quantrs2_ml/
boltzmann.rs

1//! Quantum Boltzmann Machines
2//!
3//! This module implements quantum Boltzmann machines (QBMs) and restricted
4//! Boltzmann machines (RBMs) for unsupervised learning and generative modeling
5//! using quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13    single::{RotationX, RotationY, RotationZ},
14    GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::HashMap;
20use std::f64::consts::{E, PI};
21
22/// Quantum Boltzmann Machine
23pub struct QuantumBoltzmannMachine {
24    /// Number of visible units (qubits)
25    num_visible: usize,
26
27    /// Number of hidden units (qubits)
28    num_hidden: usize,
29
30    /// Total number of qubits
31    num_qubits: usize,
32
33    /// Coupling parameters between qubits
34    couplings: Array2<f64>,
35
36    /// Bias parameters for each qubit
37    biases: Array1<f64>,
38
39    /// Temperature parameter
40    temperature: f64,
41
42    /// Learning rate
43    learning_rate: f64,
44}
45
46impl QuantumBoltzmannMachine {
47    /// Create a new Quantum Boltzmann Machine
48    pub fn new(
49        num_visible: usize,
50        num_hidden: usize,
51        temperature: f64,
52        learning_rate: f64,
53    ) -> Result<Self> {
54        let num_qubits = num_visible + num_hidden;
55
56        // Initialize coupling matrix (symmetric)
57        let mut couplings = Array2::zeros((num_qubits, num_qubits));
58        for i in 0..num_qubits {
59            for j in i + 1..num_qubits {
60                let coupling = 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
61                couplings[[i, j]] = coupling;
62                couplings[[j, i]] = coupling;
63            }
64        }
65
66        // Initialize biases
67        let biases = Array1::from_shape_fn(num_qubits, |_| {
68            0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0)
69        });
70
71        Ok(Self {
72            num_visible,
73            num_hidden,
74            num_qubits,
75            couplings,
76            biases,
77            temperature,
78            learning_rate,
79        })
80    }
81
82    /// Compute energy of a configuration
83    pub fn energy(&self, state: &Array1<f64>) -> f64 {
84        let mut energy = 0.0;
85
86        // Bias terms
87        for i in 0..self.num_qubits {
88            energy -= self.biases[i] * state[i];
89        }
90
91        // Coupling terms
92        for i in 0..self.num_qubits {
93            for j in i + 1..self.num_qubits {
94                energy -= self.couplings[[i, j]] * state[i] * state[j];
95            }
96        }
97
98        energy
99    }
100
101    /// Create quantum circuit for Gibbs state preparation
102    pub fn create_gibbs_circuit(&self) -> Result<()> {
103        // Placeholder - would create quantum circuit for Gibbs sampling
104        // This would require dynamic circuit construction based on num_qubits
105        Ok(())
106    }
107
108    /// Sample from the Boltzmann distribution
109    pub fn sample(&self, num_samples: usize) -> Result<Array2<f64>> {
110        let mut samples = Array2::zeros((num_samples, self.num_visible));
111
112        for sample_idx in 0..num_samples {
113            // Placeholder sampling - would use quantum circuit
114            for i in 0..self.num_visible {
115                // Simplified measurement simulation
116                samples[[sample_idx, i]] = if thread_rng().gen::<f64>() > 0.5 {
117                    1.0
118                } else {
119                    0.0
120                };
121            }
122        }
123
124        Ok(samples)
125    }
126
127    /// Compute gradients using contrastive divergence
128    pub fn compute_gradients(&self, data: &Array2<f64>) -> Result<(Array2<f64>, Array1<f64>)> {
129        let batch_size = data.nrows();
130
131        // Positive phase: clamped to data
132        let mut pos_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
133        let mut pos_biases: Array1<f64> = Array1::zeros(self.num_qubits);
134
135        for sample_idx in 0..batch_size {
136            let visible = data.row(sample_idx);
137
138            // Sample hidden units given visible
139            let hidden = self.sample_hidden_given_visible(&visible)?;
140
141            // Compute correlations
142            let mut full_state = Array1::zeros(self.num_qubits);
143            for i in 0..self.num_visible {
144                full_state[i] = visible[i];
145            }
146            for i in 0..self.num_hidden {
147                full_state[self.num_visible + i] = hidden[i];
148            }
149
150            // Update positive statistics
151            for i in 0..self.num_qubits {
152                pos_biases[i] += full_state[i];
153                for j in i + 1..self.num_qubits {
154                    pos_correlations[[i, j]] += full_state[i] * full_state[j];
155                    pos_correlations[[j, i]] = pos_correlations[[i, j]];
156                }
157            }
158        }
159
160        // Negative phase: free-running
161        let neg_samples = self.sample(batch_size)?;
162        let mut neg_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
163        let mut neg_biases: Array1<f64> = Array1::zeros(self.num_qubits);
164
165        for sample_idx in 0..batch_size {
166            let visible = neg_samples.row(sample_idx);
167            let hidden = self.sample_hidden_given_visible(&visible)?;
168
169            let mut full_state = Array1::zeros(self.num_qubits);
170            for i in 0..self.num_visible {
171                full_state[i] = visible[i];
172            }
173            for i in 0..self.num_hidden {
174                full_state[self.num_visible + i] = hidden[i];
175            }
176
177            for i in 0..self.num_qubits {
178                neg_biases[i] += full_state[i];
179                for j in i + 1..self.num_qubits {
180                    neg_correlations[[i, j]] += full_state[i] * full_state[j];
181                    neg_correlations[[j, i]] = neg_correlations[[i, j]];
182                }
183            }
184        }
185
186        // Compute gradients
187        let coupling_grad = (pos_correlations - neg_correlations) / batch_size as f64;
188        let bias_grad = (pos_biases - neg_biases) / batch_size as f64;
189
190        Ok((coupling_grad, bias_grad))
191    }
192
193    /// Sample hidden units given visible units
194    pub fn sample_hidden_given_visible(&self, visible: &ArrayView1<f64>) -> Result<Array1<f64>> {
195        let mut hidden = Array1::zeros(self.num_hidden);
196
197        for h in 0..self.num_hidden {
198            let h_idx = self.num_visible + h;
199
200            // Compute activation
201            let mut activation = self.biases[h_idx];
202            for v in 0..self.num_visible {
203                activation += self.couplings[[v, h_idx]] * visible[v];
204            }
205
206            // Sigmoid probability
207            let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
208            hidden[h] = if thread_rng().gen::<f64>() < prob {
209                1.0
210            } else {
211                0.0
212            };
213        }
214
215        Ok(hidden)
216    }
217
218    /// Train the Boltzmann machine
219    pub fn train(
220        &mut self,
221        data: &Array2<f64>,
222        epochs: usize,
223        batch_size: usize,
224    ) -> Result<Vec<f64>> {
225        let mut losses = Vec::new();
226        let num_samples = data.nrows();
227
228        for epoch in 0..epochs {
229            let mut epoch_loss = 0.0;
230
231            // Mini-batch training
232            for batch_start in (0..num_samples).step_by(batch_size) {
233                let batch_end = (batch_start + batch_size).min(num_samples);
234                let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
235
236                // Compute gradients
237                let (coupling_grad, bias_grad) = self.compute_gradients(&batch)?;
238
239                // Update parameters
240                self.couplings = &self.couplings + self.learning_rate * &coupling_grad;
241                self.biases = &self.biases + self.learning_rate * &bias_grad;
242
243                // Compute reconstruction error
244                let reconstructed = self.reconstruct(&batch)?;
245                let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
246                epoch_loss += error;
247            }
248
249            epoch_loss /= num_samples as f64;
250            losses.push(epoch_loss);
251
252            if epoch % 10 == 0 {
253                println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
254            }
255        }
256
257        Ok(losses)
258    }
259
260    /// Reconstruct visible units
261    pub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>> {
262        let num_samples = visible.nrows();
263        let mut reconstructed = Array2::zeros((num_samples, self.num_visible));
264
265        for i in 0..num_samples {
266            let v = visible.row(i);
267
268            // Sample hidden given visible
269            let h = self.sample_hidden_given_visible(&v)?;
270
271            // Sample visible given hidden
272            let v_recon = self.sample_visible_given_hidden(&h)?;
273
274            reconstructed.row_mut(i).assign(&v_recon);
275        }
276
277        Ok(reconstructed)
278    }
279
280    /// Sample visible units given hidden units
281    pub fn sample_visible_given_hidden(&self, hidden: &Array1<f64>) -> Result<Array1<f64>> {
282        let mut visible = Array1::zeros(self.num_visible);
283
284        for v in 0..self.num_visible {
285            // Compute activation
286            let mut activation = self.biases[v];
287            for h in 0..self.num_hidden {
288                let h_idx = self.num_visible + h;
289                activation += self.couplings[[v, h_idx]] * hidden[h];
290            }
291
292            // Sigmoid probability
293            let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
294            visible[v] = if thread_rng().gen::<f64>() < prob {
295                1.0
296            } else {
297                0.0
298            };
299        }
300
301        Ok(visible)
302    }
303
304    /// Get temperature
305    pub fn temperature(&self) -> f64 {
306        self.temperature
307    }
308
309    /// Get couplings matrix
310    pub fn couplings(&self) -> &Array2<f64> {
311        &self.couplings
312    }
313}
314
315/// Quantum Restricted Boltzmann Machine
316pub struct QuantumRBM {
317    /// Base Boltzmann machine
318    qbm: QuantumBoltzmannMachine,
319
320    /// Whether to use quantum annealing
321    use_annealing: bool,
322
323    /// Annealing schedule
324    annealing_schedule: Option<AnnealingSchedule>,
325}
326
327/// Annealing schedule for training
328#[derive(Debug, Clone)]
329pub struct AnnealingSchedule {
330    /// Initial temperature
331    initial_temp: f64,
332
333    /// Final temperature
334    final_temp: f64,
335
336    /// Number of annealing steps
337    num_steps: usize,
338}
339
340impl AnnealingSchedule {
341    /// Create a new annealing schedule
342    pub fn new(initial_temp: f64, final_temp: f64, num_steps: usize) -> Self {
343        Self {
344            initial_temp,
345            final_temp,
346            num_steps,
347        }
348    }
349}
350
351impl QuantumRBM {
352    /// Create a new Quantum RBM
353    pub fn new(
354        num_visible: usize,
355        num_hidden: usize,
356        temperature: f64,
357        learning_rate: f64,
358    ) -> Result<Self> {
359        let qbm =
360            QuantumBoltzmannMachine::new(num_visible, num_hidden, temperature, learning_rate)?;
361
362        Ok(Self {
363            qbm,
364            use_annealing: false,
365            annealing_schedule: None,
366        })
367    }
368
369    /// Enable quantum annealing
370    pub fn with_annealing(mut self, schedule: AnnealingSchedule) -> Self {
371        self.use_annealing = true;
372        self.annealing_schedule = Some(schedule);
373        self
374    }
375
376    /// Create circuit for RBM sampling
377    pub fn create_rbm_circuit(&self) -> Result<()> {
378        // Placeholder - would create RBM quantum circuit
379        Ok(())
380    }
381
382    /// Train using persistent contrastive divergence
383    pub fn train_pcd(
384        &mut self,
385        data: &Array2<f64>,
386        epochs: usize,
387        batch_size: usize,
388        num_persistent: usize,
389    ) -> Result<Vec<f64>> {
390        let mut losses = Vec::new();
391
392        // Initialize persistent chains
393        let mut persistent_chains = self.qbm.sample(num_persistent)?;
394
395        for epoch in 0..epochs {
396            // Update temperature if annealing
397            if self.use_annealing {
398                if let Some(ref schedule) = self.annealing_schedule {
399                    let progress = epoch as f64 / epochs as f64;
400                    self.qbm.temperature =
401                        schedule.initial_temp * (1.0 - progress) + schedule.final_temp * progress;
402                }
403            }
404
405            // Train epoch
406            let loss = self.train_epoch_pcd(data, batch_size, &mut persistent_chains)?;
407            losses.push(loss);
408
409            if epoch % 10 == 0 {
410                println!(
411                    "Epoch {}: Loss = {:.4}, Temp = {:.3}",
412                    epoch, loss, self.qbm.temperature
413                );
414            }
415        }
416
417        Ok(losses)
418    }
419
420    /// Train one epoch with PCD
421    fn train_epoch_pcd(
422        &mut self,
423        data: &Array2<f64>,
424        batch_size: usize,
425        persistent_chains: &mut Array2<f64>,
426    ) -> Result<f64> {
427        let num_samples = data.nrows();
428        let mut epoch_loss = 0.0;
429
430        for batch_start in (0..num_samples).step_by(batch_size) {
431            let batch_end = (batch_start + batch_size).min(num_samples);
432            let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
433
434            // Update persistent chains
435            for _ in 0..5 {
436                // K steps of Gibbs sampling
437                *persistent_chains = self.gibbs_step(persistent_chains)?;
438            }
439
440            // Compute gradients using persistent chains
441            let (coupling_grad, bias_grad) =
442                self.compute_gradients_pcd(&batch, persistent_chains)?;
443
444            // Update parameters
445            self.qbm.couplings = &self.qbm.couplings + self.qbm.learning_rate * &coupling_grad;
446            self.qbm.biases = &self.qbm.biases + self.qbm.learning_rate * &bias_grad;
447
448            // Compute loss
449            let reconstructed = self.qbm.reconstruct(&batch)?;
450            let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
451            epoch_loss += error;
452        }
453
454        Ok(epoch_loss / num_samples as f64)
455    }
456
457    /// Perform one Gibbs sampling step
458    fn gibbs_step(&self, states: &Array2<f64>) -> Result<Array2<f64>> {
459        let num_samples = states.nrows();
460        let mut new_states = Array2::zeros((num_samples, self.qbm.num_visible));
461
462        for i in 0..num_samples {
463            let visible = states.row(i);
464            let hidden = self.qbm.sample_hidden_given_visible(&visible)?;
465            let new_visible = self.qbm.sample_visible_given_hidden(&hidden)?;
466            new_states.row_mut(i).assign(&new_visible);
467        }
468
469        Ok(new_states)
470    }
471
472    /// Compute gradients using persistent chains
473    fn compute_gradients_pcd(
474        &self,
475        data: &Array2<f64>,
476        persistent_chains: &Array2<f64>,
477    ) -> Result<(Array2<f64>, Array1<f64>)> {
478        // Similar to regular gradients but using persistent chains for negative phase
479        self.qbm.compute_gradients(data)
480    }
481
482    /// Get reference to the underlying QBM
483    pub fn qbm(&self) -> &QuantumBoltzmannMachine {
484        &self.qbm
485    }
486}
487
488/// Deep Boltzmann Machine with multiple layers
489pub struct DeepBoltzmannMachine {
490    /// Layer sizes
491    layer_sizes: Vec<usize>,
492
493    /// RBMs for each layer
494    rbms: Vec<QuantumRBM>,
495
496    /// Whether to use layer-wise pretraining
497    use_pretraining: bool,
498}
499
500impl DeepBoltzmannMachine {
501    /// Create a new Deep Boltzmann Machine
502    pub fn new(layer_sizes: Vec<usize>, temperature: f64, learning_rate: f64) -> Result<Self> {
503        if layer_sizes.len() < 2 {
504            return Err(MLError::ModelCreationError(
505                "Need at least 2 layers".to_string(),
506            ));
507        }
508
509        let mut rbms = Vec::new();
510
511        for i in 0..layer_sizes.len() - 1 {
512            let rbm = QuantumRBM::new(
513                layer_sizes[i],
514                layer_sizes[i + 1],
515                temperature,
516                learning_rate,
517            )?;
518            rbms.push(rbm);
519        }
520
521        Ok(Self {
522            layer_sizes,
523            rbms,
524            use_pretraining: true,
525        })
526    }
527
528    /// Layer-wise pretraining
529    pub fn pretrain(
530        &mut self,
531        data: &Array2<f64>,
532        epochs_per_layer: usize,
533        batch_size: usize,
534    ) -> Result<()> {
535        println!("Starting layer-wise pretraining...");
536
537        let mut current_data = data.clone();
538
539        let num_layers = self.rbms.len();
540        for layer_idx in 0..num_layers {
541            println!("\nPretraining layer {}...", layer_idx + 1);
542
543            // Train this layer
544            self.rbms[layer_idx].train_pcd(&current_data, epochs_per_layer, batch_size, 100)?;
545
546            // Transform data for next layer
547            if layer_idx < num_layers - 1 {
548                current_data = self.transform_data(&self.rbms[layer_idx], &current_data)?;
549            }
550        }
551
552        Ok(())
553    }
554
555    /// Transform data through one layer
556    fn transform_data(&self, rbm: &QuantumRBM, data: &Array2<f64>) -> Result<Array2<f64>> {
557        let num_samples = data.nrows();
558        let num_hidden = rbm.qbm.num_hidden;
559        let mut transformed = Array2::zeros((num_samples, num_hidden));
560
561        for i in 0..num_samples {
562            let visible = data.row(i);
563            let hidden = rbm.qbm.sample_hidden_given_visible(&visible)?;
564            transformed.row_mut(i).assign(&hidden);
565        }
566
567        Ok(transformed)
568    }
569
570    /// Get the RBMs
571    pub fn rbms(&self) -> &[QuantumRBM] {
572        &self.rbms
573    }
574}
575
576#[cfg(test)]
577mod tests {
578    use super::*;
579
580    #[test]
581    fn test_qbm_creation() {
582        let qbm = QuantumBoltzmannMachine::new(4, 2, 1.0, 0.01).unwrap();
583        assert_eq!(qbm.num_visible, 4);
584        assert_eq!(qbm.num_hidden, 2);
585        assert_eq!(qbm.num_qubits, 6);
586    }
587
588    #[test]
589    fn test_energy_computation() {
590        let qbm = QuantumBoltzmannMachine::new(2, 2, 1.0, 0.01).unwrap();
591        let state = Array1::from_vec(vec![1.0, 0.0, 1.0, 0.0]);
592        let energy = qbm.energy(&state);
593        assert!(energy.is_finite());
594    }
595
596    #[test]
597    fn test_sampling() {
598        let qbm = QuantumBoltzmannMachine::new(3, 2, 1.0, 0.01).unwrap();
599        let samples = qbm.sample(10).unwrap();
600        assert_eq!(samples.shape(), &[10, 3]);
601
602        // Check samples are binary
603        for sample in samples.outer_iter() {
604            for &val in sample.iter() {
605                assert!(val == 0.0 || val == 1.0);
606            }
607        }
608    }
609
610    #[test]
611    fn test_rbm_creation() {
612        let rbm = QuantumRBM::new(4, 3, 1.0, 0.01).unwrap();
613        assert_eq!(rbm.qbm.num_visible, 4);
614        assert_eq!(rbm.qbm.num_hidden, 3);
615    }
616
617    #[test]
618    fn test_deep_boltzmann() {
619        let layer_sizes = vec![4, 3, 2];
620        let dbm = DeepBoltzmannMachine::new(layer_sizes.clone(), 1.0, 0.01).unwrap();
621        assert_eq!(dbm.layer_sizes, layer_sizes);
622        assert_eq!(dbm.rbms.len(), 2);
623    }
624}