1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13 single::{RotationX, RotationY, RotationZ},
14 GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::HashMap;
20use std::f64::consts::{E, PI};
21
22pub struct QuantumBoltzmannMachine {
24 num_visible: usize,
26
27 num_hidden: usize,
29
30 num_qubits: usize,
32
33 couplings: Array2<f64>,
35
36 biases: Array1<f64>,
38
39 temperature: f64,
41
42 learning_rate: f64,
44}
45
46impl QuantumBoltzmannMachine {
47 pub fn new(
49 num_visible: usize,
50 num_hidden: usize,
51 temperature: f64,
52 learning_rate: f64,
53 ) -> Result<Self> {
54 let num_qubits = num_visible + num_hidden;
55
56 let mut couplings = Array2::zeros((num_qubits, num_qubits));
58 for i in 0..num_qubits {
59 for j in i + 1..num_qubits {
60 let coupling = 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
61 couplings[[i, j]] = coupling;
62 couplings[[j, i]] = coupling;
63 }
64 }
65
66 let biases = Array1::from_shape_fn(num_qubits, |_| {
68 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0)
69 });
70
71 Ok(Self {
72 num_visible,
73 num_hidden,
74 num_qubits,
75 couplings,
76 biases,
77 temperature,
78 learning_rate,
79 })
80 }
81
82 pub fn energy(&self, state: &Array1<f64>) -> f64 {
84 let mut energy = 0.0;
85
86 for i in 0..self.num_qubits {
88 energy -= self.biases[i] * state[i];
89 }
90
91 for i in 0..self.num_qubits {
93 for j in i + 1..self.num_qubits {
94 energy -= self.couplings[[i, j]] * state[i] * state[j];
95 }
96 }
97
98 energy
99 }
100
101 pub fn create_gibbs_circuit(&self) -> Result<()> {
103 Ok(())
106 }
107
108 pub fn sample(&self, num_samples: usize) -> Result<Array2<f64>> {
110 let mut samples = Array2::zeros((num_samples, self.num_visible));
111
112 for sample_idx in 0..num_samples {
113 for i in 0..self.num_visible {
115 samples[[sample_idx, i]] = if thread_rng().gen::<f64>() > 0.5 {
117 1.0
118 } else {
119 0.0
120 };
121 }
122 }
123
124 Ok(samples)
125 }
126
127 pub fn compute_gradients(&self, data: &Array2<f64>) -> Result<(Array2<f64>, Array1<f64>)> {
129 let batch_size = data.nrows();
130
131 let mut pos_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
133 let mut pos_biases: Array1<f64> = Array1::zeros(self.num_qubits);
134
135 for sample_idx in 0..batch_size {
136 let visible = data.row(sample_idx);
137
138 let hidden = self.sample_hidden_given_visible(&visible)?;
140
141 let mut full_state = Array1::zeros(self.num_qubits);
143 for i in 0..self.num_visible {
144 full_state[i] = visible[i];
145 }
146 for i in 0..self.num_hidden {
147 full_state[self.num_visible + i] = hidden[i];
148 }
149
150 for i in 0..self.num_qubits {
152 pos_biases[i] += full_state[i];
153 for j in i + 1..self.num_qubits {
154 pos_correlations[[i, j]] += full_state[i] * full_state[j];
155 pos_correlations[[j, i]] = pos_correlations[[i, j]];
156 }
157 }
158 }
159
160 let neg_samples = self.sample(batch_size)?;
162 let mut neg_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
163 let mut neg_biases: Array1<f64> = Array1::zeros(self.num_qubits);
164
165 for sample_idx in 0..batch_size {
166 let visible = neg_samples.row(sample_idx);
167 let hidden = self.sample_hidden_given_visible(&visible)?;
168
169 let mut full_state = Array1::zeros(self.num_qubits);
170 for i in 0..self.num_visible {
171 full_state[i] = visible[i];
172 }
173 for i in 0..self.num_hidden {
174 full_state[self.num_visible + i] = hidden[i];
175 }
176
177 for i in 0..self.num_qubits {
178 neg_biases[i] += full_state[i];
179 for j in i + 1..self.num_qubits {
180 neg_correlations[[i, j]] += full_state[i] * full_state[j];
181 neg_correlations[[j, i]] = neg_correlations[[i, j]];
182 }
183 }
184 }
185
186 let coupling_grad = (pos_correlations - neg_correlations) / batch_size as f64;
188 let bias_grad = (pos_biases - neg_biases) / batch_size as f64;
189
190 Ok((coupling_grad, bias_grad))
191 }
192
193 pub fn sample_hidden_given_visible(&self, visible: &ArrayView1<f64>) -> Result<Array1<f64>> {
195 let mut hidden = Array1::zeros(self.num_hidden);
196
197 for h in 0..self.num_hidden {
198 let h_idx = self.num_visible + h;
199
200 let mut activation = self.biases[h_idx];
202 for v in 0..self.num_visible {
203 activation += self.couplings[[v, h_idx]] * visible[v];
204 }
205
206 let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
208 hidden[h] = if thread_rng().gen::<f64>() < prob {
209 1.0
210 } else {
211 0.0
212 };
213 }
214
215 Ok(hidden)
216 }
217
218 pub fn train(
220 &mut self,
221 data: &Array2<f64>,
222 epochs: usize,
223 batch_size: usize,
224 ) -> Result<Vec<f64>> {
225 let mut losses = Vec::new();
226 let num_samples = data.nrows();
227
228 for epoch in 0..epochs {
229 let mut epoch_loss = 0.0;
230
231 for batch_start in (0..num_samples).step_by(batch_size) {
233 let batch_end = (batch_start + batch_size).min(num_samples);
234 let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
235
236 let (coupling_grad, bias_grad) = self.compute_gradients(&batch)?;
238
239 self.couplings = &self.couplings + self.learning_rate * &coupling_grad;
241 self.biases = &self.biases + self.learning_rate * &bias_grad;
242
243 let reconstructed = self.reconstruct(&batch)?;
245 let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
246 epoch_loss += error;
247 }
248
249 epoch_loss /= num_samples as f64;
250 losses.push(epoch_loss);
251
252 if epoch % 10 == 0 {
253 println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
254 }
255 }
256
257 Ok(losses)
258 }
259
260 pub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>> {
262 let num_samples = visible.nrows();
263 let mut reconstructed = Array2::zeros((num_samples, self.num_visible));
264
265 for i in 0..num_samples {
266 let v = visible.row(i);
267
268 let h = self.sample_hidden_given_visible(&v)?;
270
271 let v_recon = self.sample_visible_given_hidden(&h)?;
273
274 reconstructed.row_mut(i).assign(&v_recon);
275 }
276
277 Ok(reconstructed)
278 }
279
280 pub fn sample_visible_given_hidden(&self, hidden: &Array1<f64>) -> Result<Array1<f64>> {
282 let mut visible = Array1::zeros(self.num_visible);
283
284 for v in 0..self.num_visible {
285 let mut activation = self.biases[v];
287 for h in 0..self.num_hidden {
288 let h_idx = self.num_visible + h;
289 activation += self.couplings[[v, h_idx]] * hidden[h];
290 }
291
292 let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
294 visible[v] = if thread_rng().gen::<f64>() < prob {
295 1.0
296 } else {
297 0.0
298 };
299 }
300
301 Ok(visible)
302 }
303
304 pub fn temperature(&self) -> f64 {
306 self.temperature
307 }
308
309 pub fn couplings(&self) -> &Array2<f64> {
311 &self.couplings
312 }
313}
314
315pub struct QuantumRBM {
317 qbm: QuantumBoltzmannMachine,
319
320 use_annealing: bool,
322
323 annealing_schedule: Option<AnnealingSchedule>,
325}
326
327#[derive(Debug, Clone)]
329pub struct AnnealingSchedule {
330 initial_temp: f64,
332
333 final_temp: f64,
335
336 num_steps: usize,
338}
339
340impl AnnealingSchedule {
341 pub fn new(initial_temp: f64, final_temp: f64, num_steps: usize) -> Self {
343 Self {
344 initial_temp,
345 final_temp,
346 num_steps,
347 }
348 }
349}
350
351impl QuantumRBM {
352 pub fn new(
354 num_visible: usize,
355 num_hidden: usize,
356 temperature: f64,
357 learning_rate: f64,
358 ) -> Result<Self> {
359 let qbm =
360 QuantumBoltzmannMachine::new(num_visible, num_hidden, temperature, learning_rate)?;
361
362 Ok(Self {
363 qbm,
364 use_annealing: false,
365 annealing_schedule: None,
366 })
367 }
368
369 pub fn with_annealing(mut self, schedule: AnnealingSchedule) -> Self {
371 self.use_annealing = true;
372 self.annealing_schedule = Some(schedule);
373 self
374 }
375
376 pub fn create_rbm_circuit(&self) -> Result<()> {
378 Ok(())
380 }
381
382 pub fn train_pcd(
384 &mut self,
385 data: &Array2<f64>,
386 epochs: usize,
387 batch_size: usize,
388 num_persistent: usize,
389 ) -> Result<Vec<f64>> {
390 let mut losses = Vec::new();
391
392 let mut persistent_chains = self.qbm.sample(num_persistent)?;
394
395 for epoch in 0..epochs {
396 if self.use_annealing {
398 if let Some(ref schedule) = self.annealing_schedule {
399 let progress = epoch as f64 / epochs as f64;
400 self.qbm.temperature =
401 schedule.initial_temp * (1.0 - progress) + schedule.final_temp * progress;
402 }
403 }
404
405 let loss = self.train_epoch_pcd(data, batch_size, &mut persistent_chains)?;
407 losses.push(loss);
408
409 if epoch % 10 == 0 {
410 println!(
411 "Epoch {}: Loss = {:.4}, Temp = {:.3}",
412 epoch, loss, self.qbm.temperature
413 );
414 }
415 }
416
417 Ok(losses)
418 }
419
420 fn train_epoch_pcd(
422 &mut self,
423 data: &Array2<f64>,
424 batch_size: usize,
425 persistent_chains: &mut Array2<f64>,
426 ) -> Result<f64> {
427 let num_samples = data.nrows();
428 let mut epoch_loss = 0.0;
429
430 for batch_start in (0..num_samples).step_by(batch_size) {
431 let batch_end = (batch_start + batch_size).min(num_samples);
432 let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
433
434 for _ in 0..5 {
436 *persistent_chains = self.gibbs_step(persistent_chains)?;
438 }
439
440 let (coupling_grad, bias_grad) =
442 self.compute_gradients_pcd(&batch, persistent_chains)?;
443
444 self.qbm.couplings = &self.qbm.couplings + self.qbm.learning_rate * &coupling_grad;
446 self.qbm.biases = &self.qbm.biases + self.qbm.learning_rate * &bias_grad;
447
448 let reconstructed = self.qbm.reconstruct(&batch)?;
450 let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
451 epoch_loss += error;
452 }
453
454 Ok(epoch_loss / num_samples as f64)
455 }
456
457 fn gibbs_step(&self, states: &Array2<f64>) -> Result<Array2<f64>> {
459 let num_samples = states.nrows();
460 let mut new_states = Array2::zeros((num_samples, self.qbm.num_visible));
461
462 for i in 0..num_samples {
463 let visible = states.row(i);
464 let hidden = self.qbm.sample_hidden_given_visible(&visible)?;
465 let new_visible = self.qbm.sample_visible_given_hidden(&hidden)?;
466 new_states.row_mut(i).assign(&new_visible);
467 }
468
469 Ok(new_states)
470 }
471
472 fn compute_gradients_pcd(
474 &self,
475 data: &Array2<f64>,
476 persistent_chains: &Array2<f64>,
477 ) -> Result<(Array2<f64>, Array1<f64>)> {
478 self.qbm.compute_gradients(data)
480 }
481
482 pub fn qbm(&self) -> &QuantumBoltzmannMachine {
484 &self.qbm
485 }
486}
487
488pub struct DeepBoltzmannMachine {
490 layer_sizes: Vec<usize>,
492
493 rbms: Vec<QuantumRBM>,
495
496 use_pretraining: bool,
498}
499
500impl DeepBoltzmannMachine {
501 pub fn new(layer_sizes: Vec<usize>, temperature: f64, learning_rate: f64) -> Result<Self> {
503 if layer_sizes.len() < 2 {
504 return Err(MLError::ModelCreationError(
505 "Need at least 2 layers".to_string(),
506 ));
507 }
508
509 let mut rbms = Vec::new();
510
511 for i in 0..layer_sizes.len() - 1 {
512 let rbm = QuantumRBM::new(
513 layer_sizes[i],
514 layer_sizes[i + 1],
515 temperature,
516 learning_rate,
517 )?;
518 rbms.push(rbm);
519 }
520
521 Ok(Self {
522 layer_sizes,
523 rbms,
524 use_pretraining: true,
525 })
526 }
527
528 pub fn pretrain(
530 &mut self,
531 data: &Array2<f64>,
532 epochs_per_layer: usize,
533 batch_size: usize,
534 ) -> Result<()> {
535 println!("Starting layer-wise pretraining...");
536
537 let mut current_data = data.clone();
538
539 let num_layers = self.rbms.len();
540 for layer_idx in 0..num_layers {
541 println!("\nPretraining layer {}...", layer_idx + 1);
542
543 self.rbms[layer_idx].train_pcd(¤t_data, epochs_per_layer, batch_size, 100)?;
545
546 if layer_idx < num_layers - 1 {
548 current_data = self.transform_data(&self.rbms[layer_idx], ¤t_data)?;
549 }
550 }
551
552 Ok(())
553 }
554
555 fn transform_data(&self, rbm: &QuantumRBM, data: &Array2<f64>) -> Result<Array2<f64>> {
557 let num_samples = data.nrows();
558 let num_hidden = rbm.qbm.num_hidden;
559 let mut transformed = Array2::zeros((num_samples, num_hidden));
560
561 for i in 0..num_samples {
562 let visible = data.row(i);
563 let hidden = rbm.qbm.sample_hidden_given_visible(&visible)?;
564 transformed.row_mut(i).assign(&hidden);
565 }
566
567 Ok(transformed)
568 }
569
570 pub fn rbms(&self) -> &[QuantumRBM] {
572 &self.rbms
573 }
574}
575
576#[cfg(test)]
577mod tests {
578 use super::*;
579
580 #[test]
581 fn test_qbm_creation() {
582 let qbm = QuantumBoltzmannMachine::new(4, 2, 1.0, 0.01).unwrap();
583 assert_eq!(qbm.num_visible, 4);
584 assert_eq!(qbm.num_hidden, 2);
585 assert_eq!(qbm.num_qubits, 6);
586 }
587
588 #[test]
589 fn test_energy_computation() {
590 let qbm = QuantumBoltzmannMachine::new(2, 2, 1.0, 0.01).unwrap();
591 let state = Array1::from_vec(vec![1.0, 0.0, 1.0, 0.0]);
592 let energy = qbm.energy(&state);
593 assert!(energy.is_finite());
594 }
595
596 #[test]
597 fn test_sampling() {
598 let qbm = QuantumBoltzmannMachine::new(3, 2, 1.0, 0.01).unwrap();
599 let samples = qbm.sample(10).unwrap();
600 assert_eq!(samples.shape(), &[10, 3]);
601
602 for sample in samples.outer_iter() {
604 for &val in sample.iter() {
605 assert!(val == 0.0 || val == 1.0);
606 }
607 }
608 }
609
610 #[test]
611 fn test_rbm_creation() {
612 let rbm = QuantumRBM::new(4, 3, 1.0, 0.01).unwrap();
613 assert_eq!(rbm.qbm.num_visible, 4);
614 assert_eq!(rbm.qbm.num_hidden, 3);
615 }
616
617 #[test]
618 fn test_deep_boltzmann() {
619 let layer_sizes = vec![4, 3, 2];
620 let dbm = DeepBoltzmannMachine::new(layer_sizes.clone(), 1.0, 0.01).unwrap();
621 assert_eq!(dbm.layer_sizes, layer_sizes);
622 assert_eq!(dbm.rbms.len(), 2);
623 }
624}