1use crate::automl::config::QuantumAutoMLConfig;
6use crate::automl::pipeline::QuantumMLPipeline;
7use crate::error::Result;
8use scirs2_core::ndarray::{Array1, Array2};
9
10#[derive(Debug, Clone)]
12pub struct AutomatedPipelineConstructor {
13 task_detector: TaskDetector,
15
16 preprocessing_optimizer: PreprocessingOptimizer,
18
19 algorithm_selector: AlgorithmSelector,
21
22 pipeline_validator: PipelineValidator,
24}
25
26#[derive(Debug, Clone)]
28pub struct TaskDetector {
29 feature_analyzers: Vec<FeatureAnalyzer>,
31
32 target_analyzers: Vec<TargetAnalyzer>,
34
35 pattern_detectors: Vec<PatternDetector>,
37}
38
39#[derive(Debug, Clone)]
41pub struct FeatureAnalyzer {
42 pub analyzer_type: FeatureAnalyzerType,
44
45 pub results: std::collections::HashMap<String, f64>,
47}
48
49#[derive(Debug, Clone)]
51pub enum FeatureAnalyzerType {
52 DataTypeAnalyzer,
53 DistributionAnalyzer,
54 CorrelationAnalyzer,
55 NullValueAnalyzer,
56 OutlierAnalyzer,
57 QuantumEncodingAnalyzer,
58}
59
60#[derive(Debug, Clone)]
62pub struct TargetAnalyzer {
63 pub analyzer_type: TargetAnalyzerType,
65
66 pub results: std::collections::HashMap<String, f64>,
68}
69
70#[derive(Debug, Clone)]
72pub enum TargetAnalyzerType {
73 TaskTypeDetector,
74 ClassBalanceAnalyzer,
75 LabelDistributionAnalyzer,
76 TemporalPatternAnalyzer,
77}
78
79#[derive(Debug, Clone)]
81pub struct PatternDetector {
82 pub pattern_type: PatternType,
84
85 pub confidence: f64,
87}
88
89#[derive(Debug, Clone)]
91pub enum PatternType {
92 TimeSeriesPattern,
93 SpatialPattern,
94 NetworkPattern,
95 HierarchicalPattern,
96 QuantumPattern,
97}
98
99#[derive(Debug, Clone)]
101pub struct PreprocessingOptimizer {
102 preprocessors: Vec<PreprocessorCandidate>,
104
105 optimization_strategy: PreprocessingOptimizationStrategy,
107
108 performance_tracker: PreprocessingPerformanceTracker,
110}
111
112#[derive(Debug, Clone)]
114pub struct PreprocessorCandidate {
115 pub preprocessor_type: PreprocessorType,
117
118 pub config: PreprocessorConfig,
120
121 pub performance_score: f64,
123}
124
125#[derive(Debug, Clone)]
127pub enum PreprocessorType {
128 Scaler(String),
129 FeatureSelector(String),
130 QuantumEncoder(String),
131 MissingValueHandler(String),
132 DataAugmenter,
133 OutlierDetector,
134}
135
136#[derive(Debug, Clone)]
138pub struct PreprocessorConfig {
139 pub parameters: std::collections::HashMap<String, f64>,
141
142 pub enabled_features: Vec<String>,
144}
145
146#[derive(Debug, Clone)]
148pub enum PreprocessingOptimizationStrategy {
149 Sequential,
150 Parallel,
151 Evolutionary,
152 BayesianOptimization,
153 QuantumAnnealing,
154}
155
156#[derive(Debug, Clone)]
158pub struct PreprocessingPerformanceTracker {
159 pub performance_history: Vec<PreprocessingPerformance>,
161
162 pub best_config: Option<PreprocessorConfig>,
164}
165
166#[derive(Debug, Clone)]
168pub struct PreprocessingPerformance {
169 pub data_quality_score: f64,
171
172 pub feature_importance: Array1<f64>,
174
175 pub quantum_encoding_efficiency: f64,
177
178 pub processing_time: f64,
180}
181
182#[derive(Debug, Clone)]
184pub struct AlgorithmSelector {
185 algorithms: Vec<AlgorithmCandidate>,
187
188 selection_strategy: AlgorithmSelectionStrategy,
190
191 performance_predictor: AlgorithmPerformancePredictor,
193}
194
195#[derive(Debug, Clone)]
197pub struct AlgorithmCandidate {
198 pub algorithm_type: AlgorithmType,
200
201 pub quantum_enhancement: QuantumEnhancementLevel,
203
204 pub estimated_performance: f64,
206
207 pub resource_requirements: ResourceRequirements,
209}
210
211#[derive(Debug, Clone)]
213pub enum AlgorithmType {
214 QuantumNeuralNetwork,
215 QuantumSVM,
216 QuantumClustering,
217 QuantumDimensionalityReduction,
218 QuantumTimeSeries,
219 QuantumAnomalyDetection,
220 ClassicalBaseline,
221}
222
223#[derive(Debug, Clone)]
225pub enum QuantumEnhancementLevel {
226 Classical,
227 QuantumInspired,
228 QuantumHybrid,
229 FullQuantum,
230 QuantumAdvantage,
231}
232
233#[derive(Debug, Clone)]
235pub struct ResourceRequirements {
236 pub computational_complexity: f64,
238
239 pub memory_requirements: f64,
241
242 pub quantum_requirements: QuantumResourceRequirements,
244
245 pub training_time_estimate: f64,
247}
248
249#[derive(Debug, Clone)]
251pub struct QuantumResourceRequirements {
252 pub required_qubits: usize,
254
255 pub required_circuit_depth: usize,
257
258 pub required_coherence_time: f64,
260
261 pub required_gate_fidelity: f64,
263}
264
265#[derive(Debug, Clone)]
267pub enum AlgorithmSelectionStrategy {
268 PerformanceBased,
269 ResourceEfficient,
270 QuantumAdvantage,
271 MultiObjective,
272 EnsembleBased,
273 MetaLearning,
274}
275
276#[derive(Debug, Clone)]
278pub struct AlgorithmPerformancePredictor {
279 meta_model: Option<MetaLearningModel>,
281
282 performance_database: PerformanceDatabase,
284
285 prediction_strategy: PerformancePredictionStrategy,
287}
288
289#[derive(Debug, Clone)]
291pub struct MetaLearningModel {
292 pub model_type: String,
294
295 pub meta_features: Vec<String>,
297
298 pub parameters: Array1<f64>,
300}
301
302#[derive(Debug, Clone)]
304pub struct PerformanceDatabase {
305 pub records: Vec<PerformanceRecord>,
307}
308
309#[derive(Debug, Clone)]
311pub struct PerformanceRecord {
312 pub dataset_features: std::collections::HashMap<String, f64>,
314
315 pub algorithm: String,
317
318 pub performance: f64,
320}
321
322#[derive(Debug, Clone)]
324pub enum PerformancePredictionStrategy {
325 SimilarityBased,
326 MetaLearning,
327 TheoreticalAnalysis,
328 CombinedApproach,
329}
330
331#[derive(Debug, Clone)]
333pub struct PipelineValidator {
334 validation_rules: Vec<ValidationRule>,
336
337 performance_validators: Vec<PerformanceValidator>,
339}
340
341#[derive(Debug, Clone)]
343pub struct ValidationRule {
344 pub rule_type: ValidationRuleType,
346
347 pub description: String,
349
350 pub severity: ValidationSeverity,
352}
353
354#[derive(Debug, Clone)]
356pub enum ValidationRuleType {
357 DataCompatibility,
358 ResourceConstraints,
359 QuantumConstraints,
360 PerformanceThreshold,
361 ConsistencyCheck,
362}
363
364#[derive(Debug, Clone)]
366pub enum ValidationSeverity {
367 Error,
368 Warning,
369 Info,
370}
371
372#[derive(Debug, Clone)]
374pub struct PerformanceValidator {
375 pub validator_type: PerformanceValidatorType,
377
378 pub criteria: ValidationCriteria,
380}
381
382#[derive(Debug, Clone)]
384pub enum PerformanceValidatorType {
385 AccuracyValidator,
386 RobustnessValidator,
387 QuantumAdvantageValidator,
388 ResourceEfficiencyValidator,
389 FairnessValidator,
390}
391
392#[derive(Debug, Clone)]
394pub struct ValidationCriteria {
395 pub min_performance: f64,
397
398 pub max_resource_usage: f64,
400
401 pub required_quantum_advantage: Option<f64>,
403}
404
405impl AutomatedPipelineConstructor {
406 pub fn new(config: &QuantumAutoMLConfig) -> Self {
408 Self {
409 task_detector: TaskDetector::new(),
410 preprocessing_optimizer: PreprocessingOptimizer::new(
411 &config.search_space.preprocessing,
412 ),
413 algorithm_selector: AlgorithmSelector::new(&config.search_space.algorithms),
414 pipeline_validator: PipelineValidator::new(&config.evaluation_config),
415 }
416 }
417
418 pub fn construct_pipeline(
420 &self,
421 X: &Array2<f64>,
422 y: &Array1<f64>,
423 config: &QuantumAutoMLConfig,
424 ) -> Result<QuantumMLPipeline> {
425 let data_analysis = self.task_detector.analyze_data(X, y)?;
427
428 let preprocessing_config = self
430 .preprocessing_optimizer
431 .optimize(X, y, &data_analysis)?;
432
433 let algorithm_candidate = self
435 .algorithm_selector
436 .select_algorithm(&data_analysis, &config.task_type)?;
437
438 let pipeline =
440 QuantumMLPipeline::new(algorithm_candidate, preprocessing_config, config.clone())?;
441
442 self.pipeline_validator.validate(&pipeline, X, y)?;
444
445 Ok(pipeline)
446 }
447}
448
449impl TaskDetector {
450 fn new() -> Self {
451 Self {
452 feature_analyzers: vec![
453 FeatureAnalyzer::new(FeatureAnalyzerType::DataTypeAnalyzer),
454 FeatureAnalyzer::new(FeatureAnalyzerType::DistributionAnalyzer),
455 FeatureAnalyzer::new(FeatureAnalyzerType::CorrelationAnalyzer),
456 ],
457 target_analyzers: vec![
458 TargetAnalyzer::new(TargetAnalyzerType::TaskTypeDetector),
459 TargetAnalyzer::new(TargetAnalyzerType::ClassBalanceAnalyzer),
460 ],
461 pattern_detectors: vec![
462 PatternDetector::new(PatternType::TimeSeriesPattern),
463 PatternDetector::new(PatternType::QuantumPattern),
464 ],
465 }
466 }
467
468 fn analyze_data(&self, X: &Array2<f64>, y: &Array1<f64>) -> Result<DataAnalysis> {
469 Ok(DataAnalysis {
471 num_features: X.ncols(),
472 num_samples: X.nrows(),
473 feature_types: vec!["numerical".to_string(); X.ncols()],
474 target_type: "numerical".to_string(),
475 data_complexity: 0.5, })
477 }
478}
479
480#[derive(Debug, Clone)]
482pub struct DataAnalysis {
483 pub num_features: usize,
484 pub num_samples: usize,
485 pub feature_types: Vec<String>,
486 pub target_type: String,
487 pub data_complexity: f64,
488}
489
490impl FeatureAnalyzer {
491 fn new(analyzer_type: FeatureAnalyzerType) -> Self {
492 Self {
493 analyzer_type,
494 results: std::collections::HashMap::new(),
495 }
496 }
497}
498
499impl TargetAnalyzer {
500 fn new(analyzer_type: TargetAnalyzerType) -> Self {
501 Self {
502 analyzer_type,
503 results: std::collections::HashMap::new(),
504 }
505 }
506}
507
508impl PatternDetector {
509 fn new(pattern_type: PatternType) -> Self {
510 Self {
511 pattern_type,
512 confidence: 0.0,
513 }
514 }
515}
516
517impl PreprocessingOptimizer {
518 fn new(preprocessing_space: &crate::automl::config::PreprocessingSearchSpace) -> Self {
519 Self {
520 preprocessors: Vec::new(),
521 optimization_strategy: PreprocessingOptimizationStrategy::Sequential,
522 performance_tracker: PreprocessingPerformanceTracker::new(),
523 }
524 }
525
526 fn optimize(
527 &self,
528 X: &Array2<f64>,
529 y: &Array1<f64>,
530 data_analysis: &DataAnalysis,
531 ) -> Result<PreprocessorConfig> {
532 Ok(PreprocessorConfig {
534 parameters: std::collections::HashMap::new(),
535 enabled_features: (0..X.ncols()).map(|i| format!("feature_{}", i)).collect(),
536 })
537 }
538}
539
540impl PreprocessingPerformanceTracker {
541 fn new() -> Self {
542 Self {
543 performance_history: Vec::new(),
544 best_config: None,
545 }
546 }
547}
548
549impl AlgorithmSelector {
550 fn new(algorithm_space: &crate::automl::config::AlgorithmSearchSpace) -> Self {
551 Self {
552 algorithms: Vec::new(),
553 selection_strategy: AlgorithmSelectionStrategy::PerformanceBased,
554 performance_predictor: AlgorithmPerformancePredictor::new(),
555 }
556 }
557
558 fn select_algorithm(
559 &self,
560 data_analysis: &DataAnalysis,
561 task_type: &Option<crate::automl::config::MLTaskType>,
562 ) -> Result<AlgorithmCandidate> {
563 Ok(AlgorithmCandidate {
565 algorithm_type: AlgorithmType::QuantumNeuralNetwork,
566 quantum_enhancement: QuantumEnhancementLevel::QuantumHybrid,
567 estimated_performance: 0.8,
568 resource_requirements: ResourceRequirements {
569 computational_complexity: 1.0,
570 memory_requirements: 256.0,
571 quantum_requirements: QuantumResourceRequirements {
572 required_qubits: 4,
573 required_circuit_depth: 6,
574 required_coherence_time: 100.0,
575 required_gate_fidelity: 0.99,
576 },
577 training_time_estimate: 300.0,
578 },
579 })
580 }
581}
582
583impl AlgorithmPerformancePredictor {
584 fn new() -> Self {
585 Self {
586 meta_model: None,
587 performance_database: PerformanceDatabase::new(),
588 prediction_strategy: PerformancePredictionStrategy::SimilarityBased,
589 }
590 }
591}
592
593impl PerformanceDatabase {
594 fn new() -> Self {
595 Self {
596 records: Vec::new(),
597 }
598 }
599}
600
601impl PipelineValidator {
602 fn new(evaluation_config: &crate::automl::config::EvaluationConfig) -> Self {
603 Self {
604 validation_rules: Vec::new(),
605 performance_validators: Vec::new(),
606 }
607 }
608
609 fn validate(
610 &self,
611 pipeline: &QuantumMLPipeline,
612 X: &Array2<f64>,
613 y: &Array1<f64>,
614 ) -> Result<()> {
615 Ok(())
617 }
618}