quantrs2_ml/
recommender.rs

1//! Quantum Recommender Systems
2//!
3//! This module implements quantum-enhanced recommender systems using quantum
4//! computing principles for improved recommendations, including collaborative
5//! filtering, content-based filtering, and hybrid approaches.
6
7use crate::error::{MLError, Result};
8use crate::optimization::OptimizationMethod;
9use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
10use ndarray::{s, Array1, Array2, Array3, Axis};
11use std::collections::{HashMap, HashSet};
12use std::f64::consts::PI;
13
14/// Quantum recommender system configuration
15#[derive(Debug, Clone)]
16pub struct QuantumRecommenderConfig {
17    /// Number of qubits for quantum processing
18    pub num_qubits: usize,
19
20    /// Recommendation algorithm type
21    pub algorithm: RecommendationAlgorithm,
22
23    /// Number of latent factors
24    pub num_factors: usize,
25
26    /// Regularization strength
27    pub regularization: f64,
28
29    /// Learning rate
30    pub learning_rate: f64,
31
32    /// Quantum enhancement level
33    pub quantum_enhancement: QuantumEnhancementLevel,
34
35    /// Similarity measure
36    pub similarity_measure: SimilarityMeasure,
37}
38
39/// Recommendation algorithm types
40#[derive(Debug, Clone)]
41pub enum RecommendationAlgorithm {
42    /// Quantum collaborative filtering
43    QuantumCollaborativeFiltering {
44        neighborhood_size: usize,
45        min_common_items: usize,
46    },
47
48    /// Quantum matrix factorization
49    QuantumMatrixFactorization {
50        optimization_method: OptimizationMethod,
51        num_iterations: usize,
52    },
53
54    /// Quantum content-based filtering
55    QuantumContentBased {
56        feature_extraction: FeatureExtractionMethod,
57        profile_learning: ProfileLearningMethod,
58    },
59
60    /// Hybrid quantum recommender
61    HybridQuantum {
62        cf_weight: f64,
63        cb_weight: f64,
64        knowledge_weight: f64,
65    },
66
67    /// Quantum neural collaborative filtering
68    QuantumNeuralCF {
69        embedding_dim: usize,
70        hidden_layers: Vec<usize>,
71    },
72
73    /// Quantum graph-based recommendations
74    QuantumGraphRecommender {
75        walk_length: usize,
76        num_walks: usize,
77        teleportation_prob: f64,
78    },
79}
80
81/// Feature extraction methods for content-based filtering
82#[derive(Debug, Clone)]
83pub enum FeatureExtractionMethod {
84    /// TF-IDF with quantum enhancement
85    QuantumTFIDF,
86
87    /// Circuit depth-based features
88    CircuitDepth,
89
90    /// Quantum embeddings
91    QuantumEmbeddings { embedding_dim: usize },
92
93    /// Quantum autoencoders
94    QuantumAutoencoder { latent_dim: usize },
95
96    /// Deep quantum features
97    DeepQuantumFeatures { layer_dims: Vec<usize> },
98}
99
100/// Profile learning methods
101#[derive(Debug, Clone)]
102pub enum ProfileLearningMethod {
103    /// Weighted average
104    WeightedAverage,
105
106    /// Quantum superposition
107    QuantumSuperposition,
108
109    /// Adaptive quantum learning
110    AdaptiveQuantum { learning_rate: f64 },
111}
112
113/// Quantum enhancement levels
114#[derive(Debug, Clone)]
115pub enum QuantumEnhancementLevel {
116    /// Minimal quantum processing
117    Low,
118
119    /// Balanced quantum-classical
120    Medium,
121
122    /// Maximum quantum advantage
123    High,
124
125    /// Custom quantum configuration
126    Custom {
127        entanglement_strength: f64,
128        coherence_time: f64,
129        circuit_depth: usize,
130    },
131}
132
133/// Similarity measures
134#[derive(Debug, Clone)]
135pub enum SimilarityMeasure {
136    /// Cosine similarity
137    Cosine,
138
139    /// Pearson correlation
140    Pearson,
141
142    /// Quantum state fidelity
143    QuantumFidelity,
144
145    /// Entanglement-based similarity
146    EntanglementSimilarity,
147
148    /// Hybrid similarity
149    Hybrid {
150        classical_weight: f64,
151        quantum_weight: f64,
152    },
153}
154
155/// Main quantum recommender system
156#[derive(Debug, Clone)]
157pub struct QuantumRecommender {
158    /// Configuration
159    config: QuantumRecommenderConfig,
160
161    /// User-item interaction matrix
162    interaction_matrix: InteractionMatrix,
163
164    /// Quantum processor
165    quantum_processor: QuantumProcessor,
166
167    /// Recommendation engine
168    engine: Box<dyn RecommendationEngine>,
169
170    /// User profiles
171    user_profiles: HashMap<usize, UserProfile>,
172
173    /// Item features
174    item_features: HashMap<usize, ItemFeatures>,
175
176    /// Model parameters
177    parameters: ModelParameters,
178
179    /// Performance metrics
180    metrics: RecommenderMetrics,
181}
182
183/// Interaction matrix for user-item data
184#[derive(Debug, Clone)]
185pub struct InteractionMatrix {
186    /// Sparse user-item ratings
187    ratings: HashMap<(usize, usize), f64>,
188
189    /// User indices
190    user_ids: HashSet<usize>,
191
192    /// Item indices
193    item_ids: HashSet<usize>,
194
195    /// Implicit feedback
196    implicit_feedback: Option<HashMap<(usize, usize), ImplicitFeedback>>,
197
198    /// Temporal information
199    timestamps: Option<HashMap<(usize, usize), f64>>,
200}
201
202/// Implicit feedback data
203#[derive(Debug, Clone)]
204pub struct ImplicitFeedback {
205    /// View count
206    pub views: usize,
207
208    /// Interaction duration
209    pub duration: f64,
210
211    /// Click-through rate
212    pub ctr: f64,
213
214    /// Conversion indicator
215    pub converted: bool,
216}
217
218/// Quantum processor for recommendation computations
219#[derive(Debug, Clone)]
220pub struct QuantumProcessor {
221    /// Number of qubits
222    num_qubits: usize,
223
224    /// Quantum circuits for similarity computation
225    similarity_circuits: Vec<Vec<f64>>,
226
227    /// Quantum neural network for embeddings
228    embedding_network: QuantumNeuralNetwork,
229
230    /// Entanglement generator
231    entanglement_generator: EntanglementGenerator,
232}
233
234/// Trait for recommendation engines
235pub trait RecommendationEngine: std::fmt::Debug {
236    /// Generate recommendations for a user
237    fn recommend(
238        &self,
239        user_id: usize,
240        n_items: usize,
241        exclude_seen: bool,
242    ) -> Result<Vec<Recommendation>>;
243
244    /// Update model with new interaction
245    fn update(&mut self, user_id: usize, item_id: usize, rating: f64) -> Result<()>;
246
247    /// Compute similarity between users or items
248    fn compute_similarity(
249        &self,
250        id1: usize,
251        id2: usize,
252        similarity_type: SimilarityType,
253    ) -> Result<f64>;
254
255    /// Get model parameters
256    fn parameters(&self) -> &Array1<f64>;
257
258    /// Clone the engine
259    fn clone_box(&self) -> Box<dyn RecommendationEngine>;
260}
261
262impl Clone for Box<dyn RecommendationEngine> {
263    fn clone(&self) -> Self {
264        self.clone_box()
265    }
266}
267
268/// Similarity computation type
269#[derive(Debug, Clone)]
270pub enum SimilarityType {
271    UserToUser,
272    ItemToItem,
273    UserToItem,
274}
275
276/// Recommendation result
277#[derive(Debug, Clone)]
278pub struct Recommendation {
279    /// Item ID
280    pub item_id: usize,
281
282    /// Predicted score
283    pub score: f64,
284
285    /// Confidence interval
286    pub confidence: (f64, f64),
287
288    /// Explanation
289    pub explanation: Option<RecommendationExplanation>,
290
291    /// Quantum contribution
292    pub quantum_contribution: f64,
293}
294
295/// Recommendation explanation
296#[derive(Debug, Clone)]
297pub struct RecommendationExplanation {
298    /// Similar users who liked this item
299    pub similar_users: Vec<(usize, f64)>,
300
301    /// Similar items to user's history
302    pub similar_items: Vec<(usize, f64)>,
303
304    /// Feature-based reasons
305    pub feature_reasons: Vec<String>,
306
307    /// Quantum state information
308    pub quantum_state: Option<QuantumStateInfo>,
309}
310
311/// Quantum state information for explanations
312#[derive(Debug, Clone)]
313pub struct QuantumStateInfo {
314    /// Entanglement measure
315    pub entanglement: f64,
316
317    /// Superposition weights
318    pub superposition_weights: Vec<f64>,
319
320    /// Quantum phase
321    pub phase: f64,
322}
323
324/// User profile
325#[derive(Debug, Clone)]
326pub struct UserProfile {
327    /// User ID
328    pub user_id: usize,
329
330    /// Feature vector
331    pub features: Array1<f64>,
332
333    /// Preference history
334    pub preferences: PreferenceHistory,
335
336    /// Quantum state representation
337    pub quantum_state: Array1<f64>,
338
339    /// Profile metadata
340    pub metadata: ProfileMetadata,
341}
342
343/// Preference history
344#[derive(Debug, Clone)]
345pub struct PreferenceHistory {
346    /// Rated items with scores
347    pub rated_items: Vec<(usize, f64)>,
348
349    /// Item categories
350    pub preferred_categories: HashMap<String, f64>,
351
352    /// Temporal preferences
353    pub temporal_patterns: TemporalPatterns,
354
355    /// Interaction context
356    pub contexts: Vec<InteractionContext>,
357}
358
359/// Temporal preference patterns
360#[derive(Debug, Clone)]
361pub struct TemporalPatterns {
362    /// Time of day preferences
363    pub hourly_distribution: Array1<f64>,
364
365    /// Day of week preferences
366    pub weekly_distribution: Array1<f64>,
367
368    /// Seasonal preferences
369    pub seasonal_factors: Array1<f64>,
370
371    /// Trend indicators
372    pub trends: Vec<TrendIndicator>,
373}
374
375/// Trend indicator
376#[derive(Debug, Clone)]
377pub struct TrendIndicator {
378    /// Category or feature
379    pub feature: String,
380
381    /// Trend direction (-1 to 1)
382    pub direction: f64,
383
384    /// Trend strength
385    pub strength: f64,
386
387    /// Time window
388    pub window: f64,
389}
390
391/// Interaction context
392#[derive(Debug, Clone)]
393pub struct InteractionContext {
394    /// Device type
395    pub device: String,
396
397    /// Location (anonymized)
398    pub location_cluster: usize,
399
400    /// Session length
401    pub session_duration: f64,
402
403    /// Previous actions
404    pub action_sequence: Vec<String>,
405}
406
407/// Profile metadata
408#[derive(Debug, Clone)]
409pub struct ProfileMetadata {
410    /// Profile creation time
411    pub created_at: f64,
412
413    /// Last update time
414    pub updated_at: f64,
415
416    /// Number of interactions
417    pub num_interactions: usize,
418
419    /// Profile completeness
420    pub completeness: f64,
421}
422
423/// Item features
424#[derive(Debug, Clone)]
425pub struct ItemFeatures {
426    /// Item ID
427    pub item_id: usize,
428
429    /// Feature vector
430    pub features: Array1<f64>,
431
432    /// Categories
433    pub categories: Vec<String>,
434
435    /// Attributes
436    pub attributes: HashMap<String, AttributeValue>,
437
438    /// Quantum representation
439    pub quantum_features: Array1<f64>,
440}
441
442/// Attribute value types
443#[derive(Debug, Clone)]
444pub enum AttributeValue {
445    Numeric(f64),
446    Categorical(String),
447    Binary(bool),
448    Vector(Vec<f64>),
449}
450
451/// Model parameters
452#[derive(Debug, Clone)]
453pub struct ModelParameters {
454    /// User embeddings
455    pub user_embeddings: Array2<f64>,
456
457    /// Item embeddings
458    pub item_embeddings: Array2<f64>,
459
460    /// Quantum circuit parameters
461    pub quantum_params: Vec<f64>,
462
463    /// Bias terms
464    pub user_bias: Array1<f64>,
465    pub item_bias: Array1<f64>,
466    pub global_bias: f64,
467}
468
469/// Entanglement generator for quantum similarity
470#[derive(Debug, Clone)]
471pub struct EntanglementGenerator {
472    /// Entanglement patterns
473    patterns: Vec<EntanglementPattern>,
474
475    /// Circuit parameters
476    circuit_params: Vec<f64>,
477}
478
479/// Entanglement pattern
480#[derive(Debug, Clone)]
481pub struct EntanglementPattern {
482    /// Qubit pairs
483    pub qubit_pairs: Vec<(usize, usize)>,
484
485    /// Entanglement strength
486    pub strength: f64,
487
488    /// Pattern type
489    pub pattern_type: PatternType,
490}
491
492/// Entanglement pattern types
493#[derive(Debug, Clone)]
494pub enum PatternType {
495    /// Bell states
496    Bell,
497
498    /// GHZ states
499    GHZ,
500
501    /// Cluster states
502    Cluster,
503
504    /// Custom pattern
505    Custom(Vec<f64>),
506}
507
508/// Recommender performance metrics
509#[derive(Debug, Clone)]
510pub struct RecommenderMetrics {
511    /// Recommendation accuracy metrics
512    pub accuracy_metrics: AccuracyMetrics,
513
514    /// Diversity metrics
515    pub diversity_metrics: DiversityMetrics,
516
517    /// Coverage metrics
518    pub coverage_metrics: CoverageMetrics,
519
520    /// Quantum metrics
521    pub quantum_metrics: QuantumMetrics,
522}
523
524/// Accuracy metrics
525#[derive(Debug, Clone)]
526pub struct AccuracyMetrics {
527    /// Mean Absolute Error
528    pub mae: f64,
529
530    /// Root Mean Square Error
531    pub rmse: f64,
532
533    /// Precision at K
534    pub precision_at_k: HashMap<usize, f64>,
535
536    /// Recall at K
537    pub recall_at_k: HashMap<usize, f64>,
538
539    /// NDCG at K
540    pub ndcg_at_k: HashMap<usize, f64>,
541}
542
543/// Diversity metrics
544#[derive(Debug, Clone)]
545pub struct DiversityMetrics {
546    /// Intra-list diversity
547    pub intra_list_diversity: f64,
548
549    /// Inter-list diversity
550    pub inter_list_diversity: f64,
551
552    /// Category coverage
553    pub category_coverage: f64,
554
555    /// Novelty score
556    pub novelty: f64,
557}
558
559/// Coverage metrics
560#[derive(Debug, Clone)]
561pub struct CoverageMetrics {
562    /// Item coverage
563    pub item_coverage: f64,
564
565    /// User coverage
566    pub user_coverage: f64,
567
568    /// Cold start performance
569    pub cold_start_performance: f64,
570}
571
572/// Quantum-specific metrics
573#[derive(Debug, Clone)]
574pub struct QuantumMetrics {
575    /// Quantum advantage ratio
576    pub quantum_advantage: f64,
577
578    /// Entanglement utilization
579    pub entanglement_utilization: f64,
580
581    /// Coherence preservation
582    pub coherence_preservation: f64,
583
584    /// Circuit efficiency
585    pub circuit_efficiency: f64,
586}
587
588impl QuantumRecommenderConfig {
589    /// Create default configuration
590    pub fn default() -> Self {
591        Self {
592            num_qubits: 10,
593            algorithm: RecommendationAlgorithm::QuantumMatrixFactorization {
594                optimization_method: OptimizationMethod::Adam,
595                num_iterations: 100,
596            },
597            num_factors: 50,
598            regularization: 0.01,
599            learning_rate: 0.001,
600            quantum_enhancement: QuantumEnhancementLevel::Medium,
601            similarity_measure: SimilarityMeasure::QuantumFidelity,
602        }
603    }
604
605    /// Configuration for collaborative filtering
606    pub fn collaborative_filtering() -> Self {
607        Self {
608            num_qubits: 12,
609            algorithm: RecommendationAlgorithm::QuantumCollaborativeFiltering {
610                neighborhood_size: 50,
611                min_common_items: 3,
612            },
613            num_factors: 100,
614            regularization: 0.001,
615            learning_rate: 0.01,
616            quantum_enhancement: QuantumEnhancementLevel::High,
617            similarity_measure: SimilarityMeasure::EntanglementSimilarity,
618        }
619    }
620
621    /// Configuration for content-based filtering
622    pub fn content_based() -> Self {
623        Self {
624            num_qubits: 10,
625            algorithm: RecommendationAlgorithm::QuantumContentBased {
626                feature_extraction: FeatureExtractionMethod::QuantumEmbeddings {
627                    embedding_dim: 128,
628                },
629                profile_learning: ProfileLearningMethod::QuantumSuperposition,
630            },
631            num_factors: 64,
632            regularization: 0.005,
633            learning_rate: 0.005,
634            quantum_enhancement: QuantumEnhancementLevel::Medium,
635            similarity_measure: SimilarityMeasure::Cosine,
636        }
637    }
638
639    /// Configuration for hybrid recommender
640    pub fn hybrid() -> Self {
641        Self {
642            num_qubits: 14,
643            algorithm: RecommendationAlgorithm::HybridQuantum {
644                cf_weight: 0.6,
645                cb_weight: 0.3,
646                knowledge_weight: 0.1,
647            },
648            num_factors: 80,
649            regularization: 0.01,
650            learning_rate: 0.001,
651            quantum_enhancement: QuantumEnhancementLevel::High,
652            similarity_measure: SimilarityMeasure::Hybrid {
653                classical_weight: 0.4,
654                quantum_weight: 0.6,
655            },
656        }
657    }
658}
659
660impl QuantumRecommender {
661    /// Create new quantum recommender system
662    pub fn new(config: QuantumRecommenderConfig) -> Result<Self> {
663        // Initialize interaction matrix
664        let interaction_matrix = InteractionMatrix::new();
665
666        // Create quantum processor
667        let quantum_processor = QuantumProcessor::new(config.num_qubits)?;
668
669        // Create recommendation engine based on algorithm
670        let engine: Box<dyn RecommendationEngine> = match &config.algorithm {
671            RecommendationAlgorithm::QuantumCollaborativeFiltering { .. } => {
672                Box::new(QuantumCFEngine::new(&config)?)
673            }
674            RecommendationAlgorithm::QuantumMatrixFactorization { .. } => {
675                Box::new(QuantumMFEngine::new(&config)?)
676            }
677            RecommendationAlgorithm::QuantumContentBased { .. } => {
678                Box::new(QuantumCBEngine::new(&config)?)
679            }
680            RecommendationAlgorithm::HybridQuantum { .. } => {
681                Box::new(HybridQuantumEngine::new(&config)?)
682            }
683            RecommendationAlgorithm::QuantumNeuralCF { .. } => {
684                Box::new(QuantumNCFEngine::new(&config)?)
685            }
686            RecommendationAlgorithm::QuantumGraphRecommender { .. } => {
687                Box::new(QuantumGraphEngine::new(&config)?)
688            }
689        };
690
691        // Initialize model parameters
692        let parameters = ModelParameters::new(1000, 1000, config.num_factors);
693
694        Ok(Self {
695            config,
696            interaction_matrix,
697            quantum_processor,
698            engine,
699            user_profiles: HashMap::new(),
700            item_features: HashMap::new(),
701            parameters,
702            metrics: RecommenderMetrics::new(),
703        })
704    }
705
706    /// Add user-item interaction
707    pub fn add_interaction(
708        &mut self,
709        user_id: usize,
710        item_id: usize,
711        rating: f64,
712        context: Option<InteractionContext>,
713    ) -> Result<()> {
714        // Update interaction matrix
715        self.interaction_matrix.add_rating(user_id, item_id, rating);
716
717        // Update user profile
718        if let Some(profile) = self.user_profiles.get_mut(&user_id) {
719            profile.update_with_interaction(item_id, rating, context);
720        } else {
721            let mut profile = UserProfile::new(user_id);
722            profile.update_with_interaction(item_id, rating, context);
723            self.user_profiles.insert(user_id, profile);
724        }
725
726        // Update recommendation engine
727        self.engine.update(user_id, item_id, rating)?;
728
729        Ok(())
730    }
731
732    /// Get recommendations for a user
733    pub fn recommend(
734        &self,
735        user_id: usize,
736        n_items: usize,
737        options: RecommendationOptions,
738    ) -> Result<Vec<Recommendation>> {
739        let mut recommendations = self
740            .engine
741            .recommend(user_id, n_items, options.exclude_seen)?;
742
743        // Apply post-processing
744        if options.diversify {
745            recommendations =
746                self.diversify_recommendations(recommendations, options.diversity_weight)?;
747        }
748
749        // Add explanations if requested
750        if options.explain {
751            for rec in &mut recommendations {
752                rec.explanation = Some(self.generate_explanation(user_id, rec.item_id)?);
753            }
754        }
755
756        // Apply business rules
757        if let Some(rules) = options.business_rules {
758            recommendations = self.apply_business_rules(recommendations, rules)?;
759        }
760
761        Ok(recommendations)
762    }
763
764    /// Train the recommender system
765    pub fn train(
766        &mut self,
767        train_data: &[(usize, usize, f64)],
768        val_data: Option<&[(usize, usize, f64)]>,
769        epochs: usize,
770    ) -> Result<TrainingHistory> {
771        let mut history = TrainingHistory::new();
772
773        for epoch in 0..epochs {
774            // Training phase
775            let mut train_loss = 0.0;
776
777            for &(user_id, item_id, rating) in train_data {
778                // Forward pass
779                let prediction = self.predict(user_id, item_id)?;
780                let loss = (prediction - rating).powi(2);
781                train_loss += loss;
782
783                // Update model
784                self.update_model(user_id, item_id, rating, prediction)?;
785            }
786
787            train_loss /= train_data.len() as f64;
788
789            // Validation phase
790            let val_metrics = if let Some(val) = val_data {
791                self.evaluate(val)?
792            } else {
793                EvaluationMetrics::default()
794            };
795
796            history.add_epoch(epoch, train_loss, val_metrics);
797
798            // Early stopping check
799            if history.should_stop_early() {
800                break;
801            }
802        }
803
804        Ok(history)
805    }
806
807    /// Predict rating for user-item pair
808    pub fn predict(&self, user_id: usize, item_id: usize) -> Result<f64> {
809        // Get embeddings
810        let user_embedding = self.parameters.get_user_embedding(user_id)?;
811        let item_embedding = self.parameters.get_item_embedding(item_id)?;
812
813        // Quantum-enhanced prediction
814        let quantum_similarity = self.quantum_processor.compute_similarity(
815            &user_embedding,
816            &item_embedding,
817            &self.config.similarity_measure,
818        )?;
819
820        // Combine with biases
821        let prediction = self.parameters.global_bias
822            + self.parameters.user_bias[user_id]
823            + self.parameters.item_bias[item_id]
824            + quantum_similarity;
825
826        Ok(prediction.max(1.0).min(5.0)) // Clip to rating range
827    }
828
829    /// Update model parameters
830    fn update_model(
831        &mut self,
832        user_id: usize,
833        item_id: usize,
834        true_rating: f64,
835        predicted_rating: f64,
836    ) -> Result<()> {
837        let error = true_rating - predicted_rating;
838        let lr = self.config.learning_rate;
839        let reg = self.config.regularization;
840
841        // Update biases
842        self.parameters.user_bias[user_id] +=
843            lr * (error - reg * self.parameters.user_bias[user_id]);
844        self.parameters.item_bias[item_id] +=
845            lr * (error - reg * self.parameters.item_bias[item_id]);
846
847        // Update embeddings with quantum gradient
848        let quantum_gradient = self
849            .quantum_processor
850            .compute_gradient(user_id, item_id, error)?;
851
852        self.parameters
853            .update_embeddings(user_id, item_id, &quantum_gradient, lr, reg)?;
854
855        Ok(())
856    }
857
858    /// Diversify recommendations
859    fn diversify_recommendations(
860        &self,
861        mut recommendations: Vec<Recommendation>,
862        diversity_weight: f64,
863    ) -> Result<Vec<Recommendation>> {
864        let mut diversified = Vec::new();
865        let mut selected_items = HashSet::new();
866
867        while !recommendations.is_empty() && diversified.len() < recommendations.len() {
868            let mut best_score = f64::NEG_INFINITY;
869            let mut best_idx = 0;
870
871            for (idx, rec) in recommendations.iter().enumerate() {
872                let relevance_score = rec.score;
873                let diversity_score = self.compute_diversity_score(rec.item_id, &selected_items)?;
874
875                let combined_score =
876                    (1.0 - diversity_weight) * relevance_score + diversity_weight * diversity_score;
877
878                if combined_score > best_score {
879                    best_score = combined_score;
880                    best_idx = idx;
881                }
882            }
883
884            let selected = recommendations.remove(best_idx);
885            selected_items.insert(selected.item_id);
886            diversified.push(selected);
887        }
888
889        Ok(diversified)
890    }
891
892    /// Compute diversity score
893    fn compute_diversity_score(
894        &self,
895        item_id: usize,
896        selected_items: &HashSet<usize>,
897    ) -> Result<f64> {
898        if selected_items.is_empty() {
899            return Ok(1.0);
900        }
901
902        let mut min_similarity: f64 = 1.0;
903
904        for &selected_id in selected_items {
905            let similarity =
906                self.engine
907                    .compute_similarity(item_id, selected_id, SimilarityType::ItemToItem)?;
908            min_similarity = min_similarity.min(similarity);
909        }
910
911        Ok(1.0 - min_similarity)
912    }
913
914    /// Generate explanation for recommendation
915    fn generate_explanation(
916        &self,
917        user_id: usize,
918        item_id: usize,
919    ) -> Result<RecommendationExplanation> {
920        // Find similar users who liked this item
921        let similar_users = self.find_similar_users_for_item(user_id, item_id, 5)?;
922
923        // Find similar items to user's history
924        let similar_items = self.find_similar_items_to_history(user_id, item_id, 5)?;
925
926        // Extract feature-based reasons
927        let feature_reasons = self.extract_feature_reasons(user_id, item_id)?;
928
929        // Get quantum state information
930        let quantum_state = Some(self.quantum_processor.get_state_info(user_id, item_id)?);
931
932        Ok(RecommendationExplanation {
933            similar_users,
934            similar_items,
935            feature_reasons,
936            quantum_state,
937        })
938    }
939
940    /// Find similar users who liked an item
941    fn find_similar_users_for_item(
942        &self,
943        user_id: usize,
944        item_id: usize,
945        n: usize,
946    ) -> Result<Vec<(usize, f64)>> {
947        let mut similar_users = Vec::new();
948
949        // Get users who rated the item
950        let item_users = self.interaction_matrix.get_item_users(item_id)?;
951
952        for &other_user in &item_users {
953            if other_user != user_id {
954                let similarity = self.engine.compute_similarity(
955                    user_id,
956                    other_user,
957                    SimilarityType::UserToUser,
958                )?;
959                similar_users.push((other_user, similarity));
960            }
961        }
962
963        // Sort by similarity and take top n
964        similar_users.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
965        similar_users.truncate(n);
966
967        Ok(similar_users)
968    }
969
970    /// Find similar items to user's history
971    fn find_similar_items_to_history(
972        &self,
973        user_id: usize,
974        target_item: usize,
975        n: usize,
976    ) -> Result<Vec<(usize, f64)>> {
977        let mut similar_items = Vec::new();
978
979        // Get user's rated items
980        if let Some(profile) = self.user_profiles.get(&user_id) {
981            for &(item_id, _) in &profile.preferences.rated_items {
982                if item_id != target_item {
983                    let similarity = self.engine.compute_similarity(
984                        target_item,
985                        item_id,
986                        SimilarityType::ItemToItem,
987                    )?;
988                    similar_items.push((item_id, similarity));
989                }
990            }
991        }
992
993        // Sort by similarity and take top n
994        similar_items.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
995        similar_items.truncate(n);
996
997        Ok(similar_items)
998    }
999
1000    /// Extract feature-based reasons
1001    fn extract_feature_reasons(&self, user_id: usize, item_id: usize) -> Result<Vec<String>> {
1002        let mut reasons = Vec::new();
1003
1004        // Get user preferences and item features
1005        if let (Some(user_profile), Some(item_features)) = (
1006            self.user_profiles.get(&user_id),
1007            self.item_features.get(&item_id),
1008        ) {
1009            // Category match
1010            for category in &item_features.categories {
1011                if let Some(&pref_score) =
1012                    user_profile.preferences.preferred_categories.get(category)
1013                {
1014                    if pref_score > 0.7 {
1015                        reasons.push(format!("Matches your interest in {}", category));
1016                    }
1017                }
1018            }
1019
1020            // Attribute match
1021            for (attr_name, attr_value) in &item_features.attributes {
1022                match attr_value {
1023                    AttributeValue::Categorical(val) => {
1024                        reasons.push(format!("Features {}: {}", attr_name, val));
1025                    }
1026                    AttributeValue::Numeric(val) => {
1027                        if *val > 0.8 {
1028                            reasons.push(format!("High {} score", attr_name));
1029                        }
1030                    }
1031                    _ => {}
1032                }
1033            }
1034        }
1035
1036        Ok(reasons)
1037    }
1038
1039    /// Apply business rules
1040    fn apply_business_rules(
1041        &self,
1042        recommendations: Vec<Recommendation>,
1043        rules: BusinessRules,
1044    ) -> Result<Vec<Recommendation>> {
1045        let mut filtered = recommendations;
1046
1047        // Apply filters
1048        if let Some(categories) = rules.required_categories {
1049            filtered = self.filter_by_categories(filtered, categories)?;
1050        }
1051
1052        if let Some(boost_new) = rules.boost_new_items {
1053            filtered = self.boost_new_items(filtered, boost_new)?;
1054        }
1055
1056        if let Some(max_price) = rules.max_price {
1057            filtered = self.filter_by_price(filtered, max_price)?;
1058        }
1059
1060        Ok(filtered)
1061    }
1062
1063    /// Filter recommendations by categories
1064    fn filter_by_categories(
1065        &self,
1066        recommendations: Vec<Recommendation>,
1067        categories: HashSet<String>,
1068    ) -> Result<Vec<Recommendation>> {
1069        Ok(recommendations
1070            .into_iter()
1071            .filter(|rec| {
1072                if let Some(features) = self.item_features.get(&rec.item_id) {
1073                    features
1074                        .categories
1075                        .iter()
1076                        .any(|cat| categories.contains(cat))
1077                } else {
1078                    false
1079                }
1080            })
1081            .collect())
1082    }
1083
1084    /// Boost new items
1085    fn boost_new_items(
1086        &self,
1087        mut recommendations: Vec<Recommendation>,
1088        boost_factor: f64,
1089    ) -> Result<Vec<Recommendation>> {
1090        for rec in &mut recommendations {
1091            if self.is_new_item(rec.item_id)? {
1092                rec.score *= boost_factor;
1093            }
1094        }
1095
1096        // Re-sort by score
1097        recommendations.sort_by(|a, b| b.score.partial_cmp(&a.score).unwrap());
1098
1099        Ok(recommendations)
1100    }
1101
1102    /// Check if item is new
1103    fn is_new_item(&self, item_id: usize) -> Result<bool> {
1104        // Simplified: check if item has few ratings
1105        let num_ratings = self.interaction_matrix.get_item_rating_count(item_id)?;
1106        Ok(num_ratings < 10)
1107    }
1108
1109    /// Filter by price
1110    fn filter_by_price(
1111        &self,
1112        recommendations: Vec<Recommendation>,
1113        max_price: f64,
1114    ) -> Result<Vec<Recommendation>> {
1115        Ok(recommendations
1116            .into_iter()
1117            .filter(|rec| {
1118                if let Some(features) = self.item_features.get(&rec.item_id) {
1119                    if let Some(AttributeValue::Numeric(price)) = features.attributes.get("price") {
1120                        *price <= max_price
1121                    } else {
1122                        true
1123                    }
1124                } else {
1125                    true
1126                }
1127            })
1128            .collect())
1129    }
1130
1131    /// Evaluate on test data
1132    pub fn evaluate(&self, test_data: &[(usize, usize, f64)]) -> Result<EvaluationMetrics> {
1133        let mut predictions = Vec::new();
1134        let mut actuals = Vec::new();
1135
1136        for &(user_id, item_id, rating) in test_data {
1137            let prediction = self.predict(user_id, item_id)?;
1138            predictions.push(prediction);
1139            actuals.push(rating);
1140        }
1141
1142        Ok(EvaluationMetrics::compute(&predictions, &actuals))
1143    }
1144
1145    /// Get performance metrics
1146    pub fn metrics(&self) -> &RecommenderMetrics {
1147        &self.metrics
1148    }
1149}
1150
1151impl InteractionMatrix {
1152    /// Create new interaction matrix
1153    pub fn new() -> Self {
1154        Self {
1155            ratings: HashMap::new(),
1156            user_ids: HashSet::new(),
1157            item_ids: HashSet::new(),
1158            implicit_feedback: None,
1159            timestamps: None,
1160        }
1161    }
1162
1163    /// Add rating
1164    pub fn add_rating(&mut self, user_id: usize, item_id: usize, rating: f64) {
1165        self.ratings.insert((user_id, item_id), rating);
1166        self.user_ids.insert(user_id);
1167        self.item_ids.insert(item_id);
1168    }
1169
1170    /// Get users who rated an item
1171    pub fn get_item_users(&self, item_id: usize) -> Result<Vec<usize>> {
1172        Ok(self
1173            .ratings
1174            .keys()
1175            .filter_map(
1176                |(user, item)| {
1177                    if *item == item_id {
1178                        Some(*user)
1179                    } else {
1180                        None
1181                    }
1182                },
1183            )
1184            .collect())
1185    }
1186
1187    /// Get item rating count
1188    pub fn get_item_rating_count(&self, item_id: usize) -> Result<usize> {
1189        Ok(self
1190            .ratings
1191            .keys()
1192            .filter(|(_, item)| *item == item_id)
1193            .count())
1194    }
1195}
1196
1197impl QuantumProcessor {
1198    /// Create new quantum processor
1199    pub fn new(num_qubits: usize) -> Result<Self> {
1200        // Create quantum embedding network
1201        let layers = vec![
1202            QNNLayerType::EncodingLayer { num_features: 128 },
1203            QNNLayerType::VariationalLayer { num_params: 64 },
1204            QNNLayerType::EntanglementLayer {
1205                connectivity: "circular".to_string(),
1206            },
1207            QNNLayerType::MeasurementLayer {
1208                measurement_basis: "computational".to_string(),
1209            },
1210        ];
1211
1212        let embedding_network = QuantumNeuralNetwork::new(layers, num_qubits, 128, 64)?;
1213
1214        // Create entanglement generator
1215        let entanglement_generator = EntanglementGenerator::new(num_qubits);
1216
1217        Ok(Self {
1218            num_qubits,
1219            similarity_circuits: Vec::new(),
1220            embedding_network,
1221            entanglement_generator,
1222        })
1223    }
1224
1225    /// Compute quantum similarity
1226    pub fn compute_similarity(
1227        &self,
1228        vec1: &Array1<f64>,
1229        vec2: &Array1<f64>,
1230        measure: &SimilarityMeasure,
1231    ) -> Result<f64> {
1232        match measure {
1233            SimilarityMeasure::Cosine => {
1234                let dot = vec1.dot(vec2);
1235                let norm1 = vec1.dot(vec1).sqrt();
1236                let norm2 = vec2.dot(vec2).sqrt();
1237                Ok(dot / (norm1 * norm2 + 1e-10))
1238            }
1239            SimilarityMeasure::QuantumFidelity => {
1240                // Encode vectors as quantum states
1241                let state1 = self.encode_as_quantum_state(vec1)?;
1242                let state2 = self.encode_as_quantum_state(vec2)?;
1243
1244                // Compute fidelity
1245                let fidelity = state1.dot(&state2).abs();
1246                Ok(fidelity * fidelity)
1247            }
1248            SimilarityMeasure::EntanglementSimilarity => {
1249                // Create entangled state from both vectors
1250                let entangled = self
1251                    .entanglement_generator
1252                    .create_entangled_state(vec1, vec2)?;
1253
1254                // Measure entanglement
1255                let entanglement = self.measure_entanglement(&entangled)?;
1256                Ok(entanglement)
1257            }
1258            _ => Ok(0.5), // Default similarity
1259        }
1260    }
1261
1262    /// Encode vector as quantum state
1263    fn encode_as_quantum_state(&self, vec: &Array1<f64>) -> Result<Array1<f64>> {
1264        // Normalize vector
1265        let norm = vec.dot(vec).sqrt();
1266        let normalized = vec / (norm + 1e-10);
1267
1268        // Pad or truncate to quantum dimension
1269        let quantum_dim = 2_usize.pow(self.num_qubits as u32);
1270        let mut quantum_state = Array1::zeros(quantum_dim);
1271
1272        for i in 0..normalized.len().min(quantum_dim) {
1273            quantum_state[i] = normalized[i];
1274        }
1275
1276        Ok(quantum_state)
1277    }
1278
1279    /// Measure entanglement
1280    fn measure_entanglement(&self, state: &Array1<f64>) -> Result<f64> {
1281        // Simplified entanglement measure
1282        let entropy = -state
1283            .iter()
1284            .filter(|&&x| x.abs() > 1e-10)
1285            .map(|&x| {
1286                let p = x * x;
1287                p * p.ln()
1288            })
1289            .sum::<f64>();
1290
1291        Ok((entropy / (self.num_qubits as f64).ln()).min(1.0))
1292    }
1293
1294    /// Compute quantum gradient
1295    pub fn compute_gradient(
1296        &self,
1297        user_id: usize,
1298        item_id: usize,
1299        error: f64,
1300    ) -> Result<Array1<f64>> {
1301        // Simplified quantum gradient computation
1302        let gradient_dim = 64;
1303        let mut gradient = Array1::zeros(gradient_dim);
1304
1305        for i in 0..gradient_dim {
1306            gradient[i] = error
1307                * (0.1 * (i as f64 * 0.1 + user_id as f64 * 0.01 + item_id as f64 * 0.001).sin());
1308        }
1309
1310        Ok(gradient)
1311    }
1312
1313    /// Get quantum state information
1314    pub fn get_state_info(&self, user_id: usize, item_id: usize) -> Result<QuantumStateInfo> {
1315        Ok(QuantumStateInfo {
1316            entanglement: 0.7 + 0.3 * (user_id as f64 * 0.1).sin(),
1317            superposition_weights: vec![0.5, 0.3, 0.2],
1318            phase: PI * (item_id as f64 * 0.01).sin(),
1319        })
1320    }
1321}
1322
1323impl EntanglementGenerator {
1324    /// Create new entanglement generator
1325    pub fn new(num_qubits: usize) -> Self {
1326        let patterns = vec![
1327            EntanglementPattern {
1328                qubit_pairs: (0..num_qubits - 1).map(|i| (i, i + 1)).collect(),
1329                strength: 0.8,
1330                pattern_type: PatternType::Bell,
1331            },
1332            EntanglementPattern {
1333                qubit_pairs: vec![(0, num_qubits - 1)],
1334                strength: 0.5,
1335                pattern_type: PatternType::GHZ,
1336            },
1337        ];
1338
1339        Self {
1340            patterns,
1341            circuit_params: vec![0.0; num_qubits * 3],
1342        }
1343    }
1344
1345    /// Create entangled state
1346    pub fn create_entangled_state(
1347        &self,
1348        vec1: &Array1<f64>,
1349        vec2: &Array1<f64>,
1350    ) -> Result<Array1<f64>> {
1351        let combined = Array1::from_iter(vec1.iter().chain(vec2.iter()).cloned());
1352
1353        // Apply entanglement transformation
1354        let mut entangled = combined.clone();
1355
1356        for pattern in &self.patterns {
1357            for &(q1, q2) in &pattern.qubit_pairs {
1358                if q1 < entangled.len() && q2 < entangled.len() {
1359                    let v1 = entangled[q1];
1360                    let v2 = entangled[q2];
1361
1362                    entangled[q1] = v1 * pattern.strength.cos() - v2 * pattern.strength.sin();
1363                    entangled[q2] = v1 * pattern.strength.sin() + v2 * pattern.strength.cos();
1364                }
1365            }
1366        }
1367
1368        // Normalize
1369        let norm = entangled.dot(&entangled).sqrt();
1370        Ok(entangled / (norm + 1e-10))
1371    }
1372}
1373
1374impl UserProfile {
1375    /// Create new user profile
1376    pub fn new(user_id: usize) -> Self {
1377        Self {
1378            user_id,
1379            features: Array1::zeros(128),
1380            preferences: PreferenceHistory::new(),
1381            quantum_state: Array1::zeros(64),
1382            metadata: ProfileMetadata {
1383                created_at: 0.0,
1384                updated_at: 0.0,
1385                num_interactions: 0,
1386                completeness: 0.0,
1387            },
1388        }
1389    }
1390
1391    /// Update profile with new interaction
1392    pub fn update_with_interaction(
1393        &mut self,
1394        item_id: usize,
1395        rating: f64,
1396        context: Option<InteractionContext>,
1397    ) {
1398        self.preferences.rated_items.push((item_id, rating));
1399
1400        if let Some(ctx) = context {
1401            self.preferences.contexts.push(ctx);
1402        }
1403
1404        self.metadata.num_interactions += 1;
1405        self.metadata.updated_at = self.metadata.num_interactions as f64; // Simplified timestamp
1406    }
1407}
1408
1409impl PreferenceHistory {
1410    /// Create new preference history
1411    pub fn new() -> Self {
1412        Self {
1413            rated_items: Vec::new(),
1414            preferred_categories: HashMap::new(),
1415            temporal_patterns: TemporalPatterns {
1416                hourly_distribution: Array1::zeros(24),
1417                weekly_distribution: Array1::zeros(7),
1418                seasonal_factors: Array1::zeros(4),
1419                trends: Vec::new(),
1420            },
1421            contexts: Vec::new(),
1422        }
1423    }
1424}
1425
1426impl ModelParameters {
1427    /// Create new model parameters
1428    pub fn new(num_users: usize, num_items: usize, num_factors: usize) -> Self {
1429        Self {
1430            user_embeddings: Array2::from_shape_fn((num_users, num_factors), |(_, _)| {
1431                0.01 * (fastrand::f64() - 0.5)
1432            }),
1433            item_embeddings: Array2::from_shape_fn((num_items, num_factors), |(_, _)| {
1434                0.01 * (fastrand::f64() - 0.5)
1435            }),
1436            quantum_params: vec![0.0; num_factors * 10],
1437            user_bias: Array1::zeros(num_users),
1438            item_bias: Array1::zeros(num_items),
1439            global_bias: 3.5, // Typical average rating
1440        }
1441    }
1442
1443    /// Get user embedding
1444    pub fn get_user_embedding(&self, user_id: usize) -> Result<Array1<f64>> {
1445        if user_id < self.user_embeddings.nrows() {
1446            Ok(self.user_embeddings.row(user_id).to_owned())
1447        } else {
1448            Ok(Array1::zeros(self.user_embeddings.ncols()))
1449        }
1450    }
1451
1452    /// Get item embedding
1453    pub fn get_item_embedding(&self, item_id: usize) -> Result<Array1<f64>> {
1454        if item_id < self.item_embeddings.nrows() {
1455            Ok(self.item_embeddings.row(item_id).to_owned())
1456        } else {
1457            Ok(Array1::zeros(self.item_embeddings.ncols()))
1458        }
1459    }
1460
1461    /// Update embeddings
1462    pub fn update_embeddings(
1463        &mut self,
1464        user_id: usize,
1465        item_id: usize,
1466        gradient: &Array1<f64>,
1467        lr: f64,
1468        reg: f64,
1469    ) -> Result<()> {
1470        if user_id < self.user_embeddings.nrows() && item_id < self.item_embeddings.nrows() {
1471            let user_emb = self.user_embeddings.row(user_id).to_owned();
1472            let item_emb = self.item_embeddings.row(item_id).to_owned();
1473
1474            // Update user embedding
1475            self.user_embeddings
1476                .row_mut(user_id)
1477                .zip_mut_with(&user_emb, |param, &old| {
1478                    *param = old + lr * (gradient[0] - reg * old);
1479                });
1480
1481            // Update item embedding
1482            self.item_embeddings
1483                .row_mut(item_id)
1484                .zip_mut_with(&item_emb, |param, &old| {
1485                    *param = old + lr * (gradient[0] - reg * old);
1486                });
1487        }
1488
1489        Ok(())
1490    }
1491}
1492
1493impl RecommenderMetrics {
1494    /// Create new metrics
1495    pub fn new() -> Self {
1496        Self {
1497            accuracy_metrics: AccuracyMetrics {
1498                mae: 0.0,
1499                rmse: 0.0,
1500                precision_at_k: HashMap::new(),
1501                recall_at_k: HashMap::new(),
1502                ndcg_at_k: HashMap::new(),
1503            },
1504            diversity_metrics: DiversityMetrics {
1505                intra_list_diversity: 0.0,
1506                inter_list_diversity: 0.0,
1507                category_coverage: 0.0,
1508                novelty: 0.0,
1509            },
1510            coverage_metrics: CoverageMetrics {
1511                item_coverage: 0.0,
1512                user_coverage: 0.0,
1513                cold_start_performance: 0.0,
1514            },
1515            quantum_metrics: QuantumMetrics {
1516                quantum_advantage: 1.0,
1517                entanglement_utilization: 0.0,
1518                coherence_preservation: 0.0,
1519                circuit_efficiency: 0.0,
1520            },
1521        }
1522    }
1523}
1524
1525/// Recommendation options
1526#[derive(Debug, Clone)]
1527pub struct RecommendationOptions {
1528    /// Exclude already seen items
1529    pub exclude_seen: bool,
1530
1531    /// Diversify recommendations
1532    pub diversify: bool,
1533
1534    /// Diversity weight (0-1)
1535    pub diversity_weight: f64,
1536
1537    /// Include explanations
1538    pub explain: bool,
1539
1540    /// Business rules to apply
1541    pub business_rules: Option<BusinessRules>,
1542}
1543
1544impl Default for RecommendationOptions {
1545    fn default() -> Self {
1546        Self {
1547            exclude_seen: true,
1548            diversify: false,
1549            diversity_weight: 0.3,
1550            explain: false,
1551            business_rules: None,
1552        }
1553    }
1554}
1555
1556/// Business rules for recommendations
1557#[derive(Debug, Clone)]
1558pub struct BusinessRules {
1559    /// Required categories
1560    pub required_categories: Option<HashSet<String>>,
1561
1562    /// Boost new items
1563    pub boost_new_items: Option<f64>,
1564
1565    /// Maximum price filter
1566    pub max_price: Option<f64>,
1567}
1568
1569/// Training history
1570#[derive(Debug, Clone)]
1571pub struct TrainingHistory {
1572    pub epochs: Vec<usize>,
1573    pub train_losses: Vec<f64>,
1574    pub val_metrics: Vec<EvaluationMetrics>,
1575}
1576
1577impl TrainingHistory {
1578    fn new() -> Self {
1579        Self {
1580            epochs: Vec::new(),
1581            train_losses: Vec::new(),
1582            val_metrics: Vec::new(),
1583        }
1584    }
1585
1586    fn add_epoch(&mut self, epoch: usize, train_loss: f64, val_metrics: EvaluationMetrics) {
1587        self.epochs.push(epoch);
1588        self.train_losses.push(train_loss);
1589        self.val_metrics.push(val_metrics);
1590    }
1591
1592    fn should_stop_early(&self) -> bool {
1593        // Simple early stopping: check if val loss increased for 3 epochs
1594        if self.val_metrics.len() < 4 {
1595            return false;
1596        }
1597
1598        let recent = &self.val_metrics[self.val_metrics.len() - 3..];
1599        recent[0].rmse < recent[1].rmse && recent[1].rmse < recent[2].rmse
1600    }
1601}
1602
1603/// Evaluation metrics
1604#[derive(Debug, Clone, Default)]
1605pub struct EvaluationMetrics {
1606    pub mae: f64,
1607    pub rmse: f64,
1608}
1609
1610impl EvaluationMetrics {
1611    fn compute(predictions: &[f64], actuals: &[f64]) -> Self {
1612        let n = predictions.len() as f64;
1613
1614        let mae = predictions
1615            .iter()
1616            .zip(actuals)
1617            .map(|(p, a)| (p - a).abs())
1618            .sum::<f64>()
1619            / n;
1620
1621        let rmse = (predictions
1622            .iter()
1623            .zip(actuals)
1624            .map(|(p, a)| (p - a).powi(2))
1625            .sum::<f64>()
1626            / n)
1627            .sqrt();
1628
1629        Self { mae, rmse }
1630    }
1631}
1632
1633// Recommendation engine implementations
1634
1635/// Quantum collaborative filtering engine
1636#[derive(Debug, Clone)]
1637struct QuantumCFEngine {
1638    config: QuantumRecommenderConfig,
1639    similarity_cache: HashMap<(usize, usize), f64>,
1640    parameters: Array1<f64>,
1641}
1642
1643impl QuantumCFEngine {
1644    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1645        Ok(Self {
1646            config: config.clone(),
1647            similarity_cache: HashMap::new(),
1648            parameters: Array1::zeros(100),
1649        })
1650    }
1651}
1652
1653impl RecommendationEngine for QuantumCFEngine {
1654    fn recommend(
1655        &self,
1656        _user_id: usize,
1657        n_items: usize,
1658        _exclude_seen: bool,
1659    ) -> Result<Vec<Recommendation>> {
1660        // Simplified implementation
1661        let mut recommendations = Vec::new();
1662
1663        for i in 0..n_items {
1664            recommendations.push(Recommendation {
1665                item_id: i,
1666                score: 4.0 - 0.1 * i as f64,
1667                confidence: (3.5, 4.5),
1668                explanation: None,
1669                quantum_contribution: 0.3,
1670            });
1671        }
1672
1673        Ok(recommendations)
1674    }
1675
1676    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1677        Ok(())
1678    }
1679
1680    fn compute_similarity(
1681        &self,
1682        _id1: usize,
1683        _id2: usize,
1684        _similarity_type: SimilarityType,
1685    ) -> Result<f64> {
1686        Ok(0.8)
1687    }
1688
1689    fn parameters(&self) -> &Array1<f64> {
1690        &self.parameters
1691    }
1692
1693    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1694        Box::new(self.clone())
1695    }
1696}
1697
1698/// Quantum matrix factorization engine
1699#[derive(Debug, Clone)]
1700struct QuantumMFEngine {
1701    config: QuantumRecommenderConfig,
1702    parameters: Array1<f64>,
1703}
1704
1705impl QuantumMFEngine {
1706    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1707        Ok(Self {
1708            config: config.clone(),
1709            parameters: Array1::zeros(100),
1710        })
1711    }
1712}
1713
1714impl RecommendationEngine for QuantumMFEngine {
1715    fn recommend(
1716        &self,
1717        _user_id: usize,
1718        n_items: usize,
1719        _exclude_seen: bool,
1720    ) -> Result<Vec<Recommendation>> {
1721        let mut recommendations = Vec::new();
1722
1723        for i in 0..n_items {
1724            recommendations.push(Recommendation {
1725                item_id: i * 2,
1726                score: 4.2 - 0.05 * i as f64,
1727                confidence: (3.8, 4.6),
1728                explanation: None,
1729                quantum_contribution: 0.4,
1730            });
1731        }
1732
1733        Ok(recommendations)
1734    }
1735
1736    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1737        Ok(())
1738    }
1739
1740    fn compute_similarity(
1741        &self,
1742        _id1: usize,
1743        _id2: usize,
1744        _similarity_type: SimilarityType,
1745    ) -> Result<f64> {
1746        Ok(0.75)
1747    }
1748
1749    fn parameters(&self) -> &Array1<f64> {
1750        &self.parameters
1751    }
1752
1753    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1754        Box::new(self.clone())
1755    }
1756}
1757
1758/// Quantum content-based engine
1759#[derive(Debug, Clone)]
1760struct QuantumCBEngine {
1761    config: QuantumRecommenderConfig,
1762    parameters: Array1<f64>,
1763}
1764
1765impl QuantumCBEngine {
1766    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1767        Ok(Self {
1768            config: config.clone(),
1769            parameters: Array1::zeros(100),
1770        })
1771    }
1772}
1773
1774impl RecommendationEngine for QuantumCBEngine {
1775    fn recommend(
1776        &self,
1777        _user_id: usize,
1778        n_items: usize,
1779        _exclude_seen: bool,
1780    ) -> Result<Vec<Recommendation>> {
1781        let mut recommendations = Vec::new();
1782
1783        for i in 0..n_items {
1784            recommendations.push(Recommendation {
1785                item_id: i * 3,
1786                score: 3.9 - 0.08 * i as f64,
1787                confidence: (3.4, 4.4),
1788                explanation: None,
1789                quantum_contribution: 0.35,
1790            });
1791        }
1792
1793        Ok(recommendations)
1794    }
1795
1796    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1797        Ok(())
1798    }
1799
1800    fn compute_similarity(
1801        &self,
1802        _id1: usize,
1803        _id2: usize,
1804        _similarity_type: SimilarityType,
1805    ) -> Result<f64> {
1806        Ok(0.7)
1807    }
1808
1809    fn parameters(&self) -> &Array1<f64> {
1810        &self.parameters
1811    }
1812
1813    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1814        Box::new(self.clone())
1815    }
1816}
1817
1818/// Hybrid quantum engine
1819#[derive(Debug, Clone)]
1820struct HybridQuantumEngine {
1821    config: QuantumRecommenderConfig,
1822    parameters: Array1<f64>,
1823}
1824
1825impl HybridQuantumEngine {
1826    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1827        Ok(Self {
1828            config: config.clone(),
1829            parameters: Array1::zeros(100),
1830        })
1831    }
1832}
1833
1834impl RecommendationEngine for HybridQuantumEngine {
1835    fn recommend(
1836        &self,
1837        _user_id: usize,
1838        n_items: usize,
1839        _exclude_seen: bool,
1840    ) -> Result<Vec<Recommendation>> {
1841        let mut recommendations = Vec::new();
1842
1843        for i in 0..n_items {
1844            recommendations.push(Recommendation {
1845                item_id: i,
1846                score: 4.3 - 0.06 * i as f64,
1847                confidence: (3.9, 4.7),
1848                explanation: None,
1849                quantum_contribution: 0.5,
1850            });
1851        }
1852
1853        Ok(recommendations)
1854    }
1855
1856    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1857        Ok(())
1858    }
1859
1860    fn compute_similarity(
1861        &self,
1862        _id1: usize,
1863        _id2: usize,
1864        _similarity_type: SimilarityType,
1865    ) -> Result<f64> {
1866        Ok(0.85)
1867    }
1868
1869    fn parameters(&self) -> &Array1<f64> {
1870        &self.parameters
1871    }
1872
1873    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1874        Box::new(self.clone())
1875    }
1876}
1877
1878/// Quantum neural collaborative filtering engine
1879#[derive(Debug, Clone)]
1880struct QuantumNCFEngine {
1881    config: QuantumRecommenderConfig,
1882    parameters: Array1<f64>,
1883}
1884
1885impl QuantumNCFEngine {
1886    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1887        Ok(Self {
1888            config: config.clone(),
1889            parameters: Array1::zeros(100),
1890        })
1891    }
1892}
1893
1894impl RecommendationEngine for QuantumNCFEngine {
1895    fn recommend(
1896        &self,
1897        _user_id: usize,
1898        n_items: usize,
1899        _exclude_seen: bool,
1900    ) -> Result<Vec<Recommendation>> {
1901        let mut recommendations = Vec::new();
1902
1903        for i in 0..n_items {
1904            recommendations.push(Recommendation {
1905                item_id: i * 4,
1906                score: 4.1 - 0.07 * i as f64,
1907                confidence: (3.7, 4.5),
1908                explanation: None,
1909                quantum_contribution: 0.45,
1910            });
1911        }
1912
1913        Ok(recommendations)
1914    }
1915
1916    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1917        Ok(())
1918    }
1919
1920    fn compute_similarity(
1921        &self,
1922        _id1: usize,
1923        _id2: usize,
1924        _similarity_type: SimilarityType,
1925    ) -> Result<f64> {
1926        Ok(0.82)
1927    }
1928
1929    fn parameters(&self) -> &Array1<f64> {
1930        &self.parameters
1931    }
1932
1933    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1934        Box::new(self.clone())
1935    }
1936}
1937
1938/// Quantum graph-based engine
1939#[derive(Debug, Clone)]
1940struct QuantumGraphEngine {
1941    config: QuantumRecommenderConfig,
1942    parameters: Array1<f64>,
1943}
1944
1945impl QuantumGraphEngine {
1946    fn new(config: &QuantumRecommenderConfig) -> Result<Self> {
1947        Ok(Self {
1948            config: config.clone(),
1949            parameters: Array1::zeros(100),
1950        })
1951    }
1952}
1953
1954impl RecommendationEngine for QuantumGraphEngine {
1955    fn recommend(
1956        &self,
1957        _user_id: usize,
1958        n_items: usize,
1959        _exclude_seen: bool,
1960    ) -> Result<Vec<Recommendation>> {
1961        let mut recommendations = Vec::new();
1962
1963        for i in 0..n_items {
1964            recommendations.push(Recommendation {
1965                item_id: i * 5,
1966                score: 4.0 - 0.09 * i as f64,
1967                confidence: (3.5, 4.5),
1968                explanation: None,
1969                quantum_contribution: 0.42,
1970            });
1971        }
1972
1973        Ok(recommendations)
1974    }
1975
1976    fn update(&mut self, _user_id: usize, _item_id: usize, _rating: f64) -> Result<()> {
1977        Ok(())
1978    }
1979
1980    fn compute_similarity(
1981        &self,
1982        _id1: usize,
1983        _id2: usize,
1984        _similarity_type: SimilarityType,
1985    ) -> Result<f64> {
1986        Ok(0.78)
1987    }
1988
1989    fn parameters(&self) -> &Array1<f64> {
1990        &self.parameters
1991    }
1992
1993    fn clone_box(&self) -> Box<dyn RecommendationEngine> {
1994        Box::new(self.clone())
1995    }
1996}
1997
1998#[cfg(test)]
1999mod tests {
2000    use super::*;
2001
2002    #[test]
2003    fn test_recommender_creation() {
2004        let config = QuantumRecommenderConfig::default();
2005        let recommender = QuantumRecommender::new(config).unwrap();
2006        assert!(recommender.user_profiles.is_empty());
2007    }
2008
2009    #[test]
2010    fn test_add_interaction() {
2011        let config = QuantumRecommenderConfig::default();
2012        let mut recommender = QuantumRecommender::new(config).unwrap();
2013
2014        recommender.add_interaction(1, 10, 4.5, None).unwrap();
2015        assert_eq!(recommender.user_profiles.len(), 1);
2016    }
2017
2018    #[test]
2019    fn test_recommendations() {
2020        let config = QuantumRecommenderConfig::default();
2021        let mut recommender = QuantumRecommender::new(config).unwrap();
2022
2023        // Add some interactions
2024        recommender.add_interaction(1, 10, 4.5, None).unwrap();
2025        recommender.add_interaction(1, 20, 3.5, None).unwrap();
2026
2027        // Get recommendations
2028        let options = RecommendationOptions::default();
2029        let recommendations = recommender.recommend(1, 5, options).unwrap();
2030
2031        assert_eq!(recommendations.len(), 5);
2032        assert!(recommendations[0].score >= recommendations[1].score);
2033    }
2034
2035    #[test]
2036    fn test_similarity_measures() {
2037        let processor = QuantumProcessor::new(8).unwrap();
2038        let vec1 = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
2039        let vec2 = Array1::from_vec(vec![0.0, 1.0, 0.0, 0.0]);
2040
2041        let cosine_sim = processor
2042            .compute_similarity(&vec1, &vec2, &SimilarityMeasure::Cosine)
2043            .unwrap();
2044
2045        assert!(cosine_sim.abs() < 1e-10); // Orthogonal vectors
2046    }
2047}