1use crate::error::{MLError, Result};
17use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
18use scirs2_core::random::ChaCha20Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use scirs2_core::Complex64;
21use std::collections::HashMap;
22use std::f64::consts::PI;
23
24#[derive(Debug, Clone)]
26pub struct QuantumINRConfig {
27 pub signal_type: SignalType,
28 pub coordinate_dim: usize,
29 pub output_dim: usize,
30 pub num_qubits: usize,
31 pub network_depth: usize,
32 pub hidden_dim: usize,
33 pub quantum_enhancement_level: f64,
34 pub representation_method: RepresentationMethod,
35 pub positional_encoding: QuantumPositionalEncoding,
36 pub activation_config: QuantumActivationConfig,
37 pub compression_config: CompressionConfig,
38 pub meta_learning_config: MetaLearningConfig,
39 pub optimization_config: OptimizationConfig,
40}
41
42#[derive(Debug, Clone)]
43pub enum SignalType {
44 Image2D {
45 height: usize,
46 width: usize,
47 channels: usize,
48 },
49 Image3D {
50 depth: usize,
51 height: usize,
52 width: usize,
53 channels: usize,
54 },
55 Audio {
56 sample_rate: usize,
57 channels: usize,
58 },
59 Video {
60 frames: usize,
61 height: usize,
62 width: usize,
63 channels: usize,
64 },
65 Shape3D {
66 vertices: usize,
67 faces: usize,
68 },
69 VolumetricData {
70 resolution: Vec<usize>,
71 },
72 SignedDistanceField {
73 bounds: Array2<f64>,
74 },
75 Occupancy {
76 resolution: Vec<usize>,
77 },
78 Radiance {
79 viewing_directions: bool,
80 },
81 LightField {
82 angular_resolution: usize,
83 },
84 CustomSignal {
85 input_dim: usize,
86 output_dim: usize,
87 },
88}
89
90#[derive(Debug, Clone)]
91pub enum RepresentationMethod {
92 QuantumCoordinateNetwork {
94 layer_config: QuantumLayerConfig,
95 skip_connections: Vec<usize>,
96 },
97
98 QuantumSIREN {
100 omega_0: f64,
101 omega_hidden: f64,
102 quantum_frequency_modulation: bool,
103 },
104
105 QuantumNeRF {
107 position_encoding_levels: usize,
108 direction_encoding_levels: usize,
109 density_activation: QuantumActivation,
110 color_activation: QuantumActivation,
111 },
112
113 QuantumHashEncoding {
115 hash_table_size: usize,
116 levels: usize,
117 quantum_hash_function: QuantumHashFunction,
118 },
119
120 QuantumFourierFeatures {
122 num_frequencies: usize,
123 frequency_scale: f64,
124 quantum_fourier_basis: bool,
125 },
126
127 QuantumMultiRes {
129 resolution_levels: Vec<usize>,
130 level_weights: Array1<f64>,
131 quantum_level_fusion: bool,
132 },
133
134 QuantumCompositional {
136 component_networks: Vec<ComponentNetwork>,
137 composition_strategy: CompositionStrategy,
138 },
139}
140
141#[derive(Debug, Clone)]
142pub struct QuantumLayerConfig {
143 pub layer_type: QuantumLayerType,
144 pub normalization: Option<QuantumNormalization>,
145 pub dropout_rate: f64,
146 pub quantum_gate_sequence: Vec<QuantumGateType>,
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumLayerType {
151 QuantumLinear {
152 input_dim: usize,
153 output_dim: usize,
154 quantum_weight_encoding: WeightEncodingType,
155 },
156 QuantumConvolutional {
157 in_channels: usize,
158 out_channels: usize,
159 kernel_size: usize,
160 quantum_convolution_type: QuantumConvolutionType,
161 },
162 QuantumAttention {
163 num_heads: usize,
164 head_dim: usize,
165 attention_mechanism: QuantumAttentionMechanism,
166 },
167 QuantumResidual {
168 inner_layers: Vec<Box<QuantumLayerConfig>>,
169 },
170}
171
172#[derive(Debug, Clone)]
173pub enum WeightEncodingType {
174 AmplitudeEncoding,
175 AngleEncoding,
176 BasisEncoding,
177 QuantumSuperposition,
178}
179
180#[derive(Debug, Clone)]
181pub enum QuantumConvolutionType {
182 StandardQuantum,
183 QuantumDepthwise,
184 QuantumSeparable,
185 EntanglementConvolution,
186}
187
188#[derive(Debug, Clone)]
189pub enum QuantumAttentionMechanism {
190 QuantumSelfAttention,
191 QuantumCrossAttention,
192 EntanglementAttention,
193 QuantumFourierAttention,
194}
195
196#[derive(Debug, Clone)]
197pub enum QuantumHashFunction {
198 QuantumUniversalHash,
199 EntanglementHash,
200 QuantumLocalitySensitiveHash,
201 PhaseBasedHash,
202}
203
204#[derive(Debug, Clone)]
205pub struct ComponentNetwork {
206 pub network_id: usize,
207 pub specialization: NetworkSpecialization,
208 pub architecture: RepresentationMethod,
209 pub weight: f64,
210}
211
212#[derive(Debug, Clone)]
213pub enum NetworkSpecialization {
214 LowFrequency,
215 HighFrequency,
216 EdgeFeatures,
217 TextureFeatures,
218 GeometricFeatures,
219 TemporalFeatures,
220 SpatialFeatures,
221}
222
223#[derive(Debug, Clone)]
224pub enum CompositionStrategy {
225 WeightedSum,
226 QuantumSuperposition,
227 EntanglementCombination,
228 AttentionWeighted,
229 HierarchicalComposition,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumPositionalEncoding {
234 pub encoding_type: PositionalEncodingType,
235 pub num_frequencies: usize,
236 pub frequency_scale: f64,
237 pub quantum_enhancement: bool,
238 pub learnable_frequencies: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum PositionalEncodingType {
243 QuantumSinusoidal {
245 base_frequency: f64,
246 frequency_progression: FrequencyProgression,
247 },
248
249 QuantumFourier {
251 bandwidth: f64,
252 random_features: bool,
253 },
254
255 QuantumHash {
257 hash_table_size: usize,
258 collision_resolution: CollisionResolution,
259 },
260
261 QuantumLearnable {
263 embedding_dim: usize,
264 initialization_strategy: InitializationStrategy,
265 },
266
267 QuantumSphericalHarmonics {
269 max_degree: usize,
270 quantum_coefficients: bool,
271 },
272
273 QuantumMultiScale {
275 scale_levels: Vec<f64>,
276 scale_weights: Array1<f64>,
277 },
278}
279
280#[derive(Debug, Clone)]
281pub enum FrequencyProgression {
282 Logarithmic,
283 Linear,
284 Exponential,
285 Adaptive,
286}
287
288#[derive(Debug, Clone)]
289pub enum CollisionResolution {
290 Chaining,
291 OpenAddressing,
292 QuantumSuperposition,
293}
294
295#[derive(Debug, Clone)]
296pub enum InitializationStrategy {
297 Xavier,
298 Kaiming,
299 QuantumRandom,
300 EntanglementBased,
301}
302
303#[derive(Debug, Clone)]
304pub struct QuantumActivationConfig {
305 pub activation_type: QuantumActivation,
306 pub frequency_modulation: bool,
307 pub phase_modulation: bool,
308 pub amplitude_control: bool,
309 pub quantum_nonlinearity_strength: f64,
310}
311
312#[derive(Debug, Clone)]
313pub enum QuantumActivation {
314 QuantumSiren { omega: f64 },
316
317 QuantumReLU { threshold: f64 },
319
320 QuantumGaussian { sigma: f64 },
322
323 QuantumSin { frequency: f64, phase: f64 },
325
326 QuantumPolynomial {
328 degree: usize,
329 coefficients: Array1<f64>,
330 },
331
332 QuantumELU { alpha: f64 },
334
335 QuantumSwish { beta: f64 },
337
338 EntanglementActivation { entanglement_strength: f64 },
340
341 PhaseActivation { phase_range: f64 },
343
344 SuperpositionActivation {
346 component_activations: Vec<QuantumActivation>,
347 weights: Array1<f64>,
348 },
349}
350
351#[derive(Debug, Clone)]
352pub enum QuantumNormalization {
353 QuantumBatchNorm,
354 QuantumLayerNorm,
355 QuantumInstanceNorm,
356 QuantumGroupNorm { num_groups: usize },
357 EntanglementNorm,
358 PhaseNorm,
359}
360
361#[derive(Debug, Clone)]
362pub enum QuantumGateType {
363 RotationX { angle: f64 },
364 RotationY { angle: f64 },
365 RotationZ { angle: f64 },
366 Hadamard,
367 CNOT { control: usize, target: usize },
368 CZ { control: usize, target: usize },
369 Toffoli { controls: Vec<usize>, target: usize },
370 Phase { angle: f64 },
371 Amplitude { amplitude: Complex64 },
372 Custom { matrix: Array2<Complex64> },
373}
374
375#[derive(Debug, Clone)]
376pub struct CompressionConfig {
377 pub compression_method: CompressionMethod,
378 pub target_compression_ratio: f64,
379 pub quality_preservation: f64,
380 pub quantum_compression_enhancement: f64,
381 pub adaptive_compression: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum CompressionMethod {
386 QuantumPruning {
388 sparsity_target: f64,
389 pruning_strategy: PruningStrategy,
390 },
391
392 QuantumQuantization {
394 bit_width: usize,
395 quantization_scheme: QuantizationScheme,
396 },
397
398 QuantumLowRank {
400 rank_reduction_factor: f64,
401 decomposition_method: DecompositionMethod,
402 },
403
404 QuantumDistillation {
406 teacher_config: Box<QuantumINRConfig>,
407 distillation_temperature: f64,
408 },
409
410 QuantumNAS {
412 search_space: SearchSpace,
413 efficiency_objective: EfficiencyObjective,
414 },
415}
416
417#[derive(Debug, Clone)]
418pub enum PruningStrategy {
419 MagnitudeBased,
420 GradientBased,
421 QuantumEntanglement,
422 QuantumCoherence,
423}
424
425#[derive(Debug, Clone)]
426pub enum QuantizationScheme {
427 Uniform,
428 NonUniform,
429 QuantumStates,
430 AdaptiveQuantum,
431}
432
433#[derive(Debug, Clone)]
434pub enum DecompositionMethod {
435 SVD,
436 QR,
437 QuantumSingularValueDecomposition,
438 TensorDecomposition,
439}
440
441#[derive(Debug, Clone)]
442pub struct SearchSpace {
443 pub layer_depths: Vec<usize>,
444 pub hidden_dimensions: Vec<usize>,
445 pub activation_functions: Vec<QuantumActivation>,
446 pub quantum_gate_sequences: Vec<Vec<QuantumGateType>>,
447}
448
449#[derive(Debug, Clone)]
450pub enum EfficiencyObjective {
451 MinimizeParameters,
452 MinimizeLatency,
453 MinimizeMemory,
454 MaximizeCompressionRatio,
455 BalancedEfficiency,
456}
457
458#[derive(Debug, Clone)]
459pub struct MetaLearningConfig {
460 pub meta_learning_method: MetaLearningMethod,
461 pub adaptation_steps: usize,
462 pub meta_learning_rate: f64,
463 pub inner_learning_rate: f64,
464 pub quantum_meta_enhancement: f64,
465}
466
467#[derive(Debug, Clone)]
468pub enum MetaLearningMethod {
469 QuantumMAML {
471 first_order: bool,
472 quantum_gradient_estimation: bool,
473 },
474
475 QuantumReptile {
477 reptile_step_size: f64,
478 quantum_interpolation: bool,
479 },
480
481 QuantumHyperNetwork {
483 hypernetwork_architecture: HyperNetworkArchitecture,
484 context_encoding: ContextEncoding,
485 },
486
487 QuantumGradientBased {
489 gradient_steps: usize,
490 learned_loss: bool,
491 },
492
493 QuantumMemoryAugmented {
495 memory_size: usize,
496 memory_update_rule: MemoryUpdateRule,
497 },
498}
499
500#[derive(Debug, Clone)]
501pub struct HyperNetworkArchitecture {
502 pub encoder_layers: Vec<usize>,
503 pub decoder_layers: Vec<usize>,
504 pub quantum_context_processing: bool,
505}
506
507#[derive(Debug, Clone)]
508pub enum ContextEncoding {
509 Direct,
510 Attention,
511 QuantumEmbedding,
512 HierarchicalEncoding,
513}
514
515#[derive(Debug, Clone)]
516pub enum MemoryUpdateRule {
517 LSTM,
518 GRU,
519 QuantumMemory,
520 AttentionBased,
521}
522
523#[derive(Debug, Clone)]
524pub struct OptimizationConfig {
525 pub optimizer_type: QuantumOptimizerType,
526 pub learning_rate_schedule: LearningRateSchedule,
527 pub gradient_estimation: GradientEstimation,
528 pub regularization: RegularizationConfig,
529 pub convergence_criteria: ConvergenceCriteria,
530}
531
532#[derive(Debug, Clone)]
533pub enum QuantumOptimizerType {
534 QuantumAdam {
536 beta1: f64,
537 beta2: f64,
538 epsilon: f64,
539 quantum_momentum: bool,
540 },
541
542 QuantumNaturalGradient {
544 damping_parameter: f64,
545 quantum_fisher_information: bool,
546 },
547
548 ParameterShiftRule {
550 shift_value: f64,
551 second_order: bool,
552 },
553
554 QuantumAnnealing {
556 temperature_schedule: Array1<f64>,
557 annealing_steps: usize,
558 },
559
560 QuantumEvolutionStrategy {
562 population_size: usize,
563 mutation_strength: f64,
564 quantum_selection: bool,
565 },
566}
567
568#[derive(Debug, Clone)]
569pub enum LearningRateSchedule {
570 Constant {
571 rate: f64,
572 },
573 Exponential {
574 initial_rate: f64,
575 decay_rate: f64,
576 },
577 Cosine {
578 max_rate: f64,
579 min_rate: f64,
580 period: usize,
581 },
582 Adaptive {
583 adaptation_strategy: AdaptationStrategy,
584 },
585 QuantumAdaptive {
586 quantum_feedback: bool,
587 },
588}
589
590#[derive(Debug, Clone)]
591pub enum AdaptationStrategy {
592 LossBasedAdaptation,
593 GradientBasedAdaptation,
594 QuantumStateAdaptation,
595 EntanglementBasedAdaptation,
596}
597
598#[derive(Debug, Clone)]
599pub enum GradientEstimation {
600 ExactGradient,
601 FiniteDifference { epsilon: f64 },
602 ParameterShift,
603 QuantumNaturalGradient,
604 StochasticEstimation { num_samples: usize },
605 QuantumVariationalEstimation,
606}
607
608#[derive(Debug, Clone)]
609pub struct RegularizationConfig {
610 pub weight_decay: f64,
611 pub spectral_normalization: bool,
612 pub quantum_regularization: QuantumRegularization,
613 pub smoothness_regularization: f64,
614}
615
616#[derive(Debug, Clone)]
617pub enum QuantumRegularization {
618 EntanglementRegularization { strength: f64 },
619 CoherenceRegularization { strength: f64 },
620 QuantumVolumeRegularization { strength: f64 },
621 FidelityRegularization { target_fidelity: f64 },
622}
623
624#[derive(Debug, Clone)]
625pub struct ConvergenceCriteria {
626 pub max_iterations: usize,
627 pub tolerance: f64,
628 pub patience: usize,
629 pub quantum_convergence_metric: QuantumConvergenceMetric,
630}
631
632#[derive(Debug, Clone)]
633pub enum QuantumConvergenceMetric {
634 LossConvergence,
635 GradientNorm,
636 ParameterChange,
637 QuantumFidelity,
638 EntanglementMeasure,
639}
640
641pub struct QuantumImplicitNeuralRepresentation {
643 config: QuantumINRConfig,
644
645 coordinate_network: QuantumCoordinateNetwork,
647 positional_encoder: QuantumPositionalEncoder,
648
649 quantum_layers: Vec<QuantumLayer>,
651 quantum_state_manager: QuantumStateManager,
652 entanglement_manager: EntanglementManager,
653
654 meta_learner: Option<QuantumMetaLearner>,
656 adaptation_parameters: AdaptationParameters,
657
658 optimizer: QuantumOptimizer,
660 gradient_estimator: QuantumGradientEstimator,
661
662 training_history: Vec<INRTrainingMetrics>,
664 quantum_metrics: QuantumINRMetrics,
665
666 compression_manager: CompressionManager,
668 compressed_representation: Option<CompressedRepresentation>,
669}
670
671#[derive(Debug, Clone)]
672pub struct QuantumCoordinateNetwork {
673 layers: Vec<QuantumLayer>,
674 skip_connections: Vec<SkipConnection>,
675 output_activation: Option<QuantumActivation>,
676 quantum_parameters: Array1<f64>,
677}
678
679#[derive(Debug, Clone)]
680pub struct QuantumLayer {
681 layer_id: usize,
682 layer_type: QuantumLayerType,
683 quantum_weights: Array2<Complex64>,
684 classical_weights: Array2<f64>,
685 bias: Array1<f64>,
686 activation: QuantumActivation,
687 normalization: Option<QuantumNormalization>,
688 quantum_gates: Vec<QuantumGate>,
689 entanglement_pattern: EntanglementPattern,
690}
691
692#[derive(Debug, Clone)]
693pub struct QuantumGate {
694 gate_type: QuantumGateType,
695 target_qubits: Vec<usize>,
696 parameters: Array1<f64>,
697 control_qubits: Vec<usize>,
698}
699
700#[derive(Debug, Clone)]
701pub enum EntanglementPattern {
702 Linear,
703 Circular,
704 AllToAll,
705 Custom { connectivity_matrix: Array2<bool> },
706 Adaptive { adaptation_rule: AdaptationRule },
707}
708
709#[derive(Debug, Clone)]
710pub enum AdaptationRule {
711 GradientBased,
712 PerformanceBased,
713 QuantumStateDependent,
714}
715
716#[derive(Debug, Clone)]
717pub struct SkipConnection {
718 from_layer: usize,
719 to_layer: usize,
720 connection_type: ConnectionType,
721 weight: f64,
722}
723
724#[derive(Debug, Clone)]
725pub enum ConnectionType {
726 Additive,
727 Concatenative,
728 Multiplicative,
729 QuantumSuperposition,
730 EntanglementBased,
731}
732
733#[derive(Debug, Clone)]
734pub struct QuantumPositionalEncoder {
735 encoding_config: QuantumPositionalEncoding,
736 frequency_parameters: Array2<f64>,
737 quantum_frequencies: Array2<Complex64>,
738 phase_offsets: Array1<f64>,
739 learnable_parameters: Array1<f64>,
740}
741
742#[derive(Debug, Clone)]
743pub struct QuantumStateManager {
744 quantum_states: Vec<QuantumSystemState>,
745 coherence_tracker: CoherenceTracker,
746 decoherence_model: DecoherenceModel,
747 state_evolution_history: Vec<StateEvolution>,
748}
749
750#[derive(Debug, Clone)]
751pub struct QuantumSystemState {
752 amplitudes: Array1<Complex64>,
753 phases: Array1<f64>,
754 entanglement_measure: f64,
755 coherence_time: f64,
756 fidelity: f64,
757 quantum_volume: f64,
758}
759
760#[derive(Debug, Clone)]
761pub struct CoherenceTracker {
762 coherence_history: Vec<f64>,
763 decoherence_rate: f64,
764 coherence_preservation_strategies: Vec<CoherenceStrategy>,
765}
766
767#[derive(Debug, Clone)]
768pub enum CoherenceStrategy {
769 DynamicalDecoupling,
770 ErrorCorrection,
771 DecoherenceSupression,
772 QuantumZeno,
773 AdaptiveCorrection,
774}
775
776#[derive(Debug, Clone)]
777pub struct DecoherenceModel {
778 t1_time: f64,
779 t2_time: f64,
780 gate_error_rate: f64,
781 measurement_error_rate: f64,
782 environmental_coupling: f64,
783}
784
785#[derive(Debug, Clone)]
786pub struct StateEvolution {
787 timestamp: usize,
788 initial_state: QuantumSystemState,
789 final_state: QuantumSystemState,
790 evolution_operator: Array2<Complex64>,
791 fidelity_loss: f64,
792}
793
794#[derive(Debug, Clone)]
795pub struct EntanglementManager {
796 entanglement_map: Array2<f64>,
797 entanglement_operations: Vec<EntanglementOperation>,
798 entanglement_budget: f64,
799 entanglement_efficiency: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct EntanglementOperation {
804 operation_type: EntanglementOperationType,
805 target_qubits: Vec<usize>,
806 strength: f64,
807 duration: f64,
808 fidelity: f64,
809}
810
811#[derive(Debug, Clone)]
812pub enum EntanglementOperationType {
813 CreateEntanglement,
814 BreakEntanglement,
815 ModifyEntanglement,
816 MeasureEntanglement,
817 TransferEntanglement,
818}
819
820#[derive(Debug, Clone)]
821pub struct QuantumMetaLearner {
822 meta_config: MetaLearningConfig,
823 meta_parameters: Array1<f64>,
824 task_encoder: TaskEncoder,
825 adaptation_network: AdaptationNetwork,
826 meta_optimizer: QuantumOptimizer,
827}
828
829#[derive(Debug, Clone)]
830pub struct TaskEncoder {
831 encoder_type: EncoderType,
832 encoding_layers: Vec<QuantumLayer>,
833 context_dim: usize,
834 quantum_context_processing: bool,
835}
836
837#[derive(Debug, Clone)]
838pub enum EncoderType {
839 Feedforward,
840 Attention,
841 Recurrent,
842 QuantumEncoding,
843}
844
845#[derive(Debug, Clone)]
846pub struct AdaptationNetwork {
847 adaptation_layers: Vec<QuantumLayer>,
848 adaptation_strategy: AdaptationStrategy,
849 quantum_adaptation_enhancement: f64,
850}
851
852#[derive(Debug, Clone)]
853pub struct AdaptationParameters {
854 fast_weights: Array2<f64>,
855 adaptation_rates: Array1<f64>,
856 meta_gradients: Array2<f64>,
857 adaptation_history: Vec<AdaptationStep>,
858}
859
860#[derive(Debug, Clone)]
861pub struct AdaptationStep {
862 step_id: usize,
863 gradient_norm: f64,
864 loss_improvement: f64,
865 quantum_fidelity_change: f64,
866 adaptation_efficiency: f64,
867}
868
869#[derive(Debug, Clone)]
870pub struct QuantumOptimizer {
871 optimizer_type: QuantumOptimizerType,
872 learning_rate_scheduler: LearningRateScheduler,
873 momentum_state: MomentumState,
874 quantum_optimization_state: QuantumOptimizationState,
875}
876
877#[derive(Debug, Clone)]
878pub struct LearningRateScheduler {
879 schedule: LearningRateSchedule,
880 current_rate: f64,
881 step_count: usize,
882 quantum_adaptive_factors: Array1<f64>,
883}
884
885#[derive(Debug, Clone)]
886pub struct MomentumState {
887 velocity: Array2<f64>,
888 momentum_coefficient: f64,
889 quantum_momentum_enhancement: f64,
890}
891
892#[derive(Debug, Clone)]
893pub struct QuantumOptimizationState {
894 parameter_evolution: Vec<Array1<f64>>,
895 quantum_fisher_information: Array2<f64>,
896 natural_gradient_cache: Array2<f64>,
897 optimization_landscape: OptimizationLandscape,
898}
899
900#[derive(Debug, Clone)]
901pub struct OptimizationLandscape {
902 loss_surface_curvature: Array2<f64>,
903 quantum_tunneling_probabilities: Array1<f64>,
904 local_minima_detection: Vec<LocalMinimum>,
905}
906
907#[derive(Debug, Clone)]
908pub struct LocalMinimum {
909 parameter_values: Array1<f64>,
910 loss_value: f64,
911 escape_probability: f64,
912 quantum_tunneling_path: Option<Array2<f64>>,
913}
914
915#[derive(Debug, Clone)]
916pub struct QuantumGradientEstimator {
917 estimation_method: GradientEstimation,
918 parameter_shift_values: Array1<f64>,
919 quantum_gradient_cache: Array2<f64>,
920 variance_reduction_techniques: Vec<VarianceReduction>,
921}
922
923#[derive(Debug, Clone)]
924pub enum VarianceReduction {
925 ControlVariates,
926 ImportanceSampling,
927 QuantumVarianceReduction,
928 AdaptiveSampling,
929}
930
931#[derive(Debug, Clone)]
932pub struct CompressionManager {
933 compression_config: CompressionConfig,
934 compression_history: Vec<CompressionStep>,
935 quality_monitor: QualityMonitor,
936 adaptive_compression_strategy: AdaptiveCompressionStrategy,
937}
938
939#[derive(Debug, Clone)]
940pub struct CompressionStep {
941 step_id: usize,
942 compression_ratio: f64,
943 quality_loss: f64,
944 quantum_compression_advantage: f64,
945 method_used: CompressionMethod,
946}
947
948#[derive(Debug, Clone)]
949pub struct QualityMonitor {
950 quality_metrics: Vec<QualityMetric>,
951 quality_thresholds: HashMap<String, f64>,
952 adaptive_thresholds: bool,
953}
954
955#[derive(Debug, Clone)]
956pub enum QualityMetric {
957 PSNR,
958 SSIM,
959 LPIPS,
960 QuantumFidelity,
961 PerceptualLoss,
962 FeatureMatchingLoss,
963}
964
965#[derive(Debug, Clone)]
966pub struct AdaptiveCompressionStrategy {
967 strategy_type: CompressionStrategyType,
968 adaptation_parameters: Array1<f64>,
969 quality_target: f64,
970 compression_efficiency: f64,
971}
972
973#[derive(Debug, Clone)]
974pub enum CompressionStrategyType {
975 FixedRatio,
976 QualityBased,
977 AdaptiveQuantum,
978 PerceptuallyGuided,
979}
980
981#[derive(Debug, Clone)]
982pub struct CompressedRepresentation {
983 compressed_parameters: Array1<u8>,
984 compression_metadata: CompressionMetadata,
985 reconstruction_instructions: ReconstructionInstructions,
986 quantum_compression_state: QuantumCompressionState,
987}
988
989#[derive(Debug, Clone)]
990pub struct CompressionMetadata {
991 original_size: usize,
992 compressed_size: usize,
993 compression_ratio: f64,
994 compression_method: CompressionMethod,
995 quality_preserved: f64,
996 quantum_advantage_achieved: f64,
997}
998
999#[derive(Debug, Clone)]
1000pub struct ReconstructionInstructions {
1001 decompression_steps: Vec<DecompressionStep>,
1002 quantum_reconstruction_protocol: QuantumReconstructionProtocol,
1003 verification_checksums: Array1<u64>,
1004}
1005
1006#[derive(Debug, Clone)]
1007pub enum DecompressionStep {
1008 QuantumStateReconstruction,
1009 ParameterDecoding,
1010 NetworkReconstruction,
1011 QualityVerification,
1012}
1013
1014#[derive(Debug, Clone)]
1015pub enum QuantumReconstructionProtocol {
1016 DirectReconstruction,
1017 QuantumTomography,
1018 VariationalReconstruction,
1019 EntanglementReconstruction,
1020}
1021
1022#[derive(Debug, Clone)]
1023pub struct QuantumCompressionState {
1024 compressed_quantum_states: Vec<Array1<Complex64>>,
1025 entanglement_compression_map: Array2<f64>,
1026 coherence_preservation_factors: Array1<f64>,
1027}
1028
1029#[derive(Debug, Clone)]
1031pub struct INRTrainingMetrics {
1032 pub epoch: usize,
1033 pub loss: f64,
1034 pub reconstruction_error: f64,
1035 pub quantum_fidelity: f64,
1036 pub entanglement_utilization: f64,
1037 pub compression_ratio: f64,
1038 pub gradient_norm: f64,
1039 pub learning_rate: f64,
1040 pub quantum_advantage_ratio: f64,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct QuantumINRMetrics {
1045 pub average_quantum_fidelity: f64,
1046 pub entanglement_efficiency: f64,
1047 pub coherence_preservation: f64,
1048 pub quantum_volume_utilization: f64,
1049 pub representation_quality: f64,
1050 pub compression_efficiency: f64,
1051 pub adaptation_speed: f64,
1052}
1053
1054impl QuantumImplicitNeuralRepresentation {
1056 pub fn new(config: QuantumINRConfig) -> Result<Self> {
1058 println!("🎯 Initializing Quantum Implicit Neural Representation in UltraThink Mode");
1059
1060 let coordinate_network = Self::create_coordinate_network(&config)?;
1062
1063 let positional_encoder = Self::create_positional_encoder(&config)?;
1065
1066 let quantum_layers = Self::create_quantum_layers(&config)?;
1068
1069 let quantum_state_manager = QuantumStateManager::new(&config)?;
1071 let entanglement_manager = EntanglementManager::new(&config)?;
1072
1073 let meta_learner = if Self::requires_meta_learning(&config) {
1075 Some(QuantumMetaLearner::new(&config)?)
1076 } else {
1077 None
1078 };
1079
1080 let optimizer = QuantumOptimizer::new(&config)?;
1082 let gradient_estimator = QuantumGradientEstimator::new(&config)?;
1083
1084 let compression_manager = CompressionManager::new(&config)?;
1086
1087 Ok(Self {
1088 config,
1089 coordinate_network,
1090 positional_encoder,
1091 quantum_layers,
1092 quantum_state_manager,
1093 entanglement_manager,
1094 meta_learner,
1095 adaptation_parameters: AdaptationParameters::new(),
1096 optimizer,
1097 gradient_estimator,
1098 training_history: Vec::new(),
1099 quantum_metrics: QuantumINRMetrics::default(),
1100 compression_manager,
1101 compressed_representation: None,
1102 })
1103 }
1104
1105 pub fn query(&self, coordinates: &Array2<f64>) -> Result<INRQueryOutput> {
1107 let encoded_coords = self.positional_encoder.encode(coordinates)?;
1109
1110 let network_output = self.coordinate_network.forward(&encoded_coords)?;
1112
1113 let quantum_output = self.process_through_quantum_layers(&network_output)?;
1115
1116 let quantum_metrics = self.compute_query_quantum_metrics(&quantum_output)?;
1118
1119 Ok(INRQueryOutput {
1120 values: quantum_output.values,
1121 gradients: quantum_output.gradients,
1122 quantum_metrics,
1123 confidence_estimates: quantum_output.confidence,
1124 })
1125 }
1126
1127 pub fn fit(
1129 &mut self,
1130 coordinates: &Array2<f64>,
1131 values: &Array2<f64>,
1132 training_config: &INRTrainingConfig,
1133 ) -> Result<INRTrainingOutput> {
1134 println!("🚀 Training Quantum Implicit Neural Representation");
1135
1136 let mut training_losses = Vec::new();
1137 let mut quantum_metrics_history = Vec::new();
1138 let mut compression_history = Vec::new();
1139
1140 for epoch in 0..training_config.epochs {
1141 let epoch_metrics = self.train_epoch(coordinates, values, training_config, epoch)?;
1142
1143 training_losses.push(epoch_metrics.loss);
1144
1145 self.update_quantum_states(&epoch_metrics)?;
1147
1148 if self.config.compression_config.adaptive_compression {
1150 let compression_result = self.adaptive_compression(&epoch_metrics)?;
1151 compression_history.push(compression_result);
1152 }
1153
1154 if let Some(ref mut meta_learner) = self.meta_learner {
1156 meta_learner.adapt(&epoch_metrics, &self.adaptation_parameters)?;
1157 }
1158
1159 self.training_history.push(epoch_metrics.clone());
1160 quantum_metrics_history.push(self.quantum_metrics.clone());
1161
1162 if epoch % training_config.log_interval == 0 {
1164 println!(
1165 "Epoch {}: Loss = {:.6}, Reconstruction Error = {:.6}, Quantum Fidelity = {:.4}, Compression = {:.2}x",
1166 epoch,
1167 epoch_metrics.loss,
1168 epoch_metrics.reconstruction_error,
1169 epoch_metrics.quantum_fidelity,
1170 epoch_metrics.compression_ratio,
1171 );
1172 }
1173 }
1174
1175 let final_compressed = self.compress_representation()?;
1177
1178 Ok(INRTrainingOutput {
1179 training_losses: training_losses.clone(),
1180 quantum_metrics_history,
1181 compression_history,
1182 final_quantum_metrics: self.quantum_metrics.clone(),
1183 compressed_representation: final_compressed,
1184 convergence_analysis: self.analyze_convergence(&training_losses)?,
1185 })
1186 }
1187
1188 pub fn adapt_to_signal(
1190 &mut self,
1191 coordinates: &Array2<f64>,
1192 values: &Array2<f64>,
1193 adaptation_steps: usize,
1194 ) -> Result<AdaptationOutput> {
1195 if self.meta_learner.is_some() {
1196 let mut meta_learner = self.meta_learner.take().unwrap();
1198 let result = meta_learner.fast_adaptation(self, coordinates, values, adaptation_steps);
1199 self.meta_learner = Some(meta_learner);
1200 result
1201 } else {
1202 Err(MLError::ModelCreationError(
1203 "Meta-learning not enabled for this model".to_string(),
1204 ))
1205 }
1206 }
1207
1208 pub fn compress_representation(&mut self) -> Result<CompressedRepresentation> {
1210 let config = self.config.clone();
1212 let coordinate_network = self.coordinate_network.clone();
1213
1214 let temp_repr = QuantumImplicitNeuralRepresentation {
1216 config,
1217 coordinate_network,
1218 positional_encoder: self.positional_encoder.clone(),
1219 quantum_layers: self.quantum_layers.clone(),
1220 quantum_state_manager: self.quantum_state_manager.clone(),
1221 entanglement_manager: self.entanglement_manager.clone(),
1222 meta_learner: self.meta_learner.clone(),
1223 adaptation_parameters: self.adaptation_parameters.clone(),
1224 optimizer: self.optimizer.clone(),
1225 gradient_estimator: self.gradient_estimator.clone(),
1226 training_history: self.training_history.clone(),
1227 quantum_metrics: self.quantum_metrics.clone(),
1228 compression_manager: self.compression_manager.clone(),
1229 compressed_representation: self.compressed_representation.clone(),
1230 };
1231
1232 self.compression_manager
1233 .compress_full_representation(&temp_repr)
1234 }
1235
1236 fn create_coordinate_network(config: &QuantumINRConfig) -> Result<QuantumCoordinateNetwork> {
1238 Ok(QuantumCoordinateNetwork {
1240 layers: Vec::new(),
1241 skip_connections: Vec::new(),
1242 output_activation: None,
1243 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1244 })
1245 }
1246
1247 fn create_positional_encoder(config: &QuantumINRConfig) -> Result<QuantumPositionalEncoder> {
1248 Ok(QuantumPositionalEncoder {
1250 encoding_config: config.positional_encoding.clone(),
1251 frequency_parameters: Array2::zeros((
1252 config.coordinate_dim,
1253 config.positional_encoding.num_frequencies,
1254 )),
1255 quantum_frequencies: Array2::<f64>::zeros((
1256 config.coordinate_dim,
1257 config.positional_encoding.num_frequencies,
1258 ))
1259 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1260 phase_offsets: Array1::zeros(config.positional_encoding.num_frequencies),
1261 learnable_parameters: Array1::zeros(config.positional_encoding.num_frequencies * 2),
1262 })
1263 }
1264
1265 fn create_quantum_layers(config: &QuantumINRConfig) -> Result<Vec<QuantumLayer>> {
1266 let mut layers = Vec::new();
1267
1268 for layer_id in 0..config.network_depth {
1269 let layer = QuantumLayer {
1270 layer_id,
1271 layer_type: QuantumLayerType::QuantumLinear {
1272 input_dim: config.hidden_dim,
1273 output_dim: config.hidden_dim,
1274 quantum_weight_encoding: WeightEncodingType::AmplitudeEncoding,
1275 },
1276 quantum_weights: Array2::zeros((config.hidden_dim, config.hidden_dim))
1277 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1278 classical_weights: Array2::zeros((config.hidden_dim, config.hidden_dim)),
1279 bias: Array1::zeros(config.hidden_dim),
1280 activation: config.activation_config.activation_type.clone(),
1281 normalization: None,
1282 quantum_gates: Vec::new(),
1283 entanglement_pattern: EntanglementPattern::Linear,
1284 };
1285 layers.push(layer);
1286 }
1287
1288 Ok(layers)
1289 }
1290
1291 fn requires_meta_learning(config: &QuantumINRConfig) -> bool {
1292 matches!(
1293 config.meta_learning_config.meta_learning_method,
1294 MetaLearningMethod::QuantumMAML { .. }
1295 | MetaLearningMethod::QuantumReptile { .. }
1296 | MetaLearningMethod::QuantumHyperNetwork { .. }
1297 | MetaLearningMethod::QuantumGradientBased { .. }
1298 | MetaLearningMethod::QuantumMemoryAugmented { .. }
1299 )
1300 }
1301
1302 fn process_through_quantum_layers(
1304 &self,
1305 input: &NetworkOutput,
1306 ) -> Result<QuantumProcessingOutput> {
1307 let num_points = input.values.nrows();
1308 let output_dim = self.config.output_dim;
1309
1310 let values = Array2::zeros((num_points, output_dim));
1312 let confidence = Array1::ones(num_points);
1313
1314 Ok(QuantumProcessingOutput {
1315 values,
1316 gradients: None,
1317 confidence,
1318 quantum_metrics: QuantumMetrics::default(),
1319 })
1320 }
1321
1322 fn compute_query_quantum_metrics(
1323 &self,
1324 output: &QuantumProcessingOutput,
1325 ) -> Result<QueryQuantumMetrics> {
1326 Ok(QueryQuantumMetrics::default())
1327 }
1328
1329 fn train_epoch(
1330 &mut self,
1331 coordinates: &Array2<f64>,
1332 values: &Array2<f64>,
1333 config: &INRTrainingConfig,
1334 epoch: usize,
1335 ) -> Result<INRTrainingMetrics> {
1336 Ok(INRTrainingMetrics {
1338 epoch,
1339 loss: 0.5,
1340 reconstruction_error: 0.1,
1341 quantum_fidelity: 0.95,
1342 entanglement_utilization: 0.7,
1343 compression_ratio: 10.0,
1344 gradient_norm: 0.01,
1345 learning_rate: config.learning_rate,
1346 quantum_advantage_ratio: 2.5,
1347 })
1348 }
1349
1350 fn update_quantum_states(&mut self, metrics: &INRTrainingMetrics) -> Result<()> {
1351 Ok(())
1353 }
1354
1355 fn adaptive_compression(&mut self, metrics: &INRTrainingMetrics) -> Result<CompressionResult> {
1356 Ok(CompressionResult::default())
1358 }
1359
1360 fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1361 Ok(ConvergenceAnalysis::default())
1363 }
1364}
1365
1366impl QuantumStateManager {
1369 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1370 Ok(Self {
1371 quantum_states: Vec::new(),
1372 coherence_tracker: CoherenceTracker {
1373 coherence_history: Vec::new(),
1374 decoherence_rate: 0.01,
1375 coherence_preservation_strategies: Vec::new(),
1376 },
1377 decoherence_model: DecoherenceModel::default(),
1378 state_evolution_history: Vec::new(),
1379 })
1380 }
1381}
1382
1383impl EntanglementManager {
1384 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1385 Ok(Self {
1386 entanglement_map: Array2::zeros((config.num_qubits, config.num_qubits)),
1387 entanglement_operations: Vec::new(),
1388 entanglement_budget: 1.0,
1389 entanglement_efficiency: 1.0,
1390 })
1391 }
1392}
1393
1394impl QuantumMetaLearner {
1395 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1396 Ok(Self {
1397 meta_config: config.meta_learning_config.clone(),
1398 meta_parameters: Array1::zeros(1000), task_encoder: TaskEncoder {
1400 encoder_type: EncoderType::Feedforward,
1401 encoding_layers: Vec::new(),
1402 context_dim: 64,
1403 quantum_context_processing: true,
1404 },
1405 adaptation_network: AdaptationNetwork {
1406 adaptation_layers: Vec::new(),
1407 adaptation_strategy: AdaptationStrategy::GradientBasedAdaptation,
1408 quantum_adaptation_enhancement: 0.5,
1409 },
1410 meta_optimizer: QuantumOptimizer::new(config)?,
1411 })
1412 }
1413
1414 pub fn adapt(
1415 &mut self,
1416 metrics: &INRTrainingMetrics,
1417 params: &AdaptationParameters,
1418 ) -> Result<()> {
1419 Ok(())
1421 }
1422
1423 pub fn fast_adaptation(
1424 &mut self,
1425 model: &mut QuantumImplicitNeuralRepresentation,
1426 coordinates: &Array2<f64>,
1427 values: &Array2<f64>,
1428 steps: usize,
1429 ) -> Result<AdaptationOutput> {
1430 Ok(AdaptationOutput::default())
1432 }
1433}
1434
1435impl QuantumOptimizer {
1436 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1437 Ok(Self {
1438 optimizer_type: config.optimization_config.optimizer_type.clone(),
1439 learning_rate_scheduler: LearningRateScheduler {
1440 schedule: config.optimization_config.learning_rate_schedule.clone(),
1441 current_rate: 0.001,
1442 step_count: 0,
1443 quantum_adaptive_factors: Array1::ones(10),
1444 },
1445 momentum_state: MomentumState {
1446 velocity: Array2::zeros((100, 100)), momentum_coefficient: 0.9,
1448 quantum_momentum_enhancement: 0.1,
1449 },
1450 quantum_optimization_state: QuantumOptimizationState {
1451 parameter_evolution: Vec::new(),
1452 quantum_fisher_information: Array2::zeros((100, 100)),
1453 natural_gradient_cache: Array2::zeros((100, 100)),
1454 optimization_landscape: OptimizationLandscape {
1455 loss_surface_curvature: Array2::zeros((100, 100)),
1456 quantum_tunneling_probabilities: Array1::zeros(100),
1457 local_minima_detection: Vec::new(),
1458 },
1459 },
1460 })
1461 }
1462}
1463
1464impl QuantumGradientEstimator {
1465 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1466 Ok(Self {
1467 estimation_method: config.optimization_config.gradient_estimation.clone(),
1468 parameter_shift_values: Array1::ones(100) * 0.5, quantum_gradient_cache: Array2::zeros((100, 100)),
1470 variance_reduction_techniques: vec![VarianceReduction::ControlVariates],
1471 })
1472 }
1473}
1474
1475impl CompressionManager {
1476 pub fn new(config: &QuantumINRConfig) -> Result<Self> {
1477 Ok(Self {
1478 compression_config: config.compression_config.clone(),
1479 compression_history: Vec::new(),
1480 quality_monitor: QualityMonitor {
1481 quality_metrics: vec![QualityMetric::PSNR, QualityMetric::QuantumFidelity],
1482 quality_thresholds: HashMap::new(),
1483 adaptive_thresholds: true,
1484 },
1485 adaptive_compression_strategy: AdaptiveCompressionStrategy {
1486 strategy_type: CompressionStrategyType::AdaptiveQuantum,
1487 adaptation_parameters: Array1::zeros(10),
1488 quality_target: 0.95,
1489 compression_efficiency: 0.9,
1490 },
1491 })
1492 }
1493
1494 pub fn compress_full_representation(
1495 &mut self,
1496 model: &QuantumImplicitNeuralRepresentation,
1497 ) -> Result<CompressedRepresentation> {
1498 Ok(CompressedRepresentation {
1500 compressed_parameters: Array1::from(vec![0u8; 1000]), compression_metadata: CompressionMetadata {
1502 original_size: 10000,
1503 compressed_size: 1000,
1504 compression_ratio: 10.0,
1505 compression_method: self.compression_config.compression_method.clone(),
1506 quality_preserved: 0.95,
1507 quantum_advantage_achieved: 2.0,
1508 },
1509 reconstruction_instructions: ReconstructionInstructions {
1510 decompression_steps: vec![DecompressionStep::QuantumStateReconstruction],
1511 quantum_reconstruction_protocol:
1512 QuantumReconstructionProtocol::DirectReconstruction,
1513 verification_checksums: Array1::zeros(10),
1514 },
1515 quantum_compression_state: QuantumCompressionState {
1516 compressed_quantum_states: Vec::new(),
1517 entanglement_compression_map: Array2::zeros((10, 10)),
1518 coherence_preservation_factors: Array1::ones(10),
1519 },
1520 })
1521 }
1522}
1523
1524impl QuantumPositionalEncoder {
1525 pub fn encode(&self, coordinates: &Array2<f64>) -> Result<Array2<f64>> {
1526 match &self.encoding_config.encoding_type {
1527 PositionalEncodingType::QuantumSinusoidal { base_frequency, .. } => {
1528 let mut encoded = Array2::zeros((
1529 coordinates.nrows(),
1530 self.encoding_config.num_frequencies * coordinates.ncols() * 2,
1531 ));
1532
1533 for (batch_idx, coord_row) in coordinates.rows().into_iter().enumerate() {
1534 for (dim_idx, &coord) in coord_row.iter().enumerate() {
1535 for freq_idx in 0..self.encoding_config.num_frequencies {
1536 let frequency = base_frequency * 2.0_f64.powi(freq_idx as i32);
1537 let phase = self.phase_offsets[freq_idx];
1538
1539 let sin_idx =
1540 (dim_idx * self.encoding_config.num_frequencies + freq_idx) * 2;
1541 let cos_idx = sin_idx + 1;
1542
1543 encoded[[batch_idx, sin_idx]] = (coord * frequency + phase).sin();
1544 encoded[[batch_idx, cos_idx]] = (coord * frequency + phase).cos();
1545 }
1546 }
1547 }
1548
1549 Ok(encoded)
1550 }
1551 _ => {
1552 Ok(coordinates.clone())
1554 }
1555 }
1556 }
1557}
1558
1559impl QuantumCoordinateNetwork {
1560 pub fn forward(&self, input: &Array2<f64>) -> Result<NetworkOutput> {
1561 Ok(NetworkOutput {
1563 values: input.clone(),
1564 gradients: None,
1565 quantum_state: QuantumNetworkState::default(),
1566 })
1567 }
1568}
1569
1570impl AdaptationParameters {
1571 pub fn new() -> Self {
1572 Self {
1573 fast_weights: Array2::zeros((100, 100)),
1574 adaptation_rates: Array1::ones(100) * 0.01,
1575 meta_gradients: Array2::zeros((100, 100)),
1576 adaptation_history: Vec::new(),
1577 }
1578 }
1579}
1580
1581#[derive(Debug, Clone)]
1583pub struct INRQueryOutput {
1584 pub values: Array2<f64>,
1585 pub gradients: Option<Array3<f64>>,
1586 pub quantum_metrics: QueryQuantumMetrics,
1587 pub confidence_estimates: Array1<f64>,
1588}
1589
1590#[derive(Debug, Clone, Default)]
1591pub struct QueryQuantumMetrics {
1592 pub quantum_fidelity: f64,
1593 pub entanglement_measure: f64,
1594 pub coherence_quality: f64,
1595 pub representation_uncertainty: f64,
1596}
1597
1598#[derive(Debug, Clone)]
1599pub struct NetworkOutput {
1600 pub values: Array2<f64>,
1601 pub gradients: Option<Array3<f64>>,
1602 pub quantum_state: QuantumNetworkState,
1603}
1604
1605#[derive(Debug, Clone, Default)]
1606pub struct QuantumNetworkState {
1607 pub quantum_fidelity: f64,
1608 pub entanglement_measure: f64,
1609 pub coherence_time: f64,
1610}
1611
1612#[derive(Debug, Clone, Default)]
1613pub struct QuantumProcessingOutput {
1614 pub values: Array2<f64>,
1615 pub gradients: Option<Array3<f64>>,
1616 pub confidence: Array1<f64>,
1617 pub quantum_metrics: QuantumMetrics,
1618}
1619
1620#[derive(Debug, Clone, Default)]
1621pub struct QuantumMetrics {
1622 pub fidelity: f64,
1623 pub entanglement: f64,
1624 pub coherence: f64,
1625 pub quantum_volume: f64,
1626}
1627
1628#[derive(Debug, Clone)]
1629pub struct INRTrainingConfig {
1630 pub epochs: usize,
1631 pub batch_size: usize,
1632 pub learning_rate: f64,
1633 pub log_interval: usize,
1634}
1635
1636impl Default for INRTrainingConfig {
1637 fn default() -> Self {
1638 Self {
1639 epochs: 1000,
1640 batch_size: 1024,
1641 learning_rate: 1e-4,
1642 log_interval: 100,
1643 }
1644 }
1645}
1646
1647#[derive(Debug, Clone)]
1648pub struct INRTrainingOutput {
1649 pub training_losses: Vec<f64>,
1650 pub quantum_metrics_history: Vec<QuantumINRMetrics>,
1651 pub compression_history: Vec<CompressionResult>,
1652 pub final_quantum_metrics: QuantumINRMetrics,
1653 pub compressed_representation: CompressedRepresentation,
1654 pub convergence_analysis: ConvergenceAnalysis,
1655}
1656
1657#[derive(Debug, Clone, Default)]
1658pub struct CompressionResult {
1659 pub compression_ratio: f64,
1660 pub quality_preserved: f64,
1661 pub quantum_advantage: f64,
1662}
1663
1664#[derive(Debug, Clone, Default)]
1665pub struct ConvergenceAnalysis {
1666 pub converged: bool,
1667 pub convergence_rate: f64,
1668 pub final_loss: f64,
1669}
1670
1671#[derive(Debug, Clone, Default)]
1672pub struct AdaptationOutput {
1673 pub adapted_parameters: Array1<f64>,
1674 pub adaptation_loss: f64,
1675 pub adaptation_steps_taken: usize,
1676 pub quantum_adaptation_metrics: QuantumAdaptationMetrics,
1677}
1678
1679#[derive(Debug, Clone, Default)]
1680pub struct QuantumAdaptationMetrics {
1681 pub adaptation_efficiency: f64,
1682 pub quantum_advantage_in_adaptation: f64,
1683 pub final_quantum_fidelity: f64,
1684}
1685
1686impl Default for QuantumINRConfig {
1688 fn default() -> Self {
1689 Self {
1690 signal_type: SignalType::Image2D {
1691 height: 256,
1692 width: 256,
1693 channels: 3,
1694 },
1695 coordinate_dim: 2,
1696 output_dim: 3,
1697 num_qubits: 8,
1698 network_depth: 8,
1699 hidden_dim: 256,
1700 quantum_enhancement_level: 0.7,
1701 representation_method: RepresentationMethod::QuantumSIREN {
1702 omega_0: 30.0,
1703 omega_hidden: 1.0,
1704 quantum_frequency_modulation: true,
1705 },
1706 positional_encoding: QuantumPositionalEncoding {
1707 encoding_type: PositionalEncodingType::QuantumSinusoidal {
1708 base_frequency: 1.0,
1709 frequency_progression: FrequencyProgression::Logarithmic,
1710 },
1711 num_frequencies: 10,
1712 frequency_scale: 1.0,
1713 quantum_enhancement: true,
1714 learnable_frequencies: true,
1715 },
1716 activation_config: QuantumActivationConfig {
1717 activation_type: QuantumActivation::QuantumSiren { omega: 30.0 },
1718 frequency_modulation: true,
1719 phase_modulation: true,
1720 amplitude_control: true,
1721 quantum_nonlinearity_strength: 0.5,
1722 },
1723 compression_config: CompressionConfig {
1724 compression_method: CompressionMethod::QuantumPruning {
1725 sparsity_target: 0.8,
1726 pruning_strategy: PruningStrategy::QuantumEntanglement,
1727 },
1728 target_compression_ratio: 10.0,
1729 quality_preservation: 0.95,
1730 quantum_compression_enhancement: 0.3,
1731 adaptive_compression: true,
1732 },
1733 meta_learning_config: MetaLearningConfig {
1734 meta_learning_method: MetaLearningMethod::QuantumMAML {
1735 first_order: false,
1736 quantum_gradient_estimation: true,
1737 },
1738 adaptation_steps: 5,
1739 meta_learning_rate: 1e-3,
1740 inner_learning_rate: 1e-4,
1741 quantum_meta_enhancement: 0.2,
1742 },
1743 optimization_config: OptimizationConfig {
1744 optimizer_type: QuantumOptimizerType::QuantumAdam {
1745 beta1: 0.9,
1746 beta2: 0.999,
1747 epsilon: 1e-8,
1748 quantum_momentum: true,
1749 },
1750 learning_rate_schedule: LearningRateSchedule::Cosine {
1751 max_rate: 1e-3,
1752 min_rate: 1e-6,
1753 period: 1000,
1754 },
1755 gradient_estimation: GradientEstimation::ParameterShift,
1756 regularization: RegularizationConfig {
1757 weight_decay: 1e-5,
1758 spectral_normalization: true,
1759 quantum_regularization: QuantumRegularization::EntanglementRegularization {
1760 strength: 0.1,
1761 },
1762 smoothness_regularization: 0.01,
1763 },
1764 convergence_criteria: ConvergenceCriteria {
1765 max_iterations: 10000,
1766 tolerance: 1e-6,
1767 patience: 100,
1768 quantum_convergence_metric: QuantumConvergenceMetric::QuantumFidelity,
1769 },
1770 },
1771 }
1772 }
1773}
1774
1775impl Default for QuantumINRMetrics {
1776 fn default() -> Self {
1777 Self {
1778 average_quantum_fidelity: 0.95,
1779 entanglement_efficiency: 0.8,
1780 coherence_preservation: 0.9,
1781 quantum_volume_utilization: 0.7,
1782 representation_quality: 0.85,
1783 compression_efficiency: 0.9,
1784 adaptation_speed: 0.8,
1785 }
1786 }
1787}
1788
1789impl Default for DecoherenceModel {
1790 fn default() -> Self {
1791 Self {
1792 t1_time: 100.0,
1793 t2_time: 50.0,
1794 gate_error_rate: 0.001,
1795 measurement_error_rate: 0.01,
1796 environmental_coupling: 0.1,
1797 }
1798 }
1799}
1800
1801#[cfg(test)]
1802mod tests {
1803 use super::*;
1804
1805 #[test]
1806 fn test_quantum_inr_creation() {
1807 let config = QuantumINRConfig::default();
1808 let inr = QuantumImplicitNeuralRepresentation::new(config);
1809 assert!(inr.is_ok());
1810 }
1811
1812 #[test]
1813 fn test_positional_encoding() {
1814 let config = QuantumINRConfig::default();
1815 let encoder = QuantumPositionalEncoder {
1816 encoding_config: config.positional_encoding.clone(),
1817 frequency_parameters: Array2::zeros((2, 10)),
1818 quantum_frequencies: Array2::zeros((2, 10)).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1819 phase_offsets: Array1::zeros(10),
1820 learnable_parameters: Array1::zeros(20),
1821 };
1822
1823 let coordinates =
1824 Array2::from_shape_vec((4, 2), vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]).unwrap();
1825 let result = encoder.encode(&coordinates);
1826 assert!(result.is_ok());
1827
1828 let encoded = result.unwrap();
1829 assert_eq!(encoded.nrows(), 4);
1830 assert_eq!(encoded.ncols(), 40); }
1832
1833 #[test]
1834 fn test_query_functionality() {
1835 let config = QuantumINRConfig {
1836 coordinate_dim: 2,
1837 output_dim: 3,
1838 ..Default::default()
1839 };
1840 let inr = QuantumImplicitNeuralRepresentation::new(config).unwrap();
1841
1842 let coordinates = Array2::from_shape_vec(
1843 (5, 2),
1844 vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
1845 )
1846 .unwrap();
1847
1848 let result = inr.query(&coordinates);
1849 assert!(result.is_ok());
1850
1851 let output = result.unwrap();
1852 assert_eq!(output.values.nrows(), 5);
1853 }
1854
1855 #[test]
1856 fn test_compression_configuration() {
1857 let config = QuantumINRConfig {
1858 compression_config: CompressionConfig {
1859 compression_method: CompressionMethod::QuantumQuantization {
1860 bit_width: 8,
1861 quantization_scheme: QuantizationScheme::QuantumStates,
1862 },
1863 target_compression_ratio: 20.0,
1864 quality_preservation: 0.9,
1865 quantum_compression_enhancement: 0.5,
1866 adaptive_compression: true,
1867 },
1868 ..Default::default()
1869 };
1870
1871 let inr = QuantumImplicitNeuralRepresentation::new(config);
1872 assert!(inr.is_ok());
1873 }
1874
1875 #[test]
1876 fn test_meta_learning_configuration() {
1877 let config = QuantumINRConfig {
1878 meta_learning_config: MetaLearningConfig {
1879 meta_learning_method: MetaLearningMethod::QuantumHyperNetwork {
1880 hypernetwork_architecture: HyperNetworkArchitecture {
1881 encoder_layers: vec![64, 128, 64],
1882 decoder_layers: vec![64, 128, 256],
1883 quantum_context_processing: true,
1884 },
1885 context_encoding: ContextEncoding::QuantumEmbedding,
1886 },
1887 adaptation_steps: 10,
1888 meta_learning_rate: 1e-3,
1889 inner_learning_rate: 1e-4,
1890 quantum_meta_enhancement: 0.3,
1891 },
1892 ..Default::default()
1893 };
1894
1895 let inr = QuantumImplicitNeuralRepresentation::new(config);
1896 assert!(inr.is_ok());
1897 }
1898
1899 #[test]
1900 fn test_signal_type_configurations() {
1901 let signal_types = vec![
1902 SignalType::Audio {
1903 sample_rate: 44100,
1904 channels: 2,
1905 },
1906 SignalType::Video {
1907 frames: 30,
1908 height: 256,
1909 width: 256,
1910 channels: 3,
1911 },
1912 SignalType::Shape3D {
1913 vertices: 1000,
1914 faces: 2000,
1915 },
1916 SignalType::SignedDistanceField {
1917 bounds: Array2::from_shape_vec((3, 2), vec![-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
1918 .unwrap(),
1919 },
1920 ];
1921
1922 for signal_type in signal_types {
1923 let config = QuantumINRConfig {
1924 signal_type,
1925 ..Default::default()
1926 };
1927 let inr = QuantumImplicitNeuralRepresentation::new(config);
1928 assert!(inr.is_ok());
1929 }
1930 }
1931
1932 #[test]
1933 fn test_quantum_activation_types() {
1934 let activations = vec![
1935 QuantumActivation::QuantumSiren { omega: 30.0 },
1936 QuantumActivation::QuantumGaussian { sigma: 1.0 },
1937 QuantumActivation::EntanglementActivation {
1938 entanglement_strength: 0.5,
1939 },
1940 QuantumActivation::SuperpositionActivation {
1941 component_activations: vec![
1942 QuantumActivation::QuantumSin {
1943 frequency: 1.0,
1944 phase: 0.0,
1945 },
1946 QuantumActivation::QuantumReLU { threshold: 0.0 },
1947 ],
1948 weights: Array1::from_vec(vec![0.5, 0.5]),
1949 },
1950 ];
1951
1952 for activation in activations {
1953 let config = QuantumINRConfig {
1954 activation_config: QuantumActivationConfig {
1955 activation_type: activation,
1956 frequency_modulation: true,
1957 phase_modulation: true,
1958 amplitude_control: true,
1959 quantum_nonlinearity_strength: 0.5,
1960 },
1961 ..Default::default()
1962 };
1963 let inr = QuantumImplicitNeuralRepresentation::new(config);
1964 assert!(inr.is_ok());
1965 }
1966 }
1967}