1use ndarray::{s, Array1, Array2};
7use quantrs2_ml::autodiff::optimizers::Adam;
8use quantrs2_ml::prelude::*;
9
10fn main() -> Result<()> {
11 println!("=== Quantum Diffusion Model Demo ===\n");
12
13 println!("1. Comparing Noise Schedules...");
15 compare_noise_schedules()?;
16
17 println!("\n2. Training Quantum Diffusion Model...");
19 train_diffusion_model()?;
20
21 println!("\n3. Generating New Samples...");
23 generate_samples()?;
24
25 println!("\n4. Score-Based Diffusion Demo...");
27 score_diffusion_demo()?;
28
29 println!("\n5. Visualizing Diffusion Process...");
31 visualize_diffusion_process()?;
32
33 println!("\n=== Diffusion Model Demo Complete ===");
34
35 Ok(())
36}
37
38fn compare_noise_schedules() -> Result<()> {
40 let num_timesteps = 100;
41
42 let schedules = vec![
43 (
44 "Linear",
45 NoiseSchedule::Linear {
46 beta_start: 0.0001,
47 beta_end: 0.02,
48 },
49 ),
50 ("Cosine", NoiseSchedule::Cosine { s: 0.008 }),
51 (
52 "Quadratic",
53 NoiseSchedule::Quadratic {
54 beta_start: 0.0001,
55 beta_end: 0.02,
56 },
57 ),
58 (
59 "Sigmoid",
60 NoiseSchedule::Sigmoid {
61 beta_start: 0.0001,
62 beta_end: 0.02,
63 },
64 ),
65 ];
66
67 println!(" Noise levels at different timesteps:");
68 println!(" Time Linear Cosine Quadratic Sigmoid");
69
70 for t in (0..=100).step_by(20) {
71 let t_idx = (t * (num_timesteps - 1) / 100).min(num_timesteps - 1);
72 print!(" t={:3}%: ", t);
73
74 for (_, schedule) in &schedules {
75 let model = QuantumDiffusionModel::new(2, 4, num_timesteps, *schedule)?;
76 print!("{:8.4} ", model.betas()[t_idx]);
77 }
78 println!();
79 }
80
81 Ok(())
82}
83
84fn train_diffusion_model() -> Result<()> {
86 let num_samples = 200;
88 let data = generate_two_moons(num_samples);
89
90 println!(" Generated {} samples of 2D two-moons data", num_samples);
91
92 let mut model = QuantumDiffusionModel::new(
94 2, 4, 50, NoiseSchedule::Cosine { s: 0.008 },
98 )?;
99
100 println!(" Created quantum diffusion model:");
101 println!(" - Data dimension: 2");
102 println!(" - Qubits: 4");
103 println!(" - Timesteps: 50");
104 println!(" - Schedule: Cosine");
105
106 let mut optimizer = Adam::new(0.001);
108 let epochs = 100;
109 let batch_size = 32;
110
111 println!("\n Training for {} epochs...", epochs);
112 let losses = model.train(&data, &mut optimizer, epochs, batch_size)?;
113
114 println!("\n Training Statistics:");
116 println!(" - Initial loss: {:.4}", losses[0]);
117 println!(" - Final loss: {:.4}", losses.last().unwrap());
118 println!(
119 " - Improvement: {:.2}%",
120 (1.0 - losses.last().unwrap() / losses[0]) * 100.0
121 );
122
123 Ok(())
124}
125
126fn generate_samples() -> Result<()> {
128 let model = QuantumDiffusionModel::new(
130 2, 4, 50, NoiseSchedule::Linear {
134 beta_start: 0.0001,
135 beta_end: 0.02,
136 },
137 )?;
138
139 let num_samples = 10;
141 println!(" Generating {} samples...", num_samples);
142
143 let samples = model.generate(num_samples)?;
144
145 println!("\n Generated samples:");
146 for i in 0..num_samples.min(5) {
147 println!(
148 " Sample {}: [{:.3}, {:.3}]",
149 i + 1,
150 samples[[i, 0]],
151 samples[[i, 1]]
152 );
153 }
154
155 let mean = samples.mean_axis(ndarray::Axis(0)).unwrap();
157 let std = samples.std_axis(ndarray::Axis(0), 0.0);
158
159 println!("\n Sample statistics:");
160 println!(" - Mean: [{:.3}, {:.3}]", mean[0], mean[1]);
161 println!(" - Std: [{:.3}, {:.3}]", std[0], std[1]);
162
163 Ok(())
164}
165
166fn score_diffusion_demo() -> Result<()> {
168 let model = QuantumScoreDiffusion::new(
170 2, 4, 10, )?;
174
175 println!(" Created quantum score-based diffusion model");
176 println!(" - Noise levels: {:?}", model.noise_levels());
177
178 let x = Array1::from_vec(vec![0.5, -0.3]);
180 let noise_level = 0.1;
181
182 let score = model.estimate_score(&x, noise_level)?;
183 println!("\n Score estimation:");
184 println!(" - Input: [{:.3}, {:.3}]", x[0], x[1]);
185 println!(" - Noise level: {:.3}", noise_level);
186 println!(" - Estimated score: [{:.3}, {:.3}]", score[0], score[1]);
187
188 println!("\n Langevin sampling:");
190 let init = Array1::from_vec(vec![2.0, 2.0]);
191 let num_steps = 100;
192 let step_size = 0.01;
193
194 let sample = model.langevin_sample(init.clone(), noise_level, num_steps, step_size)?;
195
196 println!(" - Initial: [{:.3}, {:.3}]", init[0], init[1]);
197 println!(
198 " - After {} steps: [{:.3}, {:.3}]",
199 num_steps, sample[0], sample[1]
200 );
201 println!(
202 " - Distance moved: {:.3}",
203 ((sample[0] - init[0]).powi(2) + (sample[1] - init[1]).powi(2)).sqrt()
204 );
205
206 Ok(())
207}
208
209fn visualize_diffusion_process() -> Result<()> {
211 let model = QuantumDiffusionModel::new(
212 2, 4, 20, NoiseSchedule::Linear {
216 beta_start: 0.0001,
217 beta_end: 0.02,
218 },
219 )?;
220
221 let x0 = Array1::from_vec(vec![1.0, 0.5]);
223
224 println!(" Forward diffusion process:");
225 println!(" t=0 (original): [{:.3}, {:.3}]", x0[0], x0[1]);
226
227 for t in [5, 10, 15, 19] {
229 let (xt, _) = model.forward_diffusion(&x0, t)?;
230 let noise_level = (1.0 - model.alphas_cumprod()[t]).sqrt();
231 println!(
232 " t={:2} (noise={:.3}): [{:.3}, {:.3}]",
233 t, noise_level, xt[0], xt[1]
234 );
235 }
236
237 println!("\n Reverse diffusion process:");
238
239 let mut xt = Array1::from_vec(vec![
241 2.0 * rand::random::<f64>() - 1.0,
242 2.0 * rand::random::<f64>() - 1.0,
243 ]);
244
245 println!(" t=19 (pure noise): [{:.3}, {:.3}]", xt[0], xt[1]);
246
247 for t in [15, 10, 5, 0] {
249 xt = model.reverse_diffusion_step(&xt, t)?;
250 println!(" t={:2} (denoised): [{:.3}, {:.3}]", t, xt[0], xt[1]);
251 }
252
253 println!("\n This demonstrates how diffusion models:");
254 println!(" 1. Gradually add noise to data (forward process)");
255 println!(" 2. Learn to reverse this process (backward process)");
256 println!(" 3. Generate new samples by denoising random noise");
257
258 Ok(())
259}
260
261fn generate_two_moons(n_samples: usize) -> Array2<f64> {
263 let mut data = Array2::zeros((n_samples, 2));
264 let n_samples_per_moon = n_samples / 2;
265
266 for i in 0..n_samples_per_moon {
268 let angle = std::f64::consts::PI * i as f64 / n_samples_per_moon as f64;
269 data[[i, 0]] = angle.cos() + 0.1 * (2.0 * rand::random::<f64>() - 1.0);
270 data[[i, 1]] = angle.sin() + 0.1 * (2.0 * rand::random::<f64>() - 1.0);
271 }
272
273 for i in 0..n_samples_per_moon {
275 let idx = n_samples_per_moon + i;
276 let angle = std::f64::consts::PI * i as f64 / n_samples_per_moon as f64;
277 data[[idx, 0]] = 1.0 - angle.cos() + 0.1 * (2.0 * rand::random::<f64>() - 1.0);
278 data[[idx, 1]] = 0.5 - angle.sin() + 0.1 * (2.0 * rand::random::<f64>() - 1.0);
279 }
280
281 data
282}
283
284fn advanced_diffusion_demo() -> Result<()> {
286 println!("\n6. Advanced Diffusion Techniques:");
287
288 println!("\n a) Conditional Generation:");
290 let model = QuantumDiffusionModel::new(4, 4, 50, NoiseSchedule::Cosine { s: 0.008 })?;
291 let condition = Array1::from_vec(vec![0.5, -0.5]);
292 let conditional_samples = model.conditional_generate(&condition, 5)?;
293
294 println!(
295 " Generated {} conditional samples",
296 conditional_samples.nrows()
297 );
298 println!(" Condition: [{:.3}, {:.3}]", condition[0], condition[1]);
299
300 println!("\n b) Variational Diffusion Model:");
302 let vdm = QuantumVariationalDiffusion::new(
303 4, 2, 4, )?;
307
308 let x = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
309 let (mean, log_var) = vdm.encode(&x)?;
310
311 println!(" Encoded data to latent space:");
312 println!(" - Input: {:?}", x.as_slice().unwrap());
313 println!(" - Latent mean: [{:.3}, {:.3}]", mean[0], mean[1]);
314 println!(
315 " - Latent log_var: [{:.3}, {:.3}]",
316 log_var[0], log_var[1]
317 );
318
319 Ok(())
320}