1use crate::error::{MLError, Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use std::collections::HashMap;
10use std::time::{Duration, Instant};
11
12#[derive(Debug, Clone)]
14pub struct QuantumMLProfiler {
15 timings: HashMap<String, Vec<Duration>>,
17
18 memory_snapshots: Vec<MemorySnapshot>,
20
21 circuit_metrics: Vec<CircuitMetrics>,
23
24 session_start: Option<Instant>,
26
27 config: ProfilerConfig,
29}
30
31#[derive(Debug, Clone)]
33pub struct ProfilerConfig {
34 pub detailed_timing: bool,
36
37 pub track_memory: bool,
39
40 pub track_circuits: bool,
42
43 pub memory_sample_rate: usize,
45
46 pub auto_report: bool,
48}
49
50impl Default for ProfilerConfig {
51 fn default() -> Self {
52 Self {
53 detailed_timing: true,
54 track_memory: true,
55 track_circuits: true,
56 memory_sample_rate: 100,
57 auto_report: false,
58 }
59 }
60}
61
62#[derive(Debug, Clone)]
64pub struct MemorySnapshot {
65 pub timestamp: Duration,
66 pub allocated_bytes: usize,
67 pub peak_bytes: usize,
68 pub operation: String,
69}
70
71#[derive(Debug, Clone)]
73pub struct CircuitMetrics {
74 pub circuit_name: String,
75 pub num_qubits: usize,
76 pub circuit_depth: usize,
77 pub gate_count: usize,
78 pub execution_time: Duration,
79 pub shots: usize,
80 pub fidelity: Option<f64>,
81}
82
83#[derive(Debug, Clone)]
85pub struct ProfilingReport {
86 pub total_duration: Duration,
87 pub operation_stats: HashMap<String, OperationStats>,
88 pub memory_stats: MemoryStats,
89 pub circuit_stats: CircuitStats,
90 pub bottlenecks: Vec<Bottleneck>,
91 pub recommendations: Vec<String>,
92}
93
94#[derive(Debug, Clone)]
96pub struct OperationStats {
97 pub operation_name: String,
98 pub call_count: usize,
99 pub total_time: Duration,
100 pub mean_time: Duration,
101 pub min_time: Duration,
102 pub max_time: Duration,
103 pub std_dev: Duration,
104 pub percentage_of_total: f64,
105}
106
107#[derive(Debug, Clone)]
109pub struct MemoryStats {
110 pub peak_memory: usize,
111 pub average_memory: usize,
112 pub total_allocations: usize,
113 pub memory_efficiency: f64,
114}
115
116#[derive(Debug, Clone)]
118pub struct CircuitStats {
119 pub total_circuits_executed: usize,
120 pub average_circuit_depth: f64,
121 pub average_qubit_count: f64,
122 pub total_gate_count: usize,
123 pub average_fidelity: Option<f64>,
124 pub total_shots: usize,
125}
126
127#[derive(Debug, Clone)]
129pub struct Bottleneck {
130 pub operation: String,
131 pub severity: BottleneckSeverity,
132 pub time_percentage: f64,
133 pub description: String,
134 pub recommendation: String,
135}
136
137#[derive(Debug, Clone, PartialEq)]
138pub enum BottleneckSeverity {
139 Critical, Major, Minor, Negligible, }
144
145impl QuantumMLProfiler {
146 pub fn new() -> Self {
148 Self::with_config(ProfilerConfig::default())
149 }
150
151 pub fn with_config(config: ProfilerConfig) -> Self {
153 Self {
154 timings: HashMap::new(),
155 memory_snapshots: Vec::new(),
156 circuit_metrics: Vec::new(),
157 session_start: None,
158 config,
159 }
160 }
161
162 pub fn start_session(&mut self) {
164 self.session_start = Some(Instant::now());
165 self.timings.clear();
166 self.memory_snapshots.clear();
167 self.circuit_metrics.clear();
168 }
169
170 pub fn end_session(&mut self) -> Result<ProfilingReport> {
172 let total_duration = self
173 .session_start
174 .ok_or_else(|| MLError::InvalidInput("Profiling session not started".to_string()))?
175 .elapsed();
176
177 let operation_stats = self.compute_operation_stats(total_duration);
178 let memory_stats = self.compute_memory_stats();
179 let circuit_stats = self.compute_circuit_stats();
180 let bottlenecks = self.identify_bottlenecks(&operation_stats, total_duration);
181 let recommendations = self.generate_recommendations(&bottlenecks, &circuit_stats);
182
183 Ok(ProfilingReport {
184 total_duration,
185 operation_stats,
186 memory_stats,
187 circuit_stats,
188 bottlenecks,
189 recommendations,
190 })
191 }
192
193 pub fn time_operation<F, T>(&mut self, operation_name: &str, f: F) -> T
195 where
196 F: FnOnce() -> T,
197 {
198 let start = Instant::now();
199 let result = f();
200 let duration = start.elapsed();
201
202 self.timings
203 .entry(operation_name.to_string())
204 .or_insert_with(Vec::new)
205 .push(duration);
206
207 result
208 }
209
210 pub fn record_memory(&mut self, operation: &str, allocated_bytes: usize, peak_bytes: usize) {
212 if !self.config.track_memory {
213 return;
214 }
215
216 let timestamp = self
217 .session_start
218 .map(|start| start.elapsed())
219 .unwrap_or(Duration::ZERO);
220
221 self.memory_snapshots.push(MemorySnapshot {
222 timestamp,
223 allocated_bytes,
224 peak_bytes,
225 operation: operation.to_string(),
226 });
227 }
228
229 pub fn record_circuit_execution(
231 &mut self,
232 circuit_name: &str,
233 num_qubits: usize,
234 circuit_depth: usize,
235 gate_count: usize,
236 execution_time: Duration,
237 shots: usize,
238 fidelity: Option<f64>,
239 ) {
240 if !self.config.track_circuits {
241 return;
242 }
243
244 self.circuit_metrics.push(CircuitMetrics {
245 circuit_name: circuit_name.to_string(),
246 num_qubits,
247 circuit_depth,
248 gate_count,
249 execution_time,
250 shots,
251 fidelity,
252 });
253 }
254
255 fn compute_operation_stats(&self, total_duration: Duration) -> HashMap<String, OperationStats> {
257 let mut stats = HashMap::new();
258
259 for (operation_name, durations) in &self.timings {
260 let call_count = durations.len();
261 let total_time: Duration = durations.iter().sum();
262 let mean_time = total_time / call_count as u32;
263 let min_time = *durations.iter().min().unwrap_or(&Duration::ZERO);
264 let max_time = *durations.iter().max().unwrap_or(&Duration::ZERO);
265
266 let mean_nanos = mean_time.as_nanos() as f64;
268 let variance = durations
269 .iter()
270 .map(|d| {
271 let diff = d.as_nanos() as f64 - mean_nanos;
272 diff * diff
273 })
274 .sum::<f64>()
275 / call_count as f64;
276 let std_dev = Duration::from_nanos(variance.sqrt() as u64);
277
278 let percentage_of_total =
279 (total_time.as_secs_f64() / total_duration.as_secs_f64()) * 100.0;
280
281 stats.insert(
282 operation_name.clone(),
283 OperationStats {
284 operation_name: operation_name.clone(),
285 call_count,
286 total_time,
287 mean_time,
288 min_time,
289 max_time,
290 std_dev,
291 percentage_of_total,
292 },
293 );
294 }
295
296 stats
297 }
298
299 fn compute_memory_stats(&self) -> MemoryStats {
301 if self.memory_snapshots.is_empty() {
302 return MemoryStats {
303 peak_memory: 0,
304 average_memory: 0,
305 total_allocations: 0,
306 memory_efficiency: 1.0,
307 };
308 }
309
310 let peak_memory = self
311 .memory_snapshots
312 .iter()
313 .map(|s| s.peak_bytes)
314 .max()
315 .unwrap_or(0);
316
317 let average_memory = self
318 .memory_snapshots
319 .iter()
320 .map(|s| s.allocated_bytes)
321 .sum::<usize>()
322 / self.memory_snapshots.len();
323
324 let memory_efficiency = if peak_memory > 0 {
325 average_memory as f64 / peak_memory as f64
326 } else {
327 1.0
328 };
329
330 MemoryStats {
331 peak_memory,
332 average_memory,
333 total_allocations: self.memory_snapshots.len(),
334 memory_efficiency,
335 }
336 }
337
338 fn compute_circuit_stats(&self) -> CircuitStats {
340 if self.circuit_metrics.is_empty() {
341 return CircuitStats {
342 total_circuits_executed: 0,
343 average_circuit_depth: 0.0,
344 average_qubit_count: 0.0,
345 total_gate_count: 0,
346 average_fidelity: None,
347 total_shots: 0,
348 };
349 }
350
351 let total_circuits_executed = self.circuit_metrics.len();
352 let average_circuit_depth = self
353 .circuit_metrics
354 .iter()
355 .map(|m| m.circuit_depth as f64)
356 .sum::<f64>()
357 / total_circuits_executed as f64;
358
359 let average_qubit_count = self
360 .circuit_metrics
361 .iter()
362 .map(|m| m.num_qubits as f64)
363 .sum::<f64>()
364 / total_circuits_executed as f64;
365
366 let total_gate_count = self.circuit_metrics.iter().map(|m| m.gate_count).sum();
367
368 let fidelities: Vec<f64> = self
369 .circuit_metrics
370 .iter()
371 .filter_map(|m| m.fidelity)
372 .collect();
373
374 let average_fidelity = if !fidelities.is_empty() {
375 Some(fidelities.iter().sum::<f64>() / fidelities.len() as f64)
376 } else {
377 None
378 };
379
380 let total_shots = self.circuit_metrics.iter().map(|m| m.shots).sum();
381
382 CircuitStats {
383 total_circuits_executed,
384 average_circuit_depth,
385 average_qubit_count,
386 total_gate_count,
387 average_fidelity,
388 total_shots,
389 }
390 }
391
392 fn identify_bottlenecks(
394 &self,
395 operation_stats: &HashMap<String, OperationStats>,
396 total_duration: Duration,
397 ) -> Vec<Bottleneck> {
398 let mut bottlenecks = Vec::new();
399
400 for (_, stats) in operation_stats {
401 let severity = if stats.percentage_of_total > 50.0 {
402 BottleneckSeverity::Critical
403 } else if stats.percentage_of_total > 20.0 {
404 BottleneckSeverity::Major
405 } else if stats.percentage_of_total > 10.0 {
406 BottleneckSeverity::Minor
407 } else {
408 BottleneckSeverity::Negligible
409 };
410
411 if severity != BottleneckSeverity::Negligible {
412 let (description, recommendation) =
413 self.analyze_bottleneck(&stats.operation_name, stats);
414
415 bottlenecks.push(Bottleneck {
416 operation: stats.operation_name.clone(),
417 severity,
418 time_percentage: stats.percentage_of_total,
419 description,
420 recommendation,
421 });
422 }
423 }
424
425 bottlenecks.sort_by(|a, b| b.time_percentage.partial_cmp(&a.time_percentage).unwrap());
427
428 bottlenecks
429 }
430
431 fn analyze_bottleneck(&self, operation_name: &str, stats: &OperationStats) -> (String, String) {
433 let description = format!(
434 "Operation '{}' consumes {:.1}% of total execution time ({} calls, mean: {:?})",
435 operation_name, stats.percentage_of_total, stats.call_count, stats.mean_time
436 );
437
438 let recommendation = if operation_name.contains("circuit")
439 || operation_name.contains("quantum")
440 {
441 "Consider circuit optimization: reduce circuit depth, use gate compression, or enable SIMD acceleration".to_string()
442 } else if operation_name.contains("gradient") || operation_name.contains("backward") {
443 "Consider using parameter shift rule caching or analytical gradients where possible"
444 .to_string()
445 } else if operation_name.contains("measurement") || operation_name.contains("sampling") {
446 "Consider reducing shot count or using approximate sampling techniques".to_string()
447 } else if stats.call_count > 1000 {
448 format!(
449 "High call count ({}). Consider batching operations or caching results",
450 stats.call_count
451 )
452 } else {
453 "Analyze this operation for optimization opportunities".to_string()
454 };
455
456 (description, recommendation)
457 }
458
459 fn generate_recommendations(
461 &self,
462 bottlenecks: &[Bottleneck],
463 circuit_stats: &CircuitStats,
464 ) -> Vec<String> {
465 let mut recommendations = Vec::new();
466
467 if circuit_stats.total_circuits_executed > 0 {
469 if circuit_stats.average_circuit_depth > 100.0 {
470 recommendations.push(
471 "High average circuit depth detected. Consider circuit optimization or transpilation".to_string()
472 );
473 }
474
475 if let Some(fidelity) = circuit_stats.average_fidelity {
476 if fidelity < 0.9 {
477 recommendations.push(format!(
478 "Low average fidelity ({:.2}). Consider error mitigation strategies",
479 fidelity
480 ));
481 }
482 }
483
484 if circuit_stats.average_qubit_count > 20.0 {
485 recommendations.push(
486 "Large qubit count. Consider using tensor network simulators or real hardware"
487 .to_string(),
488 );
489 }
490 }
491
492 if !self.memory_snapshots.is_empty() {
494 let mem_stats = self.compute_memory_stats();
495 if mem_stats.memory_efficiency < 0.5 {
496 recommendations.push(
497 format!(
498 "Low memory efficiency ({:.1}%). Consider memory pooling or incremental computation",
499 mem_stats.memory_efficiency * 100.0
500 )
501 );
502 }
503 }
504
505 for bottleneck in bottlenecks.iter().filter(|b| {
507 matches!(
508 b.severity,
509 BottleneckSeverity::Critical | BottleneckSeverity::Major
510 )
511 }) {
512 recommendations.push(bottleneck.recommendation.clone());
513 }
514
515 recommendations
516 }
517
518 pub fn print_report(&self, report: &ProfilingReport) {
520 println!("\n═══════════════════════════════════════════════════════");
521 println!(" Quantum ML Performance Profiling Report ");
522 println!("═══════════════════════════════════════════════════════\n");
523
524 println!("Total Execution Time: {:?}\n", report.total_duration);
525
526 println!("─────────────────────────────────────────────────────");
528 println!("Operation Statistics:");
529 println!("─────────────────────────────────────────────────────");
530
531 let mut sorted_ops: Vec<_> = report.operation_stats.values().collect();
532 sorted_ops.sort_by(|a, b| {
533 b.percentage_of_total
534 .partial_cmp(&a.percentage_of_total)
535 .unwrap()
536 });
537
538 for stats in sorted_ops.iter().take(10) {
539 println!(
540 " {} ({:.1}%): {} calls, mean {:?}, total {:?}",
541 stats.operation_name,
542 stats.percentage_of_total,
543 stats.call_count,
544 stats.mean_time,
545 stats.total_time
546 );
547 }
548
549 if report.circuit_stats.total_circuits_executed > 0 {
551 println!("\n─────────────────────────────────────────────────────");
552 println!("Quantum Circuit Statistics:");
553 println!("─────────────────────────────────────────────────────");
554 println!(
555 " Total Circuits: {}",
556 report.circuit_stats.total_circuits_executed
557 );
558 println!(
559 " Avg Circuit Depth: {:.1}",
560 report.circuit_stats.average_circuit_depth
561 );
562 println!(
563 " Avg Qubit Count: {:.1}",
564 report.circuit_stats.average_qubit_count
565 );
566 println!(" Total Gates: {}", report.circuit_stats.total_gate_count);
567 if let Some(fidelity) = report.circuit_stats.average_fidelity {
568 println!(" Avg Fidelity: {:.4}", fidelity);
569 }
570 println!(" Total Shots: {}", report.circuit_stats.total_shots);
571 }
572
573 println!("\n─────────────────────────────────────────────────────");
575 println!("Memory Statistics:");
576 println!("─────────────────────────────────────────────────────");
577 println!(
578 " Peak Memory: {} MB",
579 report.memory_stats.peak_memory / 1_000_000
580 );
581 println!(
582 " Avg Memory: {} MB",
583 report.memory_stats.average_memory / 1_000_000
584 );
585 println!(
586 " Memory Efficiency: {:.1}%",
587 report.memory_stats.memory_efficiency * 100.0
588 );
589
590 if !report.bottlenecks.is_empty() {
592 println!("\n─────────────────────────────────────────────────────");
593 println!("Performance Bottlenecks:");
594 println!("─────────────────────────────────────────────────────");
595
596 for bottleneck in &report.bottlenecks {
597 println!(" [{:?}] {}", bottleneck.severity, bottleneck.description);
598 }
599 }
600
601 if !report.recommendations.is_empty() {
603 println!("\n─────────────────────────────────────────────────────");
604 println!("Optimization Recommendations:");
605 println!("─────────────────────────────────────────────────────");
606
607 for (i, rec) in report.recommendations.iter().enumerate() {
608 println!(" {}. {}", i + 1, rec);
609 }
610 }
611
612 println!("\n═══════════════════════════════════════════════════════\n");
613 }
614}
615
616impl Default for QuantumMLProfiler {
617 fn default() -> Self {
618 Self::new()
619 }
620}
621
622#[cfg(test)]
623mod tests {
624 use super::*;
625 use std::thread;
626
627 #[test]
628 fn test_profiler_creation() {
629 let profiler = QuantumMLProfiler::new();
630 assert!(profiler.session_start.is_none());
631 assert!(profiler.timings.is_empty());
632 }
633
634 #[test]
635 fn test_operation_timing() {
636 let mut profiler = QuantumMLProfiler::new();
637 profiler.start_session();
638
639 profiler.time_operation("test_op", || {
640 thread::sleep(Duration::from_millis(10));
641 });
642
643 assert_eq!(profiler.timings.get("test_op").unwrap().len(), 1);
644 }
645
646 #[test]
647 fn test_profiling_report() {
648 let mut profiler = QuantumMLProfiler::new();
649 profiler.start_session();
650
651 profiler.time_operation("fast_op", || {
652 thread::sleep(Duration::from_millis(5));
653 });
654
655 profiler.time_operation("slow_op", || {
656 thread::sleep(Duration::from_millis(20));
657 });
658
659 let report = profiler.end_session().unwrap();
660 assert_eq!(report.operation_stats.len(), 2);
661 assert!(report.total_duration >= Duration::from_millis(25));
662 }
663
664 #[test]
665 fn test_circuit_metrics() {
666 let mut profiler = QuantumMLProfiler::new();
667 profiler.start_session();
668
669 profiler.record_circuit_execution(
670 "test_circuit",
671 5,
672 10,
673 25,
674 Duration::from_millis(100),
675 1000,
676 Some(0.95),
677 );
678
679 let report = profiler.end_session().unwrap();
680 assert_eq!(report.circuit_stats.total_circuits_executed, 1);
681 assert_eq!(report.circuit_stats.average_qubit_count, 5.0);
682 }
683}