quantrs2_ml/
quantum_self_supervised_learning.rs

1//! Quantum Self-Supervised Learning Frameworks
2//!
3//! This module implements cutting-edge quantum self-supervised learning methods that leverage
4//! quantum mechanical principles for enhanced representation learning without labeled data:
5//! - Quantum Contrastive Learning with entanglement-based similarity
6//! - Quantum Masked Learning with superposition encoding
7//! - Quantum SimCLR/SimSiam with quantum augmentations
8//! - Quantum BYOL with quantum momentum updates
9//! - Quantum SwAV with quantum cluster assignments
10//! - Advanced quantum representation learning frameworks
11
12use crate::error::{MLError, Result};
13use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use num_complex::Complex64;
15use rand::{Rng, SeedableRng};
16use rand_chacha::ChaCha20Rng;
17use std::collections::HashMap;
18use std::f64::consts::PI;
19
20/// Configuration for Quantum Self-Supervised Learning
21#[derive(Debug, Clone)]
22pub struct QuantumSelfSupervisedConfig {
23    pub input_dim: usize,
24    pub representation_dim: usize,
25    pub num_qubits: usize,
26    pub ssl_method: QuantumSSLMethod,
27    pub quantum_enhancement_level: f64,
28    pub temperature: f64,
29    pub momentum_coefficient: f64,
30    pub use_quantum_augmentations: bool,
31    pub enable_entanglement_similarity: bool,
32    pub contrastive_config: ContrastiveConfig,
33    pub masked_learning_config: MaskedLearningConfig,
34    pub momentum_config: MomentumConfig,
35    pub clustering_config: ClusteringConfig,
36}
37
38#[derive(Debug, Clone)]
39pub enum QuantumSSLMethod {
40    /// Quantum Contrastive Learning with entanglement-based similarity
41    QuantumContrastive {
42        similarity_metric: QuantumSimilarityMetric,
43        negative_sampling_strategy: NegativeSamplingStrategy,
44        quantum_projection_head: QuantumProjectionHead,
45    },
46
47    /// Quantum Masked Learning (language/image modeling)
48    QuantumMasked {
49        masking_strategy: QuantumMaskingStrategy,
50        reconstruction_objective: ReconstructionObjective,
51        quantum_encoder_decoder: QuantumEncoderDecoder,
52    },
53
54    /// Quantum SimCLR - Simple Contrastive Learning
55    QuantumSimCLR {
56        batch_size: usize,
57        augmentation_strength: f64,
58        quantum_projector: QuantumProjector,
59    },
60
61    /// Quantum SimSiam - Simple Siamese Networks
62    QuantumSimSiam {
63        predictor_hidden_dim: usize,
64        stop_gradient: bool,
65        quantum_momentum: QuantumMomentum,
66    },
67
68    /// Quantum BYOL - Bootstrap Your Own Latent
69    QuantumBYOL {
70        target_update_rate: f64,
71        quantum_ema_config: QuantumEMAConfig,
72        asymmetric_loss: bool,
73    },
74
75    /// Quantum SwAV - Swapping Assignments between Views
76    QuantumSwAV {
77        num_prototypes: usize,
78        queue_length: usize,
79        quantum_sinkhorn_iterations: usize,
80    },
81
82    /// Quantum Momentum Contrast (MoCo)
83    QuantumMoCo {
84        queue_size: usize,
85        momentum_coefficient: f64,
86        quantum_key_encoder: QuantumKeyEncoder,
87    },
88
89    /// Quantum Barlow Twins
90    QuantumBarlowTwins {
91        lambda_off_diagonal: f64,
92        quantum_correlation_matrix: bool,
93    },
94}
95
96#[derive(Debug, Clone)]
97pub enum QuantumSimilarityMetric {
98    QuantumCosine,
99    EntanglementSimilarity,
100    QuantumDotProduct,
101    FidelityBased,
102    QuantumEuclidean,
103    HilbertSchmidtDistance,
104}
105
106#[derive(Debug, Clone)]
107pub enum NegativeSamplingStrategy {
108    Random,
109    HardNegatives,
110    QuantumSampling { sampling_temperature: f64 },
111    EntanglementBasedSampling,
112    QuantumImportanceSampling,
113}
114
115#[derive(Debug, Clone)]
116pub struct QuantumProjectionHead {
117    pub hidden_dims: Vec<usize>,
118    pub output_dim: usize,
119    pub use_batch_norm: bool,
120    pub quantum_layers: Vec<QuantumProjectionLayer>,
121    pub activation: QuantumActivation,
122}
123
124#[derive(Debug, Clone)]
125pub struct QuantumProjectionLayer {
126    pub layer_type: ProjectionLayerType,
127    pub quantum_parameters: Array1<f64>,
128    pub entanglement_pattern: EntanglementPattern,
129    pub measurement_strategy: MeasurementStrategy,
130}
131
132#[derive(Debug, Clone)]
133pub enum ProjectionLayerType {
134    QuantumLinear {
135        input_dim: usize,
136        output_dim: usize,
137    },
138    QuantumNonlinear {
139        activation: QuantumActivation,
140    },
141    QuantumNormalization {
142        normalization_type: QuantumNormType,
143    },
144    QuantumResidual {
145        inner_layers: Vec<QuantumProjectionLayer>,
146    },
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumActivation {
151    QuantumReLU,
152    QuantumSigmoid,
153    QuantumTanh,
154    QuantumGELU,
155    QuantumSwish,
156    EntanglementActivation,
157    PhaseActivation,
158}
159
160#[derive(Debug, Clone)]
161pub enum QuantumNormType {
162    QuantumBatchNorm,
163    QuantumLayerNorm,
164    QuantumInstanceNorm,
165    EntanglementNorm,
166}
167
168#[derive(Debug, Clone)]
169pub enum QuantumMaskingStrategy {
170    Random { mask_probability: f64 },
171    QuantumSuperposition { superposition_strength: f64 },
172    EntanglementMask { entanglement_threshold: f64 },
173    PhaseBasedMask { phase_pattern: PhasePattern },
174    AdaptiveQuantumMask { adaptation_rate: f64 },
175}
176
177#[derive(Debug, Clone)]
178pub enum PhasePattern {
179    Uniform,
180    Gaussian,
181    Quantum { quantum_state: QuantumState },
182}
183
184#[derive(Debug, Clone)]
185pub enum ReconstructionObjective {
186    MSE,
187    CrossEntropy,
188    QuantumFidelity,
189    EntanglementPreservation,
190    PhaseCoherence,
191}
192
193#[derive(Debug, Clone)]
194pub struct QuantumEncoderDecoder {
195    pub encoder: QuantumEncoder,
196    pub decoder: QuantumDecoder,
197    pub shared_quantum_state: bool,
198    pub entanglement_coupling: f64,
199}
200
201#[derive(Debug, Clone)]
202pub struct QuantumEncoder {
203    pub layers: Vec<QuantumEncoderLayer>,
204    pub quantum_state_evolution: QuantumStateEvolution,
205    pub measurement_points: Vec<usize>,
206}
207
208#[derive(Debug, Clone)]
209pub struct QuantumDecoder {
210    pub layers: Vec<QuantumDecoderLayer>,
211    pub quantum_state_preparation: QuantumStatePreparation,
212    pub reconstruction_strategy: ReconstructionStrategy,
213}
214
215#[derive(Debug, Clone)]
216pub struct QuantumEncoderLayer {
217    pub layer_type: EncoderLayerType,
218    pub quantum_parameters: Array1<f64>,
219    pub entanglement_connectivity: Array2<bool>,
220    pub quantum_gates: Vec<QuantumGate>,
221}
222
223#[derive(Debug, Clone)]
224pub enum EncoderLayerType {
225    QuantumAttention {
226        num_heads: usize,
227        head_dim: usize,
228        attention_type: QuantumAttentionType,
229    },
230    QuantumConvolution {
231        kernel_size: usize,
232        stride: usize,
233        padding: usize,
234    },
235    QuantumFeedForward {
236        hidden_dim: usize,
237        activation: QuantumActivation,
238    },
239    QuantumPooling {
240        pool_type: QuantumPoolingType,
241        kernel_size: usize,
242    },
243}
244
245#[derive(Debug, Clone)]
246pub enum QuantumAttentionType {
247    SelfAttention,
248    CrossAttention,
249    EntanglementAttention,
250    QuantumFourierAttention,
251}
252
253#[derive(Debug, Clone)]
254pub enum QuantumPoolingType {
255    QuantumMax,
256    QuantumAverage,
257    EntanglementPooling,
258    QuantumGlobal,
259}
260
261#[derive(Debug, Clone)]
262pub struct QuantumDecoderLayer {
263    pub layer_type: DecoderLayerType,
264    pub quantum_parameters: Array1<f64>,
265    pub inverse_operation: InverseOperation,
266}
267
268#[derive(Debug, Clone)]
269pub enum DecoderLayerType {
270    QuantumTransposeConv {
271        kernel_size: usize,
272        stride: usize,
273        output_padding: usize,
274    },
275    QuantumUpsampling {
276        scale_factor: usize,
277        mode: UpsamplingMode,
278    },
279    QuantumReconstruction {
280        reconstruction_type: ReconstructionType,
281    },
282}
283
284#[derive(Debug, Clone)]
285pub enum UpsamplingMode {
286    Nearest,
287    Linear,
288    QuantumInterpolation,
289    EntanglementUpsampling,
290}
291
292#[derive(Debug, Clone)]
293pub enum ReconstructionType {
294    Direct,
295    Probabilistic,
296    QuantumSuperposition,
297    EntanglementReconstruction,
298}
299
300#[derive(Debug, Clone)]
301pub struct InverseOperation {
302    pub operation_type: InverseOperationType,
303    pub quantum_inversion_method: QuantumInversionMethod,
304    pub fidelity_target: f64,
305}
306
307#[derive(Debug, Clone)]
308pub enum InverseOperationType {
309    UnitaryInverse,
310    PseudoInverse,
311    QuantumInverse,
312    ApproximateInverse,
313}
314
315#[derive(Debug, Clone)]
316pub enum QuantumInversionMethod {
317    DirectInversion,
318    IterativeInversion,
319    QuantumPhaseEstimation,
320    VariationalInversion,
321}
322
323#[derive(Debug, Clone)]
324pub struct QuantumStateEvolution {
325    pub evolution_type: EvolutionType,
326    pub time_steps: Array1<f64>,
327    pub hamiltonian: Array2<Complex64>,
328    pub decoherence_model: DecoherenceModel,
329}
330
331#[derive(Debug, Clone)]
332pub enum EvolutionType {
333    Unitary,
334    NonUnitary,
335    Adiabatic,
336    Sudden,
337}
338
339#[derive(Debug, Clone)]
340pub struct DecoherenceModel {
341    pub t1_time: f64,
342    pub t2_time: f64,
343    pub gate_error_rate: f64,
344    pub measurement_error_rate: f64,
345}
346
347#[derive(Debug, Clone)]
348pub struct QuantumStatePreparation {
349    pub preparation_method: PreparationMethod,
350    pub target_state: QuantumState,
351    pub fidelity_threshold: f64,
352}
353
354#[derive(Debug, Clone)]
355pub enum PreparationMethod {
356    DirectPreparation,
357    VariationalPreparation,
358    AdiabaticPreparation,
359    QuantumApproximateOptimization,
360}
361
362#[derive(Debug, Clone)]
363pub enum ReconstructionStrategy {
364    FullReconstruction,
365    PartialReconstruction,
366    QuantumTomography,
367    ShadowReconstruction,
368}
369
370#[derive(Debug, Clone)]
371pub struct QuantumProjector {
372    pub projection_layers: Vec<QuantumProjectionLayer>,
373    pub output_normalization: bool,
374    pub quantum_enhancement: f64,
375}
376
377#[derive(Debug, Clone)]
378pub struct QuantumMomentum {
379    pub momentum_type: MomentumType,
380    pub update_rule: UpdateRule,
381    pub quantum_state_momentum: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum MomentumType {
386    Classical,
387    Quantum,
388    Entanglement,
389    Phase,
390}
391
392#[derive(Debug, Clone)]
393pub enum UpdateRule {
394    Standard,
395    Nesterov,
396    QuantumAdam,
397    EntanglementMomentum,
398}
399
400#[derive(Debug, Clone)]
401pub struct QuantumEMAConfig {
402    pub ema_rate: f64,
403    pub quantum_ema: bool,
404    pub entanglement_preservation: f64,
405    pub phase_tracking: bool,
406}
407
408#[derive(Debug, Clone)]
409pub struct QuantumKeyEncoder {
410    pub encoder_architecture: QuantumEncoder,
411    pub key_generation_method: KeyGenerationMethod,
412    pub quantum_key_evolution: QuantumKeyEvolution,
413}
414
415#[derive(Debug, Clone)]
416pub enum KeyGenerationMethod {
417    Standard,
418    QuantumRandom,
419    EntanglementBased,
420    PhaseEncoded,
421}
422
423#[derive(Debug, Clone)]
424pub struct QuantumKeyEvolution {
425    pub evolution_strategy: EvolutionStrategy,
426    pub update_frequency: usize,
427    pub quantum_coherence_preservation: f64,
428}
429
430#[derive(Debug, Clone)]
431pub enum EvolutionStrategy {
432    Momentum,
433    ExponentialMovingAverage,
434    QuantumAdiabatic,
435    EntanglementEvolution,
436}
437
438#[derive(Debug, Clone)]
439pub struct ContrastiveConfig {
440    pub positive_pair_strategy: PositivePairStrategy,
441    pub negative_pair_strategy: NegativePairStrategy,
442    pub loss_function: ContrastiveLossFunction,
443    pub temperature_scheduling: TemperatureScheduling,
444}
445
446#[derive(Debug, Clone)]
447pub enum PositivePairStrategy {
448    Augmentation,
449    Temporal,
450    Semantic,
451    QuantumSuperposition,
452    EntanglementBased,
453}
454
455#[derive(Debug, Clone)]
456pub enum NegativePairStrategy {
457    Random,
458    HardNegatives,
459    QuantumSampling,
460    EntanglementDistance,
461}
462
463#[derive(Debug, Clone)]
464pub enum ContrastiveLossFunction {
465    InfoNCE,
466    NTXent,
467    QuantumContrastive,
468    EntanglementContrastive,
469    FidelityContrastive,
470}
471
472#[derive(Debug, Clone)]
473pub enum TemperatureScheduling {
474    Fixed,
475    Cosine,
476    Exponential,
477    QuantumAdaptive,
478}
479
480#[derive(Debug, Clone)]
481pub struct MaskedLearningConfig {
482    pub mask_ratio: f64,
483    pub mask_strategy: MaskStrategy,
484    pub reconstruction_target: ReconstructionTarget,
485    pub quantum_mask_evolution: QuantumMaskEvolution,
486}
487
488#[derive(Debug, Clone)]
489pub enum MaskStrategy {
490    Random,
491    Block,
492    Attention,
493    QuantumSuperposition,
494    EntanglementMask,
495}
496
497#[derive(Debug, Clone)]
498pub enum ReconstructionTarget {
499    RawPixels,
500    Features,
501    Tokens,
502    QuantumStates,
503    EntanglementPatterns,
504}
505
506#[derive(Debug, Clone)]
507pub struct QuantumMaskEvolution {
508    pub evolution_type: MaskEvolutionType,
509    pub adaptation_rate: f64,
510    pub quantum_coherence_preservation: f64,
511}
512
513#[derive(Debug, Clone)]
514pub enum MaskEvolutionType {
515    Static,
516    Dynamic,
517    Adaptive,
518    QuantumEvolution,
519}
520
521#[derive(Debug, Clone)]
522pub struct MomentumConfig {
523    pub momentum_coefficient: f64,
524    pub target_network_update: TargetNetworkUpdate,
525    pub quantum_momentum_preservation: f64,
526}
527
528#[derive(Debug, Clone)]
529pub enum TargetNetworkUpdate {
530    Hard,
531    Soft,
532    QuantumSmooth,
533    EntanglementPreserving,
534}
535
536#[derive(Debug, Clone)]
537pub struct ClusteringConfig {
538    pub num_clusters: usize,
539    pub clustering_method: QuantumClusteringMethod,
540    pub prototype_update_strategy: PrototypeUpdateStrategy,
541    pub quantum_assignment_method: QuantumAssignmentMethod,
542}
543
544#[derive(Debug, Clone)]
545pub enum QuantumClusteringMethod {
546    QuantumKMeans,
547    QuantumSpectral,
548    EntanglementClustering,
549    QuantumHierarchical,
550}
551
552#[derive(Debug, Clone)]
553pub enum PrototypeUpdateStrategy {
554    MovingAverage,
555    Gradient,
556    QuantumUpdate,
557    EntanglementUpdate,
558}
559
560#[derive(Debug, Clone)]
561pub enum QuantumAssignmentMethod {
562    SoftAssignment,
563    SinkhornKnopp,
564    QuantumSinkhorn,
565    EntanglementAssignment,
566}
567
568/// Main Quantum Self-Supervised Learning Framework
569pub struct QuantumSelfSupervisedLearner {
570    config: QuantumSelfSupervisedConfig,
571
572    // Core components
573    online_network: QuantumOnlineNetwork,
574    target_network: Option<QuantumTargetNetwork>,
575
576    // Quantum components
577    quantum_augmenter: QuantumAugmenter,
578    quantum_encoder: QuantumEncoder,
579    quantum_projector: QuantumProjector,
580    quantum_predictor: Option<QuantumPredictor>,
581
582    // Self-supervised learning components
583    contrastive_learner: Option<QuantumContrastiveLearner>,
584    masked_learner: Option<QuantumMaskedLearner>,
585    momentum_learner: Option<QuantumMomentumLearner>,
586    clustering_learner: Option<QuantumClusteringLearner>,
587
588    // Training state
589    training_history: Vec<SSLTrainingMetrics>,
590    quantum_ssl_metrics: QuantumSSLMetrics,
591
592    // Optimization state
593    optimizer_state: SSLOptimizerState,
594    lr_scheduler: LearningRateScheduler,
595}
596
597#[derive(Debug, Clone)]
598pub struct QuantumOnlineNetwork {
599    encoder: QuantumEncoder,
600    projector: QuantumProjector,
601    predictor: Option<QuantumPredictor>,
602    quantum_parameters: Array1<f64>,
603}
604
605#[derive(Debug, Clone)]
606pub struct QuantumTargetNetwork {
607    encoder: QuantumEncoder,
608    projector: QuantumProjector,
609    momentum_coefficient: f64,
610    quantum_ema_state: QuantumEMAState,
611}
612
613#[derive(Debug, Clone)]
614pub struct QuantumEMAState {
615    quantum_parameters: Array1<f64>,
616    entanglement_state: Array2<Complex64>,
617    phase_tracking: Array1<Complex64>,
618    fidelity_history: Vec<f64>,
619}
620
621#[derive(Debug, Clone)]
622pub struct QuantumAugmenter {
623    augmentation_strategies: Vec<QuantumAugmentationStrategy>,
624    augmentation_strength: f64,
625    quantum_coherence_preservation: f64,
626}
627
628#[derive(Debug, Clone)]
629pub enum QuantumAugmentationStrategy {
630    QuantumRotation {
631        axes: Vec<RotationAxis>,
632    },
633    QuantumNoise {
634        noise_type: NoiseType,
635        strength: f64,
636    },
637    EntanglementCorruption {
638        corruption_rate: f64,
639    },
640    PhaseShift {
641        phase_range: f64,
642    },
643    QuantumMixup {
644        alpha: f64,
645    },
646    QuantumCutout {
647        mask_size: f64,
648    },
649    SuperpositionAugmentation {
650        superposition_strength: f64,
651    },
652}
653
654#[derive(Debug, Clone)]
655pub enum RotationAxis {
656    X,
657    Y,
658    Z,
659    Custom { direction: Array1<f64> },
660}
661
662#[derive(Debug, Clone)]
663pub enum NoiseType {
664    Gaussian,
665    Poisson,
666    QuantumDecoherence,
667    EntanglementNoise,
668}
669
670#[derive(Debug, Clone)]
671pub struct QuantumPredictor {
672    prediction_layers: Vec<QuantumPredictionLayer>,
673    stop_gradient: bool,
674    quantum_prediction_strategy: QuantumPredictionStrategy,
675}
676
677#[derive(Debug, Clone)]
678pub struct QuantumPredictionLayer {
679    layer_type: PredictionLayerType,
680    quantum_parameters: Array1<f64>,
681    activation: QuantumActivation,
682}
683
684#[derive(Debug, Clone)]
685pub enum PredictionLayerType {
686    Linear { input_dim: usize, output_dim: usize },
687    Quantum { num_qubits: usize },
688    Hybrid { quantum_ratio: f64 },
689}
690
691#[derive(Debug, Clone)]
692pub enum QuantumPredictionStrategy {
693    Direct,
694    Probabilistic,
695    Superposition,
696    Entanglement,
697}
698
699#[derive(Debug, Clone)]
700pub struct QuantumContrastiveLearner {
701    similarity_computer: QuantumSimilarityComputer,
702    loss_computer: ContrastiveLossComputer,
703    negative_sampler: QuantumNegativeSampler,
704    temperature_controller: TemperatureController,
705}
706
707#[derive(Debug, Clone)]
708pub struct QuantumSimilarityComputer {
709    similarity_metric: QuantumSimilarityMetric,
710    quantum_dot_product: QuantumDotProduct,
711    entanglement_similarity: EntanglementSimilarity,
712}
713
714#[derive(Debug, Clone)]
715pub struct QuantumDotProduct {
716    normalization: bool,
717    quantum_enhancement: f64,
718    phase_aware: bool,
719}
720
721#[derive(Debug, Clone)]
722pub struct EntanglementSimilarity {
723    entanglement_measure: EntanglementMeasure,
724    similarity_threshold: f64,
725    quantum_distance_metric: QuantumDistanceMetric,
726}
727
728#[derive(Debug, Clone)]
729pub enum EntanglementMeasure {
730    Concurrence,
731    Negativity,
732    EntanglementEntropy,
733    QuantumMutualInformation,
734}
735
736#[derive(Debug, Clone)]
737pub enum QuantumDistanceMetric {
738    Fidelity,
739    TraceDistance,
740    HilbertSchmidt,
741    Bures,
742}
743
744#[derive(Debug, Clone)]
745pub struct ContrastiveLossComputer {
746    loss_function: ContrastiveLossFunction,
747    temperature: f64,
748    quantum_loss_enhancement: f64,
749}
750
751#[derive(Debug, Clone)]
752pub struct QuantumNegativeSampler {
753    sampling_strategy: NegativeSamplingStrategy,
754    num_negatives: usize,
755    quantum_sampling_bias: f64,
756}
757
758#[derive(Debug, Clone)]
759pub struct TemperatureController {
760    scheduling: TemperatureScheduling,
761    current_temperature: f64,
762    quantum_temperature_adaptation: bool,
763}
764
765#[derive(Debug, Clone)]
766pub struct QuantumMaskedLearner {
767    masking_engine: QuantumMaskingEngine,
768    reconstruction_network: QuantumReconstructionNetwork,
769    loss_computer: MaskedLossComputer,
770}
771
772#[derive(Debug, Clone)]
773pub struct QuantumMaskingEngine {
774    masking_strategy: QuantumMaskingStrategy,
775    mask_generator: QuantumMaskGenerator,
776    mask_evolution: QuantumMaskEvolution,
777}
778
779#[derive(Debug, Clone)]
780pub struct QuantumMaskGenerator {
781    generator_type: MaskGeneratorType,
782    quantum_randomness: QuantumRandomness,
783    coherence_preservation: f64,
784}
785
786#[derive(Debug, Clone)]
787pub enum MaskGeneratorType {
788    Random,
789    Structured,
790    Learned,
791    QuantumSuperposition,
792}
793
794#[derive(Debug, Clone)]
795pub struct QuantumRandomness {
796    source: RandomnessSource,
797    entropy_level: f64,
798    quantum_true_randomness: bool,
799}
800
801#[derive(Debug, Clone)]
802pub enum RandomnessSource {
803    Classical,
804    QuantumMeasurement,
805    QuantumDecoherence,
806    EntanglementCollapse,
807}
808
809#[derive(Debug, Clone)]
810pub struct QuantumReconstructionNetwork {
811    reconstruction_layers: Vec<QuantumReconstructionLayer>,
812    output_activation: QuantumActivation,
813    quantum_fidelity_target: f64,
814}
815
816#[derive(Debug, Clone)]
817pub struct QuantumReconstructionLayer {
818    layer_type: ReconstructionLayerType,
819    quantum_parameters: Array1<f64>,
820    reconstruction_strategy: ReconstructionStrategy,
821}
822
823#[derive(Debug, Clone)]
824pub enum ReconstructionLayerType {
825    Dense { input_dim: usize, output_dim: usize },
826    Quantum { num_qubits: usize },
827    Hybrid { quantum_classical_ratio: f64 },
828}
829
830#[derive(Debug, Clone)]
831pub struct MaskedLossComputer {
832    reconstruction_objective: ReconstructionObjective,
833    quantum_fidelity_weight: f64,
834    entanglement_preservation_weight: f64,
835}
836
837#[derive(Debug, Clone)]
838pub struct QuantumMomentumLearner {
839    momentum_updater: QuantumMomentumUpdater,
840    target_network: QuantumTargetNetwork,
841    momentum_scheduler: MomentumScheduler,
842}
843
844#[derive(Debug, Clone)]
845pub struct QuantumMomentumUpdater {
846    update_strategy: MomentumUpdateStrategy,
847    quantum_momentum_preservation: f64,
848    entanglement_momentum: EntanglementMomentum,
849}
850
851#[derive(Debug, Clone)]
852pub enum MomentumUpdateStrategy {
853    Standard,
854    Quantum,
855    Entanglement,
856    PhaseCoherent,
857}
858
859#[derive(Debug, Clone)]
860pub struct EntanglementMomentum {
861    entanglement_decay: f64,
862    momentum_entanglement: f64,
863    coherence_preservation: f64,
864}
865
866#[derive(Debug, Clone)]
867pub struct MomentumScheduler {
868    scheduling_strategy: MomentumSchedulingStrategy,
869    current_momentum: f64,
870    quantum_adaptive: bool,
871}
872
873#[derive(Debug, Clone)]
874pub enum MomentumSchedulingStrategy {
875    Fixed,
876    Cosine,
877    Exponential,
878    QuantumAdaptive,
879}
880
881#[derive(Debug, Clone)]
882pub struct QuantumClusteringLearner {
883    prototype_bank: QuantumPrototypeBank,
884    assignment_computer: QuantumAssignmentComputer,
885    sinkhorn_algorithm: QuantumSinkhornAlgorithm,
886}
887
888#[derive(Debug, Clone)]
889pub struct QuantumPrototypeBank {
890    prototypes: Array2<f64>,
891    quantum_prototypes: Array2<Complex64>,
892    prototype_evolution: PrototypeEvolution,
893}
894
895#[derive(Debug, Clone)]
896pub struct PrototypeEvolution {
897    evolution_strategy: PrototypeEvolutionStrategy,
898    learning_rate: f64,
899    quantum_coherence_preservation: f64,
900}
901
902#[derive(Debug, Clone)]
903pub enum PrototypeEvolutionStrategy {
904    GradientDescent,
905    MovingAverage,
906    QuantumEvolution,
907    EntanglementUpdate,
908}
909
910#[derive(Debug, Clone)]
911pub struct QuantumAssignmentComputer {
912    assignment_method: QuantumAssignmentMethod,
913    temperature: f64,
914    quantum_assignment_enhancement: f64,
915}
916
917#[derive(Debug, Clone)]
918pub struct QuantumSinkhornAlgorithm {
919    num_iterations: usize,
920    regularization: f64,
921    quantum_sinkhorn: bool,
922    entanglement_regularization: f64,
923}
924
925/// Training and evaluation structures
926#[derive(Debug, Clone)]
927pub struct SSLTrainingMetrics {
928    pub epoch: usize,
929    pub loss: f64,
930    pub contrastive_loss: f64,
931    pub reconstruction_loss: f64,
932    pub quantum_fidelity: f64,
933    pub entanglement_measure: f64,
934    pub representation_quality: f64,
935    pub linear_evaluation_accuracy: f64,
936    pub quantum_advantage_ratio: f64,
937}
938
939#[derive(Debug, Clone)]
940pub struct QuantumSSLMetrics {
941    pub average_entanglement: f64,
942    pub coherence_preservation: f64,
943    pub quantum_feature_quality: f64,
944    pub representation_dimensionality: f64,
945    pub transfer_performance: f64,
946    pub quantum_speedup_factor: f64,
947    pub ssl_convergence_rate: f64,
948}
949
950#[derive(Debug, Clone)]
951pub struct SSLOptimizerState {
952    pub learning_rate: f64,
953    pub momentum: f64,
954    pub weight_decay: f64,
955    pub quantum_parameter_lr: f64,
956    pub entanglement_preservation_weight: f64,
957}
958
959#[derive(Debug, Clone)]
960pub struct LearningRateScheduler {
961    pub scheduler_type: LRSchedulerType,
962    pub current_lr: f64,
963    pub warmup_epochs: usize,
964    pub quantum_adaptive: bool,
965}
966
967#[derive(Debug, Clone)]
968pub enum LRSchedulerType {
969    Cosine,
970    StepLR,
971    ExponentialLR,
972    QuantumAdaptive,
973}
974
975// Additional supporting structures
976#[derive(Debug, Clone)]
977pub struct QuantumGate {
978    pub gate_type: QuantumGateType,
979    pub target_qubits: Vec<usize>,
980    pub control_qubits: Vec<usize>,
981    pub parameters: Array1<f64>,
982}
983
984#[derive(Debug, Clone)]
985pub enum QuantumGateType {
986    Rotation { axis: RotationAxis },
987    Entangling { coupling_strength: f64 },
988    Measurement { basis: MeasurementBasis },
989    Custom { gate_matrix: Array2<Complex64> },
990}
991
992#[derive(Debug, Clone)]
993pub enum MeasurementBasis {
994    Computational,
995    PauliX,
996    PauliY,
997    PauliZ,
998    Bell,
999    Custom { basis_vectors: Array2<Complex64> },
1000}
1001
1002#[derive(Debug, Clone)]
1003pub enum MeasurementStrategy {
1004    ExpectationValue,
1005    ProbabilityDistribution,
1006    QuantumStateVector,
1007    PartialMeasurement,
1008}
1009
1010#[derive(Debug, Clone)]
1011pub enum EntanglementPattern {
1012    Linear,
1013    Circular,
1014    AllToAll,
1015    Hierarchical { levels: usize },
1016    Random { probability: f64 },
1017    Custom { adjacency_matrix: Array2<bool> },
1018}
1019
1020#[derive(Debug, Clone)]
1021pub struct QuantumState {
1022    pub amplitudes: Array1<Complex64>,
1023    pub phases: Array1<Complex64>,
1024    pub entanglement_measure: f64,
1025    pub coherence_time: f64,
1026    pub fidelity: f64,
1027}
1028
1029impl Default for QuantumState {
1030    fn default() -> Self {
1031        Self {
1032            amplitudes: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1033            phases: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1034            entanglement_measure: 0.0,
1035            coherence_time: 1.0,
1036            fidelity: 1.0,
1037        }
1038    }
1039}
1040
1041// Main implementation
1042impl QuantumSelfSupervisedLearner {
1043    /// Create a new Quantum Self-Supervised Learner
1044    pub fn new(config: QuantumSelfSupervisedConfig) -> Result<Self> {
1045        println!("🧠 Initializing Quantum Self-Supervised Learning Framework in UltraThink Mode");
1046
1047        // Initialize quantum encoder
1048        let quantum_encoder = Self::create_quantum_encoder(&config)?;
1049
1050        // Initialize quantum projector
1051        let quantum_projector = Self::create_quantum_projector(&config)?;
1052
1053        // Initialize online network
1054        let online_network = QuantumOnlineNetwork {
1055            encoder: quantum_encoder.clone(),
1056            projector: quantum_projector.clone(),
1057            predictor: if matches!(config.ssl_method, QuantumSSLMethod::QuantumSimSiam { .. }) {
1058                Some(Self::create_quantum_predictor(&config)?)
1059            } else {
1060                None
1061            },
1062            quantum_parameters: Array1::zeros(config.num_qubits * 6),
1063        };
1064
1065        // Initialize target network (if needed)
1066        let target_network = if Self::requires_target_network(&config.ssl_method) {
1067            Some(QuantumTargetNetwork {
1068                encoder: quantum_encoder.clone(),
1069                projector: quantum_projector.clone(),
1070                momentum_coefficient: config.momentum_coefficient,
1071                quantum_ema_state: QuantumEMAState {
1072                    quantum_parameters: Array1::zeros(config.num_qubits * 6),
1073                    entanglement_state: Array2::<f64>::eye(config.num_qubits)
1074                        .mapv(|x| Complex64::new(x, 0.0)),
1075                    phase_tracking: Array1::ones(config.num_qubits)
1076                        .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1077                    fidelity_history: Vec::new(),
1078                },
1079            })
1080        } else {
1081            None
1082        };
1083
1084        // Initialize quantum augmenter
1085        let quantum_augmenter = Self::create_quantum_augmenter(&config)?;
1086
1087        // Initialize SSL method-specific components
1088        let contrastive_learner = if Self::uses_contrastive_learning(&config.ssl_method) {
1089            Some(Self::create_contrastive_learner(&config)?)
1090        } else {
1091            None
1092        };
1093
1094        let masked_learner = if Self::uses_masked_learning(&config.ssl_method) {
1095            Some(Self::create_masked_learner(&config)?)
1096        } else {
1097            None
1098        };
1099
1100        let momentum_learner = if Self::uses_momentum_learning(&config.ssl_method) {
1101            Some(Self::create_momentum_learner(&config)?)
1102        } else {
1103            None
1104        };
1105
1106        let clustering_learner = if Self::uses_clustering(&config.ssl_method) {
1107            Some(Self::create_clustering_learner(&config)?)
1108        } else {
1109            None
1110        };
1111
1112        // Initialize metrics and optimization
1113        let quantum_ssl_metrics = QuantumSSLMetrics::default();
1114        let optimizer_state = SSLOptimizerState::default();
1115        let lr_scheduler = LearningRateScheduler::default();
1116
1117        Ok(Self {
1118            config,
1119            online_network,
1120            target_network,
1121            quantum_augmenter,
1122            quantum_encoder,
1123            quantum_projector,
1124            quantum_predictor: None,
1125            contrastive_learner,
1126            masked_learner,
1127            momentum_learner,
1128            clustering_learner,
1129            training_history: Vec::new(),
1130            quantum_ssl_metrics,
1131            optimizer_state,
1132            lr_scheduler,
1133        })
1134    }
1135
1136    /// Learn representations from unlabeled data
1137    pub fn learn_representations(
1138        &mut self,
1139        data: &Array2<f64>,
1140        config: &SSLTrainingConfig,
1141    ) -> Result<SSLLearningOutput> {
1142        println!("🚀 Starting Quantum Self-Supervised Learning");
1143
1144        let mut training_losses = Vec::new();
1145        let mut representation_quality_history = Vec::new();
1146        let mut quantum_metrics_history = Vec::new();
1147
1148        for epoch in 0..config.epochs {
1149            let epoch_metrics = self.train_epoch(data, config, epoch)?;
1150
1151            training_losses.push(epoch_metrics.loss);
1152            representation_quality_history.push(epoch_metrics.representation_quality);
1153
1154            // Update quantum metrics
1155            self.update_quantum_ssl_metrics(&epoch_metrics)?;
1156            quantum_metrics_history.push(self.quantum_ssl_metrics.clone());
1157
1158            // Update learning rate and momentum
1159            self.update_learning_schedule(epoch, &epoch_metrics)?;
1160
1161            // Update target network (if applicable)
1162            if self.target_network.is_some() {
1163                let target_net_clone = self.target_network.as_ref().unwrap().clone();
1164                self.update_target_network_internal(&target_net_clone)?;
1165            }
1166
1167            self.training_history.push(epoch_metrics.clone());
1168
1169            // Logging
1170            if epoch % config.log_interval == 0 {
1171                println!(
1172                    "Epoch {}: Loss = {:.6}, Rep Quality = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1173                    epoch,
1174                    epoch_metrics.loss,
1175                    epoch_metrics.representation_quality,
1176                    epoch_metrics.quantum_fidelity,
1177                    epoch_metrics.entanglement_measure,
1178                );
1179            }
1180        }
1181
1182        // Extract learned representations
1183        let learned_representations = self.extract_representations(data)?;
1184
1185        // Evaluate representation quality
1186        let evaluation_results = self.evaluate_representations(&learned_representations, data)?;
1187
1188        Ok(SSLLearningOutput {
1189            learned_representations,
1190            training_losses,
1191            representation_quality_history,
1192            quantum_metrics_history,
1193            evaluation_results,
1194            final_ssl_metrics: self.quantum_ssl_metrics.clone(),
1195        })
1196    }
1197
1198    /// Train single epoch
1199    fn train_epoch(
1200        &mut self,
1201        data: &Array2<f64>,
1202        config: &SSLTrainingConfig,
1203        epoch: usize,
1204    ) -> Result<SSLTrainingMetrics> {
1205        let mut epoch_loss = 0.0;
1206        let mut contrastive_loss_sum = 0.0;
1207        let mut reconstruction_loss_sum = 0.0;
1208        let mut quantum_fidelity_sum = 0.0;
1209        let mut entanglement_sum = 0.0;
1210        let mut num_batches = 0;
1211
1212        let num_samples = data.nrows();
1213
1214        for batch_start in (0..num_samples).step_by(config.batch_size) {
1215            let batch_end = (batch_start + config.batch_size).min(num_samples);
1216            let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1217
1218            let batch_metrics = self.train_batch(&batch_data, config)?;
1219
1220            epoch_loss += batch_metrics.loss;
1221            contrastive_loss_sum += batch_metrics.contrastive_loss;
1222            reconstruction_loss_sum += batch_metrics.reconstruction_loss;
1223            quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1224            entanglement_sum += batch_metrics.entanglement_measure;
1225            num_batches += 1;
1226        }
1227
1228        let num_batches_f = num_batches as f64;
1229        Ok(SSLTrainingMetrics {
1230            epoch,
1231            loss: epoch_loss / num_batches_f,
1232            contrastive_loss: contrastive_loss_sum / num_batches_f,
1233            reconstruction_loss: reconstruction_loss_sum / num_batches_f,
1234            quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1235            entanglement_measure: entanglement_sum / num_batches_f,
1236            representation_quality: self.estimate_representation_quality()?,
1237            linear_evaluation_accuracy: 0.0, // Would be computed with downstream task
1238            quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1239        })
1240    }
1241
1242    /// Train single batch
1243    fn train_batch(
1244        &mut self,
1245        batch_data: &ndarray::ArrayView2<f64>,
1246        config: &SSLTrainingConfig,
1247    ) -> Result<SSLTrainingMetrics> {
1248        let mut batch_loss = 0.0;
1249        let mut contrastive_loss = 0.0;
1250        let mut reconstruction_loss = 0.0;
1251        let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1252
1253        // Process each sample in the batch
1254        for sample_idx in 0..batch_data.nrows() {
1255            let sample = batch_data.row(sample_idx).to_owned();
1256
1257            // Apply quantum augmentations
1258            let augmented_views = self
1259                .quantum_augmenter
1260                .generate_augmented_views(&sample, 2)?;
1261
1262            // Forward pass through the method-specific learning
1263            let learning_output = match &self.config.ssl_method {
1264                QuantumSSLMethod::QuantumContrastive { .. } => {
1265                    self.contrastive_forward(&augmented_views)?
1266                }
1267                QuantumSSLMethod::QuantumMasked { .. } => self.masked_forward(&sample)?,
1268                QuantumSSLMethod::QuantumSimCLR { .. } => self.simclr_forward(&augmented_views)?,
1269                QuantumSSLMethod::QuantumSimSiam { .. } => {
1270                    self.simsiam_forward(&augmented_views)?
1271                }
1272                QuantumSSLMethod::QuantumBYOL { .. } => self.byol_forward(&augmented_views)?,
1273                QuantumSSLMethod::QuantumSwAV { .. } => self.swav_forward(&augmented_views)?,
1274                QuantumSSLMethod::QuantumMoCo { .. } => self.moco_forward(&augmented_views)?,
1275                QuantumSSLMethod::QuantumBarlowTwins { .. } => {
1276                    self.barlow_twins_forward(&augmented_views)?
1277                }
1278            };
1279
1280            batch_loss += learning_output.total_loss;
1281            contrastive_loss += learning_output.contrastive_loss;
1282            reconstruction_loss += learning_output.reconstruction_loss;
1283            quantum_metrics_sum.accumulate(&learning_output.quantum_metrics);
1284
1285            // Backward pass and parameter update (placeholder)
1286            self.update_parameters(&learning_output, config)?;
1287        }
1288
1289        let num_samples = batch_data.nrows() as f64;
1290        Ok(SSLTrainingMetrics {
1291            epoch: 0, // Will be set by caller
1292            loss: batch_loss / num_samples,
1293            contrastive_loss: contrastive_loss / num_samples,
1294            reconstruction_loss: reconstruction_loss / num_samples,
1295            quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1296            entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1297            representation_quality: quantum_metrics_sum.representation_quality / num_samples,
1298            linear_evaluation_accuracy: 0.0,
1299            quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1300        })
1301    }
1302
1303    /// Helper method implementations (simplified for space)
1304    fn create_quantum_encoder(config: &QuantumSelfSupervisedConfig) -> Result<QuantumEncoder> {
1305        let layers = vec![QuantumEncoderLayer {
1306            layer_type: EncoderLayerType::QuantumFeedForward {
1307                hidden_dim: 128,
1308                activation: QuantumActivation::QuantumReLU,
1309            },
1310            quantum_parameters: Array1::zeros(config.num_qubits * 3),
1311            entanglement_connectivity: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
1312            quantum_gates: Vec::new(),
1313        }];
1314
1315        let layers_len = layers.len();
1316
1317        Ok(QuantumEncoder {
1318            layers,
1319            quantum_state_evolution: QuantumStateEvolution {
1320                evolution_type: EvolutionType::Unitary,
1321                time_steps: Array1::linspace(0.0, 1.0, 10),
1322                hamiltonian: Array2::<f64>::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
1323                decoherence_model: DecoherenceModel::default(),
1324            },
1325            measurement_points: vec![0, layers_len - 1],
1326        })
1327    }
1328
1329    fn create_quantum_projector(config: &QuantumSelfSupervisedConfig) -> Result<QuantumProjector> {
1330        Ok(QuantumProjector {
1331            projection_layers: vec![QuantumProjectionLayer {
1332                layer_type: ProjectionLayerType::QuantumLinear {
1333                    input_dim: config.representation_dim,
1334                    output_dim: config.representation_dim / 2,
1335                },
1336                quantum_parameters: Array1::zeros(config.num_qubits * 2),
1337                entanglement_pattern: EntanglementPattern::Linear,
1338                measurement_strategy: MeasurementStrategy::ExpectationValue,
1339            }],
1340            output_normalization: true,
1341            quantum_enhancement: config.quantum_enhancement_level,
1342        })
1343    }
1344
1345    fn create_quantum_predictor(config: &QuantumSelfSupervisedConfig) -> Result<QuantumPredictor> {
1346        Ok(QuantumPredictor {
1347            prediction_layers: vec![QuantumPredictionLayer {
1348                layer_type: PredictionLayerType::Linear {
1349                    input_dim: config.representation_dim / 2,
1350                    output_dim: config.representation_dim / 2,
1351                },
1352                quantum_parameters: Array1::zeros(config.num_qubits),
1353                activation: QuantumActivation::QuantumReLU,
1354            }],
1355            stop_gradient: true,
1356            quantum_prediction_strategy: QuantumPredictionStrategy::Direct,
1357        })
1358    }
1359
1360    fn create_quantum_augmenter(config: &QuantumSelfSupervisedConfig) -> Result<QuantumAugmenter> {
1361        Ok(QuantumAugmenter {
1362            augmentation_strategies: vec![
1363                QuantumAugmentationStrategy::QuantumRotation {
1364                    axes: vec![RotationAxis::X, RotationAxis::Y, RotationAxis::Z],
1365                },
1366                QuantumAugmentationStrategy::QuantumNoise {
1367                    noise_type: NoiseType::Gaussian,
1368                    strength: 0.1,
1369                },
1370                QuantumAugmentationStrategy::PhaseShift { phase_range: PI },
1371            ],
1372            augmentation_strength: 0.5,
1373            quantum_coherence_preservation: 0.9,
1374        })
1375    }
1376
1377    // Additional helper methods would be implemented here
1378    // (Simplified for space constraints)
1379
1380    fn requires_target_network(method: &QuantumSSLMethod) -> bool {
1381        matches!(
1382            method,
1383            QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1384        )
1385    }
1386
1387    fn uses_contrastive_learning(method: &QuantumSSLMethod) -> bool {
1388        matches!(
1389            method,
1390            QuantumSSLMethod::QuantumContrastive { .. }
1391                | QuantumSSLMethod::QuantumSimCLR { .. }
1392                | QuantumSSLMethod::QuantumMoCo { .. }
1393        )
1394    }
1395
1396    fn uses_masked_learning(method: &QuantumSSLMethod) -> bool {
1397        matches!(method, QuantumSSLMethod::QuantumMasked { .. })
1398    }
1399
1400    fn uses_momentum_learning(method: &QuantumSSLMethod) -> bool {
1401        matches!(
1402            method,
1403            QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1404        )
1405    }
1406
1407    fn uses_clustering(method: &QuantumSSLMethod) -> bool {
1408        matches!(method, QuantumSSLMethod::QuantumSwAV { .. })
1409    }
1410
1411    // Placeholder implementations for various SSL methods
1412    fn contrastive_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1413        Ok(SSLLearningOutputBatch::default())
1414    }
1415
1416    fn masked_forward(&self, _sample: &Array1<f64>) -> Result<SSLLearningOutputBatch> {
1417        Ok(SSLLearningOutputBatch::default())
1418    }
1419
1420    fn simclr_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1421        Ok(SSLLearningOutputBatch::default())
1422    }
1423
1424    fn simsiam_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1425        Ok(SSLLearningOutputBatch::default())
1426    }
1427
1428    fn byol_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1429        Ok(SSLLearningOutputBatch::default())
1430    }
1431
1432    fn swav_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1433        Ok(SSLLearningOutputBatch::default())
1434    }
1435
1436    fn moco_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1437        Ok(SSLLearningOutputBatch::default())
1438    }
1439
1440    fn barlow_twins_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1441        Ok(SSLLearningOutputBatch::default())
1442    }
1443
1444    // Additional method stubs
1445    fn create_contrastive_learner(
1446        _config: &QuantumSelfSupervisedConfig,
1447    ) -> Result<QuantumContrastiveLearner> {
1448        Ok(QuantumContrastiveLearner {
1449            similarity_computer: QuantumSimilarityComputer {
1450                similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1451                quantum_dot_product: QuantumDotProduct {
1452                    normalization: true,
1453                    quantum_enhancement: 1.0,
1454                    phase_aware: true,
1455                },
1456                entanglement_similarity: EntanglementSimilarity {
1457                    entanglement_measure: EntanglementMeasure::Concurrence,
1458                    similarity_threshold: 0.5,
1459                    quantum_distance_metric: QuantumDistanceMetric::Fidelity,
1460                },
1461            },
1462            loss_computer: ContrastiveLossComputer {
1463                loss_function: ContrastiveLossFunction::InfoNCE,
1464                temperature: 0.1,
1465                quantum_loss_enhancement: 1.0,
1466            },
1467            negative_sampler: QuantumNegativeSampler {
1468                sampling_strategy: NegativeSamplingStrategy::Random,
1469                num_negatives: 256,
1470                quantum_sampling_bias: 0.0,
1471            },
1472            temperature_controller: TemperatureController {
1473                scheduling: TemperatureScheduling::Fixed,
1474                current_temperature: 0.1,
1475                quantum_temperature_adaptation: false,
1476            },
1477        })
1478    }
1479
1480    fn create_masked_learner(
1481        _config: &QuantumSelfSupervisedConfig,
1482    ) -> Result<QuantumMaskedLearner> {
1483        Ok(QuantumMaskedLearner {
1484            masking_engine: QuantumMaskingEngine {
1485                masking_strategy: QuantumMaskingStrategy::Random {
1486                    mask_probability: 0.15,
1487                },
1488                mask_generator: QuantumMaskGenerator {
1489                    generator_type: MaskGeneratorType::Random,
1490                    quantum_randomness: QuantumRandomness {
1491                        source: RandomnessSource::Classical,
1492                        entropy_level: 1.0,
1493                        quantum_true_randomness: false,
1494                    },
1495                    coherence_preservation: 0.9,
1496                },
1497                mask_evolution: QuantumMaskEvolution {
1498                    evolution_type: MaskEvolutionType::Static,
1499                    adaptation_rate: 0.01,
1500                    quantum_coherence_preservation: 0.9,
1501                },
1502            },
1503            reconstruction_network: QuantumReconstructionNetwork {
1504                reconstruction_layers: Vec::new(),
1505                output_activation: QuantumActivation::QuantumSigmoid,
1506                quantum_fidelity_target: 0.95,
1507            },
1508            loss_computer: MaskedLossComputer {
1509                reconstruction_objective: ReconstructionObjective::MSE,
1510                quantum_fidelity_weight: 0.1,
1511                entanglement_preservation_weight: 0.05,
1512            },
1513        })
1514    }
1515
1516    fn create_momentum_learner(
1517        config: &QuantumSelfSupervisedConfig,
1518    ) -> Result<QuantumMomentumLearner> {
1519        // Create encoder and projector for target network
1520        let encoder = Self::create_quantum_encoder(config)?;
1521        let projector = Self::create_quantum_projector(config)?;
1522
1523        // Placeholder implementation
1524        Ok(QuantumMomentumLearner {
1525            momentum_updater: QuantumMomentumUpdater {
1526                update_strategy: MomentumUpdateStrategy::Standard,
1527                quantum_momentum_preservation: 0.9,
1528                entanglement_momentum: EntanglementMomentum {
1529                    entanglement_decay: 0.01,
1530                    momentum_entanglement: 0.5,
1531                    coherence_preservation: 0.9,
1532                },
1533            },
1534            target_network: QuantumTargetNetwork {
1535                encoder,
1536                projector,
1537                momentum_coefficient: 0.999,
1538                quantum_ema_state: QuantumEMAState {
1539                    quantum_parameters: Array1::zeros(16),
1540                    entanglement_state: Array2::<f64>::eye(16).mapv(|x| Complex64::new(x, 0.0)),
1541                    phase_tracking: Array1::ones(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1542                    fidelity_history: Vec::new(),
1543                },
1544            },
1545            momentum_scheduler: MomentumScheduler {
1546                scheduling_strategy: MomentumSchedulingStrategy::Fixed,
1547                current_momentum: 0.999,
1548                quantum_adaptive: false,
1549            },
1550        })
1551    }
1552
1553    fn create_clustering_learner(
1554        _config: &QuantumSelfSupervisedConfig,
1555    ) -> Result<QuantumClusteringLearner> {
1556        // Placeholder implementation
1557        Ok(QuantumClusteringLearner {
1558            prototype_bank: QuantumPrototypeBank {
1559                prototypes: Array2::zeros((256, 128)),
1560                quantum_prototypes: Array2::zeros((256, 128))
1561                    .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1562                prototype_evolution: PrototypeEvolution {
1563                    evolution_strategy: PrototypeEvolutionStrategy::MovingAverage,
1564                    learning_rate: 0.01,
1565                    quantum_coherence_preservation: 0.9,
1566                },
1567            },
1568            assignment_computer: QuantumAssignmentComputer {
1569                assignment_method: QuantumAssignmentMethod::SoftAssignment,
1570                temperature: 0.1,
1571                quantum_assignment_enhancement: 1.0,
1572            },
1573            sinkhorn_algorithm: QuantumSinkhornAlgorithm {
1574                num_iterations: 3,
1575                regularization: 0.05,
1576                quantum_sinkhorn: true,
1577                entanglement_regularization: 0.01,
1578            },
1579        })
1580    }
1581
1582    fn update_parameters(
1583        &mut self,
1584        _output: &SSLLearningOutputBatch,
1585        _config: &SSLTrainingConfig,
1586    ) -> Result<()> {
1587        // Placeholder for parameter updates
1588        Ok(())
1589    }
1590
1591    fn update_quantum_ssl_metrics(&mut self, _metrics: &SSLTrainingMetrics) -> Result<()> {
1592        // Placeholder for metrics updates
1593        Ok(())
1594    }
1595
1596    fn update_learning_schedule(
1597        &mut self,
1598        _epoch: usize,
1599        _metrics: &SSLTrainingMetrics,
1600    ) -> Result<()> {
1601        // Placeholder for schedule updates
1602        Ok(())
1603    }
1604
1605    fn update_target_network_internal(&mut self, _target_net: &QuantumTargetNetwork) -> Result<()> {
1606        // Placeholder for target network updates
1607        Ok(())
1608    }
1609
1610    fn extract_representations(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1611        // Simplified representation extraction
1612        Ok(data.clone())
1613    }
1614
1615    fn evaluate_representations(
1616        &self,
1617        _representations: &Array2<f64>,
1618        _data: &Array2<f64>,
1619    ) -> Result<RepresentationEvaluationResults> {
1620        Ok(RepresentationEvaluationResults::default())
1621    }
1622
1623    fn estimate_representation_quality(&self) -> Result<f64> {
1624        Ok(0.8) // Placeholder
1625    }
1626}
1627
1628// Implementation for QuantumAugmenter
1629impl QuantumAugmenter {
1630    pub fn generate_augmented_views(
1631        &self,
1632        sample: &Array1<f64>,
1633        num_views: usize,
1634    ) -> Result<Vec<Array1<f64>>> {
1635        let mut views = Vec::new();
1636
1637        for _ in 0..num_views {
1638            let mut augmented = sample.clone();
1639
1640            // Apply quantum augmentations
1641            for strategy in &self.augmentation_strategies {
1642                augmented = self.apply_augmentation_strategy(&augmented, strategy)?;
1643            }
1644
1645            views.push(augmented);
1646        }
1647
1648        Ok(views)
1649    }
1650
1651    fn apply_augmentation_strategy(
1652        &self,
1653        data: &Array1<f64>,
1654        strategy: &QuantumAugmentationStrategy,
1655    ) -> Result<Array1<f64>> {
1656        match strategy {
1657            QuantumAugmentationStrategy::QuantumNoise {
1658                noise_type: _,
1659                strength,
1660            } => {
1661                let mut rng = rand::thread_rng();
1662                Ok(data.mapv(|x| x + rng.gen::<f64>() * strength))
1663            }
1664            QuantumAugmentationStrategy::PhaseShift { phase_range } => {
1665                let mut rng = rand::thread_rng();
1666                let phase = rng.gen::<f64>() * phase_range;
1667                Ok(data.mapv(|x| x * phase.cos() - x * phase.sin()))
1668            }
1669            _ => Ok(data.clone()), // Simplified for other strategies
1670        }
1671    }
1672}
1673
1674// Output and configuration structures
1675#[derive(Debug, Clone)]
1676pub struct SSLTrainingConfig {
1677    pub epochs: usize,
1678    pub batch_size: usize,
1679    pub learning_rate: f64,
1680    pub weight_decay: f64,
1681    pub log_interval: usize,
1682    pub save_interval: usize,
1683    pub early_stopping_patience: usize,
1684}
1685
1686impl Default for SSLTrainingConfig {
1687    fn default() -> Self {
1688        Self {
1689            epochs: 100,
1690            batch_size: 256,
1691            learning_rate: 3e-4,
1692            weight_decay: 1e-4,
1693            log_interval: 10,
1694            save_interval: 50,
1695            early_stopping_patience: 15,
1696        }
1697    }
1698}
1699
1700#[derive(Debug, Clone)]
1701pub struct SSLLearningOutput {
1702    pub learned_representations: Array2<f64>,
1703    pub training_losses: Vec<f64>,
1704    pub representation_quality_history: Vec<f64>,
1705    pub quantum_metrics_history: Vec<QuantumSSLMetrics>,
1706    pub evaluation_results: RepresentationEvaluationResults,
1707    pub final_ssl_metrics: QuantumSSLMetrics,
1708}
1709
1710#[derive(Debug, Clone, Default)]
1711pub struct SSLLearningOutputBatch {
1712    pub total_loss: f64,
1713    pub contrastive_loss: f64,
1714    pub reconstruction_loss: f64,
1715    pub quantum_metrics: QuantumBatchMetrics,
1716}
1717
1718#[derive(Debug, Clone, Default)]
1719pub struct QuantumBatchMetrics {
1720    pub quantum_fidelity: f64,
1721    pub entanglement_measure: f64,
1722    pub representation_quality: f64,
1723    pub quantum_advantage_ratio: f64,
1724}
1725
1726impl QuantumBatchMetrics {
1727    pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1728        self.quantum_fidelity += other.quantum_fidelity;
1729        self.entanglement_measure += other.entanglement_measure;
1730        self.representation_quality += other.representation_quality;
1731        self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1732    }
1733}
1734
1735#[derive(Debug, Clone, Default)]
1736pub struct RepresentationEvaluationResults {
1737    pub linear_separability: f64,
1738    pub clustering_quality: f64,
1739    pub downstream_task_performance: f64,
1740    pub transfer_learning_performance: f64,
1741    pub quantum_representation_advantage: f64,
1742}
1743
1744// Default implementations
1745impl Default for QuantumSelfSupervisedConfig {
1746    fn default() -> Self {
1747        Self {
1748            input_dim: 64,
1749            representation_dim: 128,
1750            num_qubits: 8,
1751            ssl_method: QuantumSSLMethod::QuantumSimCLR {
1752                batch_size: 256,
1753                augmentation_strength: 0.5,
1754                quantum_projector: QuantumProjector {
1755                    projection_layers: Vec::new(),
1756                    output_normalization: true,
1757                    quantum_enhancement: 1.0,
1758                },
1759            },
1760            quantum_enhancement_level: 1.0,
1761            temperature: 0.1,
1762            momentum_coefficient: 0.999,
1763            use_quantum_augmentations: true,
1764            enable_entanglement_similarity: true,
1765            contrastive_config: ContrastiveConfig {
1766                positive_pair_strategy: PositivePairStrategy::Augmentation,
1767                negative_pair_strategy: NegativePairStrategy::Random,
1768                loss_function: ContrastiveLossFunction::InfoNCE,
1769                temperature_scheduling: TemperatureScheduling::Fixed,
1770            },
1771            masked_learning_config: MaskedLearningConfig {
1772                mask_ratio: 0.15,
1773                mask_strategy: MaskStrategy::Random,
1774                reconstruction_target: ReconstructionTarget::RawPixels,
1775                quantum_mask_evolution: QuantumMaskEvolution {
1776                    evolution_type: MaskEvolutionType::Static,
1777                    adaptation_rate: 0.01,
1778                    quantum_coherence_preservation: 0.9,
1779                },
1780            },
1781            momentum_config: MomentumConfig {
1782                momentum_coefficient: 0.999,
1783                target_network_update: TargetNetworkUpdate::Soft,
1784                quantum_momentum_preservation: 0.9,
1785            },
1786            clustering_config: ClusteringConfig {
1787                num_clusters: 256,
1788                clustering_method: QuantumClusteringMethod::QuantumKMeans,
1789                prototype_update_strategy: PrototypeUpdateStrategy::MovingAverage,
1790                quantum_assignment_method: QuantumAssignmentMethod::SoftAssignment,
1791            },
1792        }
1793    }
1794}
1795
1796impl Default for QuantumSSLMetrics {
1797    fn default() -> Self {
1798        Self {
1799            average_entanglement: 0.5,
1800            coherence_preservation: 0.9,
1801            quantum_feature_quality: 0.8,
1802            representation_dimensionality: 128.0,
1803            transfer_performance: 0.0,
1804            quantum_speedup_factor: 1.0,
1805            ssl_convergence_rate: 0.01,
1806        }
1807    }
1808}
1809
1810impl Default for SSLOptimizerState {
1811    fn default() -> Self {
1812        Self {
1813            learning_rate: 3e-4,
1814            momentum: 0.9,
1815            weight_decay: 1e-4,
1816            quantum_parameter_lr: 1e-5,
1817            entanglement_preservation_weight: 0.1,
1818        }
1819    }
1820}
1821
1822impl Default for LearningRateScheduler {
1823    fn default() -> Self {
1824        Self {
1825            scheduler_type: LRSchedulerType::Cosine,
1826            current_lr: 3e-4,
1827            warmup_epochs: 10,
1828            quantum_adaptive: false,
1829        }
1830    }
1831}
1832
1833impl Default for DecoherenceModel {
1834    fn default() -> Self {
1835        Self {
1836            t1_time: 100.0,
1837            t2_time: 50.0,
1838            gate_error_rate: 0.001,
1839            measurement_error_rate: 0.01,
1840        }
1841    }
1842}
1843
1844#[cfg(test)]
1845mod tests {
1846    use super::*;
1847
1848    #[test]
1849    fn test_quantum_ssl_creation() {
1850        let config = QuantumSelfSupervisedConfig::default();
1851        let ssl = QuantumSelfSupervisedLearner::new(config);
1852        assert!(ssl.is_ok());
1853    }
1854
1855    #[test]
1856    fn test_quantum_augmentations() {
1857        let config = QuantumSelfSupervisedConfig::default();
1858        let augmenter = QuantumAugmenter {
1859            augmentation_strategies: vec![QuantumAugmentationStrategy::QuantumNoise {
1860                noise_type: NoiseType::Gaussian,
1861                strength: 0.1,
1862            }],
1863            augmentation_strength: 0.5,
1864            quantum_coherence_preservation: 0.9,
1865        };
1866
1867        let sample = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1868        let views = augmenter.generate_augmented_views(&sample, 2);
1869        assert!(views.is_ok());
1870        assert_eq!(views.unwrap().len(), 2);
1871    }
1872
1873    #[test]
1874    fn test_ssl_training_config() {
1875        let config = SSLTrainingConfig::default();
1876        assert_eq!(config.batch_size, 256);
1877        assert_eq!(config.epochs, 100);
1878    }
1879
1880    #[test]
1881    fn test_quantum_contrastive_method() {
1882        let config = QuantumSelfSupervisedConfig {
1883            ssl_method: QuantumSSLMethod::QuantumContrastive {
1884                similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1885                negative_sampling_strategy: NegativeSamplingStrategy::Random,
1886                quantum_projection_head: QuantumProjectionHead {
1887                    hidden_dims: vec![128, 64],
1888                    output_dim: 32,
1889                    use_batch_norm: true,
1890                    quantum_layers: Vec::new(),
1891                    activation: QuantumActivation::QuantumReLU,
1892                },
1893            },
1894            ..Default::default()
1895        };
1896
1897        let ssl = QuantumSelfSupervisedLearner::new(config);
1898        assert!(ssl.is_ok());
1899    }
1900
1901    #[test]
1902    fn test_quantum_masked_method() {
1903        let config = QuantumSelfSupervisedConfig {
1904            ssl_method: QuantumSSLMethod::QuantumMasked {
1905                masking_strategy: QuantumMaskingStrategy::Random {
1906                    mask_probability: 0.15,
1907                },
1908                reconstruction_objective: ReconstructionObjective::MSE,
1909                quantum_encoder_decoder: QuantumEncoderDecoder {
1910                    encoder: QuantumEncoder {
1911                        layers: Vec::new(),
1912                        quantum_state_evolution: QuantumStateEvolution {
1913                            evolution_type: EvolutionType::Unitary,
1914                            time_steps: Array1::linspace(0.0, 1.0, 10),
1915                            hamiltonian: Array2::<f64>::eye(8).mapv(|x| Complex64::new(x, 0.0)),
1916                            decoherence_model: DecoherenceModel::default(),
1917                        },
1918                        measurement_points: vec![0, 1],
1919                    },
1920                    decoder: QuantumDecoder {
1921                        layers: Vec::new(),
1922                        quantum_state_preparation: QuantumStatePreparation {
1923                            preparation_method: PreparationMethod::DirectPreparation,
1924                            target_state: QuantumState::default(),
1925                            fidelity_threshold: 0.95,
1926                        },
1927                        reconstruction_strategy: ReconstructionStrategy::FullReconstruction,
1928                    },
1929                    shared_quantum_state: true,
1930                    entanglement_coupling: 0.5,
1931                },
1932            },
1933            ..Default::default()
1934        };
1935
1936        let ssl = QuantumSelfSupervisedLearner::new(config);
1937        assert!(ssl.is_ok());
1938    }
1939}