quantrs2_ml/
variational.rs1use crate::error::{MLError, Result};
2use crate::optimization::{ObjectiveFunction, Optimizer};
3use ndarray::{Array1, Array2};
4use quantrs2_circuit::prelude::Circuit;
5use quantrs2_sim::statevector::StateVectorSimulator;
6
7#[derive(Debug, Clone, Copy)]
9pub enum VariationalAlgorithm {
10 VQE,
12
13 QAOA,
15
16 QSVM,
18
19 QNN,
21
22 Custom,
24}
25
26#[derive(Debug, Clone, Copy)]
28pub enum AnsatzType {
29 HardwareEfficient,
31
32 UCCSD,
34
35 QAOA,
37
38 Custom,
40}
41
42#[derive(Debug, Clone)]
44pub struct VariationalCircuit {
45 pub num_qubits: usize,
47
48 pub num_params: usize,
50
51 pub parameters: Array1<f64>,
53
54 pub num_layers: usize,
56
57 pub ansatz_type: AnsatzType,
59}
60
61impl VariationalCircuit {
62 pub fn new(
64 num_qubits: usize,
65 num_params: usize,
66 num_layers: usize,
67 ansatz_type: AnsatzType,
68 ) -> Result<Self> {
69 let parameters = Array1::from_vec(
71 (0..num_params)
72 .map(|_| rand::random::<f64>() * 2.0 * std::f64::consts::PI)
73 .collect(),
74 );
75
76 Ok(VariationalCircuit {
77 num_qubits,
78 num_params,
79 parameters,
80 num_layers,
81 ansatz_type,
82 })
83 }
84
85 pub fn create_circuit<const N: usize>(&self) -> Result<Circuit<N>> {
87 let mut circuit = Circuit::<N>::new();
91
92 for i in 0..N.min(self.num_qubits) {
93 circuit.h(i)?;
95
96 if i < self.parameters.len() {
97 circuit.rz(i, self.parameters[i])?;
98 }
99 }
100
101 match self.ansatz_type {
103 AnsatzType::HardwareEfficient => {
104 for i in 0..N.min(self.num_qubits) - 1 {
106 circuit.cnot(i, i + 1)?;
107 }
108 }
109 AnsatzType::UCCSD => {
110 for i in 0..N.min(self.num_qubits) / 2 {
112 let j = N.min(self.num_qubits) / 2 + i;
113 if j < N {
114 circuit.cnot(i, j)?;
115 }
116 }
117 }
118 AnsatzType::QAOA => {
119 for i in 0..N.min(self.num_qubits) {
121 for j in i + 1..N.min(self.num_qubits) {
122 circuit.cnot(i, j)?;
123 }
124 }
125 }
126 AnsatzType::Custom => {
127 if N >= 3 {
129 circuit.cnot(0, 1)?;
130 circuit.cnot(1, 2)?;
131 if N > 3 {
132 circuit.cnot(2, 3)?;
133 }
134 }
135 }
136 }
137
138 Ok(circuit)
139 }
140
141 pub fn compute_expectation(&self, hamiltonian: &[(f64, Vec<(usize, usize)>)]) -> Result<f64> {
143 let mut expectation = 0.0;
149
150 for (coef, pauli_terms) in hamiltonian {
151 let term_value = 0.1 * coef * pauli_terms.len() as f64;
152 expectation += term_value;
153 }
154
155 Ok(expectation)
156 }
157
158 pub fn evaluate(&self, objective: &dyn Fn(&VariationalCircuit) -> Result<f64>) -> Result<f64> {
160 objective(self)
161 }
162
163 pub fn optimize(
165 &mut self,
166 objective: &dyn Fn(&VariationalCircuit) -> Result<f64>,
167 optimizer: &Optimizer,
168 max_iterations: usize,
169 ) -> Result<f64> {
170 let mut best_value = self.evaluate(objective)?;
175
176 for _ in 0..max_iterations {
177 for i in 0..self.parameters.len() {
179 self.parameters[i] += (rand::random::<f64>() - 0.5) * 0.01;
180 }
181
182 let new_value = self.evaluate(objective)?;
183
184 if new_value < best_value {
185 best_value = new_value;
186 }
187 }
188
189 Ok(best_value)
190 }
191}