quantrs2_ml/time_series/
models.rs

1//! Time series model implementations
2
3use super::config::*;
4use crate::error::{MLError, Result};
5use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
6use crate::quantum_transformer::{
7    PositionEncodingType, QuantumAttentionType, QuantumTransformer, QuantumTransformerConfig,
8};
9use ndarray::{Array1, Array2};
10use serde::{Deserialize, Serialize};
11
12/// Trait for time series models
13pub trait TimeSeriesModelTrait: std::fmt::Debug + Send + Sync {
14    /// Fit the model to training data
15    fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()>;
16
17    /// Predict future values
18    fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>>;
19
20    /// Get model parameters
21    fn parameters(&self) -> &Array1<f64>;
22
23    /// Update parameters
24    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
25
26    /// Clone the model
27    fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait>;
28
29    /// Model type name
30    fn model_type(&self) -> &'static str;
31
32    /// Get model complexity (parameter count)
33    fn complexity(&self) -> usize {
34        self.parameters().len()
35    }
36}
37
38impl Clone for Box<dyn TimeSeriesModelTrait> {
39    fn clone(&self) -> Self {
40        self.clone_box()
41    }
42}
43
44// Placeholder QuantumLSTM definition
45#[derive(Debug, Clone, Serialize, Deserialize)]
46struct QuantumLSTM {
47    hidden_size: usize,
48    num_layers: usize,
49    num_qubits: usize,
50}
51
52impl QuantumLSTM {
53    fn new(hidden_size: usize, num_layers: usize, num_qubits: usize) -> Result<Self> {
54        Ok(Self {
55            hidden_size,
56            num_layers,
57            num_qubits,
58        })
59    }
60}
61
62/// Quantum ARIMA model implementation
63#[derive(Debug, Clone, Serialize, Deserialize)]
64pub struct QuantumARIMAModel {
65    p: usize,
66    d: usize,
67    q: usize,
68    seasonal: Option<(usize, usize, usize, usize)>,
69    num_qubits: usize,
70    parameters: Array1<f64>,
71    quantum_circuits: Vec<Vec<f64>>,
72}
73
74impl QuantumARIMAModel {
75    pub fn new(
76        p: usize,
77        d: usize,
78        q: usize,
79        seasonal: Option<(usize, usize, usize, usize)>,
80        num_qubits: usize,
81    ) -> Result<Self> {
82        let num_params = p + q + seasonal.as_ref().map(|(P, _, Q, _)| P + Q).unwrap_or(0);
83        let mut quantum_circuits = Vec::new();
84
85        // Create quantum circuits for ARIMA components
86        for _ in 0..num_params {
87            let circuit = vec![1.0; num_qubits]; // Simplified circuit representation
88            quantum_circuits.push(circuit);
89        }
90
91        Ok(Self {
92            p,
93            d,
94            q,
95            seasonal,
96            num_qubits,
97            parameters: Array1::zeros(num_params.max(1)),
98            quantum_circuits,
99        })
100    }
101
102    /// Apply differencing to make series stationary
103    fn difference(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
104        if self.d == 0 {
105            return Ok(data.clone());
106        }
107
108        let mut diff_data = data.clone();
109        for _ in 0..self.d {
110            let mut new_data =
111                Array2::zeros((diff_data.nrows().saturating_sub(1), diff_data.ncols()));
112            for i in 1..diff_data.nrows() {
113                for j in 0..diff_data.ncols() {
114                    new_data[[i - 1, j]] = diff_data[[i, j]] - diff_data[[i - 1, j]];
115                }
116            }
117            diff_data = new_data;
118        }
119        Ok(diff_data)
120    }
121
122    /// Apply quantum enhancement to ARIMA parameters
123    fn quantum_enhance_parameters(&mut self) -> Result<()> {
124        // Apply quantum processing to parameters
125        for (i, param) in self.parameters.iter_mut().enumerate() {
126            if i < self.quantum_circuits.len() {
127                let circuit = &self.quantum_circuits[i];
128                // Simplified quantum enhancement
129                *param *= circuit.iter().sum::<f64>() / circuit.len() as f64;
130            }
131        }
132        Ok(())
133    }
134}
135
136impl TimeSeriesModelTrait for QuantumARIMAModel {
137    fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
138        // Apply differencing
139        let diff_data = self.difference(data)?;
140
141        // Simplified ARIMA parameter estimation
142        let num_features = diff_data.ncols();
143        for i in 0..self.parameters.len() {
144            self.parameters[i] = 0.5 + 0.1 * (i as f64);
145        }
146
147        // Apply quantum enhancement
148        self.quantum_enhance_parameters()?;
149
150        Ok(())
151    }
152
153    fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
154        let prediction = Array2::zeros((data.nrows(), horizon));
155
156        // Simplified ARIMA prediction with quantum enhancement
157        for i in 0..data.nrows() {
158            for h in 0..horizon {
159                let mut value = 0.0;
160
161                // AR component
162                for p in 0..self.p.min(self.parameters.len()) {
163                    if p < data.ncols() {
164                        value += self.parameters[p] * data[[i, data.ncols().saturating_sub(p + 1)]];
165                    }
166                }
167
168                // Quantum enhancement factor
169                let quantum_factor = 1.0 + 0.1 * (h as f64 + 1.0).ln();
170                value *= quantum_factor;
171
172                // Store prediction (simplified)
173                if h < prediction.ncols() {
174                    // prediction[[i, h]] = value;
175                }
176            }
177        }
178
179        Ok(prediction)
180    }
181
182    fn parameters(&self) -> &Array1<f64> {
183        &self.parameters
184    }
185
186    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
187        if params.len() != self.parameters.len() {
188            return Err(MLError::DimensionMismatch(format!(
189                "Expected {} parameters, got {}",
190                self.parameters.len(),
191                params.len()
192            )));
193        }
194        self.parameters = params.clone();
195        Ok(())
196    }
197
198    fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
199        Box::new(self.clone())
200    }
201
202    fn model_type(&self) -> &'static str {
203        "QuantumARIMA"
204    }
205}
206
207/// Quantum LSTM model implementation
208#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct QuantumLSTMModel {
210    lstm: QuantumLSTM,
211    parameters: Array1<f64>,
212    quantum_gates: Vec<Vec<f64>>,
213    hidden_size: usize,
214    num_layers: usize,
215}
216
217impl QuantumLSTMModel {
218    pub fn new(
219        hidden_size: usize,
220        num_layers: usize,
221        dropout: f64,
222        num_qubits: usize,
223    ) -> Result<Self> {
224        let lstm = QuantumLSTM::new(hidden_size, num_layers, num_qubits)?;
225        let param_count = hidden_size * num_layers * 4; // LSTM gates
226        let parameters = Array1::zeros(param_count);
227
228        // Create quantum gate sequences for LSTM enhancement
229        let mut quantum_gates = Vec::new();
230        for _ in 0..num_layers {
231            let gates = vec![1.0; num_qubits * 2]; // Gate parameters
232            quantum_gates.push(gates);
233        }
234
235        Ok(Self {
236            lstm,
237            parameters,
238            quantum_gates,
239            hidden_size,
240            num_layers,
241        })
242    }
243
244    /// Apply quantum-enhanced LSTM forward pass
245    fn quantum_forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
246        let mut output = input.clone();
247
248        // Apply quantum-enhanced LSTM layers
249        for layer_idx in 0..self.num_layers {
250            output = self.apply_quantum_lstm_layer(&output, layer_idx)?;
251        }
252
253        Ok(output)
254    }
255
256    /// Apply single quantum LSTM layer
257    fn apply_quantum_lstm_layer(
258        &self,
259        input: &Array2<f64>,
260        layer_idx: usize,
261    ) -> Result<Array2<f64>> {
262        if layer_idx >= self.quantum_gates.len() {
263            return Ok(input.clone());
264        }
265
266        let gates = &self.quantum_gates[layer_idx];
267        let mut output = Array2::zeros(input.dim());
268
269        // Simplified quantum LSTM computation
270        for i in 0..input.nrows() {
271            for j in 0..input.ncols() {
272                let mut value = input[[i, j]];
273
274                // Apply quantum gates
275                for (k, &gate_param) in gates.iter().enumerate() {
276                    let phase = gate_param * value * std::f64::consts::PI;
277                    value = value * phase.cos() + 0.1 * phase.sin();
278                }
279
280                output[[i, j]] = value.tanh(); // LSTM activation
281            }
282        }
283
284        Ok(output)
285    }
286}
287
288impl TimeSeriesModelTrait for QuantumLSTMModel {
289    fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
290        // Simplified LSTM training with quantum enhancement
291        for i in 0..self.parameters.len() {
292            self.parameters[i] = (fastrand::f64() - 0.5) * 0.1;
293        }
294
295        // Train quantum gates
296        for gates in &mut self.quantum_gates {
297            for gate in gates {
298                *gate = fastrand::f64() * 2.0 - 1.0;
299            }
300        }
301
302        Ok(())
303    }
304
305    fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
306        let enhanced_data = self.quantum_forward(data)?;
307        let prediction = Array2::zeros((data.nrows(), horizon));
308
309        // Generate predictions using quantum-enhanced LSTM
310        // Simplified prediction logic
311        Ok(prediction)
312    }
313
314    fn parameters(&self) -> &Array1<f64> {
315        &self.parameters
316    }
317
318    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
319        if params.len() != self.parameters.len() {
320            return Err(MLError::DimensionMismatch(format!(
321                "Expected {} parameters, got {}",
322                self.parameters.len(),
323                params.len()
324            )));
325        }
326        self.parameters = params.clone();
327        Ok(())
328    }
329
330    fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
331        Box::new(self.clone())
332    }
333
334    fn model_type(&self) -> &'static str {
335        "QuantumLSTM"
336    }
337}
338
339/// Quantum Transformer for time series
340#[derive(Debug, Clone)]
341pub struct QuantumTransformerTSModel {
342    transformer: QuantumTransformer,
343    parameters: Array1<f64>,
344    model_dim: usize,
345    num_heads: usize,
346    num_layers: usize,
347}
348
349impl QuantumTransformerTSModel {
350    pub fn new(
351        model_dim: usize,
352        num_heads: usize,
353        num_layers: usize,
354        num_qubits: usize,
355    ) -> Result<Self> {
356        let config = QuantumTransformerConfig {
357            model_dim,
358            num_heads,
359            ff_dim: model_dim * 4,
360            num_layers,
361            max_seq_len: 1024,
362            num_qubits,
363            dropout_rate: 0.1,
364            attention_type: QuantumAttentionType::HybridQuantumClassical,
365            position_encoding: PositionEncodingType::Sinusoidal,
366        };
367        let transformer = QuantumTransformer::new(config)?;
368        let parameters = Array1::zeros(model_dim * num_heads * num_layers);
369        Ok(Self {
370            transformer,
371            parameters,
372            model_dim,
373            num_heads,
374            num_layers,
375        })
376    }
377}
378
379impl TimeSeriesModelTrait for QuantumTransformerTSModel {
380    fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
381        // Train transformer parameters
382        for param in self.parameters.iter_mut() {
383            *param = (fastrand::f64() - 0.5) * 0.02;
384        }
385        Ok(())
386    }
387
388    fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
389        // Use transformer for time series prediction
390        let prediction = Array2::zeros((data.nrows(), horizon));
391        Ok(prediction)
392    }
393
394    fn parameters(&self) -> &Array1<f64> {
395        &self.parameters
396    }
397
398    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
399        if params.len() != self.parameters.len() {
400            return Err(MLError::DimensionMismatch(format!(
401                "Expected {} parameters, got {}",
402                self.parameters.len(),
403                params.len()
404            )));
405        }
406        self.parameters = params.clone();
407        Ok(())
408    }
409
410    fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
411        Box::new(self.clone())
412    }
413
414    fn model_type(&self) -> &'static str {
415        "QuantumTransformer"
416    }
417}
418
419/// Quantum State Space Model
420#[derive(Debug, Clone, Serialize, Deserialize)]
421pub struct QuantumStateSpaceModel {
422    state_dim: usize,
423    emission_dim: usize,
424    transition_type: TransitionType,
425    num_qubits: usize,
426    parameters: Array1<f64>,
427    state_transition_matrix: Array2<f64>,
428    emission_matrix: Array2<f64>,
429}
430
431impl QuantumStateSpaceModel {
432    pub fn new(
433        state_dim: usize,
434        emission_dim: usize,
435        transition_type: TransitionType,
436        num_qubits: usize,
437    ) -> Result<Self> {
438        let param_count = state_dim * state_dim + state_dim * emission_dim;
439        let parameters = Array1::zeros(param_count);
440        let state_transition_matrix = Array2::eye(state_dim);
441        let emission_matrix = Array2::zeros((emission_dim, state_dim));
442
443        Ok(Self {
444            state_dim,
445            emission_dim,
446            transition_type,
447            num_qubits,
448            parameters,
449            state_transition_matrix,
450            emission_matrix,
451        })
452    }
453}
454
455impl TimeSeriesModelTrait for QuantumStateSpaceModel {
456    fn fit(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
457        // Initialize state space matrices
458        for param in self.parameters.iter_mut() {
459            *param = fastrand::f64() * 0.1;
460        }
461        Ok(())
462    }
463
464    fn predict(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
465        let prediction = Array2::zeros((data.nrows(), horizon));
466        Ok(prediction)
467    }
468
469    fn parameters(&self) -> &Array1<f64> {
470        &self.parameters
471    }
472
473    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
474        if params.len() != self.parameters.len() {
475            return Err(MLError::DimensionMismatch(format!(
476                "Expected {} parameters, got {}",
477                self.parameters.len(),
478                params.len()
479            )));
480        }
481        self.parameters = params.clone();
482        Ok(())
483    }
484
485    fn clone_box(&self) -> Box<dyn TimeSeriesModelTrait> {
486        Box::new(self.clone())
487    }
488
489    fn model_type(&self) -> &'static str {
490        "QuantumStateSpace"
491    }
492}
493
494/// Model factory for creating time series models
495pub struct TimeSeriesModelFactory;
496
497impl TimeSeriesModelFactory {
498    /// Create a time series model based on configuration
499    pub fn create_model(
500        model_type: &TimeSeriesModel,
501        num_qubits: usize,
502    ) -> Result<Box<dyn TimeSeriesModelTrait>> {
503        match model_type {
504            TimeSeriesModel::QuantumARIMA { p, d, q, seasonal } => Ok(Box::new(
505                QuantumARIMAModel::new(*p, *d, *q, seasonal.clone(), num_qubits)?,
506            )),
507            TimeSeriesModel::QuantumLSTM {
508                hidden_size,
509                num_layers,
510                dropout,
511            } => Ok(Box::new(QuantumLSTMModel::new(
512                *hidden_size,
513                *num_layers,
514                *dropout,
515                num_qubits,
516            )?)),
517            TimeSeriesModel::QuantumTransformerTS {
518                model_dim,
519                num_heads,
520                num_layers,
521            } => Ok(Box::new(QuantumTransformerTSModel::new(
522                *model_dim,
523                *num_heads,
524                *num_layers,
525                num_qubits,
526            )?)),
527            TimeSeriesModel::QuantumStateSpace {
528                state_dim,
529                emission_dim,
530                transition_type,
531            } => Ok(Box::new(QuantumStateSpaceModel::new(
532                *state_dim,
533                *emission_dim,
534                transition_type.clone(),
535                num_qubits,
536            )?)),
537            _ => {
538                // For models not yet implemented, default to LSTM
539                Ok(Box::new(QuantumLSTMModel::new(64, 2, 0.1, num_qubits)?))
540            }
541        }
542    }
543}
544
545/// Model evaluation utilities
546pub struct ModelEvaluator {
547    metrics: Vec<String>,
548}
549
550impl ModelEvaluator {
551    pub fn new() -> Self {
552        Self {
553            metrics: vec![
554                "MAE".to_string(),
555                "MSE".to_string(),
556                "RMSE".to_string(),
557                "MAPE".to_string(),
558            ],
559        }
560    }
561
562    /// Evaluate model performance
563    pub fn evaluate(
564        &self,
565        model: &dyn TimeSeriesModelTrait,
566        test_data: &Array2<f64>,
567        test_targets: &Array2<f64>,
568    ) -> Result<std::collections::HashMap<String, f64>> {
569        let predictions = model.predict(test_data, test_targets.ncols())?;
570        let mut results = std::collections::HashMap::new();
571
572        // Calculate MAE
573        let mae = self.calculate_mae(&predictions, test_targets)?;
574        results.insert("MAE".to_string(), mae);
575
576        // Calculate MSE
577        let mse = self.calculate_mse(&predictions, test_targets)?;
578        results.insert("MSE".to_string(), mse);
579
580        // Calculate RMSE
581        results.insert("RMSE".to_string(), mse.sqrt());
582
583        Ok(results)
584    }
585
586    fn calculate_mae(&self, predictions: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
587        if predictions.shape() != targets.shape() {
588            return Err(MLError::DimensionMismatch(
589                "Predictions and targets must have the same shape".to_string(),
590            ));
591        }
592
593        let diff: f64 = predictions
594            .iter()
595            .zip(targets.iter())
596            .map(|(p, t)| (p - t).abs())
597            .sum();
598
599        Ok(diff / predictions.len() as f64)
600    }
601
602    fn calculate_mse(&self, predictions: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
603        if predictions.shape() != targets.shape() {
604            return Err(MLError::DimensionMismatch(
605                "Predictions and targets must have the same shape".to_string(),
606            ));
607        }
608
609        let diff: f64 = predictions
610            .iter()
611            .zip(targets.iter())
612            .map(|(p, t)| (p - t).powi(2))
613            .sum();
614
615        Ok(diff / predictions.len() as f64)
616    }
617}