quantrs2_ml/
transfer.rs

1//! Quantum Transfer Learning
2//!
3//! This module implements transfer learning techniques for quantum machine learning models.
4//! It provides methods to leverage pre-trained quantum circuits for new tasks, enabling
5//! efficient learning with limited data and quantum resources.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork, TrainingResult};
11use ndarray::{Array1, Array2};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14    single::{RotationX, RotationY, RotationZ},
15    GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19
20/// Transfer learning strategies
21#[derive(Debug, Clone, Copy, PartialEq)]
22pub enum TransferStrategy {
23    /// Freeze all layers except the last few
24    FineTuning { num_trainable_layers: usize },
25
26    /// Use pre-trained model as feature extractor
27    FeatureExtraction,
28
29    /// Adapt specific layers while keeping others frozen
30    SelectiveAdaptation,
31
32    /// Progressive unfreezing of layers during training
33    ProgressiveUnfreezing { unfreeze_rate: usize },
34}
35
36/// Layer freezing configuration
37#[derive(Debug, Clone)]
38pub struct LayerConfig {
39    /// Whether the layer is frozen (non-trainable)
40    pub frozen: bool,
41
42    /// Learning rate multiplier for this layer
43    pub learning_rate_multiplier: f64,
44
45    /// Parameter indices for this layer
46    pub parameter_indices: Vec<usize>,
47}
48
49/// Pre-trained quantum model for transfer learning
50#[derive(Debug, Clone)]
51pub struct PretrainedModel {
52    /// The underlying quantum neural network
53    pub qnn: QuantumNeuralNetwork,
54
55    /// Training task description
56    pub task_description: String,
57
58    /// Performance metrics on original task
59    pub performance_metrics: HashMap<String, f64>,
60
61    /// Model metadata
62    pub metadata: HashMap<String, String>,
63}
64
65/// Quantum transfer learning framework
66pub struct QuantumTransferLearning {
67    /// The pre-trained source model
68    source_model: PretrainedModel,
69
70    /// Target model being trained
71    target_model: QuantumNeuralNetwork,
72
73    /// Transfer strategy being used
74    strategy: TransferStrategy,
75
76    /// Layer-wise configuration
77    layer_configs: Vec<LayerConfig>,
78
79    /// Current training epoch
80    current_epoch: usize,
81}
82
83impl QuantumTransferLearning {
84    /// Create a new transfer learning instance
85    pub fn new(
86        source_model: PretrainedModel,
87        target_layers: Vec<QNNLayerType>,
88        strategy: TransferStrategy,
89    ) -> Result<Self> {
90        // Note: In a real implementation, we would validate qubit compatibility
91        // For this example, we'll simply use the source model's qubit count
92
93        // Create target model by combining source and new layers
94        let mut all_layers = source_model.qnn.layers.clone();
95
96        // Add new layers based on strategy
97        match strategy {
98            TransferStrategy::FineTuning { .. } => {
99                // Keep existing layers and potentially add new output layers
100                all_layers.extend(target_layers);
101            }
102            TransferStrategy::FeatureExtraction => {
103                // Remove output layers and add new ones
104                if all_layers.len() > 2 {
105                    all_layers.truncate(all_layers.len() - 2);
106                }
107                all_layers.extend(target_layers);
108            }
109            _ => {
110                // For other strategies, combine appropriately
111                all_layers.extend(target_layers);
112            }
113        }
114
115        // Initialize target model
116        let target_model = QuantumNeuralNetwork::new(
117            all_layers,
118            source_model.qnn.num_qubits,
119            source_model.qnn.input_dim,
120            source_model.qnn.output_dim,
121        )?;
122
123        // Configure layers based on strategy
124        let layer_configs = Self::configure_layers(&target_model, &strategy);
125
126        Ok(Self {
127            source_model,
128            target_model,
129            strategy,
130            layer_configs,
131            current_epoch: 0,
132        })
133    }
134
135    /// Configure layer freezing based on transfer strategy
136    fn configure_layers(
137        model: &QuantumNeuralNetwork,
138        strategy: &TransferStrategy,
139    ) -> Vec<LayerConfig> {
140        let mut configs = Vec::new();
141        let num_layers = model.layers.len();
142
143        match strategy {
144            TransferStrategy::FineTuning {
145                num_trainable_layers,
146            } => {
147                // Freeze all layers except the last few
148                for i in 0..num_layers {
149                    configs.push(LayerConfig {
150                        frozen: i < num_layers - num_trainable_layers,
151                        learning_rate_multiplier: if i < num_layers - num_trainable_layers {
152                            0.0
153                        } else {
154                            1.0
155                        },
156                        parameter_indices: Self::get_layer_parameters(model, i),
157                    });
158                }
159            }
160            TransferStrategy::FeatureExtraction => {
161                // Freeze all pre-trained layers
162                for i in 0..num_layers {
163                    let is_new_layer = i >= num_layers - 2; // Assume last 2 layers are new
164                    configs.push(LayerConfig {
165                        frozen: !is_new_layer,
166                        learning_rate_multiplier: if is_new_layer { 1.0 } else { 0.0 },
167                        parameter_indices: Self::get_layer_parameters(model, i),
168                    });
169                }
170            }
171            TransferStrategy::SelectiveAdaptation => {
172                // Freeze specific layers (e.g., encoding layers)
173                for (i, layer) in model.layers.iter().enumerate() {
174                    let frozen = matches!(layer, QNNLayerType::EncodingLayer { .. });
175                    configs.push(LayerConfig {
176                        frozen,
177                        learning_rate_multiplier: if frozen { 0.0 } else { 0.5 },
178                        parameter_indices: Self::get_layer_parameters(model, i),
179                    });
180                }
181            }
182            TransferStrategy::ProgressiveUnfreezing { .. } => {
183                // Initially freeze all but last layer
184                for i in 0..num_layers {
185                    configs.push(LayerConfig {
186                        frozen: i < num_layers - 1,
187                        learning_rate_multiplier: if i == num_layers - 1 { 1.0 } else { 0.0 },
188                        parameter_indices: Self::get_layer_parameters(model, i),
189                    });
190                }
191            }
192        }
193
194        configs
195    }
196
197    /// Get parameter indices for a specific layer
198    fn get_layer_parameters(model: &QuantumNeuralNetwork, layer_idx: usize) -> Vec<usize> {
199        // This is a simplified implementation
200        // In practice, would need to track actual parameter mapping
201        let params_per_layer = model.parameters.len() / model.layers.len();
202        let start = layer_idx * params_per_layer;
203        let end = start + params_per_layer;
204        (start..end).collect()
205    }
206
207    /// Train the target model on new data
208    pub fn train(
209        &mut self,
210        training_data: &Array2<f64>,
211        labels: &Array1<f64>,
212        optimizer: &mut dyn Optimizer,
213        epochs: usize,
214        batch_size: usize,
215    ) -> Result<TrainingResult> {
216        let mut loss_history = Vec::new();
217        let mut best_loss = f64::INFINITY;
218        let mut best_params = self.target_model.parameters.clone();
219
220        // Convert parameters to HashMap for optimizer
221        let mut params_map = HashMap::new();
222        for (i, value) in self.target_model.parameters.iter().enumerate() {
223            params_map.insert(format!("param_{}", i), *value);
224        }
225
226        for epoch in 0..epochs {
227            self.current_epoch = epoch;
228
229            // Update layer configurations for progressive unfreezing
230            if let TransferStrategy::ProgressiveUnfreezing { unfreeze_rate } = self.strategy {
231                if epoch > 0 && epoch % unfreeze_rate == 0 {
232                    self.unfreeze_next_layer();
233                }
234            }
235
236            // Compute gradients with frozen layer handling
237            let gradients = self.compute_gradients(training_data, labels)?;
238
239            // Apply layer-specific learning rates
240            let scaled_gradients = self.scale_gradients(&gradients);
241
242            // Convert gradients to HashMap
243            let mut grads_map = HashMap::new();
244            for (i, grad) in scaled_gradients.iter().enumerate() {
245                grads_map.insert(format!("param_{}", i), *grad);
246            }
247
248            // Update parameters using optimizer
249            optimizer.step(&mut params_map, &grads_map);
250
251            // Convert back to Array1
252            for (i, value) in self.target_model.parameters.iter_mut().enumerate() {
253                if let Some(new_val) = params_map.get(&format!("param_{}", i)) {
254                    *value = *new_val;
255                }
256            }
257
258            // Compute loss
259            let loss = self.compute_loss(training_data, labels)?;
260            loss_history.push(loss);
261
262            if loss < best_loss {
263                best_loss = loss;
264                best_params = self.target_model.parameters.clone();
265            }
266        }
267
268        // Compute final accuracy
269        let predictions = self.predict(training_data)?;
270        let accuracy = Self::compute_accuracy(&predictions, labels);
271
272        Ok(TrainingResult {
273            final_loss: best_loss,
274            accuracy,
275            loss_history,
276            optimal_parameters: best_params,
277        })
278    }
279
280    /// Progressively unfreeze layers
281    fn unfreeze_next_layer(&mut self) {
282        // Find the last frozen layer and unfreeze it
283        let num_layers = self.layer_configs.len();
284        for (i, config) in self.layer_configs.iter_mut().enumerate().rev() {
285            if config.frozen {
286                config.frozen = false;
287                config.learning_rate_multiplier = 0.1 * (i as f64 / num_layers as f64);
288                break;
289            }
290        }
291    }
292
293    /// Compute gradients with frozen layer handling
294    fn compute_gradients(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<Array1<f64>> {
295        // Placeholder implementation
296        // In practice, would compute actual quantum gradients
297        let mut gradients = Array1::zeros(self.target_model.parameters.len());
298
299        // Only compute gradients for non-frozen layers
300        for config in &self.layer_configs {
301            if !config.frozen {
302                for &idx in &config.parameter_indices {
303                    if idx < gradients.len() {
304                        gradients[idx] = 0.1 * (2.0 * rand::random::<f64>() - 1.0);
305                    }
306                }
307            }
308        }
309
310        Ok(gradients)
311    }
312
313    /// Scale gradients based on layer configuration
314    fn scale_gradients(&self, gradients: &Array1<f64>) -> Array1<f64> {
315        let mut scaled = gradients.clone();
316
317        for config in &self.layer_configs {
318            for &idx in &config.parameter_indices {
319                if idx < scaled.len() {
320                    scaled[idx] *= config.learning_rate_multiplier;
321                }
322            }
323        }
324
325        scaled
326    }
327
328    /// Compute loss on the target task
329    fn compute_loss(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<f64> {
330        let predictions = self.predict(data)?;
331
332        // Mean squared error
333        let mut loss = 0.0;
334        for (pred, label) in predictions.iter().zip(labels.iter()) {
335            loss += (pred - label).powi(2);
336        }
337
338        Ok(loss / labels.len() as f64)
339    }
340
341    /// Make predictions using the target model
342    pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<f64>> {
343        // Placeholder implementation
344        // In practice, would run quantum circuit and measure
345        let num_samples = data.nrows();
346        Ok(Array1::from_vec(vec![0.5; num_samples]))
347    }
348
349    /// Compute classification accuracy
350    fn compute_accuracy(predictions: &Array1<f64>, labels: &Array1<f64>) -> f64 {
351        let correct = predictions
352            .iter()
353            .zip(labels.iter())
354            .filter(|(p, l)| (p.round() - l.round()).abs() < 0.1)
355            .count();
356
357        correct as f64 / labels.len() as f64
358    }
359
360    /// Extract features using the pre-trained layers
361    pub fn extract_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
362        // Use only the frozen (pre-trained) layers for feature extraction
363        let feature_dim = self
364            .layer_configs
365            .iter()
366            .filter(|c| c.frozen)
367            .map(|c| c.parameter_indices.len())
368            .sum();
369
370        let num_samples = data.nrows();
371        let features = Array2::zeros((num_samples, feature_dim));
372
373        // Placeholder - in practice would run partial circuit
374        Ok(features)
375    }
376
377    /// Save the fine-tuned model
378    pub fn save_model(&self, path: &str) -> Result<()> {
379        // Placeholder - would serialize model to file
380        Ok(())
381    }
382
383    /// Load a pre-trained model for transfer learning
384    pub fn load_pretrained(path: &str) -> Result<PretrainedModel> {
385        // Placeholder - would deserialize model from file
386        Err(MLError::ModelCreationError("Not implemented".to_string()))
387    }
388}
389
390/// Model zoo for pre-trained quantum models
391pub struct QuantumModelZoo;
392
393impl QuantumModelZoo {
394    /// Get a pre-trained model for image classification
395    pub fn get_image_classifier() -> Result<PretrainedModel> {
396        // Create a simple pre-trained model
397        let layers = vec![
398            QNNLayerType::EncodingLayer { num_features: 4 },
399            QNNLayerType::VariationalLayer { num_params: 8 },
400            QNNLayerType::EntanglementLayer {
401                connectivity: "linear".to_string(),
402            },
403            QNNLayerType::MeasurementLayer {
404                measurement_basis: "computational".to_string(),
405            },
406        ];
407
408        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
409
410        let mut metadata = HashMap::new();
411        metadata.insert("task".to_string(), "image_classification".to_string());
412        metadata.insert("dataset".to_string(), "mnist_subset".to_string());
413
414        let mut performance = HashMap::new();
415        performance.insert("accuracy".to_string(), 0.85);
416        performance.insert("loss".to_string(), 0.32);
417
418        Ok(PretrainedModel {
419            qnn,
420            task_description: "Pre-trained on MNIST subset for binary classification".to_string(),
421            performance_metrics: performance,
422            metadata,
423        })
424    }
425
426    /// Get a pre-trained model for quantum chemistry
427    pub fn get_chemistry_model() -> Result<PretrainedModel> {
428        let layers = vec![
429            QNNLayerType::EncodingLayer { num_features: 6 },
430            QNNLayerType::VariationalLayer { num_params: 12 },
431            QNNLayerType::EntanglementLayer {
432                connectivity: "full".to_string(),
433            },
434            QNNLayerType::VariationalLayer { num_params: 12 },
435            QNNLayerType::MeasurementLayer {
436                measurement_basis: "Pauli-Z".to_string(),
437            },
438        ];
439
440        let qnn = QuantumNeuralNetwork::new(layers, 6, 6, 1)?;
441
442        let mut metadata = HashMap::new();
443        metadata.insert("task".to_string(), "molecular_energy".to_string());
444        metadata.insert("dataset".to_string(), "h2_h4_molecules".to_string());
445
446        let mut performance = HashMap::new();
447        performance.insert("mae".to_string(), 0.001);
448        performance.insert("r2_score".to_string(), 0.98);
449
450        Ok(PretrainedModel {
451            qnn,
452            task_description: "Pre-trained on molecular energy prediction".to_string(),
453            performance_metrics: performance,
454            metadata,
455        })
456    }
457
458    /// Get a VQE feature extractor model
459    pub fn vqe_feature_extractor(n_qubits: usize) -> Result<PretrainedModel> {
460        let layers = vec![
461            QNNLayerType::EncodingLayer {
462                num_features: n_qubits,
463            },
464            QNNLayerType::VariationalLayer {
465                num_params: n_qubits * 2,
466            },
467            QNNLayerType::EntanglementLayer {
468                connectivity: "linear".to_string(),
469            },
470            QNNLayerType::VariationalLayer {
471                num_params: n_qubits,
472            },
473            QNNLayerType::MeasurementLayer {
474                measurement_basis: "Pauli-Z".to_string(),
475            },
476        ];
477
478        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits / 2)?;
479
480        let mut metadata = HashMap::new();
481        metadata.insert("task".to_string(), "feature_extraction".to_string());
482        metadata.insert("algorithm".to_string(), "VQE".to_string());
483
484        let mut performance = HashMap::new();
485        performance.insert("fidelity".to_string(), 0.92);
486        performance.insert("feature_quality".to_string(), 0.88);
487
488        Ok(PretrainedModel {
489            qnn,
490            task_description: format!("Pre-trained VQE feature extractor for {} qubits", n_qubits),
491            performance_metrics: performance,
492            metadata,
493        })
494    }
495
496    /// Get a QAOA classifier model
497    pub fn qaoa_classifier(n_qubits: usize, n_layers: usize) -> Result<PretrainedModel> {
498        let mut layers = vec![QNNLayerType::EncodingLayer {
499            num_features: n_qubits,
500        }];
501
502        // Add QAOA layers
503        for _ in 0..n_layers {
504            layers.push(QNNLayerType::VariationalLayer {
505                num_params: n_qubits,
506            });
507            layers.push(QNNLayerType::EntanglementLayer {
508                connectivity: "circular".to_string(),
509            });
510        }
511
512        layers.push(QNNLayerType::MeasurementLayer {
513            measurement_basis: "computational".to_string(),
514        });
515
516        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, 2)?;
517
518        let mut metadata = HashMap::new();
519        metadata.insert("task".to_string(), "classification".to_string());
520        metadata.insert("algorithm".to_string(), "QAOA".to_string());
521        metadata.insert("layers".to_string(), n_layers.to_string());
522
523        let mut performance = HashMap::new();
524        performance.insert("accuracy".to_string(), 0.86);
525        performance.insert("f1_score".to_string(), 0.84);
526
527        Ok(PretrainedModel {
528            qnn,
529            task_description: format!(
530                "Pre-trained QAOA classifier with {} qubits and {} layers",
531                n_qubits, n_layers
532            ),
533            performance_metrics: performance,
534            metadata,
535        })
536    }
537
538    /// Get a quantum autoencoder model
539    pub fn quantum_autoencoder(n_qubits: usize, latent_dim: usize) -> Result<PretrainedModel> {
540        let layers = vec![
541            QNNLayerType::EncodingLayer {
542                num_features: n_qubits,
543            },
544            QNNLayerType::VariationalLayer {
545                num_params: n_qubits * 2,
546            },
547            QNNLayerType::EntanglementLayer {
548                connectivity: "linear".to_string(),
549            },
550            // Compression layer
551            QNNLayerType::VariationalLayer {
552                num_params: latent_dim * 2,
553            },
554            // Decompression layer
555            QNNLayerType::VariationalLayer {
556                num_params: n_qubits,
557            },
558            QNNLayerType::EntanglementLayer {
559                connectivity: "full".to_string(),
560            },
561            QNNLayerType::MeasurementLayer {
562                measurement_basis: "computational".to_string(),
563            },
564        ];
565
566        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits)?;
567
568        let mut metadata = HashMap::new();
569        metadata.insert("task".to_string(), "autoencoding".to_string());
570        metadata.insert("latent_dimension".to_string(), latent_dim.to_string());
571
572        let mut performance = HashMap::new();
573        performance.insert("reconstruction_fidelity".to_string(), 0.94);
574        performance.insert(
575            "compression_ratio".to_string(),
576            n_qubits as f64 / latent_dim as f64,
577        );
578
579        Ok(PretrainedModel {
580            qnn,
581            task_description: format!(
582                "Pre-trained quantum autoencoder with {} qubits and {} latent dimensions",
583                n_qubits, latent_dim
584            ),
585            performance_metrics: performance,
586            metadata,
587        })
588    }
589}
590
591#[cfg(test)]
592mod tests {
593    use super::*;
594    use crate::autodiff::optimizers::Adam;
595
596    #[test]
597    fn test_transfer_learning_creation() {
598        let source = QuantumModelZoo::get_image_classifier().unwrap();
599        let target_layers = vec![
600            QNNLayerType::VariationalLayer { num_params: 4 },
601            QNNLayerType::MeasurementLayer {
602                measurement_basis: "computational".to_string(),
603            },
604        ];
605
606        let transfer = QuantumTransferLearning::new(
607            source,
608            target_layers,
609            TransferStrategy::FineTuning {
610                num_trainable_layers: 2,
611            },
612        )
613        .unwrap();
614
615        assert_eq!(transfer.current_epoch, 0);
616        assert!(transfer.layer_configs.len() > 0);
617    }
618
619    #[test]
620    fn test_layer_freezing() {
621        let source = QuantumModelZoo::get_chemistry_model().unwrap();
622        let target_layers = vec![];
623
624        let transfer = QuantumTransferLearning::new(
625            source,
626            target_layers,
627            TransferStrategy::FeatureExtraction,
628        )
629        .unwrap();
630
631        // Check that early layers are frozen
632        assert!(transfer.layer_configs[0].frozen);
633        assert_eq!(transfer.layer_configs[0].learning_rate_multiplier, 0.0);
634    }
635
636    #[test]
637    fn test_progressive_unfreezing() {
638        let source = QuantumModelZoo::get_image_classifier().unwrap();
639        let target_layers = vec![];
640
641        let mut transfer = QuantumTransferLearning::new(
642            source,
643            target_layers,
644            TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
645        )
646        .unwrap();
647
648        // Initially most layers should be frozen
649        let frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
650        assert!(frozen_count > 0);
651
652        // Simulate training epochs
653        transfer.current_epoch = 5;
654        transfer.unfreeze_next_layer();
655
656        // Check that a layer was unfrozen
657        let new_frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
658        assert_eq!(new_frozen_count, frozen_count - 1);
659    }
660}