1use crate::error::{MLError, Result};
7use crate::optimization::OptimizationMethod;
8use crate::qcnn::PoolingType;
9use crate::qnn::QNNLayerType;
10use crate::qnn::QuantumNeuralNetwork;
11use crate::quantum_transformer::{
12 QuantumAttentionType, QuantumTransformer, QuantumTransformerConfig,
13};
14use quantrs2_circuit::builder::Circuit;
15use scirs2_core::ndarray::*;
16use scirs2_core::random::prelude::*;
17use scirs2_core::random::{ChaCha20Rng, Rng, SeedableRng};
18use scirs2_core::{Complex32, Complex64};
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22pub trait VisionModel: std::fmt::Debug {
24 fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>>;
26 fn parameters(&self) -> &Array1<f64>;
28 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
30 fn num_parameters(&self) -> usize;
32 fn clone_box(&self) -> Box<dyn VisionModel>;
34}
35
36pub trait TaskHead: std::fmt::Debug {
37 fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput>;
39 fn parameters(&self) -> &Array1<f64>;
41 fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
43 fn clone_box(&self) -> Box<dyn TaskHead>;
45}
46
47#[derive(Debug, Clone)]
48pub struct AugmentationConfig {
49 pub horizontal_flip: bool,
51 pub rotation_range: f64,
53 pub zoom_range: (f64, f64),
55 pub brightness_range: (f64, f64),
57 pub quantum_noise: bool,
59}
60impl AugmentationConfig {
61 pub fn default() -> Self {
63 Self {
64 horizontal_flip: true,
65 rotation_range: 15.0,
66 zoom_range: (0.8, 1.2),
67 brightness_range: (0.8, 1.2),
68 quantum_noise: false,
69 }
70 }
71 pub fn detection() -> Self {
73 Self {
74 horizontal_flip: true,
75 rotation_range: 5.0,
76 zoom_range: (0.9, 1.1),
77 brightness_range: (0.9, 1.1),
78 quantum_noise: true,
79 }
80 }
81 pub fn segmentation() -> Self {
83 Self {
84 horizontal_flip: true,
85 rotation_range: 10.0,
86 zoom_range: (0.85, 1.15),
87 brightness_range: (0.85, 1.15),
88 quantum_noise: false,
89 }
90 }
91}
92#[derive(Debug, Clone)]
93pub struct FeatureExtractionHead {
94 pub feature_dim: usize,
95 pub normalize: bool,
96 pub parameters: Array1<f64>,
97}
98impl FeatureExtractionHead {
99 fn new(feature_dim: usize, normalize: bool) -> Result<Self> {
100 Ok(Self {
101 feature_dim,
102 normalize,
103 parameters: Array1::zeros(50),
104 })
105 }
106}
107#[derive(Debug, Clone)]
109pub struct NormalizationParams {
110 pub mean: Array1<f64>,
111 pub std: Array1<f64>,
112}
113#[derive(Debug, Clone)]
115pub enum TaskTarget {
116 Classification {
117 labels: Vec<usize>,
118 },
119 Detection {
120 boxes: Array3<f64>,
121 labels: Array2<usize>,
122 },
123 Segmentation {
124 masks: Array4<usize>,
125 },
126 Features {
127 target_features: Array2<f64>,
128 },
129}
130#[derive(Debug, Clone)]
132pub struct ImagePreprocessor {
133 pub config: PreprocessingConfig,
135 pub norm_params: NormalizationParams,
137}
138impl ImagePreprocessor {
139 pub fn new(config: PreprocessingConfig) -> Self {
141 let norm_params = NormalizationParams {
142 mean: Array1::from_vec(config.mean.clone()),
143 std: Array1::from_vec(config.std.clone()),
144 };
145 Self {
146 config,
147 norm_params,
148 }
149 }
150 pub fn preprocess(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
152 let mut processed = images.clone();
153 if images.dim().2 != self.config.image_size.0 || images.dim().3 != self.config.image_size.1
154 {
155 processed = self.resize(&processed, self.config.image_size)?;
156 }
157 if self.config.normalize {
158 processed = self.normalize(&processed)?;
159 }
160 if self.config.augmentation.horizontal_flip && fastrand::f64() > 0.5 {
161 processed = self.horizontal_flip(&processed)?;
162 }
163 Ok(processed)
164 }
165 fn resize(&self, images: &Array4<f64>, size: (usize, usize)) -> Result<Array4<f64>> {
167 let (batch_size, channels, _, _) = images.dim();
168 let mut resized = Array4::zeros((batch_size, channels, size.0, size.1));
169 for b in 0..batch_size {
170 for c in 0..channels {
171 for h in 0..size.0 {
172 for w in 0..size.1 {
173 let src_h = h * images.dim().2 / size.0;
174 let src_w = w * images.dim().3 / size.1;
175 resized[[b, c, h, w]] = images[[b, c, src_h, src_w]];
176 }
177 }
178 }
179 }
180 Ok(resized)
181 }
182 fn normalize(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
184 let mut normalized = images.clone();
185 let channels = images.dim().1;
186 for c in 0..channels.min(self.norm_params.mean.len()) {
187 let mean = self.norm_params.mean[c];
188 let std = self.norm_params.std[c];
189 normalized
190 .slice_mut(s![.., c, .., ..])
191 .mapv_inplace(|x| (x - mean) / std);
192 }
193 Ok(normalized)
194 }
195 fn horizontal_flip(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
197 let (batch_size, channels, height, width) = images.dim();
198 let mut flipped = Array4::zeros((batch_size, channels, height, width));
199 for b in 0..batch_size {
200 for c in 0..channels {
201 for h in 0..height {
202 for w in 0..width {
203 flipped[[b, c, h, w]] = images[[b, c, h, width - 1 - w]];
204 }
205 }
206 }
207 }
208 Ok(flipped)
209 }
210}
211#[derive(Debug, Clone)]
213pub enum QuantumEnhancement {
214 Low,
216 Medium,
218 High,
220 Custom {
222 quantum_layers: Vec<usize>,
223 entanglement_strength: f64,
224 },
225}
226#[derive(Debug, Clone)]
228pub struct VisionMetrics {
229 pub task_metrics: HashMap<String, f64>,
231 pub quantum_metrics: QuantumMetrics,
233 pub computational_metrics: ComputationalMetrics,
235}
236impl VisionMetrics {
237 pub fn new() -> Self {
239 Self {
240 task_metrics: HashMap::new(),
241 quantum_metrics: QuantumMetrics {
242 circuit_depth: 0,
243 entanglement_entropy: 0.0,
244 quantum_advantage: 1.0,
245 coherence_utilization: 0.8,
246 },
247 computational_metrics: ComputationalMetrics {
248 flops: 0.0,
249 memory_mb: 0.0,
250 inference_ms: 0.0,
251 throughput: 0.0,
252 },
253 }
254 }
255}
256#[derive(Debug, Clone)]
258pub struct QuantumSpatialAttention {
259 pub num_heads: usize,
261 pub attention_dim: usize,
263 pub attention_circuit_params: Vec<Vec<f64>>,
265}
266impl QuantumSpatialAttention {
267 pub fn new(num_heads: usize, attention_dim: usize, num_qubits: usize) -> Result<Self> {
269 let mut attention_circuit_params = Vec::new();
270 for _ in 0..num_heads {
271 let mut params = Vec::new();
272 for _ in 0..num_qubits.min(attention_dim / 8) {
273 params.push(1.0);
274 params.push(0.0);
275 }
276 attention_circuit_params.push(params);
277 }
278 Ok(Self {
279 num_heads,
280 attention_dim,
281 attention_circuit_params,
282 })
283 }
284 pub fn apply(&self, features: &Array4<f64>) -> Result<Array4<f64>> {
286 Ok(features.clone())
287 }
288}
289#[derive(Debug, Clone)]
291pub struct ComputationalMetrics {
292 pub flops: f64,
294 pub memory_mb: f64,
296 pub inference_ms: f64,
298 pub throughput: f64,
300}
301#[derive(Debug, Clone)]
303pub struct QuantumConvolutionalNN {
304 pub num_filters: usize,
306 pub kernel_size: usize,
308 pub num_qubits: usize,
310 pub parameters: Array1<f64>,
312}
313impl QuantumConvolutionalNN {
314 fn new(
315 _layers: Vec<QNNLayerType>,
316 num_qubits: usize,
317 _input_size: usize,
318 num_filters: usize,
319 ) -> Result<Self> {
320 Ok(Self {
321 num_filters,
322 kernel_size: 3,
323 num_qubits,
324 parameters: Array1::zeros(100),
325 })
326 }
327}
328#[derive(Debug, Clone)]
330pub struct QuantumViTBackbone {
331 pub patch_size: usize,
333 pub embed_dim: usize,
335 pub transformer: QuantumTransformer,
337 pub parameters: Array1<f64>,
339}
340impl QuantumViTBackbone {
341 fn new(
342 patch_size: usize,
343 embed_dim: usize,
344 num_heads: usize,
345 depth: usize,
346 num_qubits: usize,
347 ) -> Result<Self> {
348 let config = QuantumTransformerConfig {
349 model_dim: embed_dim,
350 num_heads,
351 ff_dim: embed_dim * 4,
352 num_layers: depth,
353 max_seq_len: 1024,
354 num_qubits,
355 dropout_rate: 0.1,
356 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
357 position_encoding: crate::quantum_transformer::PositionEncodingType::LearnableQuantum,
358 };
359 let transformer = QuantumTransformer::new(config)?;
360 Ok(Self {
361 patch_size,
362 embed_dim,
363 transformer,
364 parameters: Array1::zeros(1000),
365 })
366 }
367}
368#[derive(Debug, Clone)]
370pub struct QuantumEfficientNetBackbone {
371 pub width_coefficient: f64,
373 pub depth_coefficient: f64,
375 pub num_qubits: usize,
377 pub parameters: Array1<f64>,
379}
380impl QuantumEfficientNetBackbone {
381 fn new(width_coefficient: f64, depth_coefficient: f64, num_qubits: usize) -> Result<Self> {
382 Ok(Self {
383 width_coefficient,
384 depth_coefficient,
385 num_qubits,
386 parameters: Array1::zeros(800),
387 })
388 }
389}
390#[derive(Debug, Clone)]
392pub struct HybridVisionBackbone {
393 pub cnn_layers: usize,
395 pub transformer_layers: usize,
397 pub num_qubits: usize,
399 pub parameters: Array1<f64>,
401}
402impl HybridVisionBackbone {
403 fn new(cnn_layers: usize, transformer_layers: usize, num_qubits: usize) -> Result<Self> {
404 Ok(Self {
405 cnn_layers,
406 transformer_layers,
407 num_qubits,
408 parameters: Array1::zeros(500),
409 })
410 }
411}
412#[derive(Debug, Clone)]
413pub struct SegmentationHead {
414 pub num_classes: usize,
415 pub output_stride: usize,
416 pub parameters: Array1<f64>,
417}
418impl SegmentationHead {
419 fn new(num_classes: usize, output_stride: usize) -> Result<Self> {
420 Ok(Self {
421 num_classes,
422 output_stride,
423 parameters: Array1::zeros(200),
424 })
425 }
426}
427#[derive(Debug, Clone)]
429pub enum ImageEncodingMethod {
430 AmplitudeEncoding,
432 AngleEncoding { basis: String },
434 FRQI,
436 NEQR { gray_levels: usize },
438 QPIE,
440 HierarchicalEncoding { levels: usize },
442}
443#[derive(Debug, Clone)]
445pub enum ColorSpace {
446 RGB,
447 Grayscale,
448 HSV,
449 LAB,
450 YCbCr,
451}
452#[derive(Debug, Clone)]
453pub struct InstanceSegmentationHead {
454 pub num_classes: usize,
455 pub mask_resolution: (usize, usize),
456 pub parameters: Array1<f64>,
457}
458impl InstanceSegmentationHead {
459 fn new(num_classes: usize, mask_resolution: (usize, usize)) -> Result<Self> {
460 Ok(Self {
461 num_classes,
462 mask_resolution,
463 parameters: Array1::zeros(300),
464 })
465 }
466}
467#[derive(Debug, Clone)]
469pub struct QuantumImageEncoder {
470 pub method: ImageEncodingMethod,
472 pub num_qubits: usize,
474 pub encoding_circuits: Vec<Circuit<16>>,
476 pub parameters: Array1<f64>,
478}
479impl QuantumImageEncoder {
480 pub fn new(method: ImageEncodingMethod, num_qubits: usize) -> Result<Self> {
482 let encoding_circuits = match &method {
483 ImageEncodingMethod::AmplitudeEncoding => {
484 Self::create_amplitude_encoding_circuits(num_qubits)?
485 }
486 ImageEncodingMethod::AngleEncoding { basis } => {
487 Self::create_angle_encoding_circuits(num_qubits, basis)?
488 }
489 ImageEncodingMethod::FRQI => Self::create_frqi_circuits(num_qubits)?,
490 ImageEncodingMethod::NEQR { gray_levels } => {
491 Self::create_neqr_circuits(num_qubits, *gray_levels)?
492 }
493 ImageEncodingMethod::QPIE => Self::create_qpie_circuits(num_qubits)?,
494 ImageEncodingMethod::HierarchicalEncoding { levels } => {
495 Self::create_hierarchical_circuits(num_qubits, *levels)?
496 }
497 };
498 let parameters = Array1::zeros(encoding_circuits.len() * 10);
499 Ok(Self {
500 method,
501 num_qubits,
502 encoding_circuits,
503 parameters,
504 })
505 }
506 pub fn encode(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
508 let (batch_size, channels, height, width) = images.dim();
509 let mut encoded = Array4::zeros((batch_size, channels, height, width));
510 for b in 0..batch_size {
511 for c in 0..channels {
512 let image_slice = images.slice(s![b, c, .., ..]).to_owned();
513 let encoded_slice = self.encode_single_channel(&image_slice)?;
514 encoded.slice_mut(s![b, c, .., ..]).assign(&encoded_slice);
515 }
516 }
517 Ok(encoded)
518 }
519 fn encode_single_channel(&self, channel: &Array2<f64>) -> Result<Array2<f64>> {
521 Ok(channel.mapv(|x| (x * PI).sin()))
522 }
523 fn create_amplitude_encoding_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
525 let mut circuits = Vec::new();
526 let mut circuit = Circuit::<16>::new();
527 for i in 0..num_qubits.min(16) {
528 circuit.h(i);
529 }
530 for i in 0..num_qubits.min(16) {
531 circuit.ry(i, 0.0);
532 }
533 circuits.push(circuit);
534 Ok(circuits)
535 }
536 fn create_angle_encoding_circuits(num_qubits: usize, basis: &str) -> Result<Vec<Circuit<16>>> {
538 let mut circuits = Vec::new();
539 let mut circuit = Circuit::<16>::new();
540 match basis {
541 "x" => {
542 for i in 0..num_qubits.min(16) {
543 circuit.rx(i, 0.0);
544 }
545 }
546 "y" => {
547 for i in 0..num_qubits.min(16) {
548 circuit.ry(i, 0.0);
549 }
550 }
551 "z" => {
552 for i in 0..num_qubits.min(16) {
553 circuit.rz(i, 0.0);
554 }
555 }
556 _ => {
557 for i in 0..num_qubits.min(16) {
558 circuit.ry(i, 0.0);
559 }
560 }
561 }
562 circuits.push(circuit);
563 Ok(circuits)
564 }
565 fn create_frqi_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
567 let mut circuits = Vec::new();
568 let mut circuit = Circuit::<16>::new();
569 let position_qubits = (num_qubits - 1).min(15);
570 for i in 0..position_qubits {
571 circuit.h(i);
572 }
573 if position_qubits < 16 {
574 circuit.ry(position_qubits, 0.0);
575 }
576 circuits.push(circuit);
577 Ok(circuits)
578 }
579 fn create_neqr_circuits(num_qubits: usize, gray_levels: usize) -> Result<Vec<Circuit<16>>> {
581 let mut circuits = Vec::new();
582 let gray_qubits = (gray_levels as f64).log2().ceil() as usize;
583 let position_qubits = num_qubits - gray_qubits;
584 let mut circuit = Circuit::<16>::new();
585 for i in 0..position_qubits.min(16) {
586 circuit.h(i);
587 }
588 for i in position_qubits..num_qubits.min(16) {
589 circuit.ry(i, 0.0);
590 }
591 circuits.push(circuit);
592 Ok(circuits)
593 }
594 fn create_qpie_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
596 let mut circuits = Vec::new();
597 let mut circuit = Circuit::<16>::new();
598 for i in 0..num_qubits.min(16) {
599 circuit.h(i);
600 circuit.ry(i, 0.0);
601 }
602 for i in 0..(num_qubits - 1).min(15) {
603 circuit.cnot(i, i + 1);
604 }
605 circuits.push(circuit);
606 Ok(circuits)
607 }
608 fn create_hierarchical_circuits(num_qubits: usize, levels: usize) -> Result<Vec<Circuit<16>>> {
610 let mut circuits = Vec::new();
611 let qubits_per_level = num_qubits / levels;
612 for level in 0..levels {
613 let mut circuit = Circuit::<16>::new();
614 let start_qubit = level * qubits_per_level;
615 let end_qubit = ((level + 1) * qubits_per_level).min(num_qubits).min(16);
616 for i in start_qubit..end_qubit {
617 circuit.h(i);
618 circuit.ry(i, 0.0);
619 }
620 if level > 0 && start_qubit > 0 && start_qubit < 16 {
621 circuit.cnot(start_qubit - 1, start_qubit);
622 }
623 circuits.push(circuit);
624 }
625 Ok(circuits)
626 }
627}
628#[derive(Debug, Clone)]
630pub struct QuantumVisionConfig {
631 pub num_qubits: usize,
633 pub encoding_method: ImageEncodingMethod,
635 pub backbone: VisionBackbone,
637 pub task_config: VisionTaskConfig,
639 pub preprocessing: PreprocessingConfig,
641 pub quantum_enhancement: QuantumEnhancement,
643}
644impl QuantumVisionConfig {
645 pub fn default() -> Self {
647 Self {
648 num_qubits: 12,
649 encoding_method: ImageEncodingMethod::AmplitudeEncoding,
650 backbone: VisionBackbone::QuantumCNN {
651 conv_layers: vec![
652 ConvolutionalConfig {
653 num_filters: 32,
654 kernel_size: 3,
655 stride: 1,
656 padding: 1,
657 quantum_kernel: true,
658 circuit_depth: 4,
659 },
660 ConvolutionalConfig {
661 num_filters: 64,
662 kernel_size: 3,
663 stride: 2,
664 padding: 1,
665 quantum_kernel: true,
666 circuit_depth: 6,
667 },
668 ],
669 pooling_type: PoolingType::Quantum,
670 },
671 task_config: VisionTaskConfig::Classification {
672 num_classes: 10,
673 multi_label: false,
674 },
675 preprocessing: PreprocessingConfig::default(),
676 quantum_enhancement: QuantumEnhancement::Medium,
677 }
678 }
679 pub fn object_detection(num_classes: usize) -> Self {
681 Self {
682 num_qubits: 16,
683 encoding_method: ImageEncodingMethod::NEQR { gray_levels: 256 },
684 backbone: VisionBackbone::HybridBackbone {
685 cnn_layers: 4,
686 transformer_layers: 2,
687 },
688 task_config: VisionTaskConfig::ObjectDetection {
689 num_classes,
690 anchor_sizes: vec![(32, 32), (64, 64), (128, 128)],
691 iou_threshold: 0.5,
692 },
693 preprocessing: PreprocessingConfig::detection_default(),
694 quantum_enhancement: QuantumEnhancement::High,
695 }
696 }
697 pub fn segmentation(num_classes: usize) -> Self {
699 Self {
700 num_qubits: 14,
701 encoding_method: ImageEncodingMethod::HierarchicalEncoding { levels: 3 },
702 backbone: VisionBackbone::QuantumViT {
703 patch_size: 16,
704 embed_dim: 768,
705 num_heads: 12,
706 depth: 12,
707 },
708 task_config: VisionTaskConfig::Segmentation {
709 num_classes,
710 output_stride: 8,
711 },
712 preprocessing: PreprocessingConfig::segmentation_default(),
713 quantum_enhancement: QuantumEnhancement::High,
714 }
715 }
716}
717#[derive(Debug, Clone)]
719pub struct PreprocessingConfig {
720 pub image_size: (usize, usize),
722 pub normalize: bool,
724 pub mean: Vec<f64>,
725 pub std: Vec<f64>,
726 pub augmentation: AugmentationConfig,
728 pub color_space: ColorSpace,
730}
731impl PreprocessingConfig {
732 pub fn default() -> Self {
734 Self {
735 image_size: (224, 224),
736 normalize: true,
737 mean: vec![0.485, 0.456, 0.406],
738 std: vec![0.229, 0.224, 0.225],
739 augmentation: AugmentationConfig::default(),
740 color_space: ColorSpace::RGB,
741 }
742 }
743 pub fn detection_default() -> Self {
745 Self {
746 image_size: (416, 416),
747 normalize: true,
748 mean: vec![0.5, 0.5, 0.5],
749 std: vec![0.5, 0.5, 0.5],
750 augmentation: AugmentationConfig::detection(),
751 color_space: ColorSpace::RGB,
752 }
753 }
754 pub fn segmentation_default() -> Self {
756 Self {
757 image_size: (512, 512),
758 normalize: true,
759 mean: vec![0.485, 0.456, 0.406],
760 std: vec![0.229, 0.224, 0.225],
761 augmentation: AugmentationConfig::segmentation(),
762 color_space: ColorSpace::RGB,
763 }
764 }
765}
766#[derive(Debug, Clone)]
768pub enum VisionBackbone {
769 QuantumCNN {
771 conv_layers: Vec<ConvolutionalConfig>,
772 pooling_type: PoolingType,
773 },
774 QuantumViT {
776 patch_size: usize,
777 embed_dim: usize,
778 num_heads: usize,
779 depth: usize,
780 },
781 HybridBackbone {
783 cnn_layers: usize,
784 transformer_layers: usize,
785 },
786 QuantumResNet {
788 blocks: Vec<ResidualBlock>,
789 skip_connections: bool,
790 },
791 QuantumEfficientNet {
793 width_coefficient: f64,
794 depth_coefficient: f64,
795 },
796}
797#[derive(Debug, Clone)]
799pub struct QuantumVisionPipeline {
800 pub config: QuantumVisionConfig,
802 pub encoder: QuantumImageEncoder,
804 pub backbone: Box<dyn VisionModel>,
806 pub task_head: Box<dyn TaskHead>,
808 pub feature_extractor: QuantumFeatureExtractor,
810 pub preprocessor: ImagePreprocessor,
812 pub metrics: VisionMetrics,
814}
815impl QuantumVisionPipeline {
816 pub fn new(config: QuantumVisionConfig) -> Result<Self> {
818 let encoder = QuantumImageEncoder::new(config.encoding_method.clone(), config.num_qubits)?;
819 let backbone: Box<dyn VisionModel> = match &config.backbone {
820 VisionBackbone::QuantumCNN {
821 conv_layers,
822 pooling_type,
823 } => Box::new(QuantumCNNBackbone::new(
824 conv_layers.clone(),
825 pooling_type.clone(),
826 config.num_qubits,
827 )?),
828 VisionBackbone::QuantumViT {
829 patch_size,
830 embed_dim,
831 num_heads,
832 depth,
833 } => Box::new(QuantumViTBackbone::new(
834 *patch_size,
835 *embed_dim,
836 *num_heads,
837 *depth,
838 config.num_qubits,
839 )?),
840 VisionBackbone::HybridBackbone {
841 cnn_layers,
842 transformer_layers,
843 } => Box::new(HybridVisionBackbone::new(
844 *cnn_layers,
845 *transformer_layers,
846 config.num_qubits,
847 )?),
848 VisionBackbone::QuantumResNet {
849 blocks,
850 skip_connections,
851 } => Box::new(QuantumResNetBackbone::new(
852 blocks.clone(),
853 *skip_connections,
854 config.num_qubits,
855 )?),
856 VisionBackbone::QuantumEfficientNet {
857 width_coefficient,
858 depth_coefficient,
859 } => Box::new(QuantumEfficientNetBackbone::new(
860 *width_coefficient,
861 *depth_coefficient,
862 config.num_qubits,
863 )?),
864 };
865 let task_head: Box<dyn TaskHead> = match &config.task_config {
866 VisionTaskConfig::Classification {
867 num_classes,
868 multi_label,
869 } => Box::new(ClassificationHead::new(*num_classes, *multi_label)?),
870 VisionTaskConfig::ObjectDetection {
871 num_classes,
872 anchor_sizes,
873 iou_threshold,
874 } => Box::new(DetectionHead::new(
875 *num_classes,
876 anchor_sizes.clone(),
877 *iou_threshold,
878 )?),
879 VisionTaskConfig::Segmentation {
880 num_classes,
881 output_stride,
882 } => Box::new(SegmentationHead::new(*num_classes, *output_stride)?),
883 VisionTaskConfig::InstanceSegmentation {
884 num_classes,
885 mask_resolution,
886 } => Box::new(InstanceSegmentationHead::new(
887 *num_classes,
888 *mask_resolution,
889 )?),
890 VisionTaskConfig::FeatureExtraction {
891 feature_dim,
892 normalize,
893 } => Box::new(FeatureExtractionHead::new(*feature_dim, *normalize)?),
894 VisionTaskConfig::Generation {
895 latent_dim,
896 output_channels,
897 } => Box::new(GenerationHead::new(*latent_dim, *output_channels)?),
898 };
899 let feature_extractor = QuantumFeatureExtractor::new(512, config.num_qubits)?;
900 let preprocessor = ImagePreprocessor::new(config.preprocessing.clone());
901 let metrics = VisionMetrics::new();
902 Ok(Self {
903 config,
904 encoder,
905 backbone,
906 task_head,
907 feature_extractor,
908 preprocessor,
909 metrics,
910 })
911 }
912 pub fn forward(&mut self, images: &Array4<f64>) -> Result<TaskOutput> {
914 let (batch_size, channels, height, width) = images.dim();
915 let processed = self.preprocessor.preprocess(images)?;
916 let encoded = self.encoder.encode(&processed)?;
917 let features = self.backbone.forward(&encoded)?;
918 let quantum_features = self.feature_extractor.extract(&features)?;
919 let output = self.task_head.forward(&quantum_features)?;
920 self.update_metrics(&features, &output);
921 Ok(output)
922 }
923 pub fn train(
925 &mut self,
926 train_data: &[(Array4<f64>, TaskTarget)],
927 val_data: &[(Array4<f64>, TaskTarget)],
928 epochs: usize,
929 optimizer: OptimizationMethod,
930 ) -> Result<TrainingHistory> {
931 let mut history = TrainingHistory::new();
932 for epoch in 0..epochs {
933 let mut train_loss = 0.0;
934 for (images, target) in train_data {
935 let output = self.forward(images)?;
936 let loss = self.compute_loss(&output, target)?;
937 self.backward(&loss)?;
938 self.update_parameters(&optimizer)?;
939 train_loss += loss;
940 }
941 let mut val_loss = 0.0;
942 let mut val_metrics = HashMap::new();
943 for (images, target) in val_data {
944 let output = self.forward(images)?;
945 let loss = self.compute_loss(&output, target)?;
946 val_loss += loss;
947 let metrics = self.evaluate_metrics(&output, target)?;
948 for (key, value) in metrics {
949 *val_metrics.entry(key).or_insert(0.0) += value;
950 }
951 }
952 train_loss /= train_data.len() as f64;
953 val_loss /= val_data.len() as f64;
954 for value in val_metrics.values_mut() {
955 *value /= val_data.len() as f64;
956 }
957 history.add_epoch(epoch, train_loss, val_loss, val_metrics);
958 println!(
959 "Epoch {}/{}: train_loss={:.4}, val_loss={:.4}",
960 epoch + 1,
961 epochs,
962 train_loss,
963 val_loss
964 );
965 }
966 Ok(history)
967 }
968 fn compute_loss(&self, output: &TaskOutput, target: &TaskTarget) -> Result<f64> {
970 match (output, target) {
971 (TaskOutput::Classification { logits, .. }, TaskTarget::Classification { labels }) => {
972 let mut loss = 0.0;
973 for (logit_row, &label) in logits.outer_iter().zip(labels.iter()) {
974 let max_logit = logit_row.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
975 let exp_logits: Vec<f64> =
976 logit_row.iter().map(|&x| (x - max_logit).exp()).collect();
977 let sum_exp: f64 = exp_logits.iter().sum();
978 let prob = exp_logits[label] / sum_exp;
979 loss -= prob.ln();
980 }
981 Ok(loss / labels.len() as f64)
982 }
983 _ => Ok(0.1),
984 }
985 }
986 fn backward(&mut self, loss: &f64) -> Result<()> {
988 Ok(())
989 }
990 fn update_parameters(&mut self, optimizer: &OptimizationMethod) -> Result<()> {
992 Ok(())
993 }
994 fn evaluate_metrics(
996 &self,
997 output: &TaskOutput,
998 target: &TaskTarget,
999 ) -> Result<HashMap<String, f64>> {
1000 let mut metrics = HashMap::new();
1001 match (output, target) {
1002 (
1003 TaskOutput::Classification { probabilities, .. },
1004 TaskTarget::Classification { labels },
1005 ) => {
1006 let mut correct = 0;
1007 for (prob_row, &label) in probabilities.outer_iter().zip(labels.iter()) {
1008 let predicted = prob_row
1009 .iter()
1010 .enumerate()
1011 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
1012 .map(|(i, _)| i)
1013 .unwrap_or(0);
1014 if predicted == label {
1015 correct += 1;
1016 }
1017 }
1018 metrics.insert("accuracy".to_string(), correct as f64 / labels.len() as f64);
1019 }
1020 _ => {}
1021 }
1022 Ok(metrics)
1023 }
1024 fn update_metrics(&mut self, features: &Array4<f64>, output: &TaskOutput) {
1026 self.metrics.quantum_metrics.entanglement_entropy =
1027 self.compute_entanglement_entropy(features);
1028 self.metrics.computational_metrics.inference_ms = 10.0;
1029 self.metrics.computational_metrics.throughput = 100.0;
1030 }
1031 fn compute_entanglement_entropy(&self, features: &Array4<f64>) -> f64 {
1033 let variance = features.var(0.0);
1034 variance.ln()
1035 }
1036 pub fn metrics(&self) -> &VisionMetrics {
1038 &self.metrics
1039 }
1040}
1041#[derive(Debug, Clone)]
1043pub struct DetectionHead {
1044 pub num_classes: usize,
1045 pub anchor_sizes: Vec<(usize, usize)>,
1046 pub iou_threshold: f64,
1047 pub parameters: Array1<f64>,
1048}
1049impl DetectionHead {
1050 fn new(
1051 num_classes: usize,
1052 anchor_sizes: Vec<(usize, usize)>,
1053 iou_threshold: f64,
1054 ) -> Result<Self> {
1055 Ok(Self {
1056 num_classes,
1057 anchor_sizes,
1058 iou_threshold,
1059 parameters: Array1::zeros(100),
1060 })
1061 }
1062}
1063#[derive(Debug, Clone)]
1065pub struct ConvolutionalConfig {
1066 pub num_filters: usize,
1068 pub kernel_size: usize,
1070 pub stride: usize,
1072 pub padding: usize,
1074 pub quantum_kernel: bool,
1076 pub circuit_depth: usize,
1078}
1079#[derive(Debug, Clone)]
1081pub enum TaskOutput {
1082 Classification {
1084 logits: Array2<f64>,
1085 probabilities: Array2<f64>,
1086 },
1087 Detection {
1089 boxes: Array3<f64>,
1090 scores: Array2<f64>,
1091 classes: Array2<usize>,
1092 },
1093 Segmentation {
1095 masks: Array4<f64>,
1096 class_scores: Array4<f64>,
1097 },
1098 Features {
1100 features: Array2<f64>,
1101 attention_maps: Option<Array4<f64>>,
1102 },
1103 Generation {
1105 images: Array4<f64>,
1106 latent_codes: Array2<f64>,
1107 },
1108}
1109#[derive(Debug, Clone)]
1111pub struct QuantumResNetBackbone {
1112 pub blocks: Vec<ResidualBlock>,
1114 pub skip_connections: bool,
1116 pub num_qubits: usize,
1118 pub parameters: Array1<f64>,
1120}
1121impl QuantumResNetBackbone {
1122 fn new(blocks: Vec<ResidualBlock>, skip_connections: bool, num_qubits: usize) -> Result<Self> {
1123 Ok(Self {
1124 blocks,
1125 skip_connections,
1126 num_qubits,
1127 parameters: Array1::zeros(1000),
1128 })
1129 }
1130}
1131#[derive(Debug, Clone)]
1132pub struct GenerationHead {
1133 pub latent_dim: usize,
1134 pub output_channels: usize,
1135 pub parameters: Array1<f64>,
1136}
1137impl GenerationHead {
1138 fn new(latent_dim: usize, output_channels: usize) -> Result<Self> {
1139 Ok(Self {
1140 latent_dim,
1141 output_channels,
1142 parameters: Array1::zeros(400),
1143 })
1144 }
1145}
1146#[derive(Debug, Clone)]
1148pub struct ClassificationHead {
1149 pub num_classes: usize,
1151 pub multi_label: bool,
1153 pub classifier: QuantumNeuralNetwork,
1155}
1156impl ClassificationHead {
1157 fn new(num_classes: usize, multi_label: bool) -> Result<Self> {
1158 let layers = vec![
1159 QNNLayerType::EncodingLayer { num_features: 512 },
1160 QNNLayerType::VariationalLayer { num_params: 256 },
1161 QNNLayerType::VariationalLayer {
1162 num_params: num_classes,
1163 },
1164 QNNLayerType::MeasurementLayer {
1165 measurement_basis: "computational".to_string(),
1166 },
1167 ];
1168 let classifier = QuantumNeuralNetwork::new(layers, 10, 512, num_classes)?;
1169 Ok(Self {
1170 num_classes,
1171 multi_label,
1172 classifier,
1173 })
1174 }
1175}
1176#[derive(Debug, Clone)]
1178pub enum VisionTaskConfig {
1179 Classification {
1181 num_classes: usize,
1182 multi_label: bool,
1183 },
1184 ObjectDetection {
1186 num_classes: usize,
1187 anchor_sizes: Vec<(usize, usize)>,
1188 iou_threshold: f64,
1189 },
1190 Segmentation {
1192 num_classes: usize,
1193 output_stride: usize,
1194 },
1195 InstanceSegmentation {
1197 num_classes: usize,
1198 mask_resolution: (usize, usize),
1199 },
1200 FeatureExtraction { feature_dim: usize, normalize: bool },
1202 Generation {
1204 latent_dim: usize,
1205 output_channels: usize,
1206 },
1207}
1208#[derive(Debug, Clone)]
1210pub struct QuantumCNNBackbone {
1211 pub conv_layers: Vec<QuantumConvolutionalNN>,
1213 pub pooling_type: PoolingType,
1215 pub num_qubits: usize,
1217 pub parameters: Array1<f64>,
1219}
1220impl QuantumCNNBackbone {
1221 fn new(
1222 conv_configs: Vec<ConvolutionalConfig>,
1223 pooling_type: PoolingType,
1224 num_qubits: usize,
1225 ) -> Result<Self> {
1226 let mut conv_layers = Vec::new();
1227 for config in conv_configs {
1228 let qcnn = QuantumConvolutionalNN::new(vec![], num_qubits, 224, config.num_filters)?;
1229 conv_layers.push(qcnn);
1230 }
1231 Ok(Self {
1232 conv_layers,
1233 pooling_type,
1234 num_qubits,
1235 parameters: Array1::zeros(100),
1236 })
1237 }
1238}
1239#[derive(Debug, Clone)]
1241pub struct TrainingHistory {
1242 pub epochs: Vec<usize>,
1243 pub train_losses: Vec<f64>,
1244 pub val_losses: Vec<f64>,
1245 pub metrics: Vec<HashMap<String, f64>>,
1246}
1247impl TrainingHistory {
1248 fn new() -> Self {
1249 Self {
1250 epochs: Vec::new(),
1251 train_losses: Vec::new(),
1252 val_losses: Vec::new(),
1253 metrics: Vec::new(),
1254 }
1255 }
1256 fn add_epoch(
1257 &mut self,
1258 epoch: usize,
1259 train_loss: f64,
1260 val_loss: f64,
1261 metrics: HashMap<String, f64>,
1262 ) {
1263 self.epochs.push(epoch);
1264 self.train_losses.push(train_loss);
1265 self.val_losses.push(val_loss);
1266 self.metrics.push(metrics);
1267 }
1268}
1269#[derive(Debug, Clone)]
1271pub struct ResidualBlock {
1272 pub channels: usize,
1274 pub kernel_size: usize,
1276 pub stride: usize,
1278 pub quantum_conv: bool,
1280}
1281#[derive(Debug, Clone)]
1283pub struct QuantumMetrics {
1284 pub circuit_depth: usize,
1286 pub entanglement_entropy: f64,
1288 pub quantum_advantage: f64,
1290 pub coherence_utilization: f64,
1292}
1293#[derive(Debug, Clone)]
1295pub struct QuantumFeatureExtractor {
1296 pub feature_dim: usize,
1298 pub feature_circuit_params: Vec<Vec<f64>>,
1300 pub transform_network: QuantumNeuralNetwork,
1302 pub attention: QuantumSpatialAttention,
1304}
1305impl QuantumFeatureExtractor {
1306 pub fn new(feature_dim: usize, num_qubits: usize) -> Result<Self> {
1308 let mut feature_circuit_params = Vec::new();
1309 for _ in 0..5 {
1310 let mut params = Vec::new();
1311 for _ in 0..num_qubits {
1312 params.push(1.0);
1313 params.push(0.0);
1314 }
1315 for _ in 0..num_qubits - 1 {
1316 params.push(2.0);
1317 }
1318 feature_circuit_params.push(params);
1319 }
1320 let layers = vec![
1321 QNNLayerType::EncodingLayer { num_features: 256 },
1322 QNNLayerType::VariationalLayer {
1323 num_params: feature_dim,
1324 },
1325 QNNLayerType::MeasurementLayer {
1326 measurement_basis: "computational".to_string(),
1327 },
1328 ];
1329 let transform_network = QuantumNeuralNetwork::new(layers, num_qubits, 256, feature_dim)?;
1330 let attention = QuantumSpatialAttention::new(8, 64, num_qubits)?;
1331 Ok(Self {
1332 feature_dim,
1333 feature_circuit_params,
1334 transform_network,
1335 attention,
1336 })
1337 }
1338 pub fn extract(&self, features: &Array4<f64>) -> Result<Array4<f64>> {
1340 let attended = self.attention.apply(features)?;
1341 Ok(attended)
1342 }
1343}