quantrs2_ml/computer_vision/
featureextractionhead_traits.rs1use super::*;
12use crate::error::{MLError, Result};
13use scirs2_core::ndarray::*;
14use scirs2_core::random::prelude::*;
15use scirs2_core::{Complex32, Complex64};
16use std::f64::consts::PI;
17
18use super::types::FeatureExtractionHead;
19
20impl TaskHead for FeatureExtractionHead {
21 fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
22 let (batch_size, channels, _, _) = features.dim();
23 let pooled = features
24 .mean_axis(Axis(2))
25 .unwrap()
26 .mean_axis(Axis(2))
27 .unwrap();
28 let mut extracted_features = Array2::zeros((batch_size, self.feature_dim));
29 for i in 0..batch_size {
30 let feature_vec = pooled.slice(s![i, ..]).to_owned();
31 for j in 0..self.feature_dim {
32 extracted_features[[i, j]] = feature_vec[j % channels];
33 }
34 if self.normalize {
35 let norm = extracted_features
36 .slice(s![i, ..])
37 .mapv(|x| x * x)
38 .sum()
39 .sqrt();
40 if norm > 1e-10 {
41 extracted_features
42 .slice_mut(s![i, ..])
43 .mapv_inplace(|x| x / norm);
44 }
45 }
46 }
47 Ok(TaskOutput::Features {
48 features: extracted_features,
49 attention_maps: None,
50 })
51 }
52 fn parameters(&self) -> &Array1<f64> {
53 &self.parameters
54 }
55 fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
56 Ok(())
57 }
58 fn clone_box(&self) -> Box<dyn TaskHead> {
59 Box::new(self.clone())
60 }
61}