quantrs2_ml/time_series/
ensemble.rs

1//! Ensemble methods and quantum voting mechanisms for time series forecasting
2
3use super::{config::*, models::TimeSeriesModelTrait};
4use crate::error::{MLError, Result};
5use ndarray::{s, Array1, Array2};
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8use std::f64::consts::PI;
9
10/// Quantum ensemble manager for time series models
11#[derive(Debug, Clone)]
12pub struct QuantumEnsembleManager {
13    /// Ensemble configuration
14    config: EnsembleConfig,
15
16    /// Base models in the ensemble
17    models: Vec<Box<dyn TimeSeriesModelTrait>>,
18
19    /// Model weights for weighted averaging
20    model_weights: Array1<f64>,
21
22    /// Quantum voting circuit parameters
23    voting_circuits: Vec<Array1<f64>>,
24
25    /// Performance history for adaptive weighting
26    performance_history: Vec<ModelPerformanceHistory>,
27
28    /// Diversity metrics
29    diversity_metrics: DiversityMetrics,
30}
31
32/// Performance history for individual models
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct ModelPerformanceHistory {
35    /// Model identifier
36    pub model_id: usize,
37
38    /// Historical accuracies
39    pub accuracies: Vec<f64>,
40
41    /// Historical losses
42    pub losses: Vec<f64>,
43
44    /// Prediction confidence scores
45    pub confidence_scores: Vec<f64>,
46
47    /// Quantum fidelity measures
48    pub quantum_fidelities: Vec<f64>,
49}
50
51/// Diversity metrics for ensemble models
52#[derive(Debug, Clone, Serialize, Deserialize)]
53pub struct DiversityMetrics {
54    /// Pairwise correlation between model predictions
55    pub prediction_correlations: Array2<f64>,
56
57    /// Disagreement measures
58    pub disagreement_scores: Array1<f64>,
59
60    /// Quantum entanglement between models
61    pub quantum_entanglement: Array2<f64>,
62
63    /// Overall diversity score
64    pub overall_diversity: f64,
65}
66
67/// Quantum voting mechanisms
68#[derive(Debug, Clone)]
69pub struct QuantumVotingMechanism {
70    /// Voting strategy
71    strategy: VotingStrategy,
72
73    /// Quantum circuit for voting
74    voting_circuit: VotingCircuit,
75
76    /// Confidence aggregation method
77    confidence_aggregation: ConfidenceAggregation,
78}
79
80/// Voting strategies for ensemble decisions
81#[derive(Debug, Clone, Serialize, Deserialize)]
82pub enum VotingStrategy {
83    /// Simple majority voting
84    Majority,
85
86    /// Weighted voting based on performance
87    Weighted,
88
89    /// Quantum superposition voting
90    QuantumSuperposition,
91
92    /// Bayesian model averaging
93    BayesianAveraging,
94
95    /// Adaptive voting based on context
96    Adaptive,
97}
98
99/// Quantum voting circuit implementation
100#[derive(Debug, Clone, Serialize, Deserialize)]
101pub struct VotingCircuit {
102    /// Number of qubits for voting
103    num_qubits: usize,
104
105    /// Circuit parameters
106    parameters: Array1<f64>,
107
108    /// Entanglement patterns
109    entanglement_patterns: Vec<EntanglementPattern>,
110
111    /// Measurement strategy
112    measurement_strategy: MeasurementStrategy,
113}
114
115/// Entanglement patterns for quantum voting
116#[derive(Debug, Clone, Serialize, Deserialize)]
117pub struct EntanglementPattern {
118    /// Qubits involved in entanglement
119    pub qubits: Vec<usize>,
120
121    /// Entanglement strength
122    pub strength: f64,
123
124    /// Pattern type
125    pub pattern_type: EntanglementType,
126}
127
128/// Types of entanglement patterns
129#[derive(Debug, Clone, Serialize, Deserialize)]
130pub enum EntanglementType {
131    Bell,
132    GHZ,
133    Cluster,
134    Custom(String),
135}
136
137/// Confidence aggregation methods
138#[derive(Debug, Clone, Serialize, Deserialize)]
139pub enum ConfidenceAggregation {
140    Average,
141    WeightedAverage,
142    QuantumCoherence,
143    BayesianFusion,
144}
145
146/// Bootstrap aggregation for time series
147#[derive(Debug, Clone)]
148pub struct BootstrapAggregator {
149    /// Number of bootstrap samples
150    num_samples: usize,
151
152    /// Sample size fraction
153    sample_fraction: f64,
154
155    /// Bootstrap models
156    bootstrap_models: Vec<Box<dyn TimeSeriesModelTrait>>,
157
158    /// Quantum enhancement for sampling
159    quantum_sampling: bool,
160}
161
162/// Stacking ensemble implementation
163#[derive(Debug, Clone)]
164pub struct StackingEnsemble {
165    /// Base models (level 0)
166    base_models: Vec<Box<dyn TimeSeriesModelTrait>>,
167
168    /// Meta-learner (level 1)
169    meta_learner: Box<dyn TimeSeriesModelTrait>,
170
171    /// Cross-validation folds for meta-learning
172    cv_folds: usize,
173
174    /// Quantum enhancement for meta-learning
175    quantum_meta_learning: bool,
176}
177
178impl QuantumEnsembleManager {
179    /// Create new quantum ensemble manager
180    pub fn new(config: EnsembleConfig) -> Self {
181        let num_models = config.num_models;
182        let model_weights = Array1::from_elem(num_models, 1.0 / num_models as f64);
183
184        // Initialize quantum voting circuits
185        let mut voting_circuits = Vec::new();
186        for model_idx in 0..num_models {
187            let circuit_params = Array1::from_shape_fn(10, |i| {
188                PI * (model_idx + i) as f64 / (num_models + 10) as f64
189            });
190            voting_circuits.push(circuit_params);
191        }
192
193        let performance_history = (0..num_models)
194            .map(|i| ModelPerformanceHistory::new(i))
195            .collect();
196        let diversity_metrics = DiversityMetrics::new(num_models);
197
198        Self {
199            config,
200            models: Vec::new(),
201            model_weights,
202            voting_circuits,
203            performance_history,
204            diversity_metrics,
205        }
206    }
207
208    /// Add model to ensemble
209    pub fn add_model(&mut self, model: Box<dyn TimeSeriesModelTrait>) {
210        self.models.push(model);
211
212        // Update weights if necessary
213        if self.models.len() > self.model_weights.len() {
214            let new_size = self.models.len();
215            self.model_weights = Array1::from_elem(new_size, 1.0 / new_size as f64);
216        }
217    }
218
219    /// Set models for ensemble
220    pub fn set_models(&mut self, models: Vec<Box<dyn TimeSeriesModelTrait>>) {
221        self.models = models;
222        let num_models = self.models.len();
223        self.model_weights = Array1::from_elem(num_models, 1.0 / num_models as f64);
224
225        // Update performance history
226        self.performance_history = (0..num_models)
227            .map(|i| ModelPerformanceHistory::new(i))
228            .collect();
229        self.diversity_metrics = DiversityMetrics::new(num_models);
230    }
231
232    /// Train all models in ensemble
233    pub fn fit_ensemble(&mut self, data: &Array2<f64>, targets: &Array2<f64>) -> Result<()> {
234        // Extract config to avoid borrow checker issues
235        let diversity_strategy = self.config.diversity_strategy.clone();
236        let voting_circuits = self.voting_circuits.clone();
237
238        for (model_idx, model) in self.models.iter_mut().enumerate() {
239            // Apply diversity strategy
240            let (diverse_data, diverse_targets) = Self::apply_diversity_strategy_static(
241                &diversity_strategy,
242                data,
243                targets,
244                model_idx,
245                &voting_circuits,
246            )?;
247
248            // Train model
249            model.fit(&diverse_data, &diverse_targets)?;
250
251            // Record initial performance
252            let predictions = model.predict(&diverse_data, diverse_targets.ncols())?;
253            let performance =
254                Self::calculate_model_performance_static(&predictions, &diverse_targets)?;
255            self.performance_history[model_idx].update_performance(performance);
256        }
257
258        // Update diversity metrics
259        self.update_diversity_metrics(data, targets)?;
260
261        // Optimize ensemble weights
262        self.optimize_ensemble_weights(data, targets)?;
263
264        Ok(())
265    }
266
267    /// Generate ensemble predictions
268    pub fn predict_ensemble(&self, data: &Array2<f64>, horizon: usize) -> Result<Array2<f64>> {
269        if self.models.is_empty() {
270            return Err(MLError::MLOperationError(
271                "No models in ensemble".to_string(),
272            ));
273        }
274
275        // Get predictions from all models
276        let mut model_predictions = Vec::new();
277        for model in &self.models {
278            let predictions = model.predict(data, horizon)?;
279            model_predictions.push(predictions);
280        }
281
282        // Combine predictions based on ensemble method
283        let ensemble_prediction = match &self.config.method {
284            EnsembleMethod::Average => self.average_predictions(&model_predictions)?,
285            EnsembleMethod::Weighted(weights) => {
286                self.weighted_average_predictions(&model_predictions, weights)?
287            }
288            EnsembleMethod::QuantumSuperposition => {
289                self.quantum_superposition_predictions(&model_predictions)?
290            }
291            EnsembleMethod::Stacking => self.stacking_predictions(&model_predictions, data)?,
292            EnsembleMethod::BayesianAverage => {
293                self.bayesian_average_predictions(&model_predictions)?
294            }
295        };
296
297        Ok(ensemble_prediction)
298    }
299
300    /// Apply diversity strategy to training data
301    fn apply_diversity_strategy(
302        &self,
303        data: &Array2<f64>,
304        targets: &Array2<f64>,
305        model_idx: usize,
306    ) -> Result<(Array2<f64>, Array2<f64>)> {
307        Self::apply_diversity_strategy_static(
308            &self.config.diversity_strategy,
309            data,
310            targets,
311            model_idx,
312            &self.voting_circuits,
313        )
314    }
315
316    /// Static version of apply diversity strategy
317    fn apply_diversity_strategy_static(
318        strategy: &DiversityStrategy,
319        data: &Array2<f64>,
320        targets: &Array2<f64>,
321        model_idx: usize,
322        voting_circuits: &[Array1<f64>],
323    ) -> Result<(Array2<f64>, Array2<f64>)> {
324        match strategy {
325            DiversityStrategy::RandomInit => {
326                // Same data, different initialization
327                Ok((data.clone(), targets.clone()))
328            }
329            DiversityStrategy::Bootstrap => Self::bootstrap_sample_static(data, targets),
330            DiversityStrategy::FeatureBagging => {
331                Self::feature_bagging_static(data, targets, model_idx)
332            }
333            DiversityStrategy::QuantumDiversity => {
334                Self::quantum_diversity_transform_static(data, targets, model_idx, voting_circuits)
335            }
336        }
337    }
338
339    /// Bootstrap sampling for diversity
340    fn bootstrap_sample(
341        &self,
342        data: &Array2<f64>,
343        targets: &Array2<f64>,
344    ) -> Result<(Array2<f64>, Array2<f64>)> {
345        Self::bootstrap_sample_static(data, targets)
346    }
347
348    /// Static bootstrap sampling
349    fn bootstrap_sample_static(
350        data: &Array2<f64>,
351        targets: &Array2<f64>,
352    ) -> Result<(Array2<f64>, Array2<f64>)> {
353        let n_samples = data.nrows();
354        let mut sampled_data = Array2::zeros(data.dim());
355        let mut sampled_targets = Array2::zeros(targets.dim());
356
357        for i in 0..n_samples {
358            let sample_idx = fastrand::usize(0..n_samples);
359            sampled_data.row_mut(i).assign(&data.row(sample_idx));
360            sampled_targets.row_mut(i).assign(&targets.row(sample_idx));
361        }
362
363        Ok((sampled_data, sampled_targets))
364    }
365
366    /// Feature bagging for diversity
367    fn feature_bagging(
368        &self,
369        data: &Array2<f64>,
370        targets: &Array2<f64>,
371        model_idx: usize,
372    ) -> Result<(Array2<f64>, Array2<f64>)> {
373        Self::feature_bagging_static(data, targets, model_idx)
374    }
375
376    /// Static feature bagging
377    fn feature_bagging_static(
378        data: &Array2<f64>,
379        targets: &Array2<f64>,
380        _model_idx: usize,
381    ) -> Result<(Array2<f64>, Array2<f64>)> {
382        let n_features = data.ncols();
383        let feature_fraction = 0.7; // Use 70% of features
384        let n_selected = ((n_features as f64) * feature_fraction) as usize;
385
386        // Select random features
387        let mut selected_features = Vec::new();
388        for _ in 0..n_selected {
389            let feature_idx = fastrand::usize(0..n_features);
390            if !selected_features.contains(&feature_idx) {
391                selected_features.push(feature_idx);
392            }
393        }
394
395        // Ensure we have at least some features
396        if selected_features.is_empty() {
397            selected_features.push(0);
398        }
399
400        // Create subset of data
401        let mut subset_data = Array2::zeros((data.nrows(), selected_features.len()));
402        for (new_idx, &old_idx) in selected_features.iter().enumerate() {
403            subset_data
404                .column_mut(new_idx)
405                .assign(&data.column(old_idx));
406        }
407
408        Ok((subset_data, targets.clone()))
409    }
410
411    /// Quantum diversity transformation
412    fn quantum_diversity_transform(
413        &self,
414        data: &Array2<f64>,
415        targets: &Array2<f64>,
416        model_idx: usize,
417    ) -> Result<(Array2<f64>, Array2<f64>)> {
418        Self::quantum_diversity_transform_static(data, targets, model_idx, &self.voting_circuits)
419    }
420
421    /// Static quantum diversity transformation
422    fn quantum_diversity_transform_static(
423        data: &Array2<f64>,
424        targets: &Array2<f64>,
425        model_idx: usize,
426        voting_circuits: &[Array1<f64>],
427    ) -> Result<(Array2<f64>, Array2<f64>)> {
428        let mut transformed = data.clone();
429
430        if model_idx < voting_circuits.len() {
431            let circuit_params = &voting_circuits[model_idx];
432
433            // Apply quantum transformation
434            for mut row in transformed.rows_mut() {
435                for (i, val) in row.iter_mut().enumerate() {
436                    let param_idx = i % circuit_params.len();
437                    let phase = circuit_params[param_idx];
438                    *val = *val * phase.cos() + 0.1 * (phase * *val).sin();
439                }
440            }
441        }
442
443        Ok((transformed, targets.clone()))
444    }
445
446    /// Calculate model performance metrics
447    fn calculate_model_performance(
448        &self,
449        predictions: &Array2<f64>,
450        targets: &Array2<f64>,
451    ) -> Result<f64> {
452        Self::calculate_model_performance_static(predictions, targets)
453    }
454
455    /// Static calculate model performance metrics
456    fn calculate_model_performance_static(
457        predictions: &Array2<f64>,
458        targets: &Array2<f64>,
459    ) -> Result<f64> {
460        if predictions.shape() != targets.shape() {
461            return Err(MLError::DimensionMismatch(
462                "Predictions and targets must have same shape".to_string(),
463            ));
464        }
465
466        // Calculate MAE as performance metric
467        let mae: f64 = predictions
468            .iter()
469            .zip(targets.iter())
470            .map(|(p, t)| (p - t).abs())
471            .sum::<f64>()
472            / predictions.len() as f64;
473
474        // Convert to accuracy-like metric (higher is better)
475        Ok(1.0 / (1.0 + mae))
476    }
477
478    /// Update diversity metrics for ensemble
479    fn update_diversity_metrics(
480        &mut self,
481        data: &Array2<f64>,
482        targets: &Array2<f64>,
483    ) -> Result<()> {
484        let num_models = self.models.len();
485
486        // Calculate prediction correlations
487        let mut predictions = Vec::new();
488        for model in &self.models {
489            let pred = model.predict(data, targets.ncols())?;
490            predictions.push(pred);
491        }
492
493        // Update correlation matrix
494        for i in 0..num_models {
495            for j in 0..num_models {
496                let correlation =
497                    self.calculate_prediction_correlation(&predictions[i], &predictions[j])?;
498                self.diversity_metrics.prediction_correlations[[i, j]] = correlation;
499            }
500        }
501
502        // Calculate disagreement scores
503        for i in 0..num_models {
504            let mut disagreement = 0.0;
505            for j in 0..num_models {
506                if i != j {
507                    disagreement +=
508                        1.0 - self.diversity_metrics.prediction_correlations[[i, j]].abs();
509                }
510            }
511            self.diversity_metrics.disagreement_scores[i] = disagreement / (num_models - 1) as f64;
512        }
513
514        // Calculate overall diversity
515        let avg_correlation = self
516            .diversity_metrics
517            .prediction_correlations
518            .mean()
519            .unwrap_or(0.0);
520        self.diversity_metrics.overall_diversity = 1.0 - avg_correlation.abs();
521
522        Ok(())
523    }
524
525    /// Calculate correlation between two prediction arrays
526    fn calculate_prediction_correlation(
527        &self,
528        pred1: &Array2<f64>,
529        pred2: &Array2<f64>,
530    ) -> Result<f64> {
531        if pred1.shape() != pred2.shape() {
532            return Err(MLError::DimensionMismatch(
533                "Prediction arrays must have same shape".to_string(),
534            ));
535        }
536
537        let flat1: Vec<f64> = pred1.iter().cloned().collect();
538        let flat2: Vec<f64> = pred2.iter().cloned().collect();
539
540        let mean1 = flat1.iter().sum::<f64>() / flat1.len() as f64;
541        let mean2 = flat2.iter().sum::<f64>() / flat2.len() as f64;
542
543        let mut numerator = 0.0;
544        let mut sum_sq1 = 0.0;
545        let mut sum_sq2 = 0.0;
546
547        for (v1, v2) in flat1.iter().zip(flat2.iter()) {
548            let dev1 = v1 - mean1;
549            let dev2 = v2 - mean2;
550
551            numerator += dev1 * dev2;
552            sum_sq1 += dev1 * dev1;
553            sum_sq2 += dev2 * dev2;
554        }
555
556        let denominator = (sum_sq1 * sum_sq2).sqrt();
557        if denominator < 1e-10 {
558            Ok(0.0)
559        } else {
560            Ok(numerator / denominator)
561        }
562    }
563
564    /// Optimize ensemble weights based on performance
565    fn optimize_ensemble_weights(
566        &mut self,
567        data: &Array2<f64>,
568        targets: &Array2<f64>,
569    ) -> Result<()> {
570        let num_models = self.models.len();
571
572        // Get model predictions
573        let mut model_performances = Vec::new();
574        for model in &self.models {
575            let predictions = model.predict(data, targets.ncols())?;
576            let performance = self.calculate_model_performance(&predictions, targets)?;
577            model_performances.push(performance);
578        }
579
580        // Normalize performances to get weights
581        let total_performance: f64 = model_performances.iter().sum();
582        if total_performance > 1e-10 {
583            for (i, &performance) in model_performances.iter().enumerate() {
584                self.model_weights[i] = performance / total_performance;
585            }
586        } else {
587            // Equal weights if all models perform poorly
588            self.model_weights.fill(1.0 / num_models as f64);
589        }
590
591        Ok(())
592    }
593
594    /// Average predictions from multiple models
595    fn average_predictions(&self, predictions: &[Array2<f64>]) -> Result<Array2<f64>> {
596        if predictions.is_empty() {
597            return Err(MLError::DataError("No predictions to average".to_string()));
598        }
599
600        let mut avg_pred = Array2::zeros(predictions[0].dim());
601        for pred in predictions {
602            avg_pred = avg_pred + pred;
603        }
604
605        Ok(avg_pred / predictions.len() as f64)
606    }
607
608    /// Weighted average of predictions
609    fn weighted_average_predictions(
610        &self,
611        predictions: &[Array2<f64>],
612        weights: &[f64],
613    ) -> Result<Array2<f64>> {
614        if predictions.is_empty() {
615            return Err(MLError::DataError("No predictions to average".to_string()));
616        }
617
618        if predictions.len() != weights.len() {
619            return Err(MLError::DimensionMismatch(
620                "Number of predictions must match number of weights".to_string(),
621            ));
622        }
623
624        let mut weighted_pred = Array2::zeros(predictions[0].dim());
625        for (pred, &weight) in predictions.iter().zip(weights.iter()) {
626            weighted_pred = weighted_pred + pred * weight;
627        }
628
629        Ok(weighted_pred)
630    }
631
632    /// Quantum superposition ensemble prediction
633    fn quantum_superposition_predictions(
634        &self,
635        predictions: &[Array2<f64>],
636    ) -> Result<Array2<f64>> {
637        if predictions.is_empty() {
638            return Err(MLError::DataError(
639                "No predictions for quantum superposition".to_string(),
640            ));
641        }
642
643        let (n_samples, n_features) = predictions[0].dim();
644        let mut ensemble_pred = Array2::zeros((n_samples, n_features));
645
646        // Create quantum superposition of predictions
647        for i in 0..n_samples {
648            for j in 0..n_features {
649                let mut superposition = 0.0;
650                let mut normalization = 0.0;
651
652                for (k, pred) in predictions.iter().enumerate() {
653                    // Quantum amplitude based on model index
654                    let amplitude = ((k as f64 + 1.0) * PI / predictions.len() as f64).cos();
655                    superposition += pred[[i, j]] * amplitude;
656                    normalization += amplitude * amplitude;
657                }
658
659                if normalization > 1e-10 {
660                    ensemble_pred[[i, j]] = superposition / normalization.sqrt();
661                } else {
662                    ensemble_pred[[i, j]] = superposition;
663                }
664            }
665        }
666
667        Ok(ensemble_pred)
668    }
669
670    /// Stacking ensemble prediction (placeholder)
671    fn stacking_predictions(
672        &self,
673        predictions: &[Array2<f64>],
674        data: &Array2<f64>,
675    ) -> Result<Array2<f64>> {
676        // For now, use weighted average as placeholder
677        self.weighted_average_predictions(predictions, &self.model_weights.to_vec())
678    }
679
680    /// Bayesian model averaging (placeholder)
681    fn bayesian_average_predictions(&self, predictions: &[Array2<f64>]) -> Result<Array2<f64>> {
682        // For now, use performance-weighted average
683        let weights: Vec<f64> = self
684            .performance_history
685            .iter()
686            .map(|h| h.get_average_accuracy())
687            .collect();
688
689        self.weighted_average_predictions(predictions, &weights)
690    }
691
692    /// Get ensemble diversity metrics
693    pub fn get_diversity_metrics(&self) -> &DiversityMetrics {
694        &self.diversity_metrics
695    }
696
697    /// Get model weights
698    pub fn get_model_weights(&self) -> &Array1<f64> {
699        &self.model_weights
700    }
701
702    /// Get performance history
703    pub fn get_performance_history(&self) -> &[ModelPerformanceHistory] {
704        &self.performance_history
705    }
706}
707
708impl ModelPerformanceHistory {
709    /// Create new performance history
710    pub fn new(model_id: usize) -> Self {
711        Self {
712            model_id,
713            accuracies: Vec::new(),
714            losses: Vec::new(),
715            confidence_scores: Vec::new(),
716            quantum_fidelities: Vec::new(),
717        }
718    }
719
720    /// Update performance with new metrics
721    pub fn update_performance(&mut self, accuracy: f64) {
722        self.accuracies.push(accuracy);
723        self.losses.push(1.0 - accuracy); // Simple loss calculation
724        self.confidence_scores.push(accuracy);
725        self.quantum_fidelities.push(accuracy * 0.9); // Simplified quantum fidelity
726    }
727
728    /// Get average accuracy
729    pub fn get_average_accuracy(&self) -> f64 {
730        if self.accuracies.is_empty() {
731            0.5 // Default value
732        } else {
733            self.accuracies.iter().sum::<f64>() / self.accuracies.len() as f64
734        }
735    }
736
737    /// Get latest accuracy
738    pub fn get_latest_accuracy(&self) -> f64 {
739        self.accuracies.last().copied().unwrap_or(0.5)
740    }
741}
742
743impl DiversityMetrics {
744    /// Create new diversity metrics
745    pub fn new(num_models: usize) -> Self {
746        Self {
747            prediction_correlations: Array2::zeros((num_models, num_models)),
748            disagreement_scores: Array1::zeros(num_models),
749            quantum_entanglement: Array2::zeros((num_models, num_models)),
750            overall_diversity: 0.0,
751        }
752    }
753}
754
755impl QuantumVotingMechanism {
756    /// Create new quantum voting mechanism
757    pub fn new(strategy: VotingStrategy, num_qubits: usize) -> Self {
758        let voting_circuit = VotingCircuit::new(num_qubits);
759
760        Self {
761            strategy,
762            voting_circuit,
763            confidence_aggregation: ConfidenceAggregation::QuantumCoherence,
764        }
765    }
766
767    /// Apply quantum voting to ensemble decisions
768    pub fn quantum_vote(
769        &self,
770        predictions: &[Array2<f64>],
771        confidences: &[f64],
772    ) -> Result<Array2<f64>> {
773        match &self.strategy {
774            VotingStrategy::QuantumSuperposition => {
775                self.quantum_superposition_vote(predictions, confidences)
776            }
777            VotingStrategy::Adaptive => self.adaptive_quantum_vote(predictions, confidences),
778            _ => {
779                // Default to weighted average
780                self.weighted_vote(predictions, confidences)
781            }
782        }
783    }
784
785    /// Quantum superposition voting
786    fn quantum_superposition_vote(
787        &self,
788        predictions: &[Array2<f64>],
789        confidences: &[f64],
790    ) -> Result<Array2<f64>> {
791        if predictions.is_empty() {
792            return Err(MLError::DataError("No predictions for voting".to_string()));
793        }
794
795        let (n_samples, n_features) = predictions[0].dim();
796        let mut voted_pred = Array2::zeros((n_samples, n_features));
797
798        // Apply quantum voting
799        for i in 0..n_samples {
800            for j in 0..n_features {
801                let mut superposition = 0.0;
802                let mut normalization = 0.0;
803
804                for (k, pred) in predictions.iter().enumerate() {
805                    let confidence = confidences.get(k).copied().unwrap_or(1.0);
806                    let quantum_amplitude = confidence.sqrt()
807                        * ((k as f64 + 1.0) * PI / predictions.len() as f64).cos();
808
809                    superposition += pred[[i, j]] * quantum_amplitude;
810                    normalization += quantum_amplitude * quantum_amplitude;
811                }
812
813                if normalization > 1e-10 {
814                    voted_pred[[i, j]] = superposition / normalization.sqrt();
815                } else {
816                    voted_pred[[i, j]] = superposition;
817                }
818            }
819        }
820
821        Ok(voted_pred)
822    }
823
824    /// Adaptive quantum voting
825    fn adaptive_quantum_vote(
826        &self,
827        predictions: &[Array2<f64>],
828        confidences: &[f64],
829    ) -> Result<Array2<f64>> {
830        // For now, use quantum superposition
831        self.quantum_superposition_vote(predictions, confidences)
832    }
833
834    /// Weighted voting
835    fn weighted_vote(
836        &self,
837        predictions: &[Array2<f64>],
838        confidences: &[f64],
839    ) -> Result<Array2<f64>> {
840        if predictions.is_empty() {
841            return Err(MLError::DataError("No predictions for voting".to_string()));
842        }
843
844        let mut weighted_pred = Array2::zeros(predictions[0].dim());
845        let total_confidence: f64 = confidences.iter().sum();
846
847        if total_confidence > 1e-10 {
848            for (pred, &confidence) in predictions.iter().zip(confidences.iter()) {
849                weighted_pred = weighted_pred + pred * (confidence / total_confidence);
850            }
851        } else {
852            // Equal weights if no confidence information
853            for pred in predictions {
854                weighted_pred = weighted_pred + pred;
855            }
856            weighted_pred = weighted_pred / predictions.len() as f64;
857        }
858
859        Ok(weighted_pred)
860    }
861}
862
863impl VotingCircuit {
864    /// Create new voting circuit
865    pub fn new(num_qubits: usize) -> Self {
866        let parameters =
867            Array1::from_shape_fn(num_qubits * 2, |i| PI * i as f64 / (num_qubits * 2) as f64);
868
869        let entanglement_patterns = vec![EntanglementPattern {
870            qubits: (0..num_qubits).collect(),
871            strength: 1.0,
872            pattern_type: EntanglementType::GHZ,
873        }];
874
875        Self {
876            num_qubits,
877            parameters,
878            entanglement_patterns,
879            measurement_strategy: MeasurementStrategy::Computational,
880        }
881    }
882
883    /// Execute quantum voting circuit
884    pub fn execute_voting(&self, inputs: &[f64]) -> Result<Array1<f64>> {
885        // Simplified quantum circuit execution
886        let mut outputs = Array1::zeros(inputs.len());
887
888        for (i, &input) in inputs.iter().enumerate() {
889            let param_idx = i % self.parameters.len();
890            let phase = self.parameters[param_idx] * input;
891            outputs[i] = phase.cos(); // Simplified measurement
892        }
893
894        Ok(outputs)
895    }
896}
897
898/// Ensemble performance analyzer
899pub struct EnsemblePerformanceAnalyzer {
900    metrics: Vec<String>,
901}
902
903impl EnsemblePerformanceAnalyzer {
904    /// Create new ensemble performance analyzer
905    pub fn new() -> Self {
906        Self {
907            metrics: vec![
908                "ensemble_accuracy".to_string(),
909                "diversity_score".to_string(),
910                "individual_contributions".to_string(),
911                "quantum_coherence".to_string(),
912            ],
913        }
914    }
915
916    /// Analyze ensemble performance
917    pub fn analyze_performance(
918        &self,
919        ensemble: &QuantumEnsembleManager,
920        test_data: &Array2<f64>,
921        test_targets: &Array2<f64>,
922    ) -> Result<HashMap<String, f64>> {
923        let mut results = HashMap::new();
924
925        // Get ensemble predictions
926        let ensemble_pred = ensemble.predict_ensemble(test_data, test_targets.ncols())?;
927
928        // Calculate ensemble accuracy
929        let ensemble_accuracy = self.calculate_accuracy(&ensemble_pred, test_targets)?;
930        results.insert("ensemble_accuracy".to_string(), ensemble_accuracy);
931
932        // Get diversity score
933        let diversity_score = ensemble.get_diversity_metrics().overall_diversity;
934        results.insert("diversity_score".to_string(), diversity_score);
935
936        // Calculate individual model contributions
937        let avg_individual_contrib = ensemble.get_model_weights().mean().unwrap_or(0.0);
938        results.insert(
939            "individual_contributions".to_string(),
940            avg_individual_contrib,
941        );
942
943        // Simplified quantum coherence measure
944        let quantum_coherence = diversity_score * ensemble_accuracy;
945        results.insert("quantum_coherence".to_string(), quantum_coherence);
946
947        Ok(results)
948    }
949
950    /// Calculate accuracy metric
951    fn calculate_accuracy(&self, predictions: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
952        if predictions.shape() != targets.shape() {
953            return Err(MLError::DimensionMismatch(
954                "Predictions and targets must have same shape".to_string(),
955            ));
956        }
957
958        let mae: f64 = predictions
959            .iter()
960            .zip(targets.iter())
961            .map(|(p, t)| (p - t).abs())
962            .sum::<f64>()
963            / predictions.len() as f64;
964
965        Ok(1.0 / (1.0 + mae))
966    }
967}