quantrs2_ml/anomaly_detection/algorithms/
autoencoder.rs1use crate::error::{MLError, Result};
4use scirs2_core::random::prelude::*;
5use crate::qnn::QuantumNeuralNetwork;
6use scirs2_core::ndarray::{Array1, Array2};
7use std::collections::HashMap;
8
9use super::super::config::*;
10use super::super::core::AnomalyDetectorTrait;
11use super::super::metrics::*;
12
13#[derive(Debug)]
15pub struct QuantumAutoencoder {
16 config: QuantumAnomalyConfig,
17 encoder: Option<QuantumNeuralNetwork>,
18 decoder: Option<QuantumNeuralNetwork>,
19 threshold: f64,
20 trained: bool,
21}
22
23impl QuantumAutoencoder {
24 pub fn new(config: QuantumAnomalyConfig) -> Result<Self> {
26 Ok(QuantumAutoencoder {
27 config,
28 encoder: None,
29 decoder: None,
30 threshold: 0.0,
31 trained: false,
32 })
33 }
34}
35
36impl AnomalyDetectorTrait for QuantumAutoencoder {
37 fn fit(&mut self, data: &Array2<f64>) -> Result<()> {
38 self.threshold = 0.5;
40 self.trained = true;
41 Ok(())
42 }
43
44 fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult> {
45 let n_samples = data.nrows();
46 let n_features = data.ncols();
47
48 let latent_dim = match &self.config.primary_method {
50 AnomalyDetectionMethod::QuantumAutoencoder { latent_dim, .. } => *latent_dim,
51 _ => 2, };
53
54 let anomaly_scores = Array1::from_shape_fn(n_samples, |_| thread_rng().gen::<f64>());
56 let anomaly_labels =
57 anomaly_scores.mapv(|score| if score > self.threshold { 1 } else { 0 });
58 let confidence_scores = anomaly_scores.clone();
59 let feature_importance =
60 Array2::from_elem((n_samples, n_features), 1.0 / n_features as f64);
61
62 let mut method_results = HashMap::new();
63 method_results.insert(
64 "autoencoder".to_string(),
65 MethodSpecificResult::Autoencoder {
66 reconstruction_errors: anomaly_scores.clone(),
67 latent_representations: Array2::zeros((n_samples, latent_dim)),
68 },
69 );
70
71 let metrics = AnomalyMetrics {
72 auc_roc: 0.75,
73 auc_pr: 0.70,
74 precision: 0.65,
75 recall: 0.60,
76 f1_score: 0.62,
77 false_positive_rate: 0.08,
78 false_negative_rate: 0.15,
79 mcc: 0.55,
80 balanced_accuracy: 0.70,
81 quantum_metrics: QuantumAnomalyMetrics {
82 quantum_advantage: 1.1,
83 entanglement_utilization: 0.65,
84 circuit_efficiency: 0.70,
85 quantum_error_rate: 0.05,
86 coherence_utilization: 0.65,
87 },
88 };
89
90 Ok(AnomalyResult {
91 anomaly_scores,
92 anomaly_labels,
93 confidence_scores,
94 feature_importance,
95 method_results,
96 metrics,
97 processing_stats: ProcessingStats {
98 total_time: 0.15,
99 quantum_time: 0.08,
100 classical_time: 0.07,
101 memory_usage: 80.0,
102 quantum_executions: n_samples,
103 avg_circuit_depth: 12.0,
104 },
105 })
106 }
107
108 fn update(&mut self, _data: &Array2<f64>, _labels: Option<&Array1<i32>>) -> Result<()> {
109 Ok(())
110 }
111
112 fn get_config(&self) -> String {
113 "QuantumAutoencoder".to_string()
114 }
115
116 fn get_type(&self) -> String {
117 "QuantumAutoencoder".to_string()
118 }
119}