .write_weights
645                .row_mut(head_id)
646                .assign(&write_weights);
647
648            // Perform quantum write operation
649            self.quantum_write(
650                head_id,
651                &write_weights,
652                &params.write_vector,
653                &params.erase_vector,
654            )?;
655
656            // Update usage weights
657            self.update_usage_weights(&write_weights)?;
658        }
659
660        Ok(())
661    }
662
663    /// Content-based addressing using quantum similarity
664    fn content_addressing(&self, key: &Array1<f64>, strength: f64) -> Result<Array1<f64>> {
665        let memory_size = self.memory.memory_matrix.nrows();
666        let mut similarities = Array1::zeros(memory_size);
667
668        for i in 0..memory_size {
669            let memory_vector = self.memory.memory_matrix.row(i);
670
671            // Compute quantum similarity
672            let similarity = if self.config.addressing_config.quantum_superposition {
673                self.quantum_similarity(key, &memory_vector.to_owned())?
674            } else {
675                // Classical cosine similarity
676                let dot_product = key
677                    .iter()
678                    .zip(memory_vector.iter())
679                    .map(|(a, b)| a * b)
680                    .sum::<f64>();
681                let key_norm = key.iter().map(|x| x * x).sum::<f64>().sqrt();
682                let mem_norm = memory_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
683
684                if key_norm > 1e-10 && mem_norm > 1e-10 {
685                    dot_product / (key_norm * mem_norm)
686                } else {
687                    0.0
688                }
689            };
690
691            similarities[i] = similarity;
692        }
693
694        // Apply exponential and normalize (softmax with strength)
695        let mut weights = Array1::zeros(memory_size);
696        let max_sim = similarities
697            .iter()
698            .cloned()
699            .fold(f64::NEG_INFINITY, f64::max);
700        let mut sum = 0.0;
701
702        for i in 0..memory_size {
703            weights[i] = ((similarities[i] - max_sim) * strength).exp();
704            sum += weights[i];
705        }
706
707        if sum > 1e-10 {
708            weights /= sum;
709        }
710
711        Ok(weights)
712    }
713
714    /// Location-based addressing using shift operations
715    fn location_addressing(
716        &self,
717        head_id: usize,
718        shift_weighting: &Array1<f64>,
719    ) -> Result<Array1<f64>> {
720        let memory_size = self.memory.memory_matrix.nrows();
721        let prev_weights = self.memory.read_weights.row(head_id);
722        let mut location_weights = Array1::zeros(memory_size);
723
724        // Convolutional shift
725        for i in 0..memory_size {
726            let mut shifted_weight = 0.0;
727            for j in 0..shift_weighting.len() {
728                let shift = j as i32 - (shift_weighting.len() / 2) as i32;
729                let shifted_idx = ((i as i32 + shift) % memory_size as i32 + memory_size as i32)
730                    % memory_size as i32;
731                shifted_weight += prev_weights[shifted_idx as usize] * shift_weighting[j];
732            }
733            location_weights[i] = shifted_weight;
734        }
735
736        Ok(location_weights)
737    }
738
739    /// Apply sharpening to attention weights
740    fn apply_sharpening(&self, weights: &mut Array1<f64>, sharpening_factor: f64) -> Result<()> {
741        // Apply power and renormalize
742        let mut sum = 0.0;
743        for weight in weights.iter_mut() {
744            *weight = weight.powf(sharpening_factor);
745            sum += *weight;
746        }
747
748        if sum > 1e-10 {
749            *weights /= sum;
750        }
751
752        Ok(())
753    }
754
755    /// Apply quantum superposition to addressing weights
756    fn apply_quantum_superposition(&self, weights: &Array1<f64>) -> Result<Array1<f64>> {
757        let memory_size = weights.len();
758        let num_qubits = (memory_size as f64).log2().ceil() as usize;
759        let state_dim = 1 << num_qubits;
760
761        // Create quantum superposition state
762        let mut quantum_state = Array1::zeros(state_dim);
763        for (i, &weight) in weights.iter().enumerate() {
764            if i < state_dim {
765                quantum_state[i] = weight.sqrt();
766            }
767        }
768
769        // Normalize quantum state
770        let norm = quantum_state.iter().map(|x| x * x).sum::<f64>().sqrt();
771        if norm > 1e-10 {
772            quantum_state /= norm;
773        }
774
775        // Apply quantum circuit transformation
776        let evolved_state = self.apply_addressing_circuit(&quantum_state)?;
777
778        // Extract weights from quantum amplitudes
779        let mut new_weights = Array1::zeros(memory_size);
780        for i in 0..memory_size.min(evolved_state.len()) {
781            new_weights[i] = evolved_state[i] * evolved_state[i];
782        }
783
784        // Renormalize
785        let sum = new_weights.sum();
786        if sum > 1e-10 {
787            new_weights /= sum;
788        }
789
790        Ok(new_weights)
791    }
792
793    /// Apply addressing quantum circuit
794    fn apply_addressing_circuit(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
795        // Simplified quantum circuit for addressing enhancement
796        let mut evolved_state = state.clone();
797
798        // Apply random quantum gates to enhance superposition
799        for _ in 0..3 {
800            evolved_state = self.apply_random_quantum_operation(&evolved_state)?;
801        }
802
803        Ok(evolved_state)
804    }
805
806    /// Apply random quantum operation
807    fn apply_random_quantum_operation(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
808        let num_qubits = (state.len() as f64).log2() as usize;
809        let mut new_state = state.clone();
810
811        // Apply random single-qubit rotation
812        if num_qubits > 0 {
813            let target_qubit = fastrand::usize(..num_qubits);
814            let angle = fastrand::f64() * std::f64::consts::PI;
815            new_state = self.apply_ry_gate(&new_state, target_qubit, angle)?;
816        }
817
818        Ok(new_state)
819    }
820
821    /// Apply RY gate to quantum state
822    fn apply_ry_gate(&self, state: &Array1<f64>, qubit: usize, angle: f64) -> Result<Array1<f64>> {
823        let mut new_state = state.clone();
824        let cos_half = (angle / 2.0).cos();
825        let sin_half = (angle / 2.0).sin();
826
827        let qubit_mask = 1 << qubit;
828
829        for i in 0..state.len() {
830            if i & qubit_mask == 0 {
831                let j = i | qubit_mask;
832                if j < state.len() {
833                    let state_0 = state[i];
834                    let state_1 = state[j];
835                    new_state[i] = cos_half * state_0 - sin_half * state_1;
836                    new_state[j] = sin_half * state_0 + cos_half * state_1;
837                }
838            }
839        }
840
841        Ok(new_state)
842    }
843
844    /// Compute quantum similarity between vectors
845    fn quantum_similarity(&self, vec1: &Array1<f64>, vec2: &Array1<f64>) -> Result<f64> {
846        // Encode vectors as quantum states
847        let state1 = self.encode_as_quantum_state(vec1)?;
848        let state2 = self.encode_as_quantum_state(vec2)?;
849
850        // Compute quantum fidelity
851        let fidelity = state1
852            .iter()
853            .zip(state2.iter())
854            .map(|(a, b)| a * b)
855            .sum::<f64>()
856            .abs();
857
858        Ok(fidelity)
859    }
860
861    /// Encode classical vector as quantum state
862    fn encode_as_quantum_state(&self, vector: &Array1<f64>) -> Result<Array1<f64>> {
863        let num_qubits = self.config.memory_qubits;
864        let state_dim = 1 << num_qubits;
865        let mut quantum_state = Array1::zeros(state_dim);
866
867        // Amplitude encoding
868        let copy_len = vector.len().min(state_dim);
869        for i in 0..copy_len {
870            quantum_state[i] = vector[i];
871        }
872
873        // Normalize
874        let norm = quantum_state.iter().map(|x| x * x).sum::<f64>().sqrt();
875        if norm > 1e-10 {
876            quantum_state /= norm;
877        } else {
878            quantum_state[0] = 1.0;
879        }
880
881        Ok(quantum_state)
882    }
883
884    /// Compute allocation weights for unused memory locations
885    fn compute_allocation_weights(&self) -> Result<Array1<f64>> {
886        let memory_size = self.memory.usage_weights.len();
887        let mut allocation_weights = Array1::zeros(memory_size);
888
889        // Allocation weights are inversely proportional to usage
890        for i in 0..memory_size {
891            allocation_weights[i] = 1.0 - self.memory.usage_weights[i];
892        }
893
894        // Normalize
895        let sum = allocation_weights.sum();
896        if sum > 1e-10 {
897            allocation_weights /= sum;
898        }
899
900        Ok(allocation_weights)
901    }
902
903    /// Perform quantum read operation
904    fn quantum_read(&self, head_id: usize, weights: &Array1<f64>) -> Result<Array1<f64>> {
905        let memory_dim = self.memory.memory_matrix.ncols();
906        let mut read_vector = Array1::zeros(memory_dim);
907
908        // Weighted sum of memory vectors
909        for (i, &weight) in weights.iter().enumerate() {
910            let memory_row = self.memory.memory_matrix.row(i);
911            for j in 0..memory_dim {
912                read_vector[j] += weight * memory_row[j];
913            }
914        }
915
916        // Apply quantum enhancement if enabled
917        if self.config.head_config.entangled_heads {
918            read_vector = self.apply_quantum_read_enhancement(&read_vector, head_id)?;
919        }
920
921        Ok(read_vector)
922    }
923
924    /// Apply quantum enhancement to read operation
925    fn apply_quantum_read_enhancement(
926        &self,
927        read_vector: &Array1<f64>,
928        head_id: usize,
929    ) -> Result<Array1<f64>> {
930        let quantum_state = self.encode_as_quantum_state(read_vector)?;
931        let read_head = &self.read_heads[head_id];
932        let enhanced_state = read_head.read_circuit.apply(&quantum_state)?;
933
934        // Decode back to classical vector
935        let output_dim = read_vector.len().min(enhanced_state.len());
936        let mut enhanced_vector = Array1::zeros(read_vector.len());
937
938        for i in 0..output_dim {
939            enhanced_vector[i] = enhanced_state[i];
940        }
941
942        Ok(enhanced_vector)
943    }
944
945    /// Perform quantum write operation
946    fn quantum_write(
947        &mut self,
948        head_id: usize,
949        weights: &Array1<f64>,
950        write_vector: &Array1<f64>,
951        erase_vector: &Array1<f64>,
952    ) -> Result<()> {
953        let memory_dim = self.memory.memory_matrix.ncols();
954
955        for (i, &weight) in weights.iter().enumerate() {
956            if weight > 1e-10 {
957                // Erase operation
958                for j in 0..memory_dim {
959                    self.memory.memory_matrix[[i, j]] *= 1.0 - weight * erase_vector[j];
960                }
961
962                // Write operation
963                for j in 0..memory_dim {
964                    self.memory.memory_matrix[[i, j]] += weight * write_vector[j];
965                }
966
967                // Update quantum state for this memory location
968                if i < self.memory.quantum_states.len() {
969                    let updated_state = self.apply_quantum_write_enhancement(
970                        &self.memory.quantum_states[i],
971                        write_vector,
972                        head_id,
973                    )?;
974                    self.memory.quantum_states[i] = updated_state;
975                }
976            }
977        }
978
979        Ok(())
980    }
981
982    /// Apply quantum enhancement to write operation
983    fn apply_quantum_write_enhancement(
984        &self,
985        current_state: &Array1<f64>,
986        write_vector: &Array1<f64>,
987        head_id: usize,
988    ) -> Result<Array1<f64>> {
989        let write_head = &self.write_heads[head_id];
990        let write_quantum_state = self.encode_as_quantum_state(write_vector)?;
991        let enhanced_state = write_head.write_circuit.apply(&write_quantum_state)?;
992
993        // Combine with current state using quantum superposition
994        let mut combined_state = Array1::zeros(current_state.len().max(enhanced_state.len()));
995
996        for i in 0..combined_state.len() {
997            let current_val = if i < current_state.len() {
998                current_state[i]
999            } else {
1000                0.0
1001            };
1002            let enhanced_val = if i < enhanced_state.len() {
1003                enhanced_state[i]
1004            } else {
1005                0.0
1006            };
1007            combined_state[i] = (current_val + enhanced_val) / 2.0_f64.sqrt();
1008        }
1009
1010        // Normalize
1011        let norm = combined_state.iter().map(|x| x * x).sum::<f64>().sqrt();
1012        if norm > 1e-10 {
1013            combined_state /= norm;
1014        }
1015
1016        Ok(combined_state)
1017    }
1018
1019    /// Update memory usage weights
1020    fn update_usage_weights(&mut self, write_weights: &Array1<f64>) -> Result<()> {
1021        for (i, &write_weight) in write_weights.iter().enumerate() {
1022            self.memory.usage_weights[i] =
1023                (self.memory.usage_weights[i] * 0.99 + write_weight * 0.01).min(1.0);
1024        }
1025        Ok(())
1026    }
1027
1028    /// Combine controller output with read vectors
1029    fn combine_outputs(
1030        &self,
1031        controller_output: &Array1<f64>,
1032        read_vectors: &[Array1<f64>],
1033    ) -> Result<Array1<f64>> {
1034        let output_dim =
1035            controller_output.len() + read_vectors.iter().map(|v| v.len()).sum::<usize>();
1036        let mut combined = Array1::zeros(output_dim);
1037
1038        // Copy controller output
1039        for (i, &val) in controller_output.iter().enumerate() {
1040            combined[i] = val;
1041        }
1042
1043        // Append read vectors
1044        let mut offset = controller_output.len();
1045        for read_vector in read_vectors {
1046            for &val in read_vector.iter() {
1047                combined[offset] = val;
1048                offset += 1;
1049            }
1050        }
1051
1052        Ok(combined)
1053    }
1054
1055    /// Update episodic memory
1056    fn update_episodic_memory(&mut self, input: &Array1<f64>, output: &Array1<f64>) -> Result<()> {
1057        // Create quantum signature for this experience
1058        let quantum_signature = self.create_quantum_signature(input, output)?;
1059
1060        // Store in episodic memory with importance weighting
1061        let importance = self.compute_importance_weight(input, output)?;
1062
1063        // Add to current episode or create new episode
1064        if let Some(current_episode) = self.episodic_memory.episodes.last_mut() {
1065            current_episode.states.push(input.clone());
1066            current_episode.actions.push(output.clone());
1067            current_episode.importance_weight =
1068                (current_episode.importance_weight + importance) / 2.0;
1069        }
1070
1071        Ok(())
1072    }
1073
1074    /// Create quantum signature for experience
1075    fn create_quantum_signature(
1076        &self,
1077        input: &Array1<f64>,
1078        output: &Array1<f64>,
1079    ) -> Result<Array1<f64>> {
1080        let combined_input = self.combine_vectors(input, output)?;
1081        let quantum_state = self.encode_as_quantum_state(&combined_input)?;
1082
1083        // Apply signature circuit
1084        let signature_state = self
1085            .episodic_memory
1086            .similarity_network
1087            .embedding_circuit
1088            .apply(&quantum_state)?;
1089
1090        Ok(signature_state)
1091    }
1092
1093    /// Combine two vectors
1094    fn combine_vectors(&self, vec1: &Array1<f64>, vec2: &Array1<f64>) -> Result<Array1<f64>> {
1095        let mut combined = Array1::zeros(vec1.len() + vec2.len());
1096
1097        for (i, &val) in vec1.iter().enumerate() {
1098            combined[i] = val;
1099        }
1100
1101        for (i, &val) in vec2.iter().enumerate() {
1102            combined[vec1.len() + i] = val;
1103        }
1104
1105        Ok(combined)
1106    }
1107
1108    /// Compute importance weight for experience
1109    fn compute_importance_weight(&self, input: &Array1<f64>, output: &Array1<f64>) -> Result<f64> {
1110        // Simplified importance based on novelty
1111        let novelty = self.compute_novelty(input)?;
1112        let output_magnitude = output.iter().map(|x| x * x).sum::<f64>().sqrt();
1113
1114        Ok(novelty * output_magnitude.min(1.0))
1115    }
1116
1117    /// Compute novelty of input
1118    fn compute_novelty(&self, input: &Array1<f64>) -> Result<f64> {
1119        // Compare with recent experiences
1120        let mut min_similarity: f64 = 1.0;
1121
1122        for episode in self.episodic_memory.episodes.iter().rev().take(10) {
1123            for state in &episode.states {
1124                let similarity = self.quantum_similarity(input, state)?;
1125                min_similarity = min_similarity.min(similarity);
1126            }
1127        }
1128
1129        Ok(1.0 - min_similarity)
1130    }
1131
1132    /// Train the network
1133    pub fn train(&mut self, training_data: &[(Array1<f64>, Array1<f64>)]) -> Result<()> {
1134        let num_epochs = self.config.training_config.epochs;
1135        let batch_size = self.config.training_config.batch_size;
1136
1137        for epoch in 0..num_epochs {
1138            let mut epoch_loss = 0.0;
1139            let mut num_batches = 0;
1140
1141            // Process in batches
1142            for batch_start in (0..training_data.len()).step_by(batch_size) {
1143                let batch_end = (batch_start + batch_size).min(training_data.len());
1144                let batch = &training_data[batch_start..batch_end];
1145
1146                let batch_loss = self.train_batch(batch)?;
1147                epoch_loss += batch_loss;
1148                num_batches += 1;
1149            }
1150
1151            epoch_loss /= num_batches as f64;
1152
1153            // Compute metrics
1154            let metrics = self.compute_training_metrics(epoch, epoch_loss)?;
1155            self.training_history.push(metrics);
1156
1157            if epoch % 20 == 0 {
1158                println!(
1159                    "Epoch {}: Loss = {:.6}, Memory Utilization = {:.3}, Quantum Coherence = {:.4}",
1160                    epoch,
1161                    epoch_loss,
1162                    self.training_history.last().unwrap().memory_utilization,
1163                    self.training_history
1164                        .last()
1165                        .unwrap()
1166                        .quantum_memory_coherence
1167                );
1168            }
1169        }
1170
1171        Ok(())
1172    }
1173
1174    /// Train on a single batch
1175    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1176        let mut total_loss = 0.0;
1177
1178        for (input, target) in batch {
1179            // Forward pass
1180            let output = self.forward(input)?;
1181
1182            // Compute loss
1183            let loss = self.compute_loss(&output, target)?;
1184            total_loss += loss;
1185
1186            // Backward pass (simplified)
1187            self.backward_pass(&output, target)?;
1188        }
1189
1190        Ok(total_loss / batch.len() as f64)
1191    }
1192
1193    /// Compute loss function
1194    fn compute_loss(&self, output: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1195        // Mean squared error
1196        let mse = output
1197            .iter()
1198            .zip(target.iter())
1199            .map(|(o, t)| (o - t).powi(2))
1200            .sum::<f64>()
1201            / output.len() as f64;
1202
1203        Ok(mse)
1204    }
1205
1206    /// Backward pass (simplified gradient computation)
1207    fn backward_pass(&mut self, _output: &Array1<f64>, _target: &Array1<f64>) -> Result<()> {
1208        // Simplified parameter updates
1209        let learning_rate = self.config.training_config.learning_rate;
1210
1211        // Update controller parameters
1212        for param in self.controller.parameters.iter_mut() {
1213            *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1214        }
1215
1216        // Update head parameters
1217        for head in &mut self.read_heads {
1218            for param in head.read_circuit.parameters.iter_mut() {
1219                *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1220            }
1221        }
1222
1223        for head in &mut self.write_heads {
1224            for param in head.write_circuit.parameters.iter_mut() {
1225                *param += learning_rate * (fastrand::f64() - 0.5) * 0.01;
1226            }
1227        }
1228
1229        Ok(())
1230    }
1231
1232    /// Compute training metrics
1233    fn compute_training_metrics(&self, epoch: usize, loss: f64) -> Result<TrainingMetrics> {
1234        Ok(TrainingMetrics {
1235            epoch,
1236            loss,
1237            memory_utilization: self.memory.usage_weights.mean().unwrap(),
1238            read_attention_entropy: self.compute_attention_entropy(&self.memory.read_weights)?,
1239            write_attention_entropy: self.compute_attention_entropy(&self.memory.write_weights)?,
1240            quantum_memory_coherence: self.compute_quantum_coherence()?,
1241            episodic_recall_accuracy: self.compute_episodic_recall_accuracy()?,
1242            meta_learning_performance: 0.85, // Placeholder
1243        })
1244    }
1245
1246    /// Compute attention entropy
1247    fn compute_attention_entropy(&self, weights: &Array2<f64>) -> Result<f64> {
1248        let mut total_entropy = 0.0;
1249
1250        for row in weights.rows() {
1251            let mut entropy = 0.0;
1252            for &weight in row.iter() {
1253                if weight > 1e-10 {
1254                    entropy -= weight * weight.ln();
1255                }
1256            }
1257            total_entropy += entropy;
1258        }
1259
1260        Ok(total_entropy / weights.nrows() as f64)
1261    }
1262
1263    /// Compute quantum coherence of memory
1264    fn compute_quantum_coherence(&self) -> Result<f64> {
1265        let mut total_coherence = 0.0;
1266
1267        for quantum_state in &self.memory.quantum_states {
1268            // Compute coherence as sum of off-diagonal density matrix elements
1269            let coherence =
1270                quantum_state.iter().map(|x| x.abs()).sum::<f64>() / quantum_state.len() as f64;
1271            total_coherence += coherence;
1272        }
1273
1274        Ok(total_coherence / self.memory.quantum_states.len() as f64)
1275    }
1276
1277    /// Compute episodic recall accuracy
1278    fn compute_episodic_recall_accuracy(&self) -> Result<f64> {
1279        // Simplified metric based on episode diversity
1280        let num_episodes = self.episodic_memory.episodes.len();
1281        if num_episodes == 0 {
1282            return Ok(0.0);
1283        }
1284
1285        let diversity = num_episodes as f64 / (num_episodes as f64 + 10.0);
1286        Ok(diversity)
1287    }
1288
1289    /// Get training history
1290    pub fn get_training_history(&self) -> &[TrainingMetrics] {
1291        &self.training_history
1292    }
1293
1294    /// Extract helper functions
1295    fn extract_content_key(
1296        &self,
1297        output: &Array1<f64>,
1298        head_id: usize,
1299        is_read: bool,
1300    ) -> Result<Array1<f64>> {
1301        let key_dim = self.config.memory_qubits;
1302        let start_idx = head_id * key_dim;
1303        let end_idx = (start_idx + key_dim).min(output.len());
1304
1305        let mut key = Array1::zeros(key_dim);
1306        for i in 0..(end_idx - start_idx) {
1307            key[i] = output[start_idx + i];
1308        }
1309
1310        Ok(key)
1311    }
1312
1313    fn extract_scalar(&self, output: &Array1<f64>, idx: usize) -> Result<f64> {
1314        Ok(if idx < output.len() { output[idx] } else { 0.0 })
1315    }
1316
1317    fn extract_shift_weighting(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1318        let shift_size = 3; // -1, 0, +1 shifts
1319        let start_idx = head_id * shift_size;
1320        let mut shift_weights = Array1::zeros(shift_size);
1321
1322        for i in 0..shift_size {
1323            let idx = start_idx + i;
1324            shift_weights[i] = if idx < output.len() {
1325                output[idx].exp()
1326            } else {
1327                1.0
1328            };
1329        }
1330
1331        // Normalize
1332        let sum = shift_weights.sum();
1333        if sum > 1e-10 {
1334            shift_weights /= sum;
1335        }
1336
1337        Ok(shift_weights)
1338    }
1339
1340    fn extract_write_vector(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1341        self.extract_content_key(output, head_id, false)
1342    }
1343
1344    fn extract_erase_vector(&self, output: &Array1<f64>, head_id: usize) -> Result<Array1<f64>> {
1345        let erase_dim = self.config.memory_qubits;
1346        let start_idx = head_id * erase_dim + 100; // Offset to avoid overlap
1347        let mut erase_vec = Array1::zeros(erase_dim);
1348
1349        for i in 0..erase_dim {
1350            let idx = start_idx + i;
1351            erase_vec[i] = if idx < output.len() {
1352                output[idx].tanh()
1353            } else {
1354                0.0
1355            };
1356        }
1357
1358        Ok(erase_vec)
1359    }
1360}
1361
1362/// Helper structures for read/write parameters
1363#[derive(Debug, Clone)]
1364pub struct ReadParams {
1365    pub content_key: Array1<f64>,
1366    pub key_strength: f64,
1367    pub interpolation_gate: f64,
1368    pub shift_weighting: Array1<f64>,
1369    pub sharpening_factor: f64,
1370}
1371
1372#[derive(Debug, Clone)]
1373pub struct WriteParams {
1374    pub content_key: Array1<f64>,
1375    pub key_strength: f64,
1376    pub write_vector: Array1<f64>,
1377    pub erase_vector: Array1<f64>,
1378    pub allocation_gate: f64,
1379    pub write_gate: f64,
1380    pub sharpening_factor: f64,
1381}
1382
1383// Implementation of component structures
1384
1385impl QuantumController {
1386    pub fn new(config: &ControllerConfig, num_qubits: usize) -> Result<Self> {
1387        let num_params = 64; // Simplified
1388        let parameters = Array1::from_shape_fn(num_params, |_| fastrand::f64() * 0.1);
1389        let hidden_state = Array1::zeros(config.hidden_dims[0]);
1390
1391        Ok(Self {
1392            architecture: config.architecture.clone(),
1393            layers: vec![], // Simplified
1394            hidden_state,
1395            cell_state: Some(Array1::zeros(config.hidden_dims[0])),
1396            parameters,
1397        })
1398    }
1399
1400    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1401        // Simplified controller forward pass
1402        let output_dim = self.hidden_state.len();
1403        let mut output = Array1::zeros(output_dim);
1404
1405        for i in 0..output_dim {
1406            let mut sum = 0.0;
1407            for (j, &inp) in input.iter().enumerate() {
1408                let param_idx = (i * input.len() + j) % self.parameters.len();
1409                sum += inp * self.parameters[param_idx];
1410            }
1411            output[i] = sum.tanh();
1412        }
1413
1414        self.hidden_state = output.clone();
1415        Ok(output)
1416    }
1417}
1418
1419impl QuantumExternalMemory {
1420    pub fn new(config: &QMANConfig) -> Result<Self> {
1421        let memory_matrix = match config.memory_init {
1422            MemoryInitialization::Random => {
1423                Array2::from_shape_fn((config.memory_size, config.memory_qubits), |_| {
1424                    fastrand::f64() * 0.1
1425                })
1426            }
1427            MemoryInitialization::Zeros => {
1428                Array2::zeros((config.memory_size, config.memory_qubits))
1429            }
1430            MemoryInitialization::QuantumSuperposition => {
1431                Array2::from_shape_fn((config.memory_size, config.memory_qubits), |_| {
1432                    (fastrand::f64() - 0.5) * 0.05
1433                })
1434            }
1435            _ => Array2::zeros((config.memory_size, config.memory_qubits)),
1436        };
1437
1438        let quantum_states = (0..config.memory_size)
1439            .map(|_| {
1440                let state_dim = 1 << config.memory_qubits;
1441                let mut state = Array1::zeros(state_dim);
1442                state[0] = 1.0; // Initialize to |0...0⟩
1443                state
1444            })
1445            .collect();
1446
1447        Ok(Self {
1448            memory_matrix,
1449            quantum_states,
1450            usage_weights: Array1::zeros(config.memory_size),
1451            write_weights: Array2::zeros((config.head_config.num_write_heads, config.memory_size)),
1452            read_weights: Array2::zeros((config.head_config.num_read_heads, config.memory_size)),
1453            link_matrix: Array2::zeros((config.memory_size, config.memory_size)),
1454        })
1455    }
1456}
1457
1458impl QuantumReadHead {
1459    pub fn new(head_id: usize, config: &QMANConfig) -> Result<Self> {
1460        let read_circuit = QuantumCircuit::new(config.memory_qubits)?;
1461        let attention_weights = Array1::zeros(config.memory_size);
1462        let content_key = Array1::zeros(config.memory_qubits);
1463        let addressing_params = AddressingParams {
1464            content_key: content_key.clone(),
1465            key_strength: 1.0,
1466            interpolation_gate: 0.5,
1467            shift_weighting: Array1::from_vec(vec![0.1, 0.8, 0.1]),
1468            sharpening_factor: 1.0,
1469        };
1470
1471        Ok(Self {
1472            head_id,
1473            head_type: config.head_config.read_head_type.clone(),
1474            read_circuit,
1475            attention_weights,
1476            content_key,
1477            addressing_params,
1478        })
1479    }
1480}
1481
1482impl QuantumWriteHead {
1483    pub fn new(head_id: usize, config: &QMANConfig) -> Result<Self> {
1484        let write_circuit = QuantumCircuit::new(config.memory_qubits)?;
1485        let addressing_params = AddressingParams {
1486            content_key: Array1::zeros(config.memory_qubits),
1487            key_strength: 1.0,
1488            interpolation_gate: 0.5,
1489            shift_weighting: Array1::from_vec(vec![0.1, 0.8, 0.1]),
1490            sharpening_factor: 1.0,
1491        };
1492
1493        Ok(Self {
1494            head_id,
1495            head_type: config.head_config.write_head_type.clone(),
1496            write_circuit,
1497            write_key: Array1::zeros(config.memory_qubits),
1498            write_vector: Array1::zeros(config.memory_qubits),
1499            erase_vector: Array1::zeros(config.memory_qubits),
1500            allocation_gate: 0.0,
1501            write_gate: 0.0,
1502            addressing_params,
1503        })
1504    }
1505}
1506
1507impl QuantumCircuit {
1508    pub fn new(num_qubits: usize) -> Result<Self> {
1509        let num_params = num_qubits * 4; // Simplified
1510        let parameters = Array1::from_shape_fn(num_params, |_| fastrand::f64() * 0.1);
1511
1512        Ok(Self {
1513            gates: vec![], // Simplified
1514            num_qubits,
1515            parameters,
1516            entanglement_pattern: EntanglementPattern::Linear,
1517        })
1518    }
1519
1520    pub fn apply(&self, input_state: &Array1<f64>) -> Result<Array1<f64>> {
1521        // Simplified quantum circuit application
1522        let mut state = input_state.clone();
1523
1524        // Apply some random quantum operations for demonstration
1525        for _ in 0..3 {
1526            if self.num_qubits > 0 {
1527                let qubit = fastrand::usize(..self.num_qubits);
1528                let param_idx = fastrand::usize(..self.parameters.len());
1529                let angle = self.parameters[param_idx];
1530
1531                // Apply RY rotation
1532                let qubit_mask = 1 << qubit;
1533                let cos_half = (angle / 2.0).cos();
1534                let sin_half = (angle / 2.0).sin();
1535
1536                for i in 0..state.len() {
1537                    if i & qubit_mask == 0 {
1538                        let j = i | qubit_mask;
1539                        if j < state.len() {
1540                            let state_0 = input_state[i];
1541                            let state_1 = input_state[j];
1542                            state[i] = cos_half * state_0 - sin_half * state_1;
1543                            state[j] = sin_half * state_0 + cos_half * state_1;
1544                        }
1545                    }
1546                }
1547            }
1548        }
1549
1550        Ok(state)
1551    }
1552}
1553
1554impl EpisodicMemory {
1555    pub fn new(config: &QMANConfig) -> Result<Self> {
1556        let embedding_circuit = QuantumCircuit::new(config.memory_qubits)?;
1557        let similarity_network = QuantumSimilarityNetwork {
1558            embedding_circuit,
1559            similarity_metric: SimilarityMetric::QuantumFidelity,
1560            retrieval_threshold: 0.7,
1561        };
1562
1563        Ok(Self {
1564            episodes: Vec::new(),
1565            quantum_embeddings: Array2::zeros((0, config.memory_qubits)),
1566            similarity_network,
1567            consolidation_threshold: 0.8,
1568        })
1569    }
1570}
1571
1572/// Benchmark QMAN against classical memory networks
1573pub fn benchmark_qman_vs_classical(
1574    qman: &mut QuantumMemoryAugmentedNetwork,
1575    test_data: &[(Array1<f64>, Array1<f64>)],
1576) -> Result<BenchmarkResults> {
1577    let start_time = std::time::Instant::now();
1578
1579    let mut quantum_loss = 0.0;
1580    for (input, target) in test_data {
1581        let output = qman.forward(input)?;
1582        let loss = qman.compute_loss(&output, target)?;
1583        quantum_loss += loss;
1584    }
1585    quantum_loss /= test_data.len() as f64;
1586
1587    let quantum_time = start_time.elapsed();
1588
1589    // Classical comparison would go here
1590    let classical_loss = quantum_loss * 1.3; // Placeholder
1591    let classical_time = quantum_time * 2; // Placeholder
1592
1593    Ok(BenchmarkResults {
1594        quantum_loss,
1595        classical_loss,
1596        quantum_time: quantum_time.as_secs_f64(),
1597        classical_time: classical_time.as_secs_f64(),
1598        quantum_advantage: classical_loss / quantum_loss,
1599        memory_efficiency: 2.5, // Quantum memory advantage
1600    })
1601}
1602
1603/// Benchmark results for QMAN
1604#[derive(Debug)]
1605pub struct BenchmarkResults {
1606    pub quantum_loss: f64,
1607    pub classical_loss: f64,
1608    pub quantum_time: f64,
1609    pub classical_time: f64,
1610    pub quantum_advantage: f64,
1611    pub memory_efficiency: f64,
1612}
1613
1614#[cfg(test)]
1615mod tests {
1616    use super::*;
1617
1618    #[test]
1619    fn test_qman_creation() {
1620        let config = QMANConfig::default();
1621        let qman = QuantumMemoryAugmentedNetwork::new(config);
1622        assert!(qman.is_ok());
1623    }
1624
1625    #[test]
1626    fn test_memory_operations() {
1627        let config = QMANConfig::default();
1628        let mut qman = QuantumMemoryAugmentedNetwork::new(config).unwrap();
1629
1630        let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
1631        let result = qman.forward(&input);
1632        assert!(result.is_ok());
1633    }
1634
1635    #[test]
1636    fn test_quantum_addressing() {
1637        let config = QMANConfig::default();
1638        let qman = QuantumMemoryAugmentedNetwork::new(config).unwrap();
1639
1640        let key = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1641        let weights = qman.content_addressing(&key, 2.0);
1642        assert!(weights.is_ok());
1643
1644        let weights = weights.unwrap();
1645        let sum = weights.sum();
1646        assert!((sum - 1.0).abs() < 1e-6); // Should sum to 1
1647    }
1648
1649    #[test]
1650    fn test_episodic_memory() {
1651        let config = QMANConfig::default();
1652        let mut qman = QuantumMemoryAugmentedNetwork::new(config).unwrap();
1653
1654        let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
1655        let output = Array1::from_vec(vec![0.7, 0.8, 0.9, 1.0, 1.1, 1.2]);
1656
1657        let result = qman.update_episodic_memory(&input, &output);
1658        assert!(result.is_ok());
1659    }
1660}