create_data_encoding_circuit

Function create_data_encoding_circuit 

Source
pub fn create_data_encoding_circuit(
    num_qubits: usize,
    encoding_type: DataEncodingType,
) -> Result<DynamicCircuit>
Expand description

Create quantum data encoding circuit

Examples found in repository?
examples/tensorflow_quantum_demo.rs (lines 199-202)
14fn main() -> Result<()> {
15    println!("=== TensorFlow Quantum Compatibility Demo ===\n");
16
17    // Step 1: Create TFQ-style quantum circuits
18    println!("1. Creating TensorFlow Quantum style circuits...");
19
20    let (circuits, circuit_symbols) = create_tfq_circuits()?;
21    println!(
22        "   - Created {} parameterized quantum circuits",
23        circuits.len()
24    );
25    println!("   - Circuit symbols: {:?}", circuit_symbols);
26
27    // Step 2: Build TFQ-style model with PQC layers
28    println!("\n2. Building TFQ-compatible model...");
29
30    let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
31
32    // Add quantum circuit layer (equivalent to tfq.layers.PQC)
33    // Note: QuantumCircuitLayer does not implement TFQLayer in current API
34    // model.add_layer(Box::new(QuantumCircuitLayer::new(
35    //     circuits[0].clone(),
36    //     circuit_symbols.clone(),
37    //     Observable::PauliZ(vec![0]),
38    //     Arc::new(StatevectorBackend::new(8))
39    // )));
40    println!("   - Quantum circuit layer placeholder added");
41
42    // Add classical preprocessing layer
43    // Note: TFQDenseLayer not implemented in current API
44    // model.add_layer(Box::new(TFQDenseLayer::new(
45    //     4, 8,
46    //     ActivationFunction::ReLU,
47    //     ParameterInitStrategy::XavierUniform
48    // )?));
49
50    // Add PQC layer with different observable
51    // Note: PQCLayer not implemented in current API
52    // model.add_layer(Box::new(PQCLayer::new(
53    //     circuits[1].clone(),
54    //     Observable::PauliZ(vec![1]),
55    //     RegularizationType::L2(0.01)
56    // )?));
57
58    // Add quantum convolutional layer
59    // Note: QuantumConvolutionalLayer not implemented in current API
60    // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
61    //     circuits[2].clone(),
62    //     (2, 2), // kernel_size
63    //     PaddingType::Valid,
64    //     2       // stride
65    // )?));
66
67    // Final output layer
68    // Note: TFQDenseLayer not implemented in current API
69    // model.add_layer(Box::new(TFQDenseLayer::new(
70    //     8, 2,
71    //     ActivationFunction::Softmax,
72    //     ParameterInitStrategy::HeNormal
73    // )?));
74
75    println!("   Model architecture:");
76    // model.summary(); // Not implemented in current API
77
78    // Step 3: Create TFQ-style quantum dataset
79    println!("\n3. Creating TensorFlow Quantum dataset...");
80
81    let quantum_dataset = create_tfq_quantum_dataset()?;
82    // println!("   - Dataset size: {}", quantum_dataset.size());
83    // println!("   - Data encoding: {:?}", quantum_dataset.encoding_type());
84    // println!("   - Batch size: {}", quantum_dataset.batch_size());
85    println!("   - Quantum dataset created successfully");
86
87    // Step 4: Configure TFQ-style training
88    println!("\n4. Configuring TFQ training setup...");
89
90    let optimizer = TFQOptimizer::Adam {
91        learning_rate: 0.001,
92        beta1: 0.9,
93        beta2: 0.999,
94        epsilon: 1e-7,
95    };
96
97    let loss_function = TFQLossFunction::CategoricalCrossentropy;
98
99    model.compile()?;
100
101    println!("   - Optimizer: Adam");
102    println!("   - Loss: Sparse Categorical Crossentropy");
103    println!("   - Metrics: Accuracy, Precision, Recall");
104
105    // Step 5: Train with TFQ-style fit method
106    println!("\n5. Training with TensorFlow Quantum style...");
107
108    // Note: fit method not fully implemented in current API
109    // let history = model.fit(
110    //     &quantum_dataset,
111    //     15,    // epochs
112    //     0.2,   // validation_split
113    //     1,     // verbose
114    //     vec![
115    //         Box::new(EarlyStoppingCallback::new(3, "val_loss")),      // patience, monitor
116    //         Box::new(ReduceLROnPlateauCallback::new(0.5, 2)),         // factor, patience
117    //     ]
118    // )?;
119    println!("   Training setup configured (fit method placeholder)");
120
121    // println!("   Training completed!");
122    // println!("   - Final training accuracy: {:.3}", history.final_metric("accuracy"));
123    // println!("   - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
124    // println!("   - Best epoch: {}", history.best_epoch());
125    println!("   Training placeholder completed");
126
127    // Step 6: Evaluate model performance
128    println!("\n6. Model evaluation...");
129
130    let test_dataset = create_tfq_test_dataset()?;
131    // let evaluation_results = model.evaluate(&test_dataset, 1)?;  // verbose
132    //
133    // println!("   Test Results:");
134    // for (metric, value) in evaluation_results.iter() {
135    //     println!("   - {}: {:.4}", metric, value);
136    // }
137    println!("   Test dataset created successfully");
138
139    // Step 7: Quantum circuit analysis
140    println!("\n7. Quantum circuit analysis...");
141
142    // let circuit_analysis = model.analyze_quantum_circuits()?;
143    // println!("   Circuit Properties:");
144    // println!("   - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
145    // println!("   - Circuit depth: {}", circuit_analysis.max_circuit_depth);
146    // println!("   - Gate types used: {:?}", circuit_analysis.gate_types);
147    // println!("   - Entangling gates: {}", circuit_analysis.entangling_gate_count);
148    println!("   Circuit analysis placeholder completed");
149
150    // Step 8: Parameter shift gradients (TFQ-style)
151    println!("\n8. Computing parameter shift gradients...");
152
153    // let sample_input = quantum_dataset.get_batch(0)?;
154    // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
155    println!("   Parameter shift gradients placeholder");
156
157    // println!("   Gradient Analysis:");
158    // println!("   - Quantum gradients computed: {}", gradients.quantum_gradients.len());
159    // println!("   - Classical gradients computed: {}", gradients.classical_gradients.len());
160    // println!("   - Max quantum gradient: {:.6}",
161    //     gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
162    // println!("   - Gradient variance: {:.6}",
163    //     compute_gradient_variance(&gradients.quantum_gradients));
164    println!("   Gradient analysis placeholder completed");
165
166    // Step 9: Quantum expectation values
167    println!("\n9. Computing quantum expectation values...");
168
169    let observables = vec![Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
170
171    // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
172    // println!("   Expectation Values:");
173    // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
174    //     println!("   - Observable {}: {:.4}", i, val);
175    // }
176    println!("   Expectation values placeholder completed");
177
178    // Step 10: TFQ utils demonstrations
179    println!("\n10. TensorFlow Quantum utilities...");
180
181    // Circuit conversion
182    let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
183    let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
184    println!("    - Converted circuit to TFQ format (placeholder)");
185
186    // Batch circuit execution
187    // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
188    // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
189    // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
190    // println!("    - Batch execution results shape: {:?}", batch_results.dim());
191    println!("    - Batch execution placeholder completed");
192
193    // Data encoding utilities
194    let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
195    // let encoded_circuits = tfq_utils::encode_data_to_circuits(
196    //     &classical_data,
197    //     DataEncodingType::Angle
198    // )?;
199    let encoded_circuits = vec![tfq_utils::create_data_encoding_circuit(
200        4,
201        DataEncodingType::Angle,
202    )?];
203    println!(
204        "    - Encoded {} data points to quantum circuits",
205        encoded_circuits.len()
206    );
207
208    // Step 11: Compare with TensorFlow classical model
209    println!("\n11. Comparing with TensorFlow classical equivalent...");
210
211    let classical_model = create_tensorflow_classical_model()?;
212    // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
213    //
214    // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
215    // println!("    - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
216    // println!("    - Classical TF model accuracy: {:.3}", classical_accuracy);
217    // println!("    - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
218    println!("    - Classical comparison placeholder completed");
219
220    // Step 12: Model export (TFQ format)
221    println!("\n12. Exporting model in TFQ format...");
222
223    // model.save_tfq_format("quantum_model_tfq.pb")?;
224    // println!("    - Model exported to: quantum_model_tfq.pb");
225    //
226    // // Export to TensorFlow SavedModel format
227    // model.export_savedmodel("quantum_model_savedmodel/")?;
228    // println!("    - SavedModel exported to: quantum_model_savedmodel/");
229    println!("    - Model export placeholder completed");
230
231    // Step 13: Advanced TFQ features
232    println!("\n13. Advanced TensorFlow Quantum features...");
233
234    // Quantum data augmentation
235    // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
236    // println!("    - Created augmented dataset with noise level 0.05");
237    //
238    // // Circuit optimization for hardware
239    // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
240    //     &circuits,
241    //     HardwareType::IonQ
242    // )?;
243    // println!("    - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
244    //
245    // // Barren plateau analysis
246    // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
247    // println!("    - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
248    // println!("    - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
249    println!("    - Advanced features placeholder completed");
250
251    println!("\n=== TensorFlow Quantum Demo Complete ===");
252
253    Ok(())
254}
255
256fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
257    let mut circuits = Vec::new();
258    let mut symbols = Vec::new();
259
260    // Circuit 1: Basic parameterized circuit
261    let mut circuit1 = CircuitBuilder::new();
262    circuit1.ry(0, 0.0)?;
263    circuit1.ry(1, 0.0)?;
264    circuit1.cnot(0, 1)?;
265    circuit1.ry(2, 0.0)?;
266    circuit1.cnot(1, 2)?;
267    circuits.push(circuit1.build());
268    symbols.extend(vec![
269        "theta_0".to_string(),
270        "theta_1".to_string(),
271        "theta_2".to_string(),
272    ]);
273
274    // Circuit 2: Entangling circuit
275    let mut circuit2 = CircuitBuilder::new();
276    circuit2.h(0)?;
277    circuit2.cnot(0, 1)?;
278    circuit2.cnot(1, 2)?;
279    circuit2.cnot(2, 3)?;
280    circuit2.ry(0, 0.0)?;
281    circuit2.ry(1, 0.0)?;
282    circuits.push(circuit2.build());
283    symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
284
285    // Circuit 3: Convolutional-style circuit
286    let mut circuit3 = CircuitBuilder::new();
287    circuit3.ry(0, 0.0)?;
288    circuit3.ry(1, 0.0)?;
289    circuit3.cnot(0, 1)?;
290    circuits.push(circuit3.build());
291    symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
292
293    Ok((circuits, symbols))
294}
295
296fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
297    let num_samples = 1000;
298    let num_features = 4;
299
300    // Create classical data
301    let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
302        let noise = fastrand::f64() * 0.1;
303        ((i as f64 * 0.01) + (j as f64 * 0.1)).sin() + noise
304    });
305
306    // Create labels (binary classification)
307    let labels = Array1::from_shape_fn(num_samples, |i| {
308        let sum = (0..num_features)
309            .map(|j| classical_data[[i, j]])
310            .sum::<f64>();
311        if sum > 0.0 {
312            1.0
313        } else {
314            0.0
315        }
316    });
317
318    // Create quantum circuits for the dataset
319    let circuits =
320        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
321            .into_iter()
322            .map(|dc| match dc {
323                DynamicCircuit::Circuit8(c) => c,
324                _ => panic!("Expected Circuit8"),
325            })
326            .collect();
327
328    // Create quantum dataset with angle encoding
329    QuantumDataset::new(
330        circuits,
331        classical_data,
332        labels,
333        32, // batch_size
334    )
335}
336
337fn create_tfq_test_dataset() -> Result<QuantumDataset> {
338    let num_samples = 200;
339    let num_features = 4;
340
341    let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
342        let noise = fastrand::f64() * 0.1;
343        ((i as f64 * 0.015) + (j as f64 * 0.12)).sin() + noise
344    });
345
346    let test_labels = Array1::from_shape_fn(num_samples, |i| {
347        let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
348        if sum > 0.0 {
349            1.0
350        } else {
351            0.0
352        }
353    });
354
355    // Create quantum circuits for the test dataset
356    let test_circuits =
357        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
358            .into_iter()
359            .map(|dc| match dc {
360                DynamicCircuit::Circuit8(c) => c,
361                _ => panic!("Expected Circuit8"),
362            })
363            .collect();
364
365    QuantumDataset::new(test_circuits, test_data, test_labels, 32)
366}