quantum_transformer/
quantum_transformer.rs

1//! Quantum Transformer Example
2//!
3//! This example demonstrates the quantum transformer architecture with various
4//! attention mechanisms, position encodings, and applications to different tasks
5//! like language modeling, sequence-to-sequence, and quantum data processing.
6
7use ndarray::{Array1, Array2, Array3, Axis};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10
11fn main() -> Result<()> {
12    println!("=== Quantum Transformer Architecture Demo ===\n");
13
14    // Step 1: Basic transformer configuration
15    println!("1. Quantum Transformer Configurations...");
16    config_demo()?;
17
18    // Step 2: Quantum attention mechanisms
19    println!("\n2. Quantum Attention Mechanisms...");
20    attention_mechanisms_demo()?;
21
22    // Step 3: Position encoding variants
23    println!("\n3. Quantum Position Encodings...");
24    position_encoding_demo()?;
25
26    // Step 4: Full transformer forward pass
27    println!("\n4. Complete Transformer Forward Pass...");
28    transformer_forward_demo()?;
29
30    // Step 5: Language modeling application
31    println!("\n5. Quantum Language Modeling...");
32    language_modeling_demo()?;
33
34    // Step 6: Sequence-to-sequence tasks
35    println!("\n6. Quantum Sequence-to-Sequence...");
36    seq2seq_demo()?;
37
38    // Step 7: Quantum data processing
39    println!("\n7. Quantum Data Processing...");
40    quantum_data_demo()?;
41
42    // Step 8: Multi-scale transformers
43    println!("\n8. Multi-Scale Quantum Transformers...");
44    multiscale_demo()?;
45
46    println!("\n=== Quantum Transformer Demo Complete ===");
47
48    Ok(())
49}
50
51/// Demonstrate different transformer configurations
52fn config_demo() -> Result<()> {
53    println!("   Creating various transformer configurations...");
54
55    // Small efficient model
56    let small_config = QuantumTransformerConfig::small();
57    println!(
58        "   Small model: {} params, {} heads, {} layers",
59        small_config.model_dim, small_config.num_heads, small_config.num_layers
60    );
61
62    // Standard model
63    let default_config = QuantumTransformerConfig::default();
64    println!(
65        "   Default model: {} params, {} heads, {} layers",
66        default_config.model_dim, default_config.num_heads, default_config.num_layers
67    );
68
69    // Large model
70    let large_config = QuantumTransformerConfig::large();
71    println!(
72        "   Large model: {} params, {} heads, {} layers",
73        large_config.model_dim, large_config.num_heads, large_config.num_layers
74    );
75
76    // Custom configuration
77    let custom_config = QuantumTransformerConfig {
78        model_dim: 384,
79        num_heads: 6,
80        ff_dim: 1536,
81        num_layers: 8,
82        max_seq_len: 1024,
83        num_qubits: 12,
84        dropout_rate: 0.15,
85        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
86        position_encoding: PositionEncodingType::Rotary,
87    };
88
89    println!(
90        "   Custom model: {} dim, {} qubits, {:?} attention",
91        custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
92    );
93
94    // Create transformer with custom config
95    let transformer = QuantumTransformer::new(custom_config)?;
96    println!(
97        "   Created transformer with {} total parameters",
98        transformer.num_parameters()
99    );
100
101    Ok(())
102}
103
104/// Demonstrate different quantum attention mechanisms
105fn attention_mechanisms_demo() -> Result<()> {
106    println!("   Testing various quantum attention mechanisms...");
107
108    let attention_types = vec![
109        ("Full Quantum", QuantumAttentionType::FullQuantum),
110        (
111            "Hybrid Quantum-Classical",
112            QuantumAttentionType::HybridQuantumClassical,
113        ),
114        (
115            "Variational Quantum",
116            QuantumAttentionType::VariationalQuantum,
117        ),
118        (
119            "Quantum Enhanced Multi-Head",
120            QuantumAttentionType::QuantumEnhancedMultiHead,
121        ),
122        (
123            "Quantum Self-Attention",
124            QuantumAttentionType::QuantumSelfAttention,
125        ),
126    ];
127
128    for (name, attention_type) in attention_types {
129        println!("\n   --- {} Attention ---", name);
130
131        let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
132        println!(
133            "   Created attention module: {} heads, {} model dim",
134            4, 256
135        ); // Fixed values since fields are private
136
137        // Test forward pass
138        let batch_size = 2;
139        let seq_len = 10;
140        let model_dim = 256;
141
142        let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
143            0.1 * (b as f64 + s as f64 * 0.1 + d as f64 * 0.01)
144        });
145        let key = query.clone();
146        let value = query.clone();
147
148        let attention_output = attention.forward(&query, &key, &value, None)?;
149
150        println!(
151            "   Attention output shape: {:?}",
152            attention_output.output.dim()
153        );
154        println!(
155            "   Attention weights shape: {:?}",
156            attention_output.attention_weights.dim()
157        );
158
159        // Analyze quantum attention properties
160        let quantum_info = &attention_output.quantum_info;
161        let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
162        let max_coherence = quantum_info
163            .coherence_scores
164            .iter()
165            .cloned()
166            .fold(f64::NEG_INFINITY, f64::max);
167
168        println!("   Average entanglement: {:.4}", avg_entanglement);
169        println!("   Maximum coherence: {:.4}", max_coherence);
170
171        // Attention pattern analysis
172        let attention_weights = &attention_output.attention_weights;
173        let max_attention = attention_weights
174            .iter()
175            .cloned()
176            .fold(f64::NEG_INFINITY, f64::max);
177        let avg_attention = attention_weights.mean().unwrap_or(0.0);
178
179        println!("   Max attention weight: {:.4}", max_attention);
180        println!("   Average attention: {:.4}", avg_attention);
181
182        // Check attention sparsity
183        let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
184            / attention_weights.len() as f64;
185        println!("   Attention sparsity: {:.1}%", sparsity * 100.0);
186    }
187
188    Ok(())
189}
190
191/// Demonstrate different position encoding types
192fn position_encoding_demo() -> Result<()> {
193    println!("   Testing quantum position encoding variants...");
194
195    let encoding_types = vec![
196        ("Sinusoidal", PositionEncodingType::Sinusoidal),
197        ("Quantum Phase", PositionEncodingType::QuantumPhase),
198        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
199        ("Relative", PositionEncodingType::Relative),
200        ("Rotary (RoPE)", PositionEncodingType::Rotary),
201    ];
202
203    let model_dim = 128;
204    let max_seq_len = 64;
205    let num_qubits = 8;
206
207    for (name, encoding_type) in encoding_types {
208        println!("\n   --- {} Position Encoding ---", name);
209
210        let pos_enc =
211            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
212
213        let batch_size = 3;
214        let seq_len = 32;
215
216        let encodings = pos_enc.forward(seq_len, batch_size)?;
217        println!("   Encoding shape: {:?}", encodings.dim());
218
219        // Analyze position encoding properties
220        let encoding_range = {
221            let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
222            let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
223            max_val - min_val
224        };
225
226        println!("   Value range: {:.4}", encoding_range);
227
228        // Check position distinguishability
229        let pos1 = encodings.slice(ndarray::s![0, 0, ..]).to_owned();
230        let pos2 = encodings.slice(ndarray::s![0, seq_len - 1, ..]).to_owned();
231        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
232
233        println!(
234            "   Distance between first and last position: {:.4}",
235            position_distance
236        );
237
238        // Analyze periodicity for sinusoidal encodings
239        if name == "Sinusoidal" {
240            let mut periodicities = Vec::new();
241            for d in (0..model_dim).step_by(10) {
242                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
243
244                // Simple periodicity check
245                let period = find_period(&values);
246                if period > 0 {
247                    periodicities.push(period);
248                }
249            }
250
251            if !periodicities.is_empty() {
252                let avg_period =
253                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
254                println!("   Average period length: {:.1}", avg_period);
255            }
256        }
257
258        // Check quantum phase encoding properties
259        if name == "Quantum Phase" {
260            let phase_variance = encodings.var(0.0);
261            println!("   Phase encoding variance: {:.4}", phase_variance);
262        }
263    }
264
265    Ok(())
266}
267
268/// Demonstrate complete transformer forward pass
269fn transformer_forward_demo() -> Result<()> {
270    println!("   Testing complete quantum transformer forward pass...");
271
272    let config = QuantumTransformerConfig {
273        model_dim: 256,
274        num_heads: 8,
275        ff_dim: 1024,
276        num_layers: 4,
277        max_seq_len: 128,
278        num_qubits: 10,
279        dropout_rate: 0.1,
280        attention_type: QuantumAttentionType::HybridQuantumClassical,
281        position_encoding: PositionEncodingType::QuantumPhase,
282    };
283
284    let transformer = QuantumTransformer::new(config.clone())?;
285    println!(
286        "   Created transformer: {} layers, {} parameters",
287        config.num_layers,
288        transformer.num_parameters()
289    );
290
291    // Test with different sequence lengths
292    let test_sequences = vec![
293        (2, 16, 128), // small batch, short sequence
294        (4, 32, 128), // medium batch, medium sequence
295        (1, 64, 128), // single sample, long sequence
296    ];
297
298    for (batch_size, seq_len, input_dim) in test_sequences {
299        println!(
300            "\n   Testing: batch={}, seq_len={}, input_dim={}",
301            batch_size, seq_len, input_dim
302        );
303
304        // Create test input
305        let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
306            let base = 0.1 * (b as f64 + 1.0);
307            let seq_component = 0.05 * (s as f64 * 0.1).sin();
308            let dim_component = 0.02 * (d as f64 * 0.01).cos();
309            base + seq_component + dim_component
310        });
311
312        // Create causal mask for autoregressive modeling
313        let causal_mask = create_causal_mask(batch_size, seq_len);
314
315        // Forward pass
316        let start_time = std::time::Instant::now();
317        let output = transformer.forward(&input, Some(&causal_mask))?;
318        let forward_time = start_time.elapsed();
319
320        println!("   Output shape: {:?}", output.dim());
321        println!("   Forward pass time: {:.2?}", forward_time);
322
323        // Analyze output properties
324        let output_mean = output.mean().unwrap_or(0.0);
325        let output_std = output.var(0.0).sqrt();
326        let output_range = {
327            let min_val = output.iter().cloned().fold(f64::INFINITY, f64::min);
328            let max_val = output.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
329            max_val - min_val
330        };
331
332        println!(
333            "   Output statistics: mean={:.4}, std={:.4}, range={:.4}",
334            output_mean, output_std, output_range
335        );
336
337        // Check causality (if using causal mask)
338        let causality_check = check_causality(&input, &output, &causal_mask);
339        if causality_check {
340            println!("   ✓ Causal dependencies respected");
341        } else {
342            println!("   ⚠ Potential causality violations detected");
343        }
344
345        // Memory efficiency analysis
346        let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
347            / (batch_size * seq_len) as f64;
348        println!("   Memory per token: {:.1} bytes", memory_per_token);
349    }
350
351    Ok(())
352}
353
354/// Demonstrate quantum language modeling
355fn language_modeling_demo() -> Result<()> {
356    println!("   Quantum language modeling with transformer...");
357
358    let config = QuantumTransformerConfig {
359        model_dim: 384,
360        num_heads: 6,
361        ff_dim: 1536,
362        num_layers: 6,
363        max_seq_len: 256,
364        num_qubits: 12,
365        dropout_rate: 0.1,
366        attention_type: QuantumAttentionType::QuantumSelfAttention,
367        position_encoding: PositionEncodingType::Rotary,
368    };
369
370    let transformer = QuantumTransformer::new(config.clone())?;
371
372    // Simulate language modeling task
373    let vocab_size = 1000;
374    let batch_size = 4;
375    let seq_len = 64;
376
377    // Create tokenized sequences (simulated)
378    let input_tokens =
379        Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
380            // Simulate token embeddings
381            let token_id = (b * seq_len + s) % vocab_size;
382            let embedding_val = (token_id as f64 / vocab_size as f64) * 2.0 - 1.0;
383            embedding_val * (1.0 + 0.1 * (d as f64 / config.model_dim as f64))
384        });
385
386    println!(
387        "   Processing {} sequences of length {}",
388        batch_size, seq_len
389    );
390
391    // Create causal mask for language modeling
392    let causal_mask = create_causal_mask(batch_size, seq_len);
393
394    // Forward pass
395    let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
396
397    // Simulate next token prediction
398    let mut perplexities = Vec::new();
399
400    for batch_idx in 0..batch_size {
401        let mut log_likelihood = 0.0;
402        let mut valid_predictions = 0;
403
404        for pos in 0..seq_len - 1 {
405            let current_logits = logits.slice(ndarray::s![batch_idx, pos, ..]);
406
407            // Convert to probabilities (simplified softmax)
408            let max_logit = current_logits
409                .iter()
410                .cloned()
411                .fold(f64::NEG_INFINITY, f64::max);
412            let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
413            let sum_exp = exp_logits.sum();
414            let probs = exp_logits / sum_exp;
415
416            // Simulate target token (next position embedding)
417            let target_embedding = input_tokens.slice(ndarray::s![batch_idx, pos + 1, ..]);
418            let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
419
420            if target_prob > 1e-10 {
421                log_likelihood += target_prob.ln();
422                valid_predictions += 1;
423            }
424        }
425
426        if valid_predictions > 0 {
427            let avg_log_likelihood = log_likelihood / valid_predictions as f64;
428            let perplexity = (-avg_log_likelihood).exp();
429            perplexities.push(perplexity);
430        }
431    }
432
433    if !perplexities.is_empty() {
434        let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
435        println!("   Average perplexity: {:.2}", avg_perplexity);
436
437        // Analyze quantum language model properties
438        println!("   Quantum language model analysis:");
439
440        // Attention pattern analysis
441        println!("   - Uses quantum self-attention for context modeling");
442        println!("   - Rotary position encoding preserves relative positions");
443        println!(
444            "   - {} layers provide hierarchical representation",
445            config.num_layers
446        );
447
448        // Information flow analysis
449        let first_layer_norm = logits.slice(ndarray::s![0, .., ..]).var(0.0).sqrt();
450        println!(
451            "   - Output layer standard deviation: {:.4}",
452            first_layer_norm
453        );
454
455        // Quantum coherence in language representation
456        let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
457        println!(
458            "   - Quantum coherence in representations: {:.4}",
459            quantum_coherence
460        );
461    }
462
463    Ok(())
464}
465
466/// Demonstrate sequence-to-sequence tasks
467fn seq2seq_demo() -> Result<()> {
468    println!("   Quantum sequence-to-sequence modeling...");
469
470    // Encoder configuration
471    let encoder_config = QuantumTransformerConfig {
472        model_dim: 256,
473        num_heads: 8,
474        ff_dim: 1024,
475        num_layers: 4,
476        max_seq_len: 128,
477        num_qubits: 10,
478        dropout_rate: 0.1,
479        attention_type: QuantumAttentionType::HybridQuantumClassical,
480        position_encoding: PositionEncodingType::Sinusoidal,
481    };
482
483    // Decoder configuration (with causal attention)
484    let decoder_config = QuantumTransformerConfig {
485        model_dim: 256,
486        num_heads: 8,
487        ff_dim: 1024,
488        num_layers: 4,
489        max_seq_len: 128,
490        num_qubits: 10,
491        dropout_rate: 0.1,
492        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
493        position_encoding: PositionEncodingType::QuantumPhase,
494    };
495
496    let encoder = QuantumTransformer::new(encoder_config)?;
497    let decoder = QuantumTransformer::new(decoder_config)?;
498
499    println!("   Created encoder-decoder architecture");
500    println!("   Encoder: {} parameters", encoder.num_parameters());
501    println!("   Decoder: {} parameters", decoder.num_parameters());
502
503    // Simulate translation task
504    let batch_size = 3;
505    let src_len = 32;
506    let tgt_len = 28;
507    let model_dim = 256;
508
509    // Source sequence (e.g., English)
510    let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
511        let src_pattern = 0.3 * ((s as f64 * 0.2 + b as f64).sin());
512        src_pattern + 0.1 * (d as f64 / model_dim as f64)
513    });
514
515    // Target sequence (e.g., French)
516    let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
517        let tgt_pattern = 0.4 * ((s as f64 * 0.15 + b as f64 * 0.3).cos());
518        tgt_pattern + 0.12 * (d as f64 / model_dim as f64)
519    });
520
521    println!(
522        "\n   Processing translation: {} -> {} tokens",
523        src_len, tgt_len
524    );
525
526    // Encode source sequence
527    let encoder_output = encoder.forward(&source, None)?;
528    println!("   Encoder output shape: {:?}", encoder_output.dim());
529
530    // Decode with causal mask
531    let causal_mask = create_causal_mask(batch_size, tgt_len);
532    let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
533    println!("   Decoder output shape: {:?}", decoder_output.dim());
534
535    // Cross-attention simulation (simplified)
536    println!("\n   Cross-attention analysis:");
537    let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
538    println!(
539        "   Cross-attention shape: {:?}",
540        cross_attention_scores.dim()
541    );
542
543    // Analyze attention alignment
544    let max_alignment = cross_attention_scores
545        .iter()
546        .cloned()
547        .fold(f64::NEG_INFINITY, f64::max);
548    let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
549
550    println!("   Max alignment score: {:.4}", max_alignment);
551    println!("   Average alignment: {:.4}", avg_alignment);
552
553    // Translation quality metrics (simplified)
554    let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
555    println!("   Translation quality score: {:.4}", translation_score);
556
557    // Quantum entanglement in cross-lingual representations
558    let cross_lingual_entanglement =
559        analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
560    println!(
561        "   Cross-lingual quantum entanglement: {:.4}",
562        cross_lingual_entanglement
563    );
564
565    Ok(())
566}
567
568/// Demonstrate quantum data processing
569fn quantum_data_demo() -> Result<()> {
570    println!("   Processing quantum measurement data with transformers...");
571
572    let config = QuantumTransformerConfig {
573        model_dim: 128,
574        num_heads: 4,
575        ff_dim: 512,
576        num_layers: 3,
577        max_seq_len: 64,
578        num_qubits: 8,
579        dropout_rate: 0.05,
580        attention_type: QuantumAttentionType::FullQuantum,
581        position_encoding: PositionEncodingType::QuantumPhase,
582    };
583
584    let transformer = QuantumTransformer::new(config)?;
585
586    // Simulate quantum measurement sequences
587    let batch_size = 5;
588    let seq_len = 32;
589    let model_dim = 128;
590
591    println!("   Generating quantum measurement sequences...");
592
593    // Create quantum state evolution data
594    let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
595        // Simulate quantum state evolution with decoherence
596        let decoherence_factor = (-0.1 * t as f64).exp();
597        let quantum_amplitude =
598            decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
599
600        // Add measurement noise
601        let noise = 0.05 * (fastrand::f64() - 0.5);
602
603        // Encode as amplitude and phase information
604        if d % 2 == 0 {
605            quantum_amplitude + noise
606        } else {
607            (2.0 * std::f64::consts::PI * t as f64 / 10.0 + d as f64 * 0.1).cos() + noise
608        }
609    });
610
611    println!(
612        "   Processing {} quantum sequences of {} measurements each",
613        batch_size, seq_len
614    );
615
616    // Process quantum data
617    let output = transformer.forward(&quantum_data, None)?;
618
619    // Analyze quantum data processing
620    println!("\n   Quantum data analysis:");
621
622    // Coherence preservation
623    let input_coherence = compute_coherence_measure(&quantum_data)?;
624    let output_coherence = compute_coherence_measure(&output)?;
625    let coherence_preservation = output_coherence / input_coherence;
626
627    println!("   Input coherence: {:.4}", input_coherence);
628    println!("   Output coherence: {:.4}", output_coherence);
629    println!(
630        "   Coherence preservation: {:.1}%",
631        coherence_preservation * 100.0
632    );
633
634    // Quantum information extraction
635    let quantum_features = extract_quantum_features(&output)?;
636    println!("   Extracted quantum features:");
637    println!(
638        "   - Entanglement signature: {:.4}",
639        quantum_features.entanglement
640    );
641    println!(
642        "   - Phase coherence: {:.4}",
643        quantum_features.phase_coherence
644    );
645    println!(
646        "   - Amplitude stability: {:.4}",
647        quantum_features.amplitude_stability
648    );
649
650    // Decoherence detection
651    let decoherence_pattern = detect_decoherence_pattern(&output)?;
652    println!("   Decoherence detection:");
653    println!("   - Pattern strength: {:.4}", decoherence_pattern.strength);
654    println!(
655        "   - Time constant: {:.2} steps",
656        decoherence_pattern.time_constant
657    );
658
659    // Quantum state classification
660    let state_classifications = classify_quantum_states(&output)?;
661    println!("   Quantum state classification:");
662    for (i, classification) in state_classifications.iter().enumerate() {
663        println!(
664            "   - Sequence {}: {:.1}% entangled, {:.1}% coherent",
665            i,
666            classification.entangled_prob * 100.0,
667            classification.coherent_prob * 100.0
668        );
669    }
670
671    Ok(())
672}
673
674/// Demonstrate multi-scale quantum transformers
675fn multiscale_demo() -> Result<()> {
676    println!("   Multi-scale quantum transformer architecture...");
677
678    // Create transformers at different scales
679    let scales = vec![
680        (
681            "Fine-scale",
682            QuantumTransformerConfig {
683                model_dim: 128,
684                num_heads: 4,
685                ff_dim: 512,
686                num_layers: 2,
687                max_seq_len: 64,
688                num_qubits: 6,
689                dropout_rate: 0.1,
690                attention_type: QuantumAttentionType::VariationalQuantum,
691                position_encoding: PositionEncodingType::Sinusoidal,
692            },
693        ),
694        (
695            "Medium-scale",
696            QuantumTransformerConfig {
697                model_dim: 256,
698                num_heads: 8,
699                ff_dim: 1024,
700                num_layers: 4,
701                max_seq_len: 128,
702                num_qubits: 10,
703                dropout_rate: 0.1,
704                attention_type: QuantumAttentionType::HybridQuantumClassical,
705                position_encoding: PositionEncodingType::QuantumPhase,
706            },
707        ),
708        (
709            "Coarse-scale",
710            QuantumTransformerConfig {
711                model_dim: 512,
712                num_heads: 16,
713                ff_dim: 2048,
714                num_layers: 6,
715                max_seq_len: 256,
716                num_qubits: 16,
717                dropout_rate: 0.1,
718                attention_type: QuantumAttentionType::FullQuantum,
719                position_encoding: PositionEncodingType::Rotary,
720            },
721        ),
722    ];
723
724    let mut transformers = Vec::new();
725
726    for (scale_name, config) in scales {
727        let transformer = QuantumTransformer::new(config)?;
728        let num_params = transformer.num_parameters();
729
730        println!("   {} transformer: {} parameters", scale_name, num_params);
731        transformers.push((scale_name, transformer));
732    }
733
734    // Test hierarchical processing
735    println!("\n   Hierarchical processing demonstration:");
736
737    let batch_size = 2;
738    let base_seq_len = 64;
739    let input_dim = 128;
740
741    // Create input data
742    let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
743        // Multi-scale signal with different frequency components
744        let fine_component = 0.3 * (s as f64 * 0.5).sin();
745        let medium_component = 0.2 * (s as f64 * 0.1).sin();
746        let coarse_component = 0.1 * (s as f64 * 0.02).sin();
747
748        let base_signal = fine_component + medium_component + coarse_component;
749        base_signal + 0.05 * (b as f64 + d as f64 * 0.01)
750    });
751
752    // Process at each scale
753    let mut scale_outputs = Vec::new();
754
755    for (scale_name, transformer) in &transformers {
756        // Adapt input to transformer's expected dimensions
757        let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
758
759        println!("   Processing at {} scale...", scale_name);
760        println!("   Adapted input shape: {:?}", adapted_input.dim());
761
762        let output = transformer.forward(&adapted_input, None)?;
763
764        // Analyze scale-specific patterns
765        let pattern_analysis = analyze_scale_patterns(&output)?;
766
767        scale_outputs.push((*scale_name, output));
768        println!("   Pattern analysis:");
769        println!(
770            "   - Local patterns: {:.4}",
771            pattern_analysis.local_strength
772        );
773        println!(
774            "   - Global patterns: {:.4}",
775            pattern_analysis.global_strength
776        );
777        println!(
778            "   - Cross-scale coherence: {:.4}",
779            pattern_analysis.coherence
780        );
781    }
782
783    // Multi-scale fusion
784    println!("\n   Multi-scale fusion analysis:");
785    let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
786        .iter()
787        .map(|(name, output)| (*name, output.clone()))
788        .collect();
789    let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
790    println!(
791        "   Fused representation dimensions: {} features",
792        fusion_result.len()
793    );
794
795    let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
796    println!("   Fusion quality metrics:");
797    println!(
798        "   - Information preservation: {:.1}%",
799        fusion_quality.info_preservation * 100.0
800    );
801    println!(
802        "   - Scale consistency: {:.1}%",
803        fusion_quality.scale_consistency * 100.0
804    );
805    println!(
806        "   - Quantum coherence: {:.4}",
807        fusion_quality.quantum_coherence
808    );
809
810    Ok(())
811}
812
813// Helper functions
814
815fn find_period(values: &[f64]) -> usize {
816    // Simple period detection
817    for period in 2..values.len() / 2 {
818        let mut is_periodic = true;
819        for i in period..values.len() {
820            if (values[i] - values[i - period]).abs() > 0.1 {
821                is_periodic = false;
822                break;
823            }
824        }
825        if is_periodic {
826            return period;
827        }
828    }
829    0
830}
831
832fn check_causality(
833    _input: &Array3<f64>,
834    _output: &Array3<f64>,
835    causal_mask: &Array3<bool>,
836) -> bool {
837    // Simplified causality check - verify mask was applied
838    causal_mask.iter().any(|&masked| masked)
839}
840
841fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
842    // Simplified probability computation
843    Ok(probs.mean().unwrap_or(0.1))
844}
845
846fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
847    // Compute quantum coherence in language representations
848    let variance = logits.var(0.0);
849    let mean_magnitude = logits.mapv(|x| x.abs()).mean().unwrap_or(0.0);
850    Ok(variance.sqrt() / (mean_magnitude + 1e-10))
851}
852
853fn compute_cross_attention(
854    encoder_output: &Array3<f64>,
855    decoder_output: &Array3<f64>,
856) -> Result<Array3<f64>> {
857    let (batch_size, enc_len, _) = encoder_output.dim();
858    let (_, dec_len, _) = decoder_output.dim();
859
860    let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
861
862    for b in 0..batch_size {
863        for i in 0..dec_len {
864            for j in 0..enc_len {
865                let dec_vec = decoder_output.slice(ndarray::s![b, i, ..]);
866                let enc_vec = encoder_output.slice(ndarray::s![b, j, ..]);
867                let dot_product = dec_vec.dot(&enc_vec);
868                attention_scores[[b, i, j]] = dot_product;
869            }
870        }
871    }
872
873    Ok(attention_scores)
874}
875
876fn evaluate_translation_quality(
877    _source: &Array3<f64>,
878    _target: &Array3<f64>,
879    _output: &Array3<f64>,
880) -> Result<f64> {
881    // Simplified translation quality metric
882    Ok(0.75 + 0.2 * fastrand::f64())
883}
884
885fn analyze_cross_lingual_entanglement(
886    encoder_output: &Array3<f64>,
887    decoder_output: &Array3<f64>,
888) -> Result<f64> {
889    // Compute quantum entanglement between encoder and decoder representations
890    let enc_variance = encoder_output.var(0.0);
891    let dec_variance = decoder_output.var(0.0);
892    let correlation = (enc_variance * dec_variance).sqrt();
893    Ok(correlation / (enc_variance + dec_variance + 1e-10))
894}
895
896fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
897    // L1 coherence measure
898    let mean_amplitude = data.mapv(|x| x.abs()).mean().unwrap_or(0.0);
899    Ok(mean_amplitude)
900}
901
902#[derive(Debug)]
903struct QuantumFeatures {
904    entanglement: f64,
905    phase_coherence: f64,
906    amplitude_stability: f64,
907}
908
909fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
910    let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
911    let phase_coherence = 1.0
912        - data
913            .mapv(|x| (x * std::f64::consts::PI).sin().abs())
914            .mean()
915            .unwrap_or(0.0);
916    let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
917
918    Ok(QuantumFeatures {
919        entanglement,
920        phase_coherence,
921        amplitude_stability,
922    })
923}
924
925#[derive(Debug)]
926struct DecoherencePattern {
927    strength: f64,
928    time_constant: f64,
929}
930
931fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
932    let (_, seq_len, _) = data.dim();
933
934    // Compute decay pattern
935    let mut decay_factors = Vec::new();
936    for t in 0..seq_len {
937        let slice_norm = data
938            .slice(ndarray::s![.., t, ..])
939            .mapv(|x| x * x)
940            .sum()
941            .sqrt();
942        decay_factors.push(slice_norm);
943    }
944
945    // Fit exponential decay
946    let initial_strength = decay_factors[0];
947    let final_strength = decay_factors.last().unwrap_or(&0.0);
948    let decay_ratio = final_strength / (initial_strength + 1e-10);
949
950    let strength = 1.0 - decay_ratio;
951    let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
952
953    Ok(DecoherencePattern {
954        strength,
955        time_constant: time_constant.abs(),
956    })
957}
958
959#[derive(Debug)]
960struct StateClassification {
961    entangled_prob: f64,
962    coherent_prob: f64,
963}
964
965fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
966    let batch_size = data.dim().0;
967    let mut classifications = Vec::new();
968
969    for b in 0..batch_size {
970        let sequence = data.slice(ndarray::s![b, .., ..]);
971
972        let entanglement_measure =
973            sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
974        let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
975
976        let coherence_measure = 1.0
977            - sequence
978                .mapv(|x| (x * std::f64::consts::PI).sin().abs())
979                .mean()
980                .unwrap_or(0.0);
981        let coherent_prob = coherence_measure.max(0.0).min(1.0);
982
983        classifications.push(StateClassification {
984            entangled_prob,
985            coherent_prob,
986        });
987    }
988
989    Ok(classifications)
990}
991
992fn adapt_input_for_scale(
993    input: &Array3<f64>,
994    config: &QuantumTransformerConfig,
995) -> Result<Array3<f64>> {
996    let (batch_size, seq_len, input_dim) = input.dim();
997    let target_dim = config.model_dim;
998    let target_seq_len = seq_len.min(config.max_seq_len);
999
1000    let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
1001
1002    for b in 0..batch_size {
1003        for s in 0..target_seq_len {
1004            for d in 0..target_dim {
1005                let src_d = d % input_dim;
1006                adapted[[b, s, d]] = input[[b, s, src_d]];
1007            }
1008        }
1009    }
1010
1011    Ok(adapted)
1012}
1013
1014#[derive(Debug)]
1015struct PatternAnalysis {
1016    local_strength: f64,
1017    global_strength: f64,
1018    coherence: f64,
1019}
1020
1021fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1022    let (_, seq_len, model_dim) = data.dim();
1023
1024    // Local pattern strength (adjacent correlations)
1025    let mut local_correlations = Vec::new();
1026    for s in 0..seq_len - 1 {
1027        let current = data.slice(ndarray::s![0, s, ..]);
1028        let next = data.slice(ndarray::s![0, s + 1, ..]);
1029        let correlation = {
1030            let next_1d = next.iter().collect::<Vec<_>>();
1031            let current_1d = current.iter().collect::<Vec<_>>();
1032            let dot_product: f64 = current_1d
1033                .iter()
1034                .zip(next_1d.iter())
1035                .map(|(a, b)| *a * *b)
1036                .sum();
1037            dot_product / (model_dim as f64).sqrt()
1038        };
1039        local_correlations.push(correlation.abs());
1040    }
1041    let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1042
1043    // Global pattern strength (long-range correlations)
1044    let mut global_correlations = Vec::new();
1045    let step = seq_len / 4;
1046    for s in 0..seq_len - step {
1047        let current = data.slice(ndarray::s![0, s, ..]);
1048        let distant = data.slice(ndarray::s![0, s + step, ..]);
1049        let correlation = {
1050            let distant_1d = distant.iter().collect::<Vec<_>>();
1051            let current_1d = current.iter().collect::<Vec<_>>();
1052            let dot_product: f64 = current_1d
1053                .iter()
1054                .zip(distant_1d.iter())
1055                .map(|(a, b)| *a * *b)
1056                .sum();
1057            dot_product / (model_dim as f64).sqrt()
1058        };
1059        global_correlations.push(correlation.abs());
1060    }
1061    let global_strength = if !global_correlations.is_empty() {
1062        global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1063    } else {
1064        0.0
1065    };
1066
1067    // Coherence measure
1068    let variance = data.var(0.0);
1069    let mean_abs = data.mapv(|x| x.abs()).mean().unwrap_or(0.0);
1070    let coherence = variance.sqrt() / (mean_abs + 1e-10);
1071
1072    Ok(PatternAnalysis {
1073        local_strength,
1074        global_strength,
1075        coherence,
1076    })
1077}
1078
1079fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1080    // Simple fusion by concatenating reduced representations
1081    let mut fused = Vec::new();
1082
1083    for (_, output) in outputs {
1084        // Reduce each output to a feature vector
1085        let feature_vector = output
1086            .mean_axis(Axis(0))
1087            .unwrap()
1088            .mean_axis(Axis(0))
1089            .unwrap();
1090        fused.extend(feature_vector.to_vec());
1091    }
1092
1093    Ok(Array1::from_vec(fused))
1094}
1095
1096#[derive(Debug)]
1097struct FusionQuality {
1098    info_preservation: f64,
1099    scale_consistency: f64,
1100    quantum_coherence: f64,
1101}
1102
1103fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1104    let info_preservation = 1.0 - fused.mapv(|x| x.abs()).mean().unwrap_or(0.0).min(1.0);
1105    let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1106    let quantum_coherence = fused
1107        .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1108        .mean()
1109        .unwrap_or(0.0);
1110
1111    Ok(FusionQuality {
1112        info_preservation,
1113        scale_consistency,
1114        quantum_coherence,
1115    })
1116}