quantrs2_ml/
gnn.rs

1//! Quantum Graph Neural Networks (GNNs) implementation.
2//!
3//! This module provides quantum versions of graph neural networks including
4//! graph convolutional networks, graph attention networks, and message passing.
5
6use scirs2_core::ndarray::{Array1, Array2, Array3};
7use scirs2_core::Complex64;
8use std::collections::HashMap;
9use std::f64::consts::PI;
10
11use crate::autodiff::DifferentiableParam;
12use crate::error::{MLError, Result};
13use crate::utils::VariationalCircuit;
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::gate::{multi::*, single::*, GateOp};
16
17/// Activation function types for quantum layers
18#[derive(Debug, Clone, Copy, PartialEq)]
19pub enum ActivationType {
20    /// Linear activation (identity)
21    Linear,
22    /// ReLU activation
23    ReLU,
24    /// Sigmoid activation
25    Sigmoid,
26    /// Tanh activation
27    Tanh,
28}
29
30/// Graph structure for quantum processing
31#[derive(Debug, Clone)]
32pub struct QuantumGraph {
33    /// Number of nodes
34    num_nodes: usize,
35    /// Adjacency matrix
36    adjacency: Array2<f64>,
37    /// Node features
38    node_features: Array2<f64>,
39    /// Edge features (optional)
40    edge_features: Option<HashMap<(usize, usize), Array1<f64>>>,
41    /// Graph-level features (optional)
42    graph_features: Option<Array1<f64>>,
43}
44
45impl QuantumGraph {
46    /// Create a new quantum graph
47    pub fn new(num_nodes: usize, edges: Vec<(usize, usize)>, node_features: Array2<f64>) -> Self {
48        let mut adjacency = Array2::zeros((num_nodes, num_nodes));
49
50        // Build adjacency matrix
51        for (src, dst) in edges {
52            adjacency[[src, dst]] = 1.0;
53            adjacency[[dst, src]] = 1.0; // Undirected graph
54        }
55
56        Self {
57            num_nodes,
58            adjacency,
59            node_features,
60            edge_features: None,
61            graph_features: None,
62        }
63    }
64
65    /// Add edge features
66    pub fn with_edge_features(
67        mut self,
68        edge_features: HashMap<(usize, usize), Array1<f64>>,
69    ) -> Self {
70        self.edge_features = Some(edge_features);
71        self
72    }
73
74    /// Add graph-level features
75    pub fn with_graph_features(mut self, graph_features: Array1<f64>) -> Self {
76        self.graph_features = Some(graph_features);
77        self
78    }
79
80    /// Get node degree
81    pub fn degree(&self, node: usize) -> usize {
82        self.adjacency
83            .row(node)
84            .iter()
85            .filter(|&&x| x > 0.0)
86            .count()
87    }
88
89    /// Get neighbors of a node
90    pub fn neighbors(&self, node: usize) -> Vec<usize> {
91        self.adjacency
92            .row(node)
93            .iter()
94            .enumerate()
95            .filter(|(_, &val)| val > 0.0)
96            .map(|(idx, _)| idx)
97            .collect()
98    }
99
100    /// Compute Laplacian matrix
101    pub fn laplacian(&self) -> Array2<f64> {
102        let mut degree_matrix = Array2::zeros((self.num_nodes, self.num_nodes));
103        for i in 0..self.num_nodes {
104            degree_matrix[[i, i]] = self.degree(i) as f64;
105        }
106        &degree_matrix - &self.adjacency
107    }
108
109    /// Compute normalized Laplacian
110    pub fn normalized_laplacian(&self) -> Array2<f64> {
111        let mut degree_matrix = Array2::zeros((self.num_nodes, self.num_nodes));
112        let mut degree_sqrt_inv = Array1::zeros(self.num_nodes);
113
114        for i in 0..self.num_nodes {
115            let degree = self.degree(i) as f64;
116            degree_matrix[[i, i]] = degree;
117            if degree > 0.0 {
118                degree_sqrt_inv[i] = 1.0 / degree.sqrt();
119            }
120        }
121
122        let mut norm_laplacian = Array2::eye(self.num_nodes);
123        for i in 0..self.num_nodes {
124            for j in 0..self.num_nodes {
125                if self.adjacency[[i, j]] > 0.0 {
126                    norm_laplacian[[i, j]] -=
127                        degree_sqrt_inv[i] * self.adjacency[[i, j]] * degree_sqrt_inv[j];
128                }
129            }
130        }
131
132        norm_laplacian
133    }
134}
135
136/// Quantum Graph Convolutional Layer
137#[derive(Debug)]
138pub struct QuantumGCNLayer {
139    /// Input feature dimension
140    input_dim: usize,
141    /// Output feature dimension
142    output_dim: usize,
143    /// Number of qubits
144    num_qubits: usize,
145    /// Variational circuit for node transformation
146    node_circuit: VariationalCircuit,
147    /// Variational circuit for aggregation
148    aggregation_circuit: VariationalCircuit,
149    /// Parameters
150    parameters: HashMap<String, f64>,
151    /// Activation type
152    activation: ActivationType,
153}
154
155impl QuantumGCNLayer {
156    /// Create a new quantum GCN layer
157    pub fn new(input_dim: usize, output_dim: usize, activation: ActivationType) -> Self {
158        let num_qubits = ((input_dim.max(output_dim)) as f64).log2().ceil() as usize;
159        let node_circuit = Self::build_node_circuit(num_qubits);
160        let aggregation_circuit = Self::build_aggregation_circuit(num_qubits);
161
162        Self {
163            input_dim,
164            output_dim,
165            num_qubits,
166            node_circuit,
167            aggregation_circuit,
168            parameters: HashMap::new(),
169            activation,
170        }
171    }
172
173    /// Build node transformation circuit
174    fn build_node_circuit(num_qubits: usize) -> VariationalCircuit {
175        let mut circuit = VariationalCircuit::new(num_qubits);
176
177        // Layer 1: Feature encoding
178        for q in 0..num_qubits {
179            circuit.add_gate("RY", vec![q], vec![format!("node_encode_{}", q)]);
180        }
181
182        // Layer 2: Entangling
183        for layer in 0..2 {
184            for q in 0..num_qubits - 1 {
185                circuit.add_gate("CNOT", vec![q, q + 1], vec![]);
186            }
187            if num_qubits > 2 {
188                circuit.add_gate("CNOT", vec![num_qubits - 1, 0], vec![]);
189            }
190
191            // Parameterized rotations
192            for q in 0..num_qubits {
193                circuit.add_gate("RX", vec![q], vec![format!("node_rx_{}_{}", layer, q)]);
194                circuit.add_gate("RZ", vec![q], vec![format!("node_rz_{}_{}", layer, q)]);
195            }
196        }
197
198        circuit
199    }
200
201    /// Build aggregation circuit
202    fn build_aggregation_circuit(num_qubits: usize) -> VariationalCircuit {
203        let mut circuit = VariationalCircuit::new(num_qubits * 2); // For neighbor aggregation
204
205        // Combine node and neighbor features
206        for q in 0..num_qubits {
207            circuit.add_gate("CZ", vec![q, q + num_qubits], vec![]);
208        }
209
210        // Mixing layer
211        for q in 0..num_qubits * 2 {
212            circuit.add_gate("RY", vec![q], vec![format!("agg_ry_{}", q)]);
213        }
214
215        // Entangling
216        for q in 0..num_qubits * 2 - 1 {
217            circuit.add_gate("CNOT", vec![q, q + 1], vec![]);
218        }
219
220        // Final rotation
221        for q in 0..num_qubits {
222            circuit.add_gate("RX", vec![q], vec![format!("agg_final_{}", q)]);
223        }
224
225        circuit
226    }
227
228    /// Forward pass through GCN layer
229    pub fn forward(&self, graph: &QuantumGraph) -> Result<Array2<f64>> {
230        let mut output_features = Array2::zeros((graph.num_nodes, self.output_dim));
231
232        // Process each node
233        for node in 0..graph.num_nodes {
234            // Get node features
235            let node_feat = graph.node_features.row(node);
236
237            // Get neighbor features
238            let neighbors = graph.neighbors(node);
239            let mut aggregated = Array1::zeros(self.input_dim);
240
241            // Aggregate neighbor features
242            for &neighbor in &neighbors {
243                let neighbor_feat = graph.node_features.row(neighbor);
244                aggregated = &aggregated + &neighbor_feat.to_owned();
245            }
246
247            // Normalize by degree
248            let degree = neighbors.len().max(1) as f64;
249            aggregated = aggregated / degree;
250
251            // Apply quantum transformation
252            let transformed = self.quantum_transform(&node_feat.to_owned(), &aggregated)?;
253
254            // Store output
255            for i in 0..self.output_dim {
256                output_features[[node, i]] = transformed[i];
257            }
258        }
259
260        Ok(output_features)
261    }
262
263    /// Apply quantum transformation
264    fn quantum_transform(
265        &self,
266        node_features: &Array1<f64>,
267        aggregated_features: &Array1<f64>,
268    ) -> Result<Array1<f64>> {
269        // Encode features into quantum state
270        let node_encoded = self.encode_features(node_features)?;
271        let agg_encoded = self.encode_features(aggregated_features)?;
272
273        // Apply quantum circuits (simplified)
274        let mut output = Array1::zeros(self.output_dim);
275
276        // Placeholder computation
277        for i in 0..self.output_dim {
278            let idx_node = i % node_features.len();
279            let idx_agg = i % aggregated_features.len();
280
281            output[i] = match self.activation {
282                ActivationType::ReLU => {
283                    (0.5 * node_features[idx_node] + 0.5 * aggregated_features[idx_agg]).max(0.0)
284                }
285                ActivationType::Tanh => {
286                    (0.5 * node_features[idx_node] + 0.5 * aggregated_features[idx_agg]).tanh()
287                }
288                ActivationType::Sigmoid => {
289                    let x = 0.5 * node_features[idx_node] + 0.5 * aggregated_features[idx_agg];
290                    1.0 / (1.0 + (-x).exp())
291                }
292                ActivationType::Linear => {
293                    0.5 * node_features[idx_node] + 0.5 * aggregated_features[idx_agg]
294                }
295            };
296        }
297
298        Ok(output)
299    }
300
301    /// Encode classical features to quantum state
302    fn encode_features(&self, features: &Array1<f64>) -> Result<Vec<Complex64>> {
303        let state_dim = 2_usize.pow(self.num_qubits as u32);
304        let mut quantum_state = vec![Complex64::new(0.0, 0.0); state_dim];
305
306        // Amplitude encoding
307        let norm: f64 = features.iter().map(|x| x * x).sum::<f64>().sqrt();
308        if norm < 1e-10 {
309            quantum_state[0] = Complex64::new(1.0, 0.0);
310        } else {
311            for (i, &val) in features.iter().enumerate() {
312                if i < state_dim {
313                    quantum_state[i] = Complex64::new(val / norm, 0.0);
314                }
315            }
316        }
317
318        Ok(quantum_state)
319    }
320}
321
322/// Quantum Graph Attention Layer
323#[derive(Debug)]
324pub struct QuantumGATLayer {
325    /// Input dimension
326    input_dim: usize,
327    /// Output dimension
328    output_dim: usize,
329    /// Number of attention heads
330    num_heads: usize,
331    /// Attention circuits for each head
332    attention_circuits: Vec<VariationalCircuit>,
333    /// Feature transformation circuits
334    transform_circuits: Vec<VariationalCircuit>,
335    /// Dropout rate
336    dropout_rate: f64,
337}
338
339impl QuantumGATLayer {
340    /// Create a new quantum GAT layer
341    pub fn new(input_dim: usize, output_dim: usize, num_heads: usize, dropout_rate: f64) -> Self {
342        let mut attention_circuits = Vec::new();
343        let mut transform_circuits = Vec::new();
344
345        let qubits_per_head = ((output_dim / num_heads) as f64).log2().ceil() as usize;
346
347        for _ in 0..num_heads {
348            attention_circuits.push(Self::build_attention_circuit(qubits_per_head));
349            transform_circuits.push(Self::build_transform_circuit(qubits_per_head));
350        }
351
352        Self {
353            input_dim,
354            output_dim,
355            num_heads,
356            attention_circuits,
357            transform_circuits,
358            dropout_rate,
359        }
360    }
361
362    /// Build attention circuit
363    fn build_attention_circuit(num_qubits: usize) -> VariationalCircuit {
364        let mut circuit = VariationalCircuit::new(num_qubits * 2);
365
366        // Attention computation between node pairs
367        for q in 0..num_qubits {
368            circuit.add_gate("RY", vec![q], vec![format!("att_src_{}", q)]);
369            circuit.add_gate("RY", vec![q + num_qubits], vec![format!("att_dst_{}", q)]);
370        }
371
372        // Interaction layer
373        for q in 0..num_qubits {
374            circuit.add_gate("CZ", vec![q, q + num_qubits], vec![]);
375        }
376
377        // Attention score computation
378        circuit.add_gate("H", vec![0], vec![]);
379        for q in 1..num_qubits * 2 {
380            circuit.add_gate("CNOT", vec![0, q], vec![]);
381        }
382
383        circuit
384    }
385
386    /// Build feature transformation circuit
387    fn build_transform_circuit(num_qubits: usize) -> VariationalCircuit {
388        let mut circuit = VariationalCircuit::new(num_qubits);
389
390        // Feature transformation
391        for layer in 0..2 {
392            for q in 0..num_qubits {
393                circuit.add_gate("RY", vec![q], vec![format!("trans_ry_{}_{}", layer, q)]);
394                circuit.add_gate("RZ", vec![q], vec![format!("trans_rz_{}_{}", layer, q)]);
395            }
396
397            // Entangling
398            for q in 0..num_qubits - 1 {
399                circuit.add_gate("CX", vec![q, q + 1], vec![]);
400            }
401        }
402
403        circuit
404    }
405
406    /// Forward pass
407    pub fn forward(&self, graph: &QuantumGraph) -> Result<Array2<f64>> {
408        let head_dim = self.output_dim / self.num_heads;
409        let mut all_head_outputs = Vec::new();
410
411        // Process each attention head
412        for head in 0..self.num_heads {
413            let head_output = self.process_attention_head(graph, head)?;
414            all_head_outputs.push(head_output);
415        }
416
417        // Concatenate heads
418        let mut output = Array2::zeros((graph.num_nodes, self.output_dim));
419        for (h, head_output) in all_head_outputs.iter().enumerate() {
420            for node in 0..graph.num_nodes {
421                for d in 0..head_dim {
422                    output[[node, h * head_dim + d]] = head_output[[node, d]];
423                }
424            }
425        }
426
427        Ok(output)
428    }
429
430    /// Process single attention head
431    fn process_attention_head(&self, graph: &QuantumGraph, head: usize) -> Result<Array2<f64>> {
432        let head_dim = self.output_dim / self.num_heads;
433        let mut output = Array2::zeros((graph.num_nodes, head_dim));
434
435        // Compute attention scores
436        let attention_scores = self.compute_attention_scores(graph, head)?;
437
438        // Apply attention to features
439        for node in 0..graph.num_nodes {
440            let neighbors = graph.neighbors(node);
441            let feature_dim = graph.node_features.ncols();
442            let mut weighted_features = Array1::zeros(feature_dim);
443
444            // Self-attention
445            let self_score = attention_scores[[node, node]];
446            weighted_features =
447                &weighted_features + &(&graph.node_features.row(node).to_owned() * self_score);
448
449            // Neighbor attention
450            for &neighbor in &neighbors {
451                let score = attention_scores[[node, neighbor]];
452                weighted_features =
453                    &weighted_features + &(&graph.node_features.row(neighbor).to_owned() * score);
454            }
455
456            // Transform features
457            let transformed = self.transform_features(&weighted_features, head)?;
458
459            for d in 0..head_dim {
460                output[[node, d]] = transformed[d];
461            }
462        }
463
464        Ok(output)
465    }
466
467    /// Compute attention scores
468    fn compute_attention_scores(&self, graph: &QuantumGraph, head: usize) -> Result<Array2<f64>> {
469        let mut scores = Array2::zeros((graph.num_nodes, graph.num_nodes));
470
471        // Compute pairwise attention scores
472        for i in 0..graph.num_nodes {
473            for j in 0..graph.num_nodes {
474                if i == j || graph.adjacency[[i, j]] > 0.0 {
475                    // Quantum attention computation (simplified)
476                    let score = self.quantum_attention_score(
477                        &graph.node_features.row(i).to_owned(),
478                        &graph.node_features.row(j).to_owned(),
479                        head,
480                    )?;
481                    scores[[i, j]] = score;
482                }
483            }
484
485            // Softmax normalization
486            let neighbors = graph.neighbors(i);
487            if !neighbors.is_empty() {
488                let mut sum_exp = (scores[[i, i]]).exp();
489                for &j in &neighbors {
490                    sum_exp += scores[[i, j]].exp();
491                }
492
493                scores[[i, i]] = scores[[i, i]].exp() / sum_exp;
494                for &j in &neighbors {
495                    scores[[i, j]] = scores[[i, j]].exp() / sum_exp;
496                }
497            } else {
498                scores[[i, i]] = 1.0;
499            }
500        }
501
502        Ok(scores)
503    }
504
505    /// Compute quantum attention score
506    fn quantum_attention_score(
507        &self,
508        feat_i: &Array1<f64>,
509        feat_j: &Array1<f64>,
510        head: usize,
511    ) -> Result<f64> {
512        // Simplified attention score computation
513        let dot_product: f64 = feat_i.iter().zip(feat_j.iter()).map(|(a, b)| a * b).sum();
514
515        Ok((dot_product / (self.input_dim as f64).sqrt()).tanh())
516    }
517
518    /// Transform features using quantum circuit
519    fn transform_features(&self, features: &Array1<f64>, head: usize) -> Result<Array1<f64>> {
520        let head_dim = self.output_dim / self.num_heads;
521        let mut output = Array1::zeros(head_dim);
522
523        // Apply transformation (simplified)
524        for i in 0..head_dim {
525            if i < features.len() {
526                output[i] = features[i] * (1.0 + 0.1 * (i as f64).sin());
527            }
528        }
529
530        Ok(output)
531    }
532}
533
534/// Quantum Message Passing Neural Network
535#[derive(Debug)]
536pub struct QuantumMPNN {
537    /// Message function circuit
538    message_circuit: VariationalCircuit,
539    /// Update function circuit
540    update_circuit: VariationalCircuit,
541    /// Readout function circuit
542    readout_circuit: VariationalCircuit,
543    /// Hidden dimension
544    hidden_dim: usize,
545    /// Number of message passing steps
546    num_steps: usize,
547}
548
549impl QuantumMPNN {
550    /// Create a new quantum MPNN
551    pub fn new(input_dim: usize, hidden_dim: usize, output_dim: usize, num_steps: usize) -> Self {
552        let num_qubits = (hidden_dim as f64).log2().ceil() as usize;
553
554        Self {
555            message_circuit: Self::build_message_circuit(num_qubits),
556            update_circuit: Self::build_update_circuit(num_qubits),
557            readout_circuit: Self::build_readout_circuit(num_qubits),
558            hidden_dim,
559            num_steps,
560        }
561    }
562
563    /// Build message function circuit
564    fn build_message_circuit(num_qubits: usize) -> VariationalCircuit {
565        let mut circuit = VariationalCircuit::new(num_qubits * 3); // Source, dest, edge
566
567        // Encode node and edge features
568        for q in 0..num_qubits * 3 {
569            circuit.add_gate("RY", vec![q], vec![format!("msg_encode_{}", q)]);
570        }
571
572        // Interaction layers
573        for layer in 0..2 {
574            // Source-edge interaction
575            for q in 0..num_qubits {
576                circuit.add_gate("CZ", vec![q, q + num_qubits * 2], vec![]);
577            }
578
579            // Dest-edge interaction
580            for q in 0..num_qubits {
581                circuit.add_gate("CZ", vec![q + num_qubits, q + num_qubits * 2], vec![]);
582            }
583
584            // Parameterized rotations
585            for q in 0..num_qubits * 3 {
586                circuit.add_gate("RX", vec![q], vec![format!("msg_rx_{}_{}", layer, q)]);
587            }
588        }
589
590        circuit
591    }
592
593    /// Build update function circuit
594    fn build_update_circuit(num_qubits: usize) -> VariationalCircuit {
595        let mut circuit = VariationalCircuit::new(num_qubits * 2); // Hidden state + messages
596
597        // Combine hidden state and messages
598        for q in 0..num_qubits {
599            circuit.add_gate("CNOT", vec![q, q + num_qubits], vec![]);
600        }
601
602        // Update layers
603        for layer in 0..2 {
604            for q in 0..num_qubits * 2 {
605                circuit.add_gate("RY", vec![q], vec![format!("upd_ry_{}_{}", layer, q)]);
606                circuit.add_gate("RZ", vec![q], vec![format!("upd_rz_{}_{}", layer, q)]);
607            }
608
609            // Entangling
610            for q in 0..num_qubits * 2 - 1 {
611                circuit.add_gate("CX", vec![q, q + 1], vec![]);
612            }
613        }
614
615        circuit
616    }
617
618    /// Build readout function circuit
619    fn build_readout_circuit(num_qubits: usize) -> VariationalCircuit {
620        let mut circuit = VariationalCircuit::new(num_qubits);
621
622        // Global pooling layers
623        for layer in 0..3 {
624            for q in 0..num_qubits {
625                circuit.add_gate("RY", vec![q], vec![format!("read_ry_{}_{}", layer, q)]);
626            }
627
628            // All-to-all connectivity
629            for i in 0..num_qubits {
630                for j in i + 1..num_qubits {
631                    circuit.add_gate("CZ", vec![i, j], vec![]);
632                }
633            }
634        }
635
636        circuit
637    }
638
639    /// Forward pass
640    pub fn forward(&self, graph: &QuantumGraph) -> Result<Array1<f64>> {
641        // Initialize hidden states
642        let mut hidden_states = Array2::zeros((graph.num_nodes, self.hidden_dim));
643
644        // Initialize with node features
645        for node in 0..graph.num_nodes {
646            for d in 0..self.hidden_dim.min(graph.node_features.ncols()) {
647                hidden_states[[node, d]] = graph.node_features[[node, d]];
648            }
649        }
650
651        // Message passing steps
652        for _ in 0..self.num_steps {
653            hidden_states = self.message_passing_step(graph, &hidden_states)?;
654        }
655
656        // Global readout
657        self.readout(graph, &hidden_states)
658    }
659
660    /// Single message passing step
661    fn message_passing_step(
662        &self,
663        graph: &QuantumGraph,
664        hidden_states: &Array2<f64>,
665    ) -> Result<Array2<f64>> {
666        let mut new_hidden = Array2::zeros((graph.num_nodes, self.hidden_dim));
667
668        for node in 0..graph.num_nodes {
669            let neighbors = graph.neighbors(node);
670            let mut messages = Array1::zeros(self.hidden_dim);
671
672            // Aggregate messages from neighbors
673            for &neighbor in &neighbors {
674                let message = self.compute_message(
675                    &hidden_states.row(neighbor).to_owned(),
676                    &hidden_states.row(node).to_owned(),
677                    graph
678                        .edge_features
679                        .as_ref()
680                        .and_then(|ef| ef.get(&(neighbor, node))),
681                )?;
682                messages = &messages + &message;
683            }
684
685            // Update hidden state
686            let updated = self.update_node(&hidden_states.row(node).to_owned(), &messages)?;
687
688            new_hidden.row_mut(node).assign(&updated);
689        }
690
691        Ok(new_hidden)
692    }
693
694    /// Compute message between nodes
695    fn compute_message(
696        &self,
697        source_hidden: &Array1<f64>,
698        dest_hidden: &Array1<f64>,
699        edge_features: Option<&Array1<f64>>,
700    ) -> Result<Array1<f64>> {
701        // Simplified message computation
702        let mut message = Array1::zeros(self.hidden_dim);
703
704        for i in 0..self.hidden_dim {
705            let src_val = if i < source_hidden.len() {
706                source_hidden[i]
707            } else {
708                0.0
709            };
710            let dst_val = if i < dest_hidden.len() {
711                dest_hidden[i]
712            } else {
713                0.0
714            };
715            let edge_val = edge_features
716                .and_then(|ef| ef.get(i))
717                .copied()
718                .unwrap_or(1.0);
719
720            message[i] = (src_val + dst_val) * edge_val * 0.5;
721        }
722
723        Ok(message)
724    }
725
726    /// Update node hidden state
727    fn update_node(&self, hidden: &Array1<f64>, messages: &Array1<f64>) -> Result<Array1<f64>> {
728        // GRU-like update
729        let mut new_hidden = Array1::zeros(self.hidden_dim);
730
731        for i in 0..self.hidden_dim {
732            let h = if i < hidden.len() { hidden[i] } else { 0.0 };
733            let m = if i < messages.len() { messages[i] } else { 0.0 };
734
735            // Simplified GRU update
736            let z = (h + m).tanh(); // Update gate
737            let r = 1.0 / (1.0 + (-(h * m)).exp()); // Reset gate (sigmoid)
738            let h_tilde = ((r * h) + m).tanh(); // Candidate
739
740            new_hidden[i] = (1.0 - z) * h + z * h_tilde;
741        }
742
743        Ok(new_hidden)
744    }
745
746    /// Global graph readout
747    fn readout(&self, graph: &QuantumGraph, hidden_states: &Array2<f64>) -> Result<Array1<f64>> {
748        // Mean pooling
749        let mut global_state: Array1<f64> = Array1::zeros(self.hidden_dim);
750
751        for node in 0..graph.num_nodes {
752            global_state = &global_state + &hidden_states.row(node).to_owned();
753        }
754        global_state = global_state / (graph.num_nodes as f64);
755
756        // Apply readout transformation (simplified)
757        let mut output = Array1::zeros(self.hidden_dim);
758        for i in 0..self.hidden_dim {
759            output[i] = global_state[i].tanh();
760        }
761
762        Ok(output)
763    }
764}
765
766/// Quantum Graph Pooling Layer
767#[derive(Debug)]
768pub struct QuantumGraphPool {
769    /// Pooling ratio
770    pool_ratio: f64,
771    /// Pooling method
772    method: PoolingMethod,
773    /// Score computation circuit
774    score_circuit: VariationalCircuit,
775}
776
777#[derive(Debug, Clone)]
778pub enum PoolingMethod {
779    /// Top-K pooling
780    TopK,
781    /// Self-attention pooling
782    SelfAttention,
783    /// Differential pooling
784    DiffPool,
785}
786
787impl QuantumGraphPool {
788    /// Create a new quantum graph pooling layer
789    pub fn new(pool_ratio: f64, method: PoolingMethod, feature_dim: usize) -> Self {
790        let num_qubits = (feature_dim as f64).log2().ceil() as usize;
791
792        Self {
793            pool_ratio,
794            method,
795            score_circuit: Self::build_score_circuit(num_qubits),
796        }
797    }
798
799    /// Build score computation circuit
800    fn build_score_circuit(num_qubits: usize) -> VariationalCircuit {
801        let mut circuit = VariationalCircuit::new(num_qubits);
802
803        // Score computation layers
804        for layer in 0..2 {
805            for q in 0..num_qubits {
806                circuit.add_gate("RY", vec![q], vec![format!("pool_ry_{}_{}", layer, q)]);
807            }
808
809            // Entangling
810            for q in 0..num_qubits - 1 {
811                circuit.add_gate("CZ", vec![q, q + 1], vec![]);
812            }
813        }
814
815        // Measurement preparation
816        for q in 0..num_qubits {
817            circuit.add_gate("RX", vec![q], vec![format!("pool_measure_{}", q)]);
818        }
819
820        circuit
821    }
822
823    /// Pool graph nodes
824    pub fn pool(
825        &self,
826        graph: &QuantumGraph,
827        node_features: &Array2<f64>,
828    ) -> Result<(Vec<usize>, Array2<f64>)> {
829        match self.method {
830            PoolingMethod::TopK => self.topk_pool(graph, node_features),
831            PoolingMethod::SelfAttention => self.attention_pool(graph, node_features),
832            PoolingMethod::DiffPool => self.diff_pool(graph, node_features),
833        }
834    }
835
836    /// Top-K pooling
837    fn topk_pool(
838        &self,
839        graph: &QuantumGraph,
840        node_features: &Array2<f64>,
841    ) -> Result<(Vec<usize>, Array2<f64>)> {
842        // Compute node scores
843        let mut scores = Vec::new();
844        for node in 0..graph.num_nodes {
845            let score = self.compute_node_score(&node_features.row(node).to_owned())?;
846            scores.push((node, score));
847        }
848
849        // Sort by score
850        scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
851
852        // Select top-k nodes
853        let k = ((graph.num_nodes as f64) * self.pool_ratio).ceil() as usize;
854        let selected_nodes: Vec<usize> = scores.iter().take(k).map(|(idx, _)| *idx).collect();
855
856        // Extract pooled features
857        let mut pooled_features = Array2::zeros((k, node_features.ncols()));
858        for (i, &node) in selected_nodes.iter().enumerate() {
859            pooled_features.row_mut(i).assign(&node_features.row(node));
860        }
861
862        Ok((selected_nodes, pooled_features))
863    }
864
865    /// Self-attention pooling
866    fn attention_pool(
867        &self,
868        graph: &QuantumGraph,
869        node_features: &Array2<f64>,
870    ) -> Result<(Vec<usize>, Array2<f64>)> {
871        // Compute attention scores
872        let mut attention_scores = Array1::zeros(graph.num_nodes);
873        for node in 0..graph.num_nodes {
874            attention_scores[node] =
875                self.compute_node_score(&node_features.row(node).to_owned())?;
876        }
877
878        // Softmax normalization
879        let max_score = attention_scores
880            .iter()
881            .cloned()
882            .fold(f64::NEG_INFINITY, f64::max);
883        let exp_scores: Array1<f64> = attention_scores.mapv(|x| (x - max_score).exp());
884        let sum_exp = exp_scores.sum();
885        let normalized_scores = exp_scores / sum_exp;
886
887        // Sample nodes based on attention
888        let k = ((graph.num_nodes as f64) * self.pool_ratio).ceil() as usize;
889        let mut selected_nodes = Vec::new();
890        let mut remaining_scores = normalized_scores.clone();
891
892        for _ in 0..k {
893            let node = self.sample_node(&remaining_scores);
894            selected_nodes.push(node);
895            remaining_scores[node] = 0.0;
896        }
897
898        // Weight features by attention
899        let mut pooled_features = Array2::zeros((k, node_features.ncols()));
900        for (i, &node) in selected_nodes.iter().enumerate() {
901            let weighted_feature = &node_features.row(node).to_owned() * normalized_scores[node];
902            pooled_features.row_mut(i).assign(&weighted_feature);
903        }
904
905        Ok((selected_nodes, pooled_features))
906    }
907
908    /// Differentiable pooling
909    fn diff_pool(
910        &self,
911        graph: &QuantumGraph,
912        node_features: &Array2<f64>,
913    ) -> Result<(Vec<usize>, Array2<f64>)> {
914        // Compute soft cluster assignments
915        let k = ((graph.num_nodes as f64) * self.pool_ratio).ceil() as usize;
916        let mut assignments = Array2::zeros((graph.num_nodes, k));
917
918        // Initialize with quantum circuit outputs
919        for node in 0..graph.num_nodes {
920            for cluster in 0..k {
921                let score =
922                    self.compute_cluster_assignment(&node_features.row(node).to_owned(), cluster)?;
923                assignments[[node, cluster]] = score;
924            }
925        }
926
927        // Normalize assignments (soft clustering)
928        for node in 0..graph.num_nodes {
929            let row_sum: f64 = assignments.row(node).sum();
930            if row_sum > 0.0 {
931                for cluster in 0..k {
932                    assignments[[node, cluster]] /= row_sum;
933                }
934            }
935        }
936
937        // Compute pooled features
938        let pooled_features = assignments.t().dot(node_features);
939
940        // Select representative nodes (hard assignment)
941        let mut selected_nodes = Vec::new();
942        for cluster in 0..k {
943            let mut best_node = 0;
944            let mut best_score = 0.0;
945
946            for node in 0..graph.num_nodes {
947                if assignments[[node, cluster]] > best_score {
948                    best_score = assignments[[node, cluster]];
949                    best_node = node;
950                }
951            }
952
953            selected_nodes.push(best_node);
954        }
955
956        Ok((selected_nodes, pooled_features))
957    }
958
959    /// Compute node score using quantum circuit
960    fn compute_node_score(&self, features: &Array1<f64>) -> Result<f64> {
961        // Simplified score computation
962        let norm: f64 = features.iter().map(|x| x * x).sum::<f64>().sqrt();
963        Ok(norm * (1.0 + 0.1 * fastrand::f64()))
964    }
965
966    /// Compute cluster assignment score
967    fn compute_cluster_assignment(&self, features: &Array1<f64>, cluster: usize) -> Result<f64> {
968        // Simplified cluster assignment
969        let base_score = features.iter().sum::<f64>() / features.len() as f64;
970        let cluster_bias = (cluster as f64) * 0.1;
971        Ok((base_score + cluster_bias).exp() / (1.0 + (base_score + cluster_bias).exp()))
972    }
973
974    /// Sample node based on scores
975    fn sample_node(&self, scores: &Array1<f64>) -> usize {
976        let cumsum: Vec<f64> = scores
977            .iter()
978            .scan(0.0, |acc, &x| {
979                *acc += x;
980                Some(*acc)
981            })
982            .collect();
983
984        let r = fastrand::f64() * cumsum.last().unwrap();
985
986        for (i, &cs) in cumsum.iter().enumerate() {
987            if r <= cs {
988                return i;
989            }
990        }
991
992        scores.len() - 1
993    }
994}
995
996/// Complete Quantum GNN model
997#[derive(Debug)]
998pub struct QuantumGNN {
999    /// GNN layers
1000    layers: Vec<GNNLayer>,
1001    /// Pooling layers
1002    pooling: Vec<Option<QuantumGraphPool>>,
1003    /// Final readout
1004    readout: ReadoutType,
1005    /// Output dimension
1006    output_dim: usize,
1007}
1008
1009#[derive(Debug)]
1010enum GNNLayer {
1011    GCN(QuantumGCNLayer),
1012    GAT(QuantumGATLayer),
1013    MPNN(QuantumMPNN),
1014}
1015
1016#[derive(Debug, Clone)]
1017pub enum ReadoutType {
1018    Mean,
1019    Max,
1020    Sum,
1021    Attention,
1022}
1023
1024impl QuantumGNN {
1025    /// Create a new quantum GNN
1026    pub fn new(
1027        layer_configs: Vec<(String, usize, usize)>, // (type, input_dim, output_dim)
1028        pooling_configs: Vec<Option<(f64, PoolingMethod)>>,
1029        readout: ReadoutType,
1030        output_dim: usize,
1031    ) -> Result<Self> {
1032        let mut layers = Vec::new();
1033        let mut pooling = Vec::new();
1034
1035        for (layer_type, input_dim, output_dim) in layer_configs {
1036            let layer = match layer_type.as_str() {
1037                "gcn" => GNNLayer::GCN(QuantumGCNLayer::new(
1038                    input_dim,
1039                    output_dim,
1040                    ActivationType::ReLU,
1041                )),
1042                "gat" => GNNLayer::GAT(QuantumGATLayer::new(
1043                    input_dim, output_dim, 4,   // num_heads
1044                    0.1, // dropout
1045                )),
1046                "mpnn" => GNNLayer::MPNN(QuantumMPNN::new(
1047                    input_dim, output_dim, output_dim, 3, // num_steps
1048                )),
1049                _ => {
1050                    return Err(MLError::InvalidConfiguration(format!(
1051                        "Unknown layer type: {}",
1052                        layer_type
1053                    )))
1054                }
1055            };
1056            layers.push(layer);
1057        }
1058
1059        for pool_config in pooling_configs {
1060            let pool_layer = pool_config.map(|(ratio, method)| {
1061                QuantumGraphPool::new(ratio, method, 64) // feature_dim placeholder
1062            });
1063            pooling.push(pool_layer);
1064        }
1065
1066        Ok(Self {
1067            layers,
1068            pooling,
1069            readout,
1070            output_dim,
1071        })
1072    }
1073
1074    /// Forward pass through the GNN
1075    pub fn forward(&self, graph: &QuantumGraph) -> Result<Array1<f64>> {
1076        let mut current_graph = graph.clone();
1077        let mut current_features = graph.node_features.clone();
1078        let mut selected_nodes: Vec<usize> = (0..graph.num_nodes).collect();
1079
1080        // Pass through layers with optional pooling
1081        for (i, layer) in self.layers.iter().enumerate() {
1082            // Apply GNN layer
1083            current_features = match layer {
1084                GNNLayer::GCN(gcn) => gcn.forward(&current_graph)?,
1085                GNNLayer::GAT(gat) => gat.forward(&current_graph)?,
1086                GNNLayer::MPNN(mpnn) => {
1087                    // MPNN returns graph-level features
1088                    let graph_features = mpnn.forward(&current_graph)?;
1089                    // Broadcast to all nodes for consistency
1090                    let mut node_features =
1091                        Array2::zeros((current_graph.num_nodes, graph_features.len()));
1092                    for node in 0..current_graph.num_nodes {
1093                        node_features.row_mut(node).assign(&graph_features);
1094                    }
1095                    node_features
1096                }
1097            };
1098
1099            // Apply pooling if configured
1100            if let Some(Some(pool)) = self.pooling.get(i) {
1101                let (new_selected, pooled_features) =
1102                    pool.pool(&current_graph, &current_features)?;
1103
1104                // Create subgraph with updated features
1105                current_graph =
1106                    self.create_subgraph(&current_graph, &new_selected, &pooled_features);
1107                current_features = pooled_features;
1108                selected_nodes = new_selected;
1109            }
1110        }
1111
1112        // Global readout
1113        self.apply_readout(&current_features)
1114    }
1115
1116    /// Create subgraph from selected nodes
1117    fn create_subgraph(
1118        &self,
1119        graph: &QuantumGraph,
1120        selected_nodes: &[usize],
1121        pooled_features: &Array2<f64>,
1122    ) -> QuantumGraph {
1123        let num_nodes = selected_nodes.len();
1124        let mut new_adjacency = Array2::zeros((num_nodes, num_nodes));
1125
1126        // Map old indices to new indices
1127        let index_map: HashMap<usize, usize> = selected_nodes
1128            .iter()
1129            .enumerate()
1130            .map(|(new_idx, &old_idx)| (old_idx, new_idx))
1131            .collect();
1132
1133        // Build new adjacency matrix
1134        for (i, &old_i) in selected_nodes.iter().enumerate() {
1135            for (j, &old_j) in selected_nodes.iter().enumerate() {
1136                new_adjacency[[i, j]] = graph.adjacency[[old_i, old_j]];
1137            }
1138        }
1139
1140        // Build edge list
1141        let mut edges = Vec::new();
1142        for i in 0..num_nodes {
1143            for j in i + 1..num_nodes {
1144                if new_adjacency[[i, j]] > 0.0 {
1145                    edges.push((i, j));
1146                }
1147            }
1148        }
1149
1150        // Use the pooled features instead of extracting from old graph
1151        QuantumGraph::new(num_nodes, edges, pooled_features.clone())
1152    }
1153
1154    /// Apply readout operation
1155    fn apply_readout(&self, node_features: &Array2<f64>) -> Result<Array1<f64>> {
1156        let readout_features = match self.readout {
1157            ReadoutType::Mean => node_features
1158                .mean_axis(scirs2_core::ndarray::Axis(0))
1159                .unwrap(),
1160            ReadoutType::Max => {
1161                let mut max_features = Array1::from_elem(node_features.ncols(), f64::NEG_INFINITY);
1162                for row in node_features.rows() {
1163                    for (i, &val) in row.iter().enumerate() {
1164                        max_features[i] = max_features[i].max(val);
1165                    }
1166                }
1167                max_features
1168            }
1169            ReadoutType::Sum => node_features.sum_axis(scirs2_core::ndarray::Axis(0)),
1170            ReadoutType::Attention => {
1171                // Compute attention weights
1172                let mut weights = Array1::zeros(node_features.nrows());
1173                for (i, row) in node_features.rows().into_iter().enumerate() {
1174                    weights[i] = row.sum(); // Simple attention
1175                }
1176
1177                // Softmax
1178                let max_weight = weights.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
1179                let exp_weights = weights.mapv(|x| (x - max_weight).exp());
1180                let weights_norm = exp_weights.clone() / exp_weights.sum();
1181
1182                // Weighted sum
1183                let mut result = Array1::zeros(node_features.ncols());
1184                for (i, row) in node_features.rows().into_iter().enumerate() {
1185                    result = &result + &(&row.to_owned() * weights_norm[i]);
1186                }
1187                result
1188            }
1189        };
1190
1191        // Final projection to output dimension
1192        let mut output = Array1::zeros(self.output_dim);
1193        for i in 0..self.output_dim {
1194            if i < readout_features.len() {
1195                output[i] = readout_features[i];
1196            }
1197        }
1198
1199        Ok(output)
1200    }
1201}
1202
1203#[cfg(test)]
1204mod tests {
1205    use super::*;
1206
1207    #[test]
1208    fn test_quantum_graph() {
1209        let nodes = 5;
1210        let edges = vec![(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)];
1211        let features = Array2::ones((nodes, 4));
1212
1213        let graph = QuantumGraph::new(nodes, edges, features);
1214
1215        assert_eq!(graph.num_nodes, 5);
1216        assert_eq!(graph.degree(0), 2);
1217        assert_eq!(graph.neighbors(0), vec![1, 4]);
1218    }
1219
1220    #[test]
1221    fn test_quantum_gcn_layer() {
1222        let graph = QuantumGraph::new(
1223            3,
1224            vec![(0, 1), (1, 2)],
1225            Array2::from_shape_vec(
1226                (3, 4),
1227                vec![1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
1228            )
1229            .unwrap(),
1230        );
1231
1232        let gcn = QuantumGCNLayer::new(4, 8, ActivationType::ReLU);
1233        let output = gcn.forward(&graph).unwrap();
1234
1235        assert_eq!(output.shape(), &[3, 8]);
1236    }
1237
1238    #[test]
1239    fn test_quantum_gat_layer() {
1240        let graph = QuantumGraph::new(
1241            4,
1242            vec![(0, 1), (1, 2), (2, 3), (3, 0)],
1243            Array2::ones((4, 8)),
1244        );
1245
1246        let gat = QuantumGATLayer::new(8, 16, 4, 0.1);
1247        let output = gat.forward(&graph).unwrap();
1248
1249        assert_eq!(output.shape(), &[4, 16]);
1250    }
1251
1252    #[test]
1253    fn test_quantum_mpnn() {
1254        let graph = QuantumGraph::new(3, vec![(0, 1), (1, 2)], Array2::zeros((3, 4)));
1255
1256        let mpnn = QuantumMPNN::new(4, 8, 16, 2);
1257        let output = mpnn.forward(&graph).unwrap();
1258
1259        assert_eq!(output.len(), 8);
1260    }
1261
1262    #[test]
1263    fn test_graph_pooling() {
1264        let graph = QuantumGraph::new(
1265            6,
1266            vec![(0, 1), (1, 2), (3, 4), (4, 5)],
1267            Array2::ones((6, 4)),
1268        );
1269
1270        let pool = QuantumGraphPool::new(0.5, PoolingMethod::TopK, 4);
1271        let (selected, pooled) = pool.pool(&graph, &graph.node_features).unwrap();
1272
1273        assert_eq!(selected.len(), 3);
1274        assert_eq!(pooled.shape(), &[3, 4]);
1275    }
1276
1277    #[test]
1278    fn test_complete_gnn() {
1279        let layer_configs = vec![("gcn".to_string(), 4, 8), ("gat".to_string(), 8, 16)];
1280        let pooling_configs = vec![None, Some((0.5, PoolingMethod::TopK))];
1281
1282        let gnn = QuantumGNN::new(layer_configs, pooling_configs, ReadoutType::Mean, 10).unwrap();
1283
1284        let graph = QuantumGraph::new(
1285            5,
1286            vec![(0, 1), (1, 2), (2, 3), (3, 4)],
1287            Array2::ones((5, 4)),
1288        );
1289
1290        let output = gnn.forward(&graph).unwrap();
1291        assert_eq!(output.len(), 10);
1292    }
1293}