tensorflow_quantum_demo/tensorflow_quantum_demo.rs
1//! TensorFlow Quantum Compatibility Example
2//!
3//! This example demonstrates the TensorFlow Quantum (TFQ) compatibility layer,
4//! showing how to use TFQ-style APIs, PQC layers, and quantum datasets.
5
6use ndarray::{Array1, Array2, Array3, Axis};
7use quantrs2_circuit::prelude::{Circuit, CircuitBuilder};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::simulator_backends::DynamicCircuit;
10use std::collections::HashMap;
11use std::sync::Arc;
12
13fn main() -> Result<()> {
14 println!("=== TensorFlow Quantum Compatibility Demo ===\n");
15
16 // Step 1: Create TFQ-style quantum circuits
17 println!("1. Creating TensorFlow Quantum style circuits...");
18
19 let (circuits, circuit_symbols) = create_tfq_circuits()?;
20 println!(
21 " - Created {} parameterized quantum circuits",
22 circuits.len()
23 );
24 println!(" - Circuit symbols: {:?}", circuit_symbols);
25
26 // Step 2: Build TFQ-style model with PQC layers
27 println!("\n2. Building TFQ-compatible model...");
28
29 let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
30
31 // Add quantum circuit layer (equivalent to tfq.layers.PQC)
32 // Note: QuantumCircuitLayer does not implement TFQLayer in current API
33 // model.add_layer(Box::new(QuantumCircuitLayer::new(
34 // circuits[0].clone(),
35 // circuit_symbols.clone(),
36 // Observable::PauliZ(vec![0]),
37 // Arc::new(StatevectorBackend::new(8))
38 // )));
39 println!(" - Quantum circuit layer placeholder added");
40
41 // Add classical preprocessing layer
42 // Note: TFQDenseLayer not implemented in current API
43 // model.add_layer(Box::new(TFQDenseLayer::new(
44 // 4, 8,
45 // ActivationFunction::ReLU,
46 // ParameterInitStrategy::XavierUniform
47 // )?));
48
49 // Add PQC layer with different observable
50 // Note: PQCLayer not implemented in current API
51 // model.add_layer(Box::new(PQCLayer::new(
52 // circuits[1].clone(),
53 // Observable::PauliZ(vec![1]),
54 // RegularizationType::L2(0.01)
55 // )?));
56
57 // Add quantum convolutional layer
58 // Note: QuantumConvolutionalLayer not implemented in current API
59 // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
60 // circuits[2].clone(),
61 // (2, 2), // kernel_size
62 // PaddingType::Valid,
63 // 2 // stride
64 // )?));
65
66 // Final output layer
67 // Note: TFQDenseLayer not implemented in current API
68 // model.add_layer(Box::new(TFQDenseLayer::new(
69 // 8, 2,
70 // ActivationFunction::Softmax,
71 // ParameterInitStrategy::HeNormal
72 // )?));
73
74 println!(" Model architecture:");
75 // model.summary(); // Not implemented in current API
76
77 // Step 3: Create TFQ-style quantum dataset
78 println!("\n3. Creating TensorFlow Quantum dataset...");
79
80 let quantum_dataset = create_tfq_quantum_dataset()?;
81 // println!(" - Dataset size: {}", quantum_dataset.size());
82 // println!(" - Data encoding: {:?}", quantum_dataset.encoding_type());
83 // println!(" - Batch size: {}", quantum_dataset.batch_size());
84 println!(" - Quantum dataset created successfully");
85
86 // Step 4: Configure TFQ-style training
87 println!("\n4. Configuring TFQ training setup...");
88
89 let optimizer = TFQOptimizer::Adam {
90 learning_rate: 0.001,
91 beta1: 0.9,
92 beta2: 0.999,
93 epsilon: 1e-7,
94 };
95
96 let loss_function = TFQLossFunction::CategoricalCrossentropy;
97
98 model.compile()?;
99
100 println!(" - Optimizer: Adam");
101 println!(" - Loss: Sparse Categorical Crossentropy");
102 println!(" - Metrics: Accuracy, Precision, Recall");
103
104 // Step 5: Train with TFQ-style fit method
105 println!("\n5. Training with TensorFlow Quantum style...");
106
107 // Note: fit method not fully implemented in current API
108 // let history = model.fit(
109 // &quantum_dataset,
110 // 15, // epochs
111 // 0.2, // validation_split
112 // 1, // verbose
113 // vec![
114 // Box::new(EarlyStoppingCallback::new(3, "val_loss")), // patience, monitor
115 // Box::new(ReduceLROnPlateauCallback::new(0.5, 2)), // factor, patience
116 // ]
117 // )?;
118 println!(" Training setup configured (fit method placeholder)");
119
120 // println!(" Training completed!");
121 // println!(" - Final training accuracy: {:.3}", history.final_metric("accuracy"));
122 // println!(" - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
123 // println!(" - Best epoch: {}", history.best_epoch());
124 println!(" Training placeholder completed");
125
126 // Step 6: Evaluate model performance
127 println!("\n6. Model evaluation...");
128
129 let test_dataset = create_tfq_test_dataset()?;
130 // let evaluation_results = model.evaluate(&test_dataset, 1)?; // verbose
131 //
132 // println!(" Test Results:");
133 // for (metric, value) in evaluation_results.iter() {
134 // println!(" - {}: {:.4}", metric, value);
135 // }
136 println!(" Test dataset created successfully");
137
138 // Step 7: Quantum circuit analysis
139 println!("\n7. Quantum circuit analysis...");
140
141 // let circuit_analysis = model.analyze_quantum_circuits()?;
142 // println!(" Circuit Properties:");
143 // println!(" - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
144 // println!(" - Circuit depth: {}", circuit_analysis.max_circuit_depth);
145 // println!(" - Gate types used: {:?}", circuit_analysis.gate_types);
146 // println!(" - Entangling gates: {}", circuit_analysis.entangling_gate_count);
147 println!(" Circuit analysis placeholder completed");
148
149 // Step 8: Parameter shift gradients (TFQ-style)
150 println!("\n8. Computing parameter shift gradients...");
151
152 // let sample_input = quantum_dataset.get_batch(0)?;
153 // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
154 println!(" Parameter shift gradients placeholder");
155
156 // println!(" Gradient Analysis:");
157 // println!(" - Quantum gradients computed: {}", gradients.quantum_gradients.len());
158 // println!(" - Classical gradients computed: {}", gradients.classical_gradients.len());
159 // println!(" - Max quantum gradient: {:.6}",
160 // gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
161 // println!(" - Gradient variance: {:.6}",
162 // compute_gradient_variance(&gradients.quantum_gradients));
163 println!(" Gradient analysis placeholder completed");
164
165 // Step 9: Quantum expectation values
166 println!("\n9. Computing quantum expectation values...");
167
168 let observables = vec![Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
169
170 // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
171 // println!(" Expectation Values:");
172 // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
173 // println!(" - Observable {}: {:.4}", i, val);
174 // }
175 println!(" Expectation values placeholder completed");
176
177 // Step 10: TFQ utils demonstrations
178 println!("\n10. TensorFlow Quantum utilities...");
179
180 // Circuit conversion
181 let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
182 let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
183 println!(" - Converted circuit to TFQ format (placeholder)");
184
185 // Batch circuit execution
186 // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
187 // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
188 // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
189 // println!(" - Batch execution results shape: {:?}", batch_results.dim());
190 println!(" - Batch execution placeholder completed");
191
192 // Data encoding utilities
193 let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
194 // let encoded_circuits = tfq_utils::encode_data_to_circuits(
195 // &classical_data,
196 // DataEncodingType::Angle
197 // )?;
198 let encoded_circuits = vec![tfq_utils::create_data_encoding_circuit(
199 4,
200 DataEncodingType::Angle,
201 )?];
202 println!(
203 " - Encoded {} data points to quantum circuits",
204 encoded_circuits.len()
205 );
206
207 // Step 11: Compare with TensorFlow classical model
208 println!("\n11. Comparing with TensorFlow classical equivalent...");
209
210 let classical_model = create_tensorflow_classical_model()?;
211 // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
212 //
213 // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
214 // println!(" - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
215 // println!(" - Classical TF model accuracy: {:.3}", classical_accuracy);
216 // println!(" - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
217 println!(" - Classical comparison placeholder completed");
218
219 // Step 12: Model export (TFQ format)
220 println!("\n12. Exporting model in TFQ format...");
221
222 // model.save_tfq_format("quantum_model_tfq.pb")?;
223 // println!(" - Model exported to: quantum_model_tfq.pb");
224 //
225 // // Export to TensorFlow SavedModel format
226 // model.export_savedmodel("quantum_model_savedmodel/")?;
227 // println!(" - SavedModel exported to: quantum_model_savedmodel/");
228 println!(" - Model export placeholder completed");
229
230 // Step 13: Advanced TFQ features
231 println!("\n13. Advanced TensorFlow Quantum features...");
232
233 // Quantum data augmentation
234 // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
235 // println!(" - Created augmented dataset with noise level 0.05");
236 //
237 // // Circuit optimization for hardware
238 // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
239 // &circuits,
240 // HardwareType::IonQ
241 // )?;
242 // println!(" - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
243 //
244 // // Barren plateau analysis
245 // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
246 // println!(" - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
247 // println!(" - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
248 println!(" - Advanced features placeholder completed");
249
250 println!("\n=== TensorFlow Quantum Demo Complete ===");
251
252 Ok(())
253}
254
255fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
256 let mut circuits = Vec::new();
257 let mut symbols = Vec::new();
258
259 // Circuit 1: Basic parameterized circuit
260 let mut circuit1 = CircuitBuilder::new();
261 circuit1.ry(0, 0.0)?;
262 circuit1.ry(1, 0.0)?;
263 circuit1.cnot(0, 1)?;
264 circuit1.ry(2, 0.0)?;
265 circuit1.cnot(1, 2)?;
266 circuits.push(circuit1.build());
267 symbols.extend(vec![
268 "theta_0".to_string(),
269 "theta_1".to_string(),
270 "theta_2".to_string(),
271 ]);
272
273 // Circuit 2: Entangling circuit
274 let mut circuit2 = CircuitBuilder::new();
275 circuit2.h(0)?;
276 circuit2.cnot(0, 1)?;
277 circuit2.cnot(1, 2)?;
278 circuit2.cnot(2, 3)?;
279 circuit2.ry(0, 0.0)?;
280 circuit2.ry(1, 0.0)?;
281 circuits.push(circuit2.build());
282 symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
283
284 // Circuit 3: Convolutional-style circuit
285 let mut circuit3 = CircuitBuilder::new();
286 circuit3.ry(0, 0.0)?;
287 circuit3.ry(1, 0.0)?;
288 circuit3.cnot(0, 1)?;
289 circuits.push(circuit3.build());
290 symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
291
292 Ok((circuits, symbols))
293}
294
295fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
296 let num_samples = 1000;
297 let num_features = 4;
298
299 // Create classical data
300 let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
301 let noise = fastrand::f64() * 0.1;
302 ((i as f64 * 0.01) + (j as f64 * 0.1)).sin() + noise
303 });
304
305 // Create labels (binary classification)
306 let labels = Array1::from_shape_fn(num_samples, |i| {
307 let sum = (0..num_features)
308 .map(|j| classical_data[[i, j]])
309 .sum::<f64>();
310 if sum > 0.0 {
311 1.0
312 } else {
313 0.0
314 }
315 });
316
317 // Create quantum circuits for the dataset
318 let circuits =
319 vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
320 .into_iter()
321 .map(|dc| match dc {
322 DynamicCircuit::Circuit8(c) => c,
323 _ => panic!("Expected Circuit8"),
324 })
325 .collect();
326
327 // Create quantum dataset with angle encoding
328 QuantumDataset::new(
329 circuits,
330 classical_data,
331 labels,
332 32, // batch_size
333 )
334}
335
336fn create_tfq_test_dataset() -> Result<QuantumDataset> {
337 let num_samples = 200;
338 let num_features = 4;
339
340 let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
341 let noise = fastrand::f64() * 0.1;
342 ((i as f64 * 0.015) + (j as f64 * 0.12)).sin() + noise
343 });
344
345 let test_labels = Array1::from_shape_fn(num_samples, |i| {
346 let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
347 if sum > 0.0 {
348 1.0
349 } else {
350 0.0
351 }
352 });
353
354 // Create quantum circuits for the test dataset
355 let test_circuits =
356 vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
357 .into_iter()
358 .map(|dc| match dc {
359 DynamicCircuit::Circuit8(c) => c,
360 _ => panic!("Expected Circuit8"),
361 })
362 .collect();
363
364 QuantumDataset::new(test_circuits, test_data, test_labels, 32)
365}
366
367fn compute_gradient_variance(gradients: &[f64]) -> f64 {
368 let mean = gradients.iter().sum::<f64>() / gradients.len() as f64;
369 let variance =
370 gradients.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / gradients.len() as f64;
371 variance
372}
373
374fn create_tensorflow_classical_model() -> Result<()> {
375 // Placeholder for classical TensorFlow model creation
376 Ok(())
377}
378
379// Placeholder function for remaining code
380fn placeholder_function() -> Result<()> {
381 // Ok(TensorFlowClassicalModel::new(vec![
382 // TFLayer::Dense { units: 8, activation: "relu" },
383 // TFLayer::Dense { units: 4, activation: "relu" },
384 // TFLayer::Dense { units: 2, activation: "softmax" },
385 // ]))
386 Ok(())
387}
388
389// fn train_classical_tensorflow_model(
390// mut model: TensorFlowClassicalModel,
391// dataset: &QuantumDataset
392// ) -> Result<f64> {
393// // Simplified classical training for comparison
394// model.compile("adam", "sparse_categorical_crossentropy", vec!["accuracy"])?;
395// let history = model.fit(dataset, 10, 0.2)?;
396// Ok(history.final_metric("val_accuracy"))
397// }
398
399fn analyze_barren_plateaus(
400 model: &TFQModel,
401 dataset: &QuantumDataset,
402) -> Result<BarrenPlateauAnalysis> {
403 // Analyze gradient variance across training
404 // let sample_batch = dataset.get_batch(0)?;
405 // let gradients = model.compute_parameter_shift_gradients(&sample_batch)?;
406 println!(" Sample batch and gradients placeholder");
407
408 // let variance = compute_gradient_variance(&gradients.quantum_gradients);
409 let variance = 0.001; // placeholder
410 let risk_score = if variance < 1e-6 {
411 0.9
412 } else if variance < 1e-3 {
413 0.5
414 } else {
415 0.1
416 };
417
418 let mitigation_strategy = if risk_score > 0.7 {
419 "Consider parameter initialization strategies or circuit pre-training".to_string()
420 } else if risk_score > 0.3 {
421 "Monitor gradient variance during training".to_string()
422 } else {
423 "Low barren plateau risk detected".to_string()
424 };
425
426 Ok(BarrenPlateauAnalysis {
427 risk_score,
428 gradient_variance: variance,
429 mitigation_strategy,
430 })
431}
432
433// Supporting structs and implementations (simplified for demo)
434struct BarrenPlateauAnalysis {
435 risk_score: f64,
436 gradient_variance: f64,
437 mitigation_strategy: String,
438}
439
440struct TensorFlowClassicalModel {
441 layers: Vec<TFLayer>,
442}
443
444impl TensorFlowClassicalModel {
445 fn new(layers: Vec<TFLayer>) -> Self {
446 Self { layers }
447 }
448
449 fn compile(&mut self, _optimizer: &str, _loss: &str, _metrics: Vec<&str>) -> Result<()> {
450 Ok(())
451 }
452
453 fn fit(
454 &mut self,
455 _dataset: &QuantumDataset,
456 _epochs: usize,
457 _validation_split: f64,
458 ) -> Result<TrainingHistory> {
459 Ok(TrainingHistory::new())
460 }
461}
462
463enum TFLayer {
464 Dense {
465 units: usize,
466 activation: &'static str,
467 },
468}
469
470struct TrainingHistory {
471 metrics: HashMap<String, f64>,
472}
473
474impl TrainingHistory {
475 fn new() -> Self {
476 let mut metrics = HashMap::new();
477 metrics.insert("val_accuracy".to_string(), 0.75); // Mock value
478 Self { metrics }
479 }
480
481 fn final_metric(&self, metric: &str) -> f64 {
482 *self.metrics.get(metric).unwrap_or(&0.0)
483 }
484}
485
486enum HardwareType {
487 IonQ,
488 IBM,
489 Google,
490}
491
492enum ReductionType {
493 Mean,
494 Sum,
495 None,
496}