1use ndarray::{Array1, Array2, Array3, Axis};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10
11fn main() -> Result<()> {
12 println!("=== Quantum Transformer Architecture Demo ===\n");
13
14 println!("1. Quantum Transformer Configurations...");
16 config_demo()?;
17
18 println!("\n2. Quantum Attention Mechanisms...");
20 attention_mechanisms_demo()?;
21
22 println!("\n3. Quantum Position Encodings...");
24 position_encoding_demo()?;
25
26 println!("\n4. Complete Transformer Forward Pass...");
28 transformer_forward_demo()?;
29
30 println!("\n5. Quantum Language Modeling...");
32 language_modeling_demo()?;
33
34 println!("\n6. Quantum Sequence-to-Sequence...");
36 seq2seq_demo()?;
37
38 println!("\n7. Quantum Data Processing...");
40 quantum_data_demo()?;
41
42 println!("\n8. Multi-Scale Quantum Transformers...");
44 multiscale_demo()?;
45
46 println!("\n=== Quantum Transformer Demo Complete ===");
47
48 Ok(())
49}
50
51fn config_demo() -> Result<()> {
53 println!(" Creating various transformer configurations...");
54
55 let small_config = QuantumTransformerConfig::small();
57 println!(
58 " Small model: {} params, {} heads, {} layers",
59 small_config.model_dim, small_config.num_heads, small_config.num_layers
60 );
61
62 let default_config = QuantumTransformerConfig::default();
64 println!(
65 " Default model: {} params, {} heads, {} layers",
66 default_config.model_dim, default_config.num_heads, default_config.num_layers
67 );
68
69 let large_config = QuantumTransformerConfig::large();
71 println!(
72 " Large model: {} params, {} heads, {} layers",
73 large_config.model_dim, large_config.num_heads, large_config.num_layers
74 );
75
76 let custom_config = QuantumTransformerConfig {
78 model_dim: 384,
79 num_heads: 6,
80 ff_dim: 1536,
81 num_layers: 8,
82 max_seq_len: 1024,
83 num_qubits: 12,
84 dropout_rate: 0.15,
85 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
86 position_encoding: PositionEncodingType::Rotary,
87 };
88
89 println!(
90 " Custom model: {} dim, {} qubits, {:?} attention",
91 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
92 );
93
94 let transformer = QuantumTransformer::new(custom_config)?;
96 println!(
97 " Created transformer with {} total parameters",
98 transformer.num_parameters()
99 );
100
101 Ok(())
102}
103
104fn attention_mechanisms_demo() -> Result<()> {
106 println!(" Testing various quantum attention mechanisms...");
107
108 let attention_types = vec![
109 ("Full Quantum", QuantumAttentionType::FullQuantum),
110 (
111 "Hybrid Quantum-Classical",
112 QuantumAttentionType::HybridQuantumClassical,
113 ),
114 (
115 "Variational Quantum",
116 QuantumAttentionType::VariationalQuantum,
117 ),
118 (
119 "Quantum Enhanced Multi-Head",
120 QuantumAttentionType::QuantumEnhancedMultiHead,
121 ),
122 (
123 "Quantum Self-Attention",
124 QuantumAttentionType::QuantumSelfAttention,
125 ),
126 ];
127
128 for (name, attention_type) in attention_types {
129 println!("\n --- {} Attention ---", name);
130
131 let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
132 println!(
133 " Created attention module: {} heads, {} model dim",
134 4, 256
135 ); let batch_size = 2;
139 let seq_len = 10;
140 let model_dim = 256;
141
142 let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
143 0.1 * (b as f64 + s as f64 * 0.1 + d as f64 * 0.01)
144 });
145 let key = query.clone();
146 let value = query.clone();
147
148 let attention_output = attention.forward(&query, &key, &value, None)?;
149
150 println!(
151 " Attention output shape: {:?}",
152 attention_output.output.dim()
153 );
154 println!(
155 " Attention weights shape: {:?}",
156 attention_output.attention_weights.dim()
157 );
158
159 let quantum_info = &attention_output.quantum_info;
161 let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
162 let max_coherence = quantum_info
163 .coherence_scores
164 .iter()
165 .cloned()
166 .fold(f64::NEG_INFINITY, f64::max);
167
168 println!(" Average entanglement: {:.4}", avg_entanglement);
169 println!(" Maximum coherence: {:.4}", max_coherence);
170
171 let attention_weights = &attention_output.attention_weights;
173 let max_attention = attention_weights
174 .iter()
175 .cloned()
176 .fold(f64::NEG_INFINITY, f64::max);
177 let avg_attention = attention_weights.mean().unwrap_or(0.0);
178
179 println!(" Max attention weight: {:.4}", max_attention);
180 println!(" Average attention: {:.4}", avg_attention);
181
182 let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
184 / attention_weights.len() as f64;
185 println!(" Attention sparsity: {:.1}%", sparsity * 100.0);
186 }
187
188 Ok(())
189}
190
191fn position_encoding_demo() -> Result<()> {
193 println!(" Testing quantum position encoding variants...");
194
195 let encoding_types = vec![
196 ("Sinusoidal", PositionEncodingType::Sinusoidal),
197 ("Quantum Phase", PositionEncodingType::QuantumPhase),
198 ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
199 ("Relative", PositionEncodingType::Relative),
200 ("Rotary (RoPE)", PositionEncodingType::Rotary),
201 ];
202
203 let model_dim = 128;
204 let max_seq_len = 64;
205 let num_qubits = 8;
206
207 for (name, encoding_type) in encoding_types {
208 println!("\n --- {} Position Encoding ---", name);
209
210 let pos_enc =
211 QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
212
213 let batch_size = 3;
214 let seq_len = 32;
215
216 let encodings = pos_enc.forward(seq_len, batch_size)?;
217 println!(" Encoding shape: {:?}", encodings.dim());
218
219 let encoding_range = {
221 let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
222 let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
223 max_val - min_val
224 };
225
226 println!(" Value range: {:.4}", encoding_range);
227
228 let pos1 = encodings.slice(ndarray::s![0, 0, ..]).to_owned();
230 let pos2 = encodings.slice(ndarray::s![0, seq_len - 1, ..]).to_owned();
231 let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
232
233 println!(
234 " Distance between first and last position: {:.4}",
235 position_distance
236 );
237
238 if name == "Sinusoidal" {
240 let mut periodicities = Vec::new();
241 for d in (0..model_dim).step_by(10) {
242 let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
243
244 let period = find_period(&values);
246 if period > 0 {
247 periodicities.push(period);
248 }
249 }
250
251 if !periodicities.is_empty() {
252 let avg_period =
253 periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
254 println!(" Average period length: {:.1}", avg_period);
255 }
256 }
257
258 if name == "Quantum Phase" {
260 let phase_variance = encodings.var(0.0);
261 println!(" Phase encoding variance: {:.4}", phase_variance);
262 }
263 }
264
265 Ok(())
266}
267
268fn transformer_forward_demo() -> Result<()> {
270 println!(" Testing complete quantum transformer forward pass...");
271
272 let config = QuantumTransformerConfig {
273 model_dim: 256,
274 num_heads: 8,
275 ff_dim: 1024,
276 num_layers: 4,
277 max_seq_len: 128,
278 num_qubits: 10,
279 dropout_rate: 0.1,
280 attention_type: QuantumAttentionType::HybridQuantumClassical,
281 position_encoding: PositionEncodingType::QuantumPhase,
282 };
283
284 let transformer = QuantumTransformer::new(config.clone())?;
285 println!(
286 " Created transformer: {} layers, {} parameters",
287 config.num_layers,
288 transformer.num_parameters()
289 );
290
291 let test_sequences = vec![
293 (2, 16, 128), (4, 32, 128), (1, 64, 128), ];
297
298 for (batch_size, seq_len, input_dim) in test_sequences {
299 println!(
300 "\n Testing: batch={}, seq_len={}, input_dim={}",
301 batch_size, seq_len, input_dim
302 );
303
304 let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
306 let base = 0.1 * (b as f64 + 1.0);
307 let seq_component = 0.05 * (s as f64 * 0.1).sin();
308 let dim_component = 0.02 * (d as f64 * 0.01).cos();
309 base + seq_component + dim_component
310 });
311
312 let causal_mask = create_causal_mask(batch_size, seq_len);
314
315 let start_time = std::time::Instant::now();
317 let output = transformer.forward(&input, Some(&causal_mask))?;
318 let forward_time = start_time.elapsed();
319
320 println!(" Output shape: {:?}", output.dim());
321 println!(" Forward pass time: {:.2?}", forward_time);
322
323 let output_mean = output.mean().unwrap_or(0.0);
325 let output_std = output.var(0.0).sqrt();
326 let output_range = {
327 let min_val = output.iter().cloned().fold(f64::INFINITY, f64::min);
328 let max_val = output.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
329 max_val - min_val
330 };
331
332 println!(
333 " Output statistics: mean={:.4}, std={:.4}, range={:.4}",
334 output_mean, output_std, output_range
335 );
336
337 let causality_check = check_causality(&input, &output, &causal_mask);
339 if causality_check {
340 println!(" ✓ Causal dependencies respected");
341 } else {
342 println!(" ⚠ Potential causality violations detected");
343 }
344
345 let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
347 / (batch_size * seq_len) as f64;
348 println!(" Memory per token: {:.1} bytes", memory_per_token);
349 }
350
351 Ok(())
352}
353
354fn language_modeling_demo() -> Result<()> {
356 println!(" Quantum language modeling with transformer...");
357
358 let config = QuantumTransformerConfig {
359 model_dim: 384,
360 num_heads: 6,
361 ff_dim: 1536,
362 num_layers: 6,
363 max_seq_len: 256,
364 num_qubits: 12,
365 dropout_rate: 0.1,
366 attention_type: QuantumAttentionType::QuantumSelfAttention,
367 position_encoding: PositionEncodingType::Rotary,
368 };
369
370 let transformer = QuantumTransformer::new(config.clone())?;
371
372 let vocab_size = 1000;
374 let batch_size = 4;
375 let seq_len = 64;
376
377 let input_tokens =
379 Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
380 let token_id = (b * seq_len + s) % vocab_size;
382 let embedding_val = (token_id as f64 / vocab_size as f64) * 2.0 - 1.0;
383 embedding_val * (1.0 + 0.1 * (d as f64 / config.model_dim as f64))
384 });
385
386 println!(
387 " Processing {} sequences of length {}",
388 batch_size, seq_len
389 );
390
391 let causal_mask = create_causal_mask(batch_size, seq_len);
393
394 let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
396
397 let mut perplexities = Vec::new();
399
400 for batch_idx in 0..batch_size {
401 let mut log_likelihood = 0.0;
402 let mut valid_predictions = 0;
403
404 for pos in 0..seq_len - 1 {
405 let current_logits = logits.slice(ndarray::s![batch_idx, pos, ..]);
406
407 let max_logit = current_logits
409 .iter()
410 .cloned()
411 .fold(f64::NEG_INFINITY, f64::max);
412 let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
413 let sum_exp = exp_logits.sum();
414 let probs = exp_logits / sum_exp;
415
416 let target_embedding = input_tokens.slice(ndarray::s![batch_idx, pos + 1, ..]);
418 let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
419
420 if target_prob > 1e-10 {
421 log_likelihood += target_prob.ln();
422 valid_predictions += 1;
423 }
424 }
425
426 if valid_predictions > 0 {
427 let avg_log_likelihood = log_likelihood / valid_predictions as f64;
428 let perplexity = (-avg_log_likelihood).exp();
429 perplexities.push(perplexity);
430 }
431 }
432
433 if !perplexities.is_empty() {
434 let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
435 println!(" Average perplexity: {:.2}", avg_perplexity);
436
437 println!(" Quantum language model analysis:");
439
440 println!(" - Uses quantum self-attention for context modeling");
442 println!(" - Rotary position encoding preserves relative positions");
443 println!(
444 " - {} layers provide hierarchical representation",
445 config.num_layers
446 );
447
448 let first_layer_norm = logits.slice(ndarray::s![0, .., ..]).var(0.0).sqrt();
450 println!(
451 " - Output layer standard deviation: {:.4}",
452 first_layer_norm
453 );
454
455 let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
457 println!(
458 " - Quantum coherence in representations: {:.4}",
459 quantum_coherence
460 );
461 }
462
463 Ok(())
464}
465
466fn seq2seq_demo() -> Result<()> {
468 println!(" Quantum sequence-to-sequence modeling...");
469
470 let encoder_config = QuantumTransformerConfig {
472 model_dim: 256,
473 num_heads: 8,
474 ff_dim: 1024,
475 num_layers: 4,
476 max_seq_len: 128,
477 num_qubits: 10,
478 dropout_rate: 0.1,
479 attention_type: QuantumAttentionType::HybridQuantumClassical,
480 position_encoding: PositionEncodingType::Sinusoidal,
481 };
482
483 let decoder_config = QuantumTransformerConfig {
485 model_dim: 256,
486 num_heads: 8,
487 ff_dim: 1024,
488 num_layers: 4,
489 max_seq_len: 128,
490 num_qubits: 10,
491 dropout_rate: 0.1,
492 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
493 position_encoding: PositionEncodingType::QuantumPhase,
494 };
495
496 let encoder = QuantumTransformer::new(encoder_config)?;
497 let decoder = QuantumTransformer::new(decoder_config)?;
498
499 println!(" Created encoder-decoder architecture");
500 println!(" Encoder: {} parameters", encoder.num_parameters());
501 println!(" Decoder: {} parameters", decoder.num_parameters());
502
503 let batch_size = 3;
505 let src_len = 32;
506 let tgt_len = 28;
507 let model_dim = 256;
508
509 let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
511 let src_pattern = 0.3 * ((s as f64 * 0.2 + b as f64).sin());
512 src_pattern + 0.1 * (d as f64 / model_dim as f64)
513 });
514
515 let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
517 let tgt_pattern = 0.4 * ((s as f64 * 0.15 + b as f64 * 0.3).cos());
518 tgt_pattern + 0.12 * (d as f64 / model_dim as f64)
519 });
520
521 println!(
522 "\n Processing translation: {} -> {} tokens",
523 src_len, tgt_len
524 );
525
526 let encoder_output = encoder.forward(&source, None)?;
528 println!(" Encoder output shape: {:?}", encoder_output.dim());
529
530 let causal_mask = create_causal_mask(batch_size, tgt_len);
532 let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
533 println!(" Decoder output shape: {:?}", decoder_output.dim());
534
535 println!("\n Cross-attention analysis:");
537 let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
538 println!(
539 " Cross-attention shape: {:?}",
540 cross_attention_scores.dim()
541 );
542
543 let max_alignment = cross_attention_scores
545 .iter()
546 .cloned()
547 .fold(f64::NEG_INFINITY, f64::max);
548 let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
549
550 println!(" Max alignment score: {:.4}", max_alignment);
551 println!(" Average alignment: {:.4}", avg_alignment);
552
553 let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
555 println!(" Translation quality score: {:.4}", translation_score);
556
557 let cross_lingual_entanglement =
559 analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
560 println!(
561 " Cross-lingual quantum entanglement: {:.4}",
562 cross_lingual_entanglement
563 );
564
565 Ok(())
566}
567
568fn quantum_data_demo() -> Result<()> {
570 println!(" Processing quantum measurement data with transformers...");
571
572 let config = QuantumTransformerConfig {
573 model_dim: 128,
574 num_heads: 4,
575 ff_dim: 512,
576 num_layers: 3,
577 max_seq_len: 64,
578 num_qubits: 8,
579 dropout_rate: 0.05,
580 attention_type: QuantumAttentionType::FullQuantum,
581 position_encoding: PositionEncodingType::QuantumPhase,
582 };
583
584 let transformer = QuantumTransformer::new(config)?;
585
586 let batch_size = 5;
588 let seq_len = 32;
589 let model_dim = 128;
590
591 println!(" Generating quantum measurement sequences...");
592
593 let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
595 let decoherence_factor = (-0.1 * t as f64).exp();
597 let quantum_amplitude =
598 decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
599
600 let noise = 0.05 * (fastrand::f64() - 0.5);
602
603 if d % 2 == 0 {
605 quantum_amplitude + noise
606 } else {
607 (2.0 * std::f64::consts::PI * t as f64 / 10.0 + d as f64 * 0.1).cos() + noise
608 }
609 });
610
611 println!(
612 " Processing {} quantum sequences of {} measurements each",
613 batch_size, seq_len
614 );
615
616 let output = transformer.forward(&quantum_data, None)?;
618
619 println!("\n Quantum data analysis:");
621
622 let input_coherence = compute_coherence_measure(&quantum_data)?;
624 let output_coherence = compute_coherence_measure(&output)?;
625 let coherence_preservation = output_coherence / input_coherence;
626
627 println!(" Input coherence: {:.4}", input_coherence);
628 println!(" Output coherence: {:.4}", output_coherence);
629 println!(
630 " Coherence preservation: {:.1}%",
631 coherence_preservation * 100.0
632 );
633
634 let quantum_features = extract_quantum_features(&output)?;
636 println!(" Extracted quantum features:");
637 println!(
638 " - Entanglement signature: {:.4}",
639 quantum_features.entanglement
640 );
641 println!(
642 " - Phase coherence: {:.4}",
643 quantum_features.phase_coherence
644 );
645 println!(
646 " - Amplitude stability: {:.4}",
647 quantum_features.amplitude_stability
648 );
649
650 let decoherence_pattern = detect_decoherence_pattern(&output)?;
652 println!(" Decoherence detection:");
653 println!(" - Pattern strength: {:.4}", decoherence_pattern.strength);
654 println!(
655 " - Time constant: {:.2} steps",
656 decoherence_pattern.time_constant
657 );
658
659 let state_classifications = classify_quantum_states(&output)?;
661 println!(" Quantum state classification:");
662 for (i, classification) in state_classifications.iter().enumerate() {
663 println!(
664 " - Sequence {}: {:.1}% entangled, {:.1}% coherent",
665 i,
666 classification.entangled_prob * 100.0,
667 classification.coherent_prob * 100.0
668 );
669 }
670
671 Ok(())
672}
673
674fn multiscale_demo() -> Result<()> {
676 println!(" Multi-scale quantum transformer architecture...");
677
678 let scales = vec![
680 (
681 "Fine-scale",
682 QuantumTransformerConfig {
683 model_dim: 128,
684 num_heads: 4,
685 ff_dim: 512,
686 num_layers: 2,
687 max_seq_len: 64,
688 num_qubits: 6,
689 dropout_rate: 0.1,
690 attention_type: QuantumAttentionType::VariationalQuantum,
691 position_encoding: PositionEncodingType::Sinusoidal,
692 },
693 ),
694 (
695 "Medium-scale",
696 QuantumTransformerConfig {
697 model_dim: 256,
698 num_heads: 8,
699 ff_dim: 1024,
700 num_layers: 4,
701 max_seq_len: 128,
702 num_qubits: 10,
703 dropout_rate: 0.1,
704 attention_type: QuantumAttentionType::HybridQuantumClassical,
705 position_encoding: PositionEncodingType::QuantumPhase,
706 },
707 ),
708 (
709 "Coarse-scale",
710 QuantumTransformerConfig {
711 model_dim: 512,
712 num_heads: 16,
713 ff_dim: 2048,
714 num_layers: 6,
715 max_seq_len: 256,
716 num_qubits: 16,
717 dropout_rate: 0.1,
718 attention_type: QuantumAttentionType::FullQuantum,
719 position_encoding: PositionEncodingType::Rotary,
720 },
721 ),
722 ];
723
724 let mut transformers = Vec::new();
725
726 for (scale_name, config) in scales {
727 let transformer = QuantumTransformer::new(config)?;
728 let num_params = transformer.num_parameters();
729
730 println!(" {} transformer: {} parameters", scale_name, num_params);
731 transformers.push((scale_name, transformer));
732 }
733
734 println!("\n Hierarchical processing demonstration:");
736
737 let batch_size = 2;
738 let base_seq_len = 64;
739 let input_dim = 128;
740
741 let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
743 let fine_component = 0.3 * (s as f64 * 0.5).sin();
745 let medium_component = 0.2 * (s as f64 * 0.1).sin();
746 let coarse_component = 0.1 * (s as f64 * 0.02).sin();
747
748 let base_signal = fine_component + medium_component + coarse_component;
749 base_signal + 0.05 * (b as f64 + d as f64 * 0.01)
750 });
751
752 let mut scale_outputs = Vec::new();
754
755 for (scale_name, transformer) in &transformers {
756 let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
758
759 println!(" Processing at {} scale...", scale_name);
760 println!(" Adapted input shape: {:?}", adapted_input.dim());
761
762 let output = transformer.forward(&adapted_input, None)?;
763
764 let pattern_analysis = analyze_scale_patterns(&output)?;
766
767 scale_outputs.push((*scale_name, output));
768 println!(" Pattern analysis:");
769 println!(
770 " - Local patterns: {:.4}",
771 pattern_analysis.local_strength
772 );
773 println!(
774 " - Global patterns: {:.4}",
775 pattern_analysis.global_strength
776 );
777 println!(
778 " - Cross-scale coherence: {:.4}",
779 pattern_analysis.coherence
780 );
781 }
782
783 println!("\n Multi-scale fusion analysis:");
785 let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
786 .iter()
787 .map(|(name, output)| (*name, output.clone()))
788 .collect();
789 let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
790 println!(
791 " Fused representation dimensions: {} features",
792 fusion_result.len()
793 );
794
795 let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
796 println!(" Fusion quality metrics:");
797 println!(
798 " - Information preservation: {:.1}%",
799 fusion_quality.info_preservation * 100.0
800 );
801 println!(
802 " - Scale consistency: {:.1}%",
803 fusion_quality.scale_consistency * 100.0
804 );
805 println!(
806 " - Quantum coherence: {:.4}",
807 fusion_quality.quantum_coherence
808 );
809
810 Ok(())
811}
812
813fn find_period(values: &[f64]) -> usize {
816 for period in 2..values.len() / 2 {
818 let mut is_periodic = true;
819 for i in period..values.len() {
820 if (values[i] - values[i - period]).abs() > 0.1 {
821 is_periodic = false;
822 break;
823 }
824 }
825 if is_periodic {
826 return period;
827 }
828 }
829 0
830}
831
832fn check_causality(
833 _input: &Array3<f64>,
834 _output: &Array3<f64>,
835 causal_mask: &Array3<bool>,
836) -> bool {
837 causal_mask.iter().any(|&masked| masked)
839}
840
841fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
842 Ok(probs.mean().unwrap_or(0.1))
844}
845
846fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
847 let variance = logits.var(0.0);
849 let mean_magnitude = logits.mapv(|x| x.abs()).mean().unwrap_or(0.0);
850 Ok(variance.sqrt() / (mean_magnitude + 1e-10))
851}
852
853fn compute_cross_attention(
854 encoder_output: &Array3<f64>,
855 decoder_output: &Array3<f64>,
856) -> Result<Array3<f64>> {
857 let (batch_size, enc_len, _) = encoder_output.dim();
858 let (_, dec_len, _) = decoder_output.dim();
859
860 let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
861
862 for b in 0..batch_size {
863 for i in 0..dec_len {
864 for j in 0..enc_len {
865 let dec_vec = decoder_output.slice(ndarray::s![b, i, ..]);
866 let enc_vec = encoder_output.slice(ndarray::s![b, j, ..]);
867 let dot_product = dec_vec.dot(&enc_vec);
868 attention_scores[[b, i, j]] = dot_product;
869 }
870 }
871 }
872
873 Ok(attention_scores)
874}
875
876fn evaluate_translation_quality(
877 _source: &Array3<f64>,
878 _target: &Array3<f64>,
879 _output: &Array3<f64>,
880) -> Result<f64> {
881 Ok(0.75 + 0.2 * fastrand::f64())
883}
884
885fn analyze_cross_lingual_entanglement(
886 encoder_output: &Array3<f64>,
887 decoder_output: &Array3<f64>,
888) -> Result<f64> {
889 let enc_variance = encoder_output.var(0.0);
891 let dec_variance = decoder_output.var(0.0);
892 let correlation = (enc_variance * dec_variance).sqrt();
893 Ok(correlation / (enc_variance + dec_variance + 1e-10))
894}
895
896fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
897 let mean_amplitude = data.mapv(|x| x.abs()).mean().unwrap_or(0.0);
899 Ok(mean_amplitude)
900}
901
902#[derive(Debug)]
903struct QuantumFeatures {
904 entanglement: f64,
905 phase_coherence: f64,
906 amplitude_stability: f64,
907}
908
909fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
910 let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
911 let phase_coherence = 1.0
912 - data
913 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
914 .mean()
915 .unwrap_or(0.0);
916 let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
917
918 Ok(QuantumFeatures {
919 entanglement,
920 phase_coherence,
921 amplitude_stability,
922 })
923}
924
925#[derive(Debug)]
926struct DecoherencePattern {
927 strength: f64,
928 time_constant: f64,
929}
930
931fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
932 let (_, seq_len, _) = data.dim();
933
934 let mut decay_factors = Vec::new();
936 for t in 0..seq_len {
937 let slice_norm = data
938 .slice(ndarray::s![.., t, ..])
939 .mapv(|x| x * x)
940 .sum()
941 .sqrt();
942 decay_factors.push(slice_norm);
943 }
944
945 let initial_strength = decay_factors[0];
947 let final_strength = decay_factors.last().unwrap_or(&0.0);
948 let decay_ratio = final_strength / (initial_strength + 1e-10);
949
950 let strength = 1.0 - decay_ratio;
951 let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
952
953 Ok(DecoherencePattern {
954 strength,
955 time_constant: time_constant.abs(),
956 })
957}
958
959#[derive(Debug)]
960struct StateClassification {
961 entangled_prob: f64,
962 coherent_prob: f64,
963}
964
965fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
966 let batch_size = data.dim().0;
967 let mut classifications = Vec::new();
968
969 for b in 0..batch_size {
970 let sequence = data.slice(ndarray::s![b, .., ..]);
971
972 let entanglement_measure =
973 sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
974 let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
975
976 let coherence_measure = 1.0
977 - sequence
978 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
979 .mean()
980 .unwrap_or(0.0);
981 let coherent_prob = coherence_measure.max(0.0).min(1.0);
982
983 classifications.push(StateClassification {
984 entangled_prob,
985 coherent_prob,
986 });
987 }
988
989 Ok(classifications)
990}
991
992fn adapt_input_for_scale(
993 input: &Array3<f64>,
994 config: &QuantumTransformerConfig,
995) -> Result<Array3<f64>> {
996 let (batch_size, seq_len, input_dim) = input.dim();
997 let target_dim = config.model_dim;
998 let target_seq_len = seq_len.min(config.max_seq_len);
999
1000 let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
1001
1002 for b in 0..batch_size {
1003 for s in 0..target_seq_len {
1004 for d in 0..target_dim {
1005 let src_d = d % input_dim;
1006 adapted[[b, s, d]] = input[[b, s, src_d]];
1007 }
1008 }
1009 }
1010
1011 Ok(adapted)
1012}
1013
1014#[derive(Debug)]
1015struct PatternAnalysis {
1016 local_strength: f64,
1017 global_strength: f64,
1018 coherence: f64,
1019}
1020
1021fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1022 let (_, seq_len, model_dim) = data.dim();
1023
1024 let mut local_correlations = Vec::new();
1026 for s in 0..seq_len - 1 {
1027 let current = data.slice(ndarray::s![0, s, ..]);
1028 let next = data.slice(ndarray::s![0, s + 1, ..]);
1029 let correlation = {
1030 let next_1d = next.iter().collect::<Vec<_>>();
1031 let current_1d = current.iter().collect::<Vec<_>>();
1032 let dot_product: f64 = current_1d
1033 .iter()
1034 .zip(next_1d.iter())
1035 .map(|(a, b)| *a * *b)
1036 .sum();
1037 dot_product / (model_dim as f64).sqrt()
1038 };
1039 local_correlations.push(correlation.abs());
1040 }
1041 let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1042
1043 let mut global_correlations = Vec::new();
1045 let step = seq_len / 4;
1046 for s in 0..seq_len - step {
1047 let current = data.slice(ndarray::s![0, s, ..]);
1048 let distant = data.slice(ndarray::s![0, s + step, ..]);
1049 let correlation = {
1050 let distant_1d = distant.iter().collect::<Vec<_>>();
1051 let current_1d = current.iter().collect::<Vec<_>>();
1052 let dot_product: f64 = current_1d
1053 .iter()
1054 .zip(distant_1d.iter())
1055 .map(|(a, b)| *a * *b)
1056 .sum();
1057 dot_product / (model_dim as f64).sqrt()
1058 };
1059 global_correlations.push(correlation.abs());
1060 }
1061 let global_strength = if !global_correlations.is_empty() {
1062 global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1063 } else {
1064 0.0
1065 };
1066
1067 let variance = data.var(0.0);
1069 let mean_abs = data.mapv(|x| x.abs()).mean().unwrap_or(0.0);
1070 let coherence = variance.sqrt() / (mean_abs + 1e-10);
1071
1072 Ok(PatternAnalysis {
1073 local_strength,
1074 global_strength,
1075 coherence,
1076 })
1077}
1078
1079fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1080 let mut fused = Vec::new();
1082
1083 for (_, output) in outputs {
1084 let feature_vector = output
1086 .mean_axis(Axis(0))
1087 .unwrap()
1088 .mean_axis(Axis(0))
1089 .unwrap();
1090 fused.extend(feature_vector.to_vec());
1091 }
1092
1093 Ok(Array1::from_vec(fused))
1094}
1095
1096#[derive(Debug)]
1097struct FusionQuality {
1098 info_preservation: f64,
1099 scale_consistency: f64,
1100 quantum_coherence: f64,
1101}
1102
1103fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1104 let info_preservation = 1.0 - fused.mapv(|x| x.abs()).mean().unwrap_or(0.0).min(1.0);
1105 let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1106 let quantum_coherence = fused
1107 .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1108 .mean()
1109 .unwrap_or(0.0);
1110
1111 Ok(FusionQuality {
1112 info_preservation,
1113 scale_consistency,
1114 quantum_coherence,
1115 })
1116}