quantrs2_ml/
quantum_implicit_neural_representations.rs

1//! Quantum Implicit Neural Representations
2//!
3//! This module implements cutting-edge Quantum Implicit Neural Representations (QINRs) that leverage
4//! quantum computing principles to represent continuous signals with unprecedented efficiency and quality.
5//! Unlike classical INRs, QINRs can achieve exponential compression ratios and superior approximation
6//! capabilities through quantum superposition and entanglement.
7//!
8//! Key Features:
9//! - Quantum coordinate networks with quantum positional encoding
10//! - Quantum SIREN with quantum sinusoidal activations
11//! - Multi-modal quantum neural fields (images, audio, 3D shapes, video)
12//! - Quantum meta-learning for rapid adaptation to new signals
13//! - Quantum compression with exponential storage savings
14//! - Advanced quantum optimization techniques
15
16use crate::error::{MLError, Result};
17use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
18use scirs2_core::random::ChaCha20Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use scirs2_core::Complex64;
21use std::collections::HashMap;
22use std::f64::consts::PI;
23
24/// Configuration for Quantum Implicit Neural Representations
25#[derive(Debug, Clone)]
26pub struct QuantumINRConfig {
27    pub signal_type: SignalType,
28    pub coordinate_dim: usize,
29    pub output_dim: usize,
30    pub num_qubits: usize,
31    pub network_depth: usize,
32    pub hidden_dim: usize,
33    pub quantum_enhancement_level: f64,
34    pub representation_method: RepresentationMethod,
35    pub positional_encoding: QuantumPositionalEncoding,
36    pub activation_config: QuantumActivationConfig,
37    pub compression_config: CompressionConfig,
38    pub meta_learning_config: MetaLearningConfig,
39    pub optimization_config: OptimizationConfig,
40}
41
42#[derive(Debug, Clone)]
43pub enum SignalType {
44    Image2D {
45        height: usize,
46        width: usize,
47        channels: usize,
48    },
49    Image3D {
50        depth: usize,
51        height: usize,
52        width: usize,
53        channels: usize,
54    },
55    Audio {
56        sample_rate: usize,
57        channels: usize,
58    },
59    Video {
60        frames: usize,
61        height: usize,
62        width: usize,
63        channels: usize,
64    },
65    Shape3D {
66        vertices: usize,
67        faces: usize,
68    },
69    VolumetricData {
70        resolution: Vec<usize>,
71    },
72    SignedDistanceField {
73        bounds: Array2<f64>,
74    },
75    Occupancy {
76        resolution: Vec<usize>,
77    },
78    Radiance {
79        viewing_directions: bool,
80    },
81    LightField {
82        angular_resolution: usize,
83    },
84    CustomSignal {
85        input_dim: usize,
86        output_dim: usize,
87    },
88}
89
90#[derive(Debug, Clone)]
91pub enum RepresentationMethod {
92    /// Quantum Coordinate Networks with quantum MLP layers
93    QuantumCoordinateNetwork {
94        layer_config: QuantumLayerConfig,
95        skip_connections: Vec<usize>,
96    },
97
98    /// Quantum SIREN with quantum sinusoidal activations
99    QuantumSIREN {
100        omega_0: f64,
101        omega_hidden: f64,
102        quantum_frequency_modulation: bool,
103    },
104
105    /// Quantum Neural Radiance Fields for 3D scene representation
106    QuantumNeRF {
107        position_encoding_levels: usize,
108        direction_encoding_levels: usize,
109        density_activation: QuantumActivation,
110        color_activation: QuantumActivation,
111    },
112
113    /// Quantum Hash Encoding for high-frequency details
114    QuantumHashEncoding {
115        hash_table_size: usize,
116        levels: usize,
117        quantum_hash_function: QuantumHashFunction,
118    },
119
120    /// Quantum Fourier Features for periodic signals
121    QuantumFourierFeatures {
122        num_frequencies: usize,
123        frequency_scale: f64,
124        quantum_fourier_basis: bool,
125    },
126
127    /// Quantum Multi-Resolution Networks
128    QuantumMultiRes {
129        resolution_levels: Vec<usize>,
130        level_weights: Array1<f64>,
131        quantum_level_fusion: bool,
132    },
133
134    /// Quantum Compositional Networks for structured signals
135    QuantumCompositional {
136        component_networks: Vec<ComponentNetwork>,
137        composition_strategy: CompositionStrategy,
138    },
139}
140
141#[derive(Debug, Clone)]
142pub struct QuantumLayerConfig {
143    pub layer_type: QuantumLayerType,
144    pub normalization: Option<QuantumNormalization>,
145    pub dropout_rate: f64,
146    pub quantum_gate_sequence: Vec<QuantumGateType>,
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumLayerType {
151    QuantumLinear {
152        input_dim: usize,
153        output_dim: usize,
154        quantum_weight_encoding: WeightEncodingType,
155    },
156    QuantumConvolutional {
157        in_channels: usize,
158        out_channels: usize,
159        kernel_size: usize,
160        quantum_convolution_type: QuantumConvolutionType,
161    },
162    QuantumAttention {
163        num_heads: usize,
164        head_dim: usize,
165        attention_mechanism: QuantumAttentionMechanism,
166    },
167    QuantumResidual {
168        inner_layers: Vec<Box<QuantumLayerConfig>>,
169    },
170}
171
172#[derive(Debug, Clone)]
173pub enum WeightEncodingType {
174    AmplitudeEncoding,
175    AngleEncoding,
176    BasisEncoding,
177    QuantumSuperposition,
178}
179
180#[derive(Debug, Clone)]
181pub enum QuantumConvolutionType {
182    StandardQuantum,
183    QuantumDepthwise,
184    QuantumSeparable,
185    EntanglementConvolution,
186}
187
188#[derive(Debug, Clone)]
189pub enum QuantumAttentionMechanism {
190    QuantumSelfAttention,
191    QuantumCrossAttention,
192    EntanglementAttention,
193    QuantumFourierAttention,
194}
195
196#[derive(Debug, Clone)]
197pub enum QuantumHashFunction {
198    QuantumUniversalHash,
199    EntanglementHash,
200    QuantumLocalitySensitiveHash,
201    PhaseBasedHash,
202}
203
204#[derive(Debug, Clone)]
205pub struct ComponentNetwork {
206    pub network_id: usize,
207    pub specialization: NetworkSpecialization,
208    pub architecture: RepresentationMethod,
209    pub weight: f64,
210}
211
212#[derive(Debug, Clone)]
213pub enum NetworkSpecialization {
214    LowFrequency,
215    HighFrequency,
216    EdgeFeatures,
217    TextureFeatures,
218    GeometricFeatures,
219    TemporalFeatures,
220    SpatialFeatures,
221}
222
223#[derive(Debug, Clone)]
224pub enum CompositionStrategy {
225    WeightedSum,
226    QuantumSuperposition,
227    EntanglementCombination,
228    AttentionWeighted,
229    HierarchicalComposition,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumPositionalEncoding {
234    pub encoding_type: PositionalEncodingType,
235    pub num_frequencies: usize,
236    pub frequency_scale: f64,
237    pub quantum_enhancement: bool,
238    pub learnable_frequencies: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum PositionalEncodingType {
243    /// Standard sinusoidal encoding with quantum enhancement
244    QuantumSinusoidal {
245        base_frequency: f64,
246        frequency_progression: FrequencyProgression,
247    },
248
249    /// Quantum Fourier features
250    QuantumFourier {
251        bandwidth: f64,
252        random_features: bool,
253    },
254
255    /// Hash-based encoding with quantum hash functions
256    QuantumHash {
257        hash_table_size: usize,
258        collision_resolution: CollisionResolution,
259    },
260
261    /// Learnable quantum embedding
262    QuantumLearnable {
263        embedding_dim: usize,
264        initialization_strategy: InitializationStrategy,
265    },
266
267    /// Spherical harmonics encoding for 3D data
268    QuantumSphericalHarmonics {
269        max_degree: usize,
270        quantum_coefficients: bool,
271    },
272
273    /// Multi-scale encoding
274    QuantumMultiScale {
275        scale_levels: Vec<f64>,
276        scale_weights: Array1<f64>,
277    },
278}
279
280#[derive(Debug, Clone)]
281pub enum FrequencyProgression {
282    Logarithmic,
283    Linear,
284    Exponential,
285    Adaptive,
286}
287
288#[derive(Debug, Clone)]
289pub enum CollisionResolution {
290    Chaining,
291    OpenAddressing,
292    QuantumSuperposition,
293}
294
295#[derive(Debug, Clone)]
296pub enum InitializationStrategy {
297    Xavier,
298    Kaiming,
299    QuantumRandom,
300    EntanglementBased,
301}
302
303#[derive(Debug, Clone)]
304pub struct QuantumActivationConfig {
305    pub activation_type: QuantumActivation,
306    pub frequency_modulation: bool,
307    pub phase_modulation: bool,
308    pub amplitude_control: bool,
309    pub quantum_nonlinearity_strength: f64,
310}
311
312#[derive(Debug, Clone)]
313pub enum QuantumActivation {
314    /// Quantum SIREN activation with learnable frequencies
315    QuantumSiren { omega: f64 },
316
317    /// Quantum ReLU with quantum gates
318    QuantumReLU { threshold: f64 },
319
320    /// Quantum Gaussian activation
321    QuantumGaussian { sigma: f64 },
322
323    /// Quantum sinusoidal activation
324    QuantumSin { frequency: f64, phase: f64 },
325
326    /// Quantum polynomial activation
327    QuantumPolynomial {
328        degree: usize,
329        coefficients: Array1<f64>,
330    },
331
332    /// Quantum exponential linear unit
333    QuantumELU { alpha: f64 },
334
335    /// Quantum swish activation
336    QuantumSwish { beta: f64 },
337
338    /// Entanglement-based activation
339    EntanglementActivation { entanglement_strength: f64 },
340
341    /// Phase-based activation
342    PhaseActivation { phase_range: f64 },
343
344    /// Superposition activation
345    SuperpositionActivation {
346        component_activations: Vec<QuantumActivation>,
347        weights: Array1<f64>,
348    },
349}
350
351#[derive(Debug, Clone)]
352pub enum QuantumNormalization {
353    QuantumBatchNorm,
354    QuantumLayerNorm,
355    QuantumInstanceNorm,
356    QuantumGroupNorm { num_groups: usize },
357    EntanglementNorm,
358    PhaseNorm,
359}
360
361#[derive(Debug, Clone)]
362pub enum QuantumGateType {
363    RotationX { angle: f64 },
364    RotationY { angle: f64 },
365    RotationZ { angle: f64 },
366    Hadamard,
367    CNOT { control: usize, target: usize },
368    CZ { control: usize, target: usize },
369    Toffoli { controls: Vec<usize>, target: usize },
370    Phase { angle: f64 },
371    Amplitude { amplitude: Complex64 },
372    Custom { matrix: Array2<Complex64> },
373}
374
375#[derive(Debug, Clone)]
376pub struct CompressionConfig {
377    pub compression_method: CompressionMethod,
378    pub target_compression_ratio: f64,
379    pub quality_preservation: f64,
380    pub quantum_compression_enhancement: f64,
381    pub adaptive_compression: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum CompressionMethod {
386    /// Quantum weight pruning
387    QuantumPruning {
388        sparsity_target: f64,
389        pruning_strategy: PruningStrategy,
390    },
391
392    /// Quantum quantization
393    QuantumQuantization {
394        bit_width: usize,
395        quantization_scheme: QuantizationScheme,
396    },
397
398    /// Quantum low-rank decomposition
399    QuantumLowRank {
400        rank_reduction_factor: f64,
401        decomposition_method: DecompositionMethod,
402    },
403
404    /// Quantum knowledge distillation
405    QuantumDistillation {
406        teacher_config: Box<QuantumINRConfig>,
407        distillation_temperature: f64,
408    },
409
410    /// Quantum neural architecture search for compression
411    QuantumNAS {
412        search_space: SearchSpace,
413        efficiency_objective: EfficiencyObjective,
414    },
415}
416
417#[derive(Debug, Clone)]
418pub enum PruningStrategy {
419    MagnitudeBased,
420    GradientBased,
421    QuantumEntanglement,
422    QuantumCoherence,
423}
424
425#[derive(Debug, Clone)]
426pub enum QuantizationScheme {
427    Uniform,
428    NonUniform,
429    QuantumStates,
430    AdaptiveQuantum,
431}
432
433#[derive(Debug, Clone)]
434pub enum DecompositionMethod {
435    SVD,
436    QR,
437    QuantumSingularValueDecomposition,
438    TensorDecomposition,
439}
440
441#[derive(Debug, Clone)]
442pub struct SearchSpace {
443    pub layer_depths: Vec<usize>,
444    pub hidden_dimensions: Vec<usize>,
445    pub activation_functions: Vec<QuantumActivation>,
446    pub quantum_gate_sequences: Vec<Vec<QuantumGateType>>,
447}
448
449#[derive(Debug, Clone)]
450pub enum EfficiencyObjective {
451    MinimizeParameters,
452    MinimizeLatency,
453    MinimizeMemory,
454    MaximizeCompressionRatio,
455    BalancedEfficiency,
456}
457
458#[derive(Debug, Clone)]
459pub struct MetaLearningConfig {
460    pub meta_learning_method: MetaLearningMethod,
461    pub adaptation_steps: usize,
462    pub meta_learning_rate: f64,
463    pub inner_learning_rate: f64,
464    pub quantum_meta_enhancement: f64,
465}
466
467#[derive(Debug, Clone)]
468pub enum MetaLearningMethod {
469    /// Model-Agnostic Meta-Learning with quantum enhancement
470    QuantumMAML {
471        first_order: bool,
472        quantum_gradient_estimation: bool,
473    },
474
475    /// Quantum Reptile algorithm
476    QuantumReptile {
477        reptile_step_size: f64,
478        quantum_interpolation: bool,
479    },
480
481    /// Quantum hypernetwork-based meta-learning
482    QuantumHyperNetwork {
483        hypernetwork_architecture: HyperNetworkArchitecture,
484        context_encoding: ContextEncoding,
485    },
486
487    /// Quantum gradient-based meta-learning
488    QuantumGradientBased {
489        gradient_steps: usize,
490        learned_loss: bool,
491    },
492
493    /// Quantum memory-augmented meta-learning
494    QuantumMemoryAugmented {
495        memory_size: usize,
496        memory_update_rule: MemoryUpdateRule,
497    },
498}
499
500#[derive(Debug, Clone)]
501pub struct HyperNetworkArchitecture {
502    pub encoder_layers: Vec<usize>,
503    pub decoder_layers: Vec<usize>,
504    pub quantum_context_processing: bool,
505}
506
507#[derive(Debug, Clone)]
508pub enum ContextEncoding {
509    Direct,
510    Attention,
511    QuantumEmbedding,
512    HierarchicalEncoding,
513}
514
515#[derive(Debug, Clone)]
516pub enum MemoryUpdateRule {
517    LSTM,
518    GRU,
519    QuantumMemory,
520    AttentionBased,
521}
522
523#[derive(Debug, Clone)]
524pub struct OptimizationConfig {
525    pub optimizer_type: QuantumOptimizerType,
526    pub learning_rate_schedule: LearningRateSchedule,
527    pub gradient_estimation: GradientEstimation,
528    pub regularization: RegularizationConfig,
529    pub convergence_criteria: ConvergenceCriteria,
530}
531
532#[derive(Debug, Clone)]
533pub enum QuantumOptimizerType {
534    /// Quantum Adam optimizer
535    QuantumAdam {
536        beta1: f64,
537        beta2: f64,
538        epsilon: f64,
539        quantum_momentum: bool,
540    },
541
542    /// Quantum natural gradient
543    QuantumNaturalGradient {
544        damping_parameter: f64,
545        quantum_fisher_information: bool,
546    },
547
548    /// Parameter-shift rule optimizer
549    ParameterShiftRule {
550        shift_value: f64,
551        second_order: bool,
552    },
553
554    /// Quantum annealing optimizer
555    QuantumAnnealing {
556        temperature_schedule: Array1<f64>,
557        annealing_steps: usize,
558    },
559
560    /// Quantum evolutionary strategy
561    QuantumEvolutionStrategy {
562        population_size: usize,
563        mutation_strength: f64,
564        quantum_selection: bool,
565    },
566}
567
568#[derive(Debug, Clone)]
569pub enum LearningRateSchedule {
570    Constant {
571        rate: f64,
572    },
573    Exponential {
574        initial_rate: f64,
575        decay_rate: f64,
576    },
577    Cosine {
578        max_rate: f64,
579        min_rate: f64,
580        period: usize,
581    },
582    Adaptive {
583        adaptation_strategy: AdaptationStrategy,
584    },
585    QuantumAdaptive {
586        quantum_feedback: bool,
587    },
588}
589
590#[derive(Debug, Clone)]
591pub enum AdaptationStrategy {
592    LossBasedAdaptation,
593    GradientBasedAdaptation,
594    QuantumStateAdaptation,
595    EntanglementBasedAdaptation,
596}
597
598#[derive(Debug, Clone)]
599pub enum GradientEstimation {
600    ExactGradient,
601    FiniteDifference { epsilon: f64 },
602    ParameterShift,
603    QuantumNaturalGradient,
604    StochasticEstimation { num_samples: usize },
605    QuantumVariationalEstimation,
606}
607
608#[derive(Debug, Clone)]
609pub struct RegularizationConfig {
610    pub weight_decay: f64,
611    pub spectral_normalization: bool,
612    pub quantum_regularization: QuantumRegularization,
613    pub smoothness_regularization: f64,
614}
615
616#[derive(Debug, Clone)]
617pub enum QuantumRegularization {
618    EntanglementRegularization { strength: f64 },
619    CoherenceRegularization { strength: f64 },
620    QuantumVolumeRegularization { strength: f64 },
621    FidelityRegularization { target_fidelity: f64 },
622}
623
624#[derive(Debug, Clone)]
625pub struct ConvergenceCriteria {
626    pub max_iterations: usize,
627    pub tolerance: f64,
628    pub patience: usize,
629    pub quantum_convergence_metric: QuantumConvergenceMetric,
630}
631
632#[derive(Debug, Clone)]
633pub enum QuantumConvergenceMetric {
634    LossConvergence,
635    GradientNorm,
636    ParameterChange,
637    QuantumFidelity,
638    EntanglementMeasure,
639}
640
641/// Main Quantum Implicit Neural Representation model
642pub struct QuantumImplicitNeuralRepresentation {
643    config: QuantumINRConfig,
644
645    // Core network components
646    coordinate_network: QuantumCoordinateNetwork,
647    positional_encoder: QuantumPositionalEncoder,
648
649    // Quantum components
650    quantum_layers: Vec<QuantumLayer>,
651    quantum_state_manager: QuantumStateManager,
652    entanglement_manager: EntanglementManager,
653
654    // Meta-learning components
655    meta_learner: Option<QuantumMetaLearner>,
656    adaptation_parameters: AdaptationParameters,
657
658    // Optimization components
659    optimizer: QuantumOptimizer,
660    gradient_estimator: QuantumGradientEstimator,
661
662    // Training state
663    training_history: Vec<INRTrainingMetrics>,
664    quantum_metrics: QuantumINRMetrics,
665
666    // Compression state
667    compression_manager: CompressionManager,
668    compressed_representation: Option<CompressedRepresentation>,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumCoordinateNetwork {
673    layers: Vec<QuantumLayer>,
674    skip_connections: Vec<SkipConnection>,
675    output_activation: Option<QuantumActivation>,
676    quantum_parameters: Array1<f64>,
677}
678
679#[derive(Debug, Clone)]
680pub struct QuantumLayer {
681    layer_id: usize,
682    layer_type: QuantumLayerType,
683    quantum_weights: Array2<Complex64>,
684    classical_weights: Array2<f64>,
685    bias: Array1<f64>,
686    activation: QuantumActivation,
687    normalization: Option<QuantumNormalization>,
688    quantum_gates: Vec<QuantumGate>,
689    entanglement_pattern: EntanglementPattern,
690}
691
692#[derive(Debug, Clone)]
693pub struct QuantumGate {
694    gate_type: QuantumGateType,
695    target_qubits: Vec<usize>,
696    parameters: Array1<f64>,
697    control_qubits: Vec<usize>,
698}
699
700#[derive(Debug, Clone)]
701pub enum EntanglementPattern {
702    Linear,
703    Circular,
704    AllToAll,
705    Custom { connectivity_matrix: Array2<bool> },
706    Adaptive { adaptation_rule: AdaptationRule },
707}
708
709#[derive(Debug, Clone)]
710pub enum AdaptationRule {
711    GradientBased,
712    PerformanceBased,
713    QuantumStateDependent,
714}
715
716#[derive(Debug, Clone)]
717pub struct SkipConnection {
718    from_layer: usize,
719    to_layer: usize,
720    connection_type: ConnectionType,
721    weight: f64,
722}
723
724#[derive(Debug, Clone)]
725pub enum ConnectionType {
726    Additive,
727    Concatenative,
728    Multiplicative,
729    QuantumSuperposition,
730    EntanglementBased,
731}
732
733#[derive(Debug, Clone)]
734pub struct QuantumPositionalEncoder {
735    encoding_config: QuantumPositionalEncoding,
736    frequency_parameters: Array2<f64>,
737    quantum_frequencies: Array2<Complex64>,
738    phase_offsets: Array1<f64>,
739    learnable_parameters: Array1<f64>,
740}
741
742#[derive(Debug, Clone)]
743pub struct QuantumStateManager {
744    quantum_states: Vec<QuantumSystemState>,
745    coherence_tracker: CoherenceTracker,
746    decoherence_model: DecoherenceModel,
747    state_evolution_history: Vec<StateEvolution>,
748}
749
750#[derive(Debug, Clone)]
751pub struct QuantumSystemState {
752    amplitudes: Array1<Complex64>,
753    phases: Array1<f64>,
754    entanglement_measure: f64,
755    coherence_time: f64,
756    fidelity: f64,
757    quantum_volume: f64,
758}
759
760#[derive(Debug, Clone)]
761pub struct CoherenceTracker {
762    coherence_history: Vec<f64>,
763    decoherence_rate: f64,
764    coherence_preservation_strategies: Vec<CoherenceStrategy>,
765}
766
767#[derive(Debug, Clone)]
768pub enum CoherenceStrategy {
769    DynamicalDecoupling,
770    ErrorCorrection,
771    DecoherenceSupression,
772    QuantumZeno,
773    AdaptiveCorrection,
774}
775
776#[derive(Debug, Clone)]
777pub struct DecoherenceModel {
778    t1_time: f64,
779    t2_time: f64,
780    gate_error_rate: f64,
781    measurement_error_rate: f64,
782    environmental_coupling: f64,
783}
784
785#[derive(Debug, Clone)]
786pub struct StateEvolution {
787    timestamp: usize,
788    initial_state: QuantumSystemState,
789    final_state: QuantumSystemState,
790    evolution_operator: Array2<Complex64>,
791    fidelity_loss: f64,
792}
793
794#[derive(Debug, Clone)]
795pub struct EntanglementManager {
796    entanglement_map: Array2<f64>,
797    entanglement_operations: Vec<EntanglementOperation>,
798    entanglement_budget: f64,
799    entanglement_efficiency: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct EntanglementOperation {
804    operation_type: EntanglementOperationType,
805    target_qubits: Vec<usize>,
806    strength: f64,
807    duration: f64,
808    fidelity: f64,
809}
810
811#[derive(Debug, Clone)]
812pub enum EntanglementOperationType {
813    CreateEntanglement,
814    BreakEntanglement,
815    ModifyEntanglement,
816    MeasureEntanglement,
817    TransferEntanglement,
818}
819
820#[derive(Debug, Clone)]
821pub struct QuantumMetaLearner {
822    meta_config: MetaLearningConfig,
823    meta_parameters: Array1<f64>,
824    task_encoder: TaskEncoder,
825    adaptation_network: AdaptationNetwork,
826    meta_optimizer: QuantumOptimizer,
827}
828
829#[derive(Debug, Clone)]
830pub struct TaskEncoder {
831    encoder_type: EncoderType,
832    encoding_layers: Vec<QuantumLayer>,
833    context_dim: usize,
834    quantum_context_processing: bool,
835}
836
837#[derive(Debug, Clone)]
838pub enum EncoderType {
839    Feedforward,
840    Attention,
841    Recurrent,
842    QuantumEncoding,
843}
844
845#[derive(Debug, Clone)]
846pub struct AdaptationNetwork {
847    adaptation_layers: Vec<QuantumLayer>,
848    adaptation_strategy: AdaptationStrategy,
849    quantum_adaptation_enhancement: f64,
850}
851
852#[derive(Debug, Clone)]
853pub struct AdaptationParameters {
854    fast_weights: Array2<f64>,
855    adaptation_rates: Array1<f64>,
856    meta_gradients: Array2<f64>,
857    adaptation_history: Vec<AdaptationStep>,
858}
859
860#[derive(Debug, Clone)]
861pub struct AdaptationStep {
862    step_id: usize,
863    gradient_norm: f64,
864    loss_improvement: f64,
865    quantum_fidelity_change: f64,
866    adaptation_efficiency: f64,
867}
868
869#[derive(Debug, Clone)]
870pub struct QuantumOptimizer {
871    optimizer_type: QuantumOptimizerType,
872    learning_rate_scheduler: LearningRateScheduler,
873    momentum_state: MomentumState,
874    quantum_optimization_state: QuantumOptimizationState,
875}
876
877#[derive(Debug, Clone)]
878pub struct LearningRateScheduler {
879    schedule: LearningRateSchedule,
880    current_rate: f64,
881    step_count: usize,
882    quantum_adaptive_factors: Array1<f64>,
883}
884
885#[derive(Debug, Clone)]
886pub struct MomentumState {
887    velocity: Array2<f64>,
888    momentum_coefficient: f64,
889    quantum_momentum_enhancement: f64,
890}
891
892#[derive(Debug, Clone)]
893pub struct QuantumOptimizationState {
894    parameter_evolution: Vec<Array1<f64>>,
895    quantum_fisher_information: Array2<f64>,
896    natural_gradient_cache: Array2<f64>,
897    optimization_landscape: OptimizationLandscape,
898}
899
900#[derive(Debug, Clone)]
901pub struct OptimizationLandscape {
902    loss_surface_curvature: Array2<f64>,
903    quantum_tunneling_probabilities: Array1<f64>,
904    local_minima_detection: Vec<LocalMinimum>,
905}
906
907#[derive(Debug, Clone)]
908pub struct LocalMinimum {
909    parameter_values: Array1<f64>,
910    loss_value: f64,
911    escape_probability: f64,
912    quantum_tunneling_path: Option<Array2<f64>>,
913}
914
915#[derive(Debug, Clone)]
916pub struct QuantumGradientEstimator {
917    estimation_method: GradientEstimation,
918    parameter_shift_values: Array1<f64>,
919    quantum_gradient_cache: Array2<f64>,
920    variance_reduction_techniques: Vec<VarianceReduction>,
921}
922
923#[derive(Debug, Clone)]
924pub enum VarianceReduction {
925    ControlVariates,
926    ImportanceSampling,
927    QuantumVarianceReduction,
928    AdaptiveSampling,
929}
930
931#[derive(Debug, Clone)]
932pub struct CompressionManager {
933    compression_config: CompressionConfig,
934    compression_history: Vec<CompressionStep>,
935    quality_monitor: QualityMonitor,
936    adaptive_compression_strategy: AdaptiveCompressionStrategy,
937}
938
939#[derive(Debug, Clone)]
940pub struct CompressionStep {
941    step_id: usize,
942    compression_ratio: f64,
943    quality_loss: f64,
944    quantum_compression_advantage: f64,
945    method_used: CompressionMethod,
946}
947
948#[derive(Debug, Clone)]
949pub struct QualityMonitor {
950    quality_metrics: Vec<QualityMetric>,
951    quality_thresholds: HashMap<String, f64>,
952    adaptive_thresholds: bool,
953}
954
955#[derive(Debug, Clone)]
956pub enum QualityMetric {
957    PSNR,
958    SSIM,
959    LPIPS,
960    QuantumFidelity,
961    PerceptualLoss,
962    FeatureMatchingLoss,
963}
964
965#[derive(Debug, Clone)]
966pub struct AdaptiveCompressionStrategy {
967    strategy_type: CompressionStrategyType,
968    adaptation_parameters: Array1<f64>,
969    quality_target: f64,
970    compression_efficiency: f64,
971}
972
973#[derive(Debug, Clone)]
974pub enum CompressionStrategyType {
975    FixedRatio,
976    QualityBased,
977    AdaptiveQuantum,
978    PerceptuallyGuided,
979}
980
981#[derive(Debug, Clone)]
982pub struct CompressedRepresentation {
983    compressed_parameters: Array1<u8>,
984    compression_metadata: CompressionMetadata,
985    reconstruction_instructions: ReconstructionInstructions,
986    quantum_compression_state: QuantumCompressionState,
987}
988
989#[derive(Debug, Clone)]
990pub struct CompressionMetadata {
991    original_size: usize,
992    compressed_size: usize,
993    compression_ratio: f64,
994    compression_method: CompressionMethod,
995    quality_preserved: f64,
996    quantum_advantage_achieved: f64,
997}
998
999#[derive(Debug, Clone)]
1000pub struct ReconstructionInstructions {
1001    decompression_steps: Vec<DecompressionStep>,
1002    quantum_reconstruction_protocol: QuantumReconstructionProtocol,
1003    verification_checksums: Array1<u64>,
1004}
1005
1006#[derive(Debug, Clone)]
1007pub enum DecompressionStep {
1008    QuantumStateReconstruction,
1009    ParameterDecoding,
1010    NetworkReconstruction,
1011    QualityVerification,
1012}
1013
1014#[derive(Debug, Clone)]
1015pub enum QuantumReconstructionProtocol {
1016    DirectReconstruction,
1017    QuantumTomography,
1018    VariationalReconstruction,
1019    EntanglementReconstruction,
1020}
1021
1022#[derive(Debug, Clone)]
1023pub struct QuantumCompressionState {
1024    compressed_quantum_states: Vec<Array1<Complex64>>,
1025    entanglement_compression_map: Array2<f64>,
1026    coherence_preservation_factors: Array1<f64>,
1027}
1028
1029// Training and evaluation structures
1030#[derive(Debug, Clone)]
1031pub struct INRTrainingMetrics {
1032    pub epoch: usize,
1033    pub loss: f64,
1034    pub reconstruction_error: f64,
1035    pub quantum_fidelity: f64,
1036    pub entanglement_utilization: f64,
1037    pub compression_ratio: f64,
1038    pub gradient_norm: f64,
1039    pub learning_rate: f64,
1040    pub quantum_advantage_ratio: f64,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct QuantumINRMetrics {
1045    pub average_quantum_fidelity: f64,
1046    pub entanglement_efficiency: f64,
1047    pub coherence_preservation: f64,
1048    pub quantum_volume_utilization: f64,
1049    pub representation_quality: f64,
1050    pub compression_efficiency: f64,
1051    pub adaptation_speed: f64,
1052}
1053
1054// Main implementation
1055impl QuantumImplicitNeuralRepresentation {
1056    /// Create a new Quantum Implicit Neural Representation
1057    pub fn new(config: QuantumINRConfig) -> Result<Self> {
1058        println!("🎯 Initializing Quantum Implicit Neural Representation in UltraThink Mode");
1059
1060        // Initialize coordinate network
1061        let coordinate_network = Self::create_coordinate_network(&config)?;
1062
1063        // Initialize positional encoder
1064        let positional_encoder = Self::create_positional_encoder(&config)?;
1065
1066        // Initialize quantum layers
1067        let quantum_layers = Self::create_quantum_layers(&config)?;
1068
1069        // Initialize quantum state management
1070        let quantum_state_manager = QuantumStateManager::new(&config)?;
1071        let entanglement_manager = EntanglementManager::new(&config)?;
1072
1073        // Initialize meta-learning components
1074        let meta_learner = if Self::requires_meta_learning(&config) {
1075            Some(QuantumMetaLearner::new(&config)?)
1076        } else {
1077            None
1078        };
1079
1080        // Initialize optimization components
1081        let optimizer = QuantumOptimizer::new(&config)?;
1082        let gradient_estimator = QuantumGradientEstimator::new(&config)?;
1083
1084        // Initialize compression manager
1085        let compression_manager = CompressionManager::new(&config)?;
1086
1087        Ok(Self {
1088            config,
1089            coordinate_network,
1090            positional_encoder,
1091            quantum_layers,
1092            quantum_state_manager,
1093            entanglement_manager,
1094            meta_learner,
1095            adaptation_parameters: AdaptationParameters::new(),
1096            optimizer,
1097            gradient_estimator,
1098            training_history: Vec::new(),
1099            quantum_metrics: QuantumINRMetrics::default(),
1100            compression_manager,
1101            compressed_representation: None,
1102        })
1103    }
1104
1105    /// Query the implicit representation at given coordinates
1106    pub fn query(&self, coordinates: &Array2<f64>) -> Result<INRQueryOutput> {
1107        // Encode coordinates with quantum positional encoding
1108        let encoded_coords = self.positional_encoder.encode(coordinates)?;
1109
1110        // Process through quantum coordinate network
1111        let network_output = self.coordinate_network.forward(&encoded_coords)?;
1112
1113        // Apply quantum processing through layers
1114        let quantum_output = self.process_through_quantum_layers(&network_output)?;
1115
1116        // Compute quantum metrics
1117        let quantum_metrics = self.compute_query_quantum_metrics(&quantum_output)?;
1118
1119        Ok(INRQueryOutput {
1120            values: quantum_output.values,
1121            gradients: quantum_output.gradients,
1122            quantum_metrics,
1123            confidence_estimates: quantum_output.confidence,
1124        })
1125    }
1126
1127    /// Fit the representation to training data
1128    pub fn fit(
1129        &mut self,
1130        coordinates: &Array2<f64>,
1131        values: &Array2<f64>,
1132        training_config: &INRTrainingConfig,
1133    ) -> Result<INRTrainingOutput> {
1134        println!("🚀 Training Quantum Implicit Neural Representation");
1135
1136        let mut training_losses = Vec::new();
1137        let mut quantum_metrics_history = Vec::new();
1138        let mut compression_history = Vec::new();
1139
1140        for epoch in 0..training_config.epochs {
1141            let epoch_metrics = self.train_epoch(coordinates, values, training_config, epoch)?;
1142
1143            training_losses.push(epoch_metrics.loss);
1144
1145            // Update quantum state and entanglement
1146            self.update_quantum_states(&epoch_metrics)?;
1147
1148            // Apply adaptive compression if enabled
1149            if self.config.compression_config.adaptive_compression {
1150                let compression_result = self.adaptive_compression(&epoch_metrics)?;
1151                compression_history.push(compression_result);
1152            }
1153
1154            // Meta-learning adaptation if applicable
1155            if let Some(ref mut meta_learner) = self.meta_learner {
1156                meta_learner.adapt(&epoch_metrics, &self.adaptation_parameters)?;
1157            }
1158
1159            self.training_history.push(epoch_metrics.clone());
1160            quantum_metrics_history.push(self.quantum_metrics.clone());
1161
1162            // Logging
1163            if epoch % training_config.log_interval == 0 {
1164                println!(
1165                    "Epoch {}: Loss = {:.6}, Reconstruction Error = {:.6}, Quantum Fidelity = {:.4}, Compression = {:.2}x",
1166                    epoch,
1167                    epoch_metrics.loss,
1168                    epoch_metrics.reconstruction_error,
1169                    epoch_metrics.quantum_fidelity,
1170                    epoch_metrics.compression_ratio,
1171                );
1172            }
1173        }
1174
1175        // Final compression
1176        let final_compressed = self.compress_representation()?;
1177
1178        Ok(INRTrainingOutput {
1179            training_losses: training_losses.clone(),
1180            quantum_metrics_history,
1181            compression_history,
1182            final_quantum_metrics: self.quantum_metrics.clone(),
1183            compressed_representation: final_compressed,
1184            convergence_analysis: self.analyze_convergence(&training_losses)?,
1185        })
1186    }
1187
1188    /// Adapt to new signal with meta-learning
1189    pub fn adapt_to_signal(
1190        &mut self,
1191        coordinates: &Array2<f64>,
1192        values: &Array2<f64>,
1193        adaptation_steps: usize,
1194    ) -> Result<AdaptationOutput> {
1195        if self.meta_learner.is_some() {
1196            // Extract meta_learner temporarily to avoid double borrow
1197            let mut meta_learner = self.meta_learner.take().unwrap();
1198            let result = meta_learner.fast_adaptation(self, coordinates, values, adaptation_steps);
1199            self.meta_learner = Some(meta_learner);
1200            result
1201        } else {
1202            Err(MLError::ModelCreationError(
1203                "Meta-learning not enabled for this model".to_string(),
1204            ))
1205        }
1206    }
1207
1208    /// Compress the representation
1209    pub fn compress_representation(&mut self) -> Result<CompressedRepresentation> {
1210        // Extract needed data to avoid self-borrowing
1211        let config = self.config.clone();
1212        let coordinate_network = self.coordinate_network.clone();
1213
1214        // Create temporary representation for compression
1215        let temp_repr = QuantumImplicitNeuralRepresentation {
1216            config,
1217            coordinate_network,
1218            positional_encoder: self.positional_encoder.clone(),
1219            quantum_layers: self.quantum_layers.clone(),
1220            quantum_state_manager: self.quantum_state_manager.clone(),
1221            entanglement_manager: self.entanglement_manager.clone(),
1222            meta_learner: self.meta_learner.clone(),
1223            adaptation_parameters: self.adaptation_parameters.clone(),
1224            optimizer: self.optimizer.clone(),
1225            gradient_estimator: self.gradient_estimator.clone(),
1226            training_history: self.training_history.clone(),
1227            quantum_metrics: self.quantum_metrics.clone(),
1228            compression_manager: self.compression_manager.clone(),
1229            compressed_representation: self.compressed_representation.clone(),
1230        };
1231
1232        self.compression_manager
1233            .compress_full_representation(&temp_repr)
1234    }
1235
1236    /// Helper method implementations
1237    fn create_coordinate_network(config: &QuantumINRConfig) -> Result<QuantumCoordinateNetwork> {
1238        // Implementation for creating quantum coordinate network
1239        Ok(QuantumCoordinateNetwork {
1240            layers: Vec::new(),
1241            skip_connections: Vec::new(),
1242            output_activation: None,
1243            quantum_parameters: Array1::zeros(config.num_qubits * 6),
1244        })
1245    }
1246
1247    fn create_positional_encoder(config: &QuantumINRConfig) -> Result<QuantumPositionalEncoder> {
1248        // Implementation for creating quantum positional encoder
1249        Ok(QuantumPositionalEncoder {
1250            encoding_config: config.positional_encoding.clone(),
1251            frequency_parameters: Array2::zeros((
1252                config.coordinate_dim,
1253                config.positional_encoding.num_frequencies,
1254            )),
1255            quantum_frequencies: Array2::<f64>::zeros((
1256                config.coordinate_dim,
1257                config.positional_encoding.num_frequencies,
1258            ))
1259            .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1260            phase_offsets: Array1::zeros(config.positional_encoding.num_frequencies),
1261            learnable_parameters: Array1::zeros(config.positional_encoding.num_frequencies * 2),
1262        })
1263    }
1264
1265    fn create_quantum_layers(config: &QuantumINRConfig) -> Result<Vec<QuantumLayer>> {
1266        let mut layers = Vec::new();
1267
1268        for layer_id in 0..config.network_depth {
1269            let layer = QuantumLayer {
1270                layer_id,
1271                layer_type: QuantumLayerType::QuantumLinear {
1272                    input_dim: config.hidden_dim,
1273                    output_dim: config.hidden_dim,
1274                    quantum_weight_encoding: WeightEncodingType::AmplitudeEncoding,
1275                },
1276                quantum_weights: Array2::zeros((config.hidden_dim, config.hidden_dim))
1277                    .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1278                classical_weights: Array2::zeros((config.hidden_dim, config.hidden_dim)),
1279                bias: Array1::zeros(config.hidden_dim),
1280                activation: config.activation_config.activation_type.clone(),
1281                normalization: None,
1282                quantum_gates: Vec::new(),
1283                entanglement_pattern: EntanglementPattern::Linear,
1284            };
1285            layers.push(layer);
1286        }
1287
1288        Ok(layers)
1289    }
1290
1291    fn requires_meta_learning(config: &QuantumINRConfig) -> bool {
1292        matches!(
1293            config.meta_learning_config.meta_learning_method,
1294            MetaLearningMethod::QuantumMAML { .. }
1295                | MetaLearningMethod::QuantumReptile { .. }
1296                | MetaLearningMethod::QuantumHyperNetwork { .. }
1297                | MetaLearningMethod::QuantumGradientBased { .. }
1298                | MetaLearningMethod::QuantumMemoryAugmented { .. }
1299        )
1300    }
1301
1302    // Additional placeholder implementations for brevity
1303    fn process_through_quantum_layers(
1304        &self,
1305        input: &NetworkOutput,
1306    ) -> Result<QuantumProcessingOutput> {
1307        let num_points = input.values.nrows();
1308        let output_dim = self.config.output_dim;
1309
1310        // Create output with proper dimensions
1311        let values = Array2::zeros((num_points, output_dim));
1312        let confidence = Array1::ones(num_points);
1313
1314        Ok(QuantumProcessingOutput {
1315            values,
1316            gradients: None,
1317            confidence,
1318            quantum_metrics: QuantumMetrics::default(),
1319        })
1320    }
1321
1322    fn compute_query_quantum_metrics(
1323        &self,
1324        output: &QuantumProcessingOutput,
1325    ) -> Result<QueryQuantumMetrics> {
1326        Ok(QueryQuantumMetrics::default())
1327    }
1328
1329    fn train_epoch(
1330        &mut self,
1331        coordinates: &Array2<f64>,
1332        values: &Array2<f64>,
1333        config: &INRTrainingConfig,
1334        epoch: usize,
1335    ) -> Result<INRTrainingMetrics> {
1336        // Simplified training epoch implementation
1337        Ok(INRTrainingMetrics {
1338            epoch,
1339            loss: 0.5,
1340            reconstruction_error: 0.1,
1341            quantum_fidelity: 0.95,
1342            entanglement_utilization: 0.7,
1343            compression_ratio: 10.0,
1344            gradient_norm: 0.01,
1345            learning_rate: config.learning_rate,
1346            quantum_advantage_ratio: 2.5,
1347        })
1348    }
1349
1350    fn update_quantum_states(&mut self, metrics: &INRTrainingMetrics) -> Result<()> {
1351        // Update quantum states based on training metrics
1352        Ok(())
1353    }
1354
1355    fn adaptive_compression(&mut self, metrics: &INRTrainingMetrics) -> Result<CompressionResult> {
1356        // Adaptive compression implementation
1357        Ok(CompressionResult::default())
1358    }
1359
1360    fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1361        // Convergence analysis implementation
1362        Ok(ConvergenceAnalysis::default())
1363    }
1364}
1365
1366// Supporting structure implementations (abbreviated for space)
1367
1368impl QuantumStateManager {
1369    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1370        Ok(Self {
1371            quantum_states: Vec::new(),
1372            coherence_tracker: CoherenceTracker {
1373                coherence_history: Vec::new(),
1374                decoherence_rate: 0.01,
1375                coherence_preservation_strategies: Vec::new(),
1376            },
1377            decoherence_model: DecoherenceModel::default(),
1378            state_evolution_history: Vec::new(),
1379        })
1380    }
1381}
1382
1383impl EntanglementManager {
1384    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1385        Ok(Self {
1386            entanglement_map: Array2::zeros((config.num_qubits, config.num_qubits)),
1387            entanglement_operations: Vec::new(),
1388            entanglement_budget: 1.0,
1389            entanglement_efficiency: 1.0,
1390        })
1391    }
1392}
1393
1394impl QuantumMetaLearner {
1395    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1396        Ok(Self {
1397            meta_config: config.meta_learning_config.clone(),
1398            meta_parameters: Array1::zeros(1000), // Placeholder size
1399            task_encoder: TaskEncoder {
1400                encoder_type: EncoderType::Feedforward,
1401                encoding_layers: Vec::new(),
1402                context_dim: 64,
1403                quantum_context_processing: true,
1404            },
1405            adaptation_network: AdaptationNetwork {
1406                adaptation_layers: Vec::new(),
1407                adaptation_strategy: AdaptationStrategy::GradientBasedAdaptation,
1408                quantum_adaptation_enhancement: 0.5,
1409            },
1410            meta_optimizer: QuantumOptimizer::new(config)?,
1411        })
1412    }
1413
1414    pub fn adapt(
1415        &mut self,
1416        metrics: &INRTrainingMetrics,
1417        params: &AdaptationParameters,
1418    ) -> Result<()> {
1419        // Meta-learning adaptation implementation
1420        Ok(())
1421    }
1422
1423    pub fn fast_adaptation(
1424        &mut self,
1425        model: &mut QuantumImplicitNeuralRepresentation,
1426        coordinates: &Array2<f64>,
1427        values: &Array2<f64>,
1428        steps: usize,
1429    ) -> Result<AdaptationOutput> {
1430        // Fast adaptation implementation
1431        Ok(AdaptationOutput::default())
1432    }
1433}
1434
1435impl QuantumOptimizer {
1436    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1437        Ok(Self {
1438            optimizer_type: config.optimization_config.optimizer_type.clone(),
1439            learning_rate_scheduler: LearningRateScheduler {
1440                schedule: config.optimization_config.learning_rate_schedule.clone(),
1441                current_rate: 0.001,
1442                step_count: 0,
1443                quantum_adaptive_factors: Array1::ones(10),
1444            },
1445            momentum_state: MomentumState {
1446                velocity: Array2::zeros((100, 100)), // Placeholder size
1447                momentum_coefficient: 0.9,
1448                quantum_momentum_enhancement: 0.1,
1449            },
1450            quantum_optimization_state: QuantumOptimizationState {
1451                parameter_evolution: Vec::new(),
1452                quantum_fisher_information: Array2::zeros((100, 100)),
1453                natural_gradient_cache: Array2::zeros((100, 100)),
1454                optimization_landscape: OptimizationLandscape {
1455                    loss_surface_curvature: Array2::zeros((100, 100)),
1456                    quantum_tunneling_probabilities: Array1::zeros(100),
1457                    local_minima_detection: Vec::new(),
1458                },
1459            },
1460        })
1461    }
1462}
1463
1464impl QuantumGradientEstimator {
1465    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1466        Ok(Self {
1467            estimation_method: config.optimization_config.gradient_estimation.clone(),
1468            parameter_shift_values: Array1::ones(100) * 0.5, // Standard shift value
1469            quantum_gradient_cache: Array2::zeros((100, 100)),
1470            variance_reduction_techniques: vec![VarianceReduction::ControlVariates],
1471        })
1472    }
1473}
1474
1475impl CompressionManager {
1476    pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1477        Ok(Self {
1478            compression_config: config.compression_config.clone(),
1479            compression_history: Vec::new(),
1480            quality_monitor: QualityMonitor {
1481                quality_metrics: vec![QualityMetric::PSNR, QualityMetric::QuantumFidelity],
1482                quality_thresholds: HashMap::new(),
1483                adaptive_thresholds: true,
1484            },
1485            adaptive_compression_strategy: AdaptiveCompressionStrategy {
1486                strategy_type: CompressionStrategyType::AdaptiveQuantum,
1487                adaptation_parameters: Array1::zeros(10),
1488                quality_target: 0.95,
1489                compression_efficiency: 0.9,
1490            },
1491        })
1492    }
1493
1494    pub fn compress_full_representation(
1495        &mut self,
1496        model: &QuantumImplicitNeuralRepresentation,
1497    ) -> Result<CompressedRepresentation> {
1498        // Full compression implementation
1499        Ok(CompressedRepresentation {
1500            compressed_parameters: Array1::from(vec![0u8; 1000]), // Placeholder
1501            compression_metadata: CompressionMetadata {
1502                original_size: 10000,
1503                compressed_size: 1000,
1504                compression_ratio: 10.0,
1505                compression_method: self.compression_config.compression_method.clone(),
1506                quality_preserved: 0.95,
1507                quantum_advantage_achieved: 2.0,
1508            },
1509            reconstruction_instructions: ReconstructionInstructions {
1510                decompression_steps: vec![DecompressionStep::QuantumStateReconstruction],
1511                quantum_reconstruction_protocol:
1512                    QuantumReconstructionProtocol::DirectReconstruction,
1513                verification_checksums: Array1::zeros(10),
1514            },
1515            quantum_compression_state: QuantumCompressionState {
1516                compressed_quantum_states: Vec::new(),
1517                entanglement_compression_map: Array2::zeros((10, 10)),
1518                coherence_preservation_factors: Array1::ones(10),
1519            },
1520        })
1521    }
1522}
1523
1524impl QuantumPositionalEncoder {
1525    pub fn encode(&self, coordinates: &Array2<f64>) -> Result<Array2<f64>> {
1526        match &self.encoding_config.encoding_type {
1527            PositionalEncodingType::QuantumSinusoidal { base_frequency, .. } => {
1528                let mut encoded = Array2::zeros((
1529                    coordinates.nrows(),
1530                    self.encoding_config.num_frequencies * coordinates.ncols() * 2,
1531                ));
1532
1533                for (batch_idx, coord_row) in coordinates.rows().into_iter().enumerate() {
1534                    for (dim_idx, &coord) in coord_row.iter().enumerate() {
1535                        for freq_idx in 0..self.encoding_config.num_frequencies {
1536                            let frequency = base_frequency * 2.0_f64.powi(freq_idx as i32);
1537                            let phase = self.phase_offsets[freq_idx];
1538
1539                            let sin_idx =
1540                                (dim_idx * self.encoding_config.num_frequencies + freq_idx) * 2;
1541                            let cos_idx = sin_idx + 1;
1542
1543                            encoded[[batch_idx, sin_idx]] = (coord * frequency + phase).sin();
1544                            encoded[[batch_idx, cos_idx]] = (coord * frequency + phase).cos();
1545                        }
1546                    }
1547                }
1548
1549                Ok(encoded)
1550            }
1551            _ => {
1552                // Simplified fallback
1553                Ok(coordinates.clone())
1554            }
1555        }
1556    }
1557}
1558
1559impl QuantumCoordinateNetwork {
1560    pub fn forward(&self, input: &Array2<f64>) -> Result<NetworkOutput> {
1561        // Simplified forward pass
1562        Ok(NetworkOutput {
1563            values: input.clone(),
1564            gradients: None,
1565            quantum_state: QuantumNetworkState::default(),
1566        })
1567    }
1568}
1569
1570impl AdaptationParameters {
1571    pub fn new() -> Self {
1572        Self {
1573            fast_weights: Array2::zeros((100, 100)),
1574            adaptation_rates: Array1::ones(100) * 0.01,
1575            meta_gradients: Array2::zeros((100, 100)),
1576            adaptation_history: Vec::new(),
1577        }
1578    }
1579}
1580
1581// Output and configuration structures
1582#[derive(Debug, Clone)]
1583pub struct INRQueryOutput {
1584    pub values: Array2<f64>,
1585    pub gradients: Option<Array3<f64>>,
1586    pub quantum_metrics: QueryQuantumMetrics,
1587    pub confidence_estimates: Array1<f64>,
1588}
1589
1590#[derive(Debug, Clone, Default)]
1591pub struct QueryQuantumMetrics {
1592    pub quantum_fidelity: f64,
1593    pub entanglement_measure: f64,
1594    pub coherence_quality: f64,
1595    pub representation_uncertainty: f64,
1596}
1597
1598#[derive(Debug, Clone)]
1599pub struct NetworkOutput {
1600    pub values: Array2<f64>,
1601    pub gradients: Option<Array3<f64>>,
1602    pub quantum_state: QuantumNetworkState,
1603}
1604
1605#[derive(Debug, Clone, Default)]
1606pub struct QuantumNetworkState {
1607    pub quantum_fidelity: f64,
1608    pub entanglement_measure: f64,
1609    pub coherence_time: f64,
1610}
1611
1612#[derive(Debug, Clone, Default)]
1613pub struct QuantumProcessingOutput {
1614    pub values: Array2<f64>,
1615    pub gradients: Option<Array3<f64>>,
1616    pub confidence: Array1<f64>,
1617    pub quantum_metrics: QuantumMetrics,
1618}
1619
1620#[derive(Debug, Clone, Default)]
1621pub struct QuantumMetrics {
1622    pub fidelity: f64,
1623    pub entanglement: f64,
1624    pub coherence: f64,
1625    pub quantum_volume: f64,
1626}
1627
1628#[derive(Debug, Clone)]
1629pub struct INRTrainingConfig {
1630    pub epochs: usize,
1631    pub batch_size: usize,
1632    pub learning_rate: f64,
1633    pub log_interval: usize,
1634}
1635
1636impl Default for INRTrainingConfig {
1637    fn default() -> Self {
1638        Self {
1639            epochs: 1000,
1640            batch_size: 1024,
1641            learning_rate: 1e-4,
1642            log_interval: 100,
1643        }
1644    }
1645}
1646
1647#[derive(Debug, Clone)]
1648pub struct INRTrainingOutput {
1649    pub training_losses: Vec<f64>,
1650    pub quantum_metrics_history: Vec<QuantumINRMetrics>,
1651    pub compression_history: Vec<CompressionResult>,
1652    pub final_quantum_metrics: QuantumINRMetrics,
1653    pub compressed_representation: CompressedRepresentation,
1654    pub convergence_analysis: ConvergenceAnalysis,
1655}
1656
1657#[derive(Debug, Clone, Default)]
1658pub struct CompressionResult {
1659    pub compression_ratio: f64,
1660    pub quality_preserved: f64,
1661    pub quantum_advantage: f64,
1662}
1663
1664#[derive(Debug, Clone, Default)]
1665pub struct ConvergenceAnalysis {
1666    pub converged: bool,
1667    pub convergence_rate: f64,
1668    pub final_loss: f64,
1669}
1670
1671#[derive(Debug, Clone, Default)]
1672pub struct AdaptationOutput {
1673    pub adapted_parameters: Array1<f64>,
1674    pub adaptation_loss: f64,
1675    pub adaptation_steps_taken: usize,
1676    pub quantum_adaptation_metrics: QuantumAdaptationMetrics,
1677}
1678
1679#[derive(Debug, Clone, Default)]
1680pub struct QuantumAdaptationMetrics {
1681    pub adaptation_efficiency: f64,
1682    pub quantum_advantage_in_adaptation: f64,
1683    pub final_quantum_fidelity: f64,
1684}
1685
1686// Default implementations
1687impl Default for QuantumINRConfig {
1688    fn default() -> Self {
1689        Self {
1690            signal_type: SignalType::Image2D {
1691                height: 256,
1692                width: 256,
1693                channels: 3,
1694            },
1695            coordinate_dim: 2,
1696            output_dim: 3,
1697            num_qubits: 8,
1698            network_depth: 8,
1699            hidden_dim: 256,
1700            quantum_enhancement_level: 0.7,
1701            representation_method: RepresentationMethod::QuantumSIREN {
1702                omega_0: 30.0,
1703                omega_hidden: 1.0,
1704                quantum_frequency_modulation: true,
1705            },
1706            positional_encoding: QuantumPositionalEncoding {
1707                encoding_type: PositionalEncodingType::QuantumSinusoidal {
1708                    base_frequency: 1.0,
1709                    frequency_progression: FrequencyProgression::Logarithmic,
1710                },
1711                num_frequencies: 10,
1712                frequency_scale: 1.0,
1713                quantum_enhancement: true,
1714                learnable_frequencies: true,
1715            },
1716            activation_config: QuantumActivationConfig {
1717                activation_type: QuantumActivation::QuantumSiren { omega: 30.0 },
1718                frequency_modulation: true,
1719                phase_modulation: true,
1720                amplitude_control: true,
1721                quantum_nonlinearity_strength: 0.5,
1722            },
1723            compression_config: CompressionConfig {
1724                compression_method: CompressionMethod::QuantumPruning {
1725                    sparsity_target: 0.8,
1726                    pruning_strategy: PruningStrategy::QuantumEntanglement,
1727                },
1728                target_compression_ratio: 10.0,
1729                quality_preservation: 0.95,
1730                quantum_compression_enhancement: 0.3,
1731                adaptive_compression: true,
1732            },
1733            meta_learning_config: MetaLearningConfig {
1734                meta_learning_method: MetaLearningMethod::QuantumMAML {
1735                    first_order: false,
1736                    quantum_gradient_estimation: true,
1737                },
1738                adaptation_steps: 5,
1739                meta_learning_rate: 1e-3,
1740                inner_learning_rate: 1e-4,
1741                quantum_meta_enhancement: 0.2,
1742            },
1743            optimization_config: OptimizationConfig {
1744                optimizer_type: QuantumOptimizerType::QuantumAdam {
1745                    beta1: 0.9,
1746                    beta2: 0.999,
1747                    epsilon: 1e-8,
1748                    quantum_momentum: true,
1749                },
1750                learning_rate_schedule: LearningRateSchedule::Cosine {
1751                    max_rate: 1e-3,
1752                    min_rate: 1e-6,
1753                    period: 1000,
1754                },
1755                gradient_estimation: GradientEstimation::ParameterShift,
1756                regularization: RegularizationConfig {
1757                    weight_decay: 1e-5,
1758                    spectral_normalization: true,
1759                    quantum_regularization: QuantumRegularization::EntanglementRegularization {
1760                        strength: 0.1,
1761                    },
1762                    smoothness_regularization: 0.01,
1763                },
1764                convergence_criteria: ConvergenceCriteria {
1765                    max_iterations: 10000,
1766                    tolerance: 1e-6,
1767                    patience: 100,
1768                    quantum_convergence_metric: QuantumConvergenceMetric::QuantumFidelity,
1769                },
1770            },
1771        }
1772    }
1773}
1774
1775impl Default for QuantumINRMetrics {
1776    fn default() -> Self {
1777        Self {
1778            average_quantum_fidelity: 0.95,
1779            entanglement_efficiency: 0.8,
1780            coherence_preservation: 0.9,
1781            quantum_volume_utilization: 0.7,
1782            representation_quality: 0.85,
1783            compression_efficiency: 0.9,
1784            adaptation_speed: 0.8,
1785        }
1786    }
1787}
1788
1789impl Default for DecoherenceModel {
1790    fn default() -> Self {
1791        Self {
1792            t1_time: 100.0,
1793            t2_time: 50.0,
1794            gate_error_rate: 0.001,
1795            measurement_error_rate: 0.01,
1796            environmental_coupling: 0.1,
1797        }
1798    }
1799}
1800
1801#[cfg(test)]
1802mod tests {
1803    use super::*;
1804
1805    #[test]
1806    fn test_quantum_inr_creation() {
1807        let config = QuantumINRConfig::default();
1808        let inr = QuantumImplicitNeuralRepresentation::new(config);
1809        assert!(inr.is_ok());
1810    }
1811
1812    #[test]
1813    fn test_positional_encoding() {
1814        let config = QuantumINRConfig::default();
1815        let encoder = QuantumPositionalEncoder {
1816            encoding_config: config.positional_encoding.clone(),
1817            frequency_parameters: Array2::zeros((2, 10)),
1818            quantum_frequencies: Array2::zeros((2, 10)).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1819            phase_offsets: Array1::zeros(10),
1820            learnable_parameters: Array1::zeros(20),
1821        };
1822
1823        let coordinates =
1824            Array2::from_shape_vec((4, 2), vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]).unwrap();
1825        let result = encoder.encode(&coordinates);
1826        assert!(result.is_ok());
1827
1828        let encoded = result.unwrap();
1829        assert_eq!(encoded.nrows(), 4);
1830        assert_eq!(encoded.ncols(), 40); // 2 * 10 * 2
1831    }
1832
1833    #[test]
1834    fn test_query_functionality() {
1835        let config = QuantumINRConfig {
1836            coordinate_dim: 2,
1837            output_dim: 3,
1838            ..Default::default()
1839        };
1840        let inr = QuantumImplicitNeuralRepresentation::new(config).unwrap();
1841
1842        let coordinates = Array2::from_shape_vec(
1843            (5, 2),
1844            vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
1845        )
1846        .unwrap();
1847
1848        let result = inr.query(&coordinates);
1849        assert!(result.is_ok());
1850
1851        let output = result.unwrap();
1852        assert_eq!(output.values.nrows(), 5);
1853    }
1854
1855    #[test]
1856    fn test_compression_configuration() {
1857        let config = QuantumINRConfig {
1858            compression_config: CompressionConfig {
1859                compression_method: CompressionMethod::QuantumQuantization {
1860                    bit_width: 8,
1861                    quantization_scheme: QuantizationScheme::QuantumStates,
1862                },
1863                target_compression_ratio: 20.0,
1864                quality_preservation: 0.9,
1865                quantum_compression_enhancement: 0.5,
1866                adaptive_compression: true,
1867            },
1868            ..Default::default()
1869        };
1870
1871        let inr = QuantumImplicitNeuralRepresentation::new(config);
1872        assert!(inr.is_ok());
1873    }
1874
1875    #[test]
1876    fn test_meta_learning_configuration() {
1877        let config = QuantumINRConfig {
1878            meta_learning_config: MetaLearningConfig {
1879                meta_learning_method: MetaLearningMethod::QuantumHyperNetwork {
1880                    hypernetwork_architecture: HyperNetworkArchitecture {
1881                        encoder_layers: vec![64, 128, 64],
1882                        decoder_layers: vec![64, 128, 256],
1883                        quantum_context_processing: true,
1884                    },
1885                    context_encoding: ContextEncoding::QuantumEmbedding,
1886                },
1887                adaptation_steps: 10,
1888                meta_learning_rate: 1e-3,
1889                inner_learning_rate: 1e-4,
1890                quantum_meta_enhancement: 0.3,
1891            },
1892            ..Default::default()
1893        };
1894
1895        let inr = QuantumImplicitNeuralRepresentation::new(config);
1896        assert!(inr.is_ok());
1897    }
1898
1899    #[test]
1900    fn test_signal_type_configurations() {
1901        let signal_types = vec![
1902            SignalType::Audio {
1903                sample_rate: 44100,
1904                channels: 2,
1905            },
1906            SignalType::Video {
1907                frames: 30,
1908                height: 256,
1909                width: 256,
1910                channels: 3,
1911            },
1912            SignalType::Shape3D {
1913                vertices: 1000,
1914                faces: 2000,
1915            },
1916            SignalType::SignedDistanceField {
1917                bounds: Array2::from_shape_vec((3, 2), vec![-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
1918                    .unwrap(),
1919            },
1920        ];
1921
1922        for signal_type in signal_types {
1923            let config = QuantumINRConfig {
1924                signal_type,
1925                ..Default::default()
1926            };
1927            let inr = QuantumImplicitNeuralRepresentation::new(config);
1928            assert!(inr.is_ok());
1929        }
1930    }
1931
1932    #[test]
1933    fn test_quantum_activation_types() {
1934        let activations = vec![
1935            QuantumActivation::QuantumSiren { omega: 30.0 },
1936            QuantumActivation::QuantumGaussian { sigma: 1.0 },
1937            QuantumActivation::EntanglementActivation {
1938                entanglement_strength: 0.5,
1939            },
1940            QuantumActivation::SuperpositionActivation {
1941                component_activations: vec![
1942                    QuantumActivation::QuantumSin {
1943                        frequency: 1.0,
1944                        phase: 0.0,
1945                    },
1946                    QuantumActivation::QuantumReLU { threshold: 0.0 },
1947                ],
1948                weights: Array1::from_vec(vec![0.5, 0.5]),
1949            },
1950        ];
1951
1952        for activation in activations {
1953            let config = QuantumINRConfig {
1954                activation_config: QuantumActivationConfig {
1955                    activation_type: activation,
1956                    frequency_modulation: true,
1957                    phase_modulation: true,
1958                    amplitude_control: true,
1959                    quantum_nonlinearity_strength: 0.5,
1960                },
1961                ..Default::default()
1962            };
1963            let inr = QuantumImplicitNeuralRepresentation::new(config);
1964            assert!(inr.is_ok());
1965        }
1966    }
1967}