tensorflow_quantum_demo/
tensorflow_quantum_demo.rs

1//! TensorFlow Quantum Compatibility Example
2//!
3//! This example demonstrates the TensorFlow Quantum (TFQ) compatibility layer,
4//! showing how to use TFQ-style APIs, PQC layers, and quantum datasets.
5
6use ndarray::{Array1, Array2, Array3, Axis};
7use quantrs2_circuit::prelude::{Circuit, CircuitBuilder};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::simulator_backends::DynamicCircuit;
10use std::collections::HashMap;
11use std::sync::Arc;
12
13fn main() -> Result<()> {
14    println!("=== TensorFlow Quantum Compatibility Demo ===\n");
15
16    // Step 1: Create TFQ-style quantum circuits
17    println!("1. Creating TensorFlow Quantum style circuits...");
18
19    let (circuits, circuit_symbols) = create_tfq_circuits()?;
20    println!(
21        "   - Created {} parameterized quantum circuits",
22        circuits.len()
23    );
24    println!("   - Circuit symbols: {:?}", circuit_symbols);
25
26    // Step 2: Build TFQ-style model with PQC layers
27    println!("\n2. Building TFQ-compatible model...");
28
29    let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
30
31    // Add quantum circuit layer (equivalent to tfq.layers.PQC)
32    // Note: QuantumCircuitLayer does not implement TFQLayer in current API
33    // model.add_layer(Box::new(QuantumCircuitLayer::new(
34    //     circuits[0].clone(),
35    //     circuit_symbols.clone(),
36    //     Observable::PauliZ(vec![0]),
37    //     Arc::new(StatevectorBackend::new(8))
38    // )));
39    println!("   - Quantum circuit layer placeholder added");
40
41    // Add classical preprocessing layer
42    // Note: TFQDenseLayer not implemented in current API
43    // model.add_layer(Box::new(TFQDenseLayer::new(
44    //     4, 8,
45    //     ActivationFunction::ReLU,
46    //     ParameterInitStrategy::XavierUniform
47    // )?));
48
49    // Add PQC layer with different observable
50    // Note: PQCLayer not implemented in current API
51    // model.add_layer(Box::new(PQCLayer::new(
52    //     circuits[1].clone(),
53    //     Observable::PauliZ(vec![1]),
54    //     RegularizationType::L2(0.01)
55    // )?));
56
57    // Add quantum convolutional layer
58    // Note: QuantumConvolutionalLayer not implemented in current API
59    // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
60    //     circuits[2].clone(),
61    //     (2, 2), // kernel_size
62    //     PaddingType::Valid,
63    //     2       // stride
64    // )?));
65
66    // Final output layer
67    // Note: TFQDenseLayer not implemented in current API
68    // model.add_layer(Box::new(TFQDenseLayer::new(
69    //     8, 2,
70    //     ActivationFunction::Softmax,
71    //     ParameterInitStrategy::HeNormal
72    // )?));
73
74    println!("   Model architecture:");
75    // model.summary(); // Not implemented in current API
76
77    // Step 3: Create TFQ-style quantum dataset
78    println!("\n3. Creating TensorFlow Quantum dataset...");
79
80    let quantum_dataset = create_tfq_quantum_dataset()?;
81    // println!("   - Dataset size: {}", quantum_dataset.size());
82    // println!("   - Data encoding: {:?}", quantum_dataset.encoding_type());
83    // println!("   - Batch size: {}", quantum_dataset.batch_size());
84    println!("   - Quantum dataset created successfully");
85
86    // Step 4: Configure TFQ-style training
87    println!("\n4. Configuring TFQ training setup...");
88
89    let optimizer = TFQOptimizer::Adam {
90        learning_rate: 0.001,
91        beta1: 0.9,
92        beta2: 0.999,
93        epsilon: 1e-7,
94    };
95
96    let loss_function = TFQLossFunction::CategoricalCrossentropy;
97
98    model.compile()?;
99
100    println!("   - Optimizer: Adam");
101    println!("   - Loss: Sparse Categorical Crossentropy");
102    println!("   - Metrics: Accuracy, Precision, Recall");
103
104    // Step 5: Train with TFQ-style fit method
105    println!("\n5. Training with TensorFlow Quantum style...");
106
107    // Note: fit method not fully implemented in current API
108    // let history = model.fit(
109    //     &quantum_dataset,
110    //     15,    // epochs
111    //     0.2,   // validation_split
112    //     1,     // verbose
113    //     vec![
114    //         Box::new(EarlyStoppingCallback::new(3, "val_loss")),      // patience, monitor
115    //         Box::new(ReduceLROnPlateauCallback::new(0.5, 2)),         // factor, patience
116    //     ]
117    // )?;
118    println!("   Training setup configured (fit method placeholder)");
119
120    // println!("   Training completed!");
121    // println!("   - Final training accuracy: {:.3}", history.final_metric("accuracy"));
122    // println!("   - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
123    // println!("   - Best epoch: {}", history.best_epoch());
124    println!("   Training placeholder completed");
125
126    // Step 6: Evaluate model performance
127    println!("\n6. Model evaluation...");
128
129    let test_dataset = create_tfq_test_dataset()?;
130    // let evaluation_results = model.evaluate(&test_dataset, 1)?;  // verbose
131    //
132    // println!("   Test Results:");
133    // for (metric, value) in evaluation_results.iter() {
134    //     println!("   - {}: {:.4}", metric, value);
135    // }
136    println!("   Test dataset created successfully");
137
138    // Step 7: Quantum circuit analysis
139    println!("\n7. Quantum circuit analysis...");
140
141    // let circuit_analysis = model.analyze_quantum_circuits()?;
142    // println!("   Circuit Properties:");
143    // println!("   - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
144    // println!("   - Circuit depth: {}", circuit_analysis.max_circuit_depth);
145    // println!("   - Gate types used: {:?}", circuit_analysis.gate_types);
146    // println!("   - Entangling gates: {}", circuit_analysis.entangling_gate_count);
147    println!("   Circuit analysis placeholder completed");
148
149    // Step 8: Parameter shift gradients (TFQ-style)
150    println!("\n8. Computing parameter shift gradients...");
151
152    // let sample_input = quantum_dataset.get_batch(0)?;
153    // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
154    println!("   Parameter shift gradients placeholder");
155
156    // println!("   Gradient Analysis:");
157    // println!("   - Quantum gradients computed: {}", gradients.quantum_gradients.len());
158    // println!("   - Classical gradients computed: {}", gradients.classical_gradients.len());
159    // println!("   - Max quantum gradient: {:.6}",
160    //     gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
161    // println!("   - Gradient variance: {:.6}",
162    //     compute_gradient_variance(&gradients.quantum_gradients));
163    println!("   Gradient analysis placeholder completed");
164
165    // Step 9: Quantum expectation values
166    println!("\n9. Computing quantum expectation values...");
167
168    let observables = vec![Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
169
170    // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
171    // println!("   Expectation Values:");
172    // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
173    //     println!("   - Observable {}: {:.4}", i, val);
174    // }
175    println!("   Expectation values placeholder completed");
176
177    // Step 10: TFQ utils demonstrations
178    println!("\n10. TensorFlow Quantum utilities...");
179
180    // Circuit conversion
181    let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
182    let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
183    println!("    - Converted circuit to TFQ format (placeholder)");
184
185    // Batch circuit execution
186    // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
187    // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
188    // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
189    // println!("    - Batch execution results shape: {:?}", batch_results.dim());
190    println!("    - Batch execution placeholder completed");
191
192    // Data encoding utilities
193    let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
194    // let encoded_circuits = tfq_utils::encode_data_to_circuits(
195    //     &classical_data,
196    //     DataEncodingType::Angle
197    // )?;
198    let encoded_circuits = vec![tfq_utils::create_data_encoding_circuit(
199        4,
200        DataEncodingType::Angle,
201    )?];
202    println!(
203        "    - Encoded {} data points to quantum circuits",
204        encoded_circuits.len()
205    );
206
207    // Step 11: Compare with TensorFlow classical model
208    println!("\n11. Comparing with TensorFlow classical equivalent...");
209
210    let classical_model = create_tensorflow_classical_model()?;
211    // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
212    //
213    // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
214    // println!("    - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
215    // println!("    - Classical TF model accuracy: {:.3}", classical_accuracy);
216    // println!("    - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
217    println!("    - Classical comparison placeholder completed");
218
219    // Step 12: Model export (TFQ format)
220    println!("\n12. Exporting model in TFQ format...");
221
222    // model.save_tfq_format("quantum_model_tfq.pb")?;
223    // println!("    - Model exported to: quantum_model_tfq.pb");
224    //
225    // // Export to TensorFlow SavedModel format
226    // model.export_savedmodel("quantum_model_savedmodel/")?;
227    // println!("    - SavedModel exported to: quantum_model_savedmodel/");
228    println!("    - Model export placeholder completed");
229
230    // Step 13: Advanced TFQ features
231    println!("\n13. Advanced TensorFlow Quantum features...");
232
233    // Quantum data augmentation
234    // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
235    // println!("    - Created augmented dataset with noise level 0.05");
236    //
237    // // Circuit optimization for hardware
238    // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
239    //     &circuits,
240    //     HardwareType::IonQ
241    // )?;
242    // println!("    - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
243    //
244    // // Barren plateau analysis
245    // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
246    // println!("    - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
247    // println!("    - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
248    println!("    - Advanced features placeholder completed");
249
250    println!("\n=== TensorFlow Quantum Demo Complete ===");
251
252    Ok(())
253}
254
255fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
256    let mut circuits = Vec::new();
257    let mut symbols = Vec::new();
258
259    // Circuit 1: Basic parameterized circuit
260    let mut circuit1 = CircuitBuilder::new();
261    circuit1.ry(0, 0.0)?;
262    circuit1.ry(1, 0.0)?;
263    circuit1.cnot(0, 1)?;
264    circuit1.ry(2, 0.0)?;
265    circuit1.cnot(1, 2)?;
266    circuits.push(circuit1.build());
267    symbols.extend(vec![
268        "theta_0".to_string(),
269        "theta_1".to_string(),
270        "theta_2".to_string(),
271    ]);
272
273    // Circuit 2: Entangling circuit
274    let mut circuit2 = CircuitBuilder::new();
275    circuit2.h(0)?;
276    circuit2.cnot(0, 1)?;
277    circuit2.cnot(1, 2)?;
278    circuit2.cnot(2, 3)?;
279    circuit2.ry(0, 0.0)?;
280    circuit2.ry(1, 0.0)?;
281    circuits.push(circuit2.build());
282    symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
283
284    // Circuit 3: Convolutional-style circuit
285    let mut circuit3 = CircuitBuilder::new();
286    circuit3.ry(0, 0.0)?;
287    circuit3.ry(1, 0.0)?;
288    circuit3.cnot(0, 1)?;
289    circuits.push(circuit3.build());
290    symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
291
292    Ok((circuits, symbols))
293}
294
295fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
296    let num_samples = 1000;
297    let num_features = 4;
298
299    // Create classical data
300    let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
301        let noise = fastrand::f64() * 0.1;
302        ((i as f64 * 0.01) + (j as f64 * 0.1)).sin() + noise
303    });
304
305    // Create labels (binary classification)
306    let labels = Array1::from_shape_fn(num_samples, |i| {
307        let sum = (0..num_features)
308            .map(|j| classical_data[[i, j]])
309            .sum::<f64>();
310        if sum > 0.0 {
311            1.0
312        } else {
313            0.0
314        }
315    });
316
317    // Create quantum circuits for the dataset
318    let circuits =
319        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
320            .into_iter()
321            .map(|dc| match dc {
322                DynamicCircuit::Circuit8(c) => c,
323                _ => panic!("Expected Circuit8"),
324            })
325            .collect();
326
327    // Create quantum dataset with angle encoding
328    QuantumDataset::new(
329        circuits,
330        classical_data,
331        labels,
332        32, // batch_size
333    )
334}
335
336fn create_tfq_test_dataset() -> Result<QuantumDataset> {
337    let num_samples = 200;
338    let num_features = 4;
339
340    let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
341        let noise = fastrand::f64() * 0.1;
342        ((i as f64 * 0.015) + (j as f64 * 0.12)).sin() + noise
343    });
344
345    let test_labels = Array1::from_shape_fn(num_samples, |i| {
346        let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
347        if sum > 0.0 {
348            1.0
349        } else {
350            0.0
351        }
352    });
353
354    // Create quantum circuits for the test dataset
355    let test_circuits =
356        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
357            .into_iter()
358            .map(|dc| match dc {
359                DynamicCircuit::Circuit8(c) => c,
360                _ => panic!("Expected Circuit8"),
361            })
362            .collect();
363
364    QuantumDataset::new(test_circuits, test_data, test_labels, 32)
365}
366
367fn compute_gradient_variance(gradients: &[f64]) -> f64 {
368    let mean = gradients.iter().sum::<f64>() / gradients.len() as f64;
369    let variance =
370        gradients.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / gradients.len() as f64;
371    variance
372}
373
374fn create_tensorflow_classical_model() -> Result<()> {
375    // Placeholder for classical TensorFlow model creation
376    Ok(())
377}
378
379// Placeholder function for remaining code
380fn placeholder_function() -> Result<()> {
381    // Ok(TensorFlowClassicalModel::new(vec![
382    //     TFLayer::Dense { units: 8, activation: "relu" },
383    //     TFLayer::Dense { units: 4, activation: "relu" },
384    //     TFLayer::Dense { units: 2, activation: "softmax" },
385    // ]))
386    Ok(())
387}
388
389// fn train_classical_tensorflow_model(
390//     mut model: TensorFlowClassicalModel,
391//     dataset: &QuantumDataset
392// ) -> Result<f64> {
393//     // Simplified classical training for comparison
394//     model.compile("adam", "sparse_categorical_crossentropy", vec!["accuracy"])?;
395//     let history = model.fit(dataset, 10, 0.2)?;
396//     Ok(history.final_metric("val_accuracy"))
397// }
398
399fn analyze_barren_plateaus(
400    model: &TFQModel,
401    dataset: &QuantumDataset,
402) -> Result<BarrenPlateauAnalysis> {
403    // Analyze gradient variance across training
404    // let sample_batch = dataset.get_batch(0)?;
405    // let gradients = model.compute_parameter_shift_gradients(&sample_batch)?;
406    println!("   Sample batch and gradients placeholder");
407
408    // let variance = compute_gradient_variance(&gradients.quantum_gradients);
409    let variance = 0.001; // placeholder
410    let risk_score = if variance < 1e-6 {
411        0.9
412    } else if variance < 1e-3 {
413        0.5
414    } else {
415        0.1
416    };
417
418    let mitigation_strategy = if risk_score > 0.7 {
419        "Consider parameter initialization strategies or circuit pre-training".to_string()
420    } else if risk_score > 0.3 {
421        "Monitor gradient variance during training".to_string()
422    } else {
423        "Low barren plateau risk detected".to_string()
424    };
425
426    Ok(BarrenPlateauAnalysis {
427        risk_score,
428        gradient_variance: variance,
429        mitigation_strategy,
430    })
431}
432
433// Supporting structs and implementations (simplified for demo)
434struct BarrenPlateauAnalysis {
435    risk_score: f64,
436    gradient_variance: f64,
437    mitigation_strategy: String,
438}
439
440struct TensorFlowClassicalModel {
441    layers: Vec<TFLayer>,
442}
443
444impl TensorFlowClassicalModel {
445    fn new(layers: Vec<TFLayer>) -> Self {
446        Self { layers }
447    }
448
449    fn compile(&mut self, _optimizer: &str, _loss: &str, _metrics: Vec<&str>) -> Result<()> {
450        Ok(())
451    }
452
453    fn fit(
454        &mut self,
455        _dataset: &QuantumDataset,
456        _epochs: usize,
457        _validation_split: f64,
458    ) -> Result<TrainingHistory> {
459        Ok(TrainingHistory::new())
460    }
461}
462
463enum TFLayer {
464    Dense {
465        units: usize,
466        activation: &'static str,
467    },
468}
469
470struct TrainingHistory {
471    metrics: HashMap<String, f64>,
472}
473
474impl TrainingHistory {
475    fn new() -> Self {
476        let mut metrics = HashMap::new();
477        metrics.insert("val_accuracy".to_string(), 0.75); // Mock value
478        Self { metrics }
479    }
480
481    fn final_metric(&self, metric: &str) -> f64 {
482        *self.metrics.get(metric).unwrap_or(&0.0)
483    }
484}
485
486enum HardwareType {
487    IonQ,
488    IBM,
489    Google,
490}
491
492enum ReductionType {
493    Mean,
494    Sum,
495    None,
496}