1use crate::error::{MLError, Result};
13use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use num_complex::Complex64;
15use rand::{Rng, SeedableRng};
16use rand_chacha::ChaCha20Rng;
17use std::collections::HashMap;
18use std::f64::consts::PI;
19
20#[derive(Debug, Clone)]
22pub struct QuantumSelfSupervisedConfig {
23 pub input_dim: usize,
24 pub representation_dim: usize,
25 pub num_qubits: usize,
26 pub ssl_method: QuantumSSLMethod,
27 pub quantum_enhancement_level: f64,
28 pub temperature: f64,
29 pub momentum_coefficient: f64,
30 pub use_quantum_augmentations: bool,
31 pub enable_entanglement_similarity: bool,
32 pub contrastive_config: ContrastiveConfig,
33 pub masked_learning_config: MaskedLearningConfig,
34 pub momentum_config: MomentumConfig,
35 pub clustering_config: ClusteringConfig,
36}
37
38#[derive(Debug, Clone)]
39pub enum QuantumSSLMethod {
40 QuantumContrastive {
42 similarity_metric: QuantumSimilarityMetric,
43 negative_sampling_strategy: NegativeSamplingStrategy,
44 quantum_projection_head: QuantumProjectionHead,
45 },
46
47 QuantumMasked {
49 masking_strategy: QuantumMaskingStrategy,
50 reconstruction_objective: ReconstructionObjective,
51 quantum_encoder_decoder: QuantumEncoderDecoder,
52 },
53
54 QuantumSimCLR {
56 batch_size: usize,
57 augmentation_strength: f64,
58 quantum_projector: QuantumProjector,
59 },
60
61 QuantumSimSiam {
63 predictor_hidden_dim: usize,
64 stop_gradient: bool,
65 quantum_momentum: QuantumMomentum,
66 },
67
68 QuantumBYOL {
70 target_update_rate: f64,
71 quantum_ema_config: QuantumEMAConfig,
72 asymmetric_loss: bool,
73 },
74
75 QuantumSwAV {
77 num_prototypes: usize,
78 queue_length: usize,
79 quantum_sinkhorn_iterations: usize,
80 },
81
82 QuantumMoCo {
84 queue_size: usize,
85 momentum_coefficient: f64,
86 quantum_key_encoder: QuantumKeyEncoder,
87 },
88
89 QuantumBarlowTwins {
91 lambda_off_diagonal: f64,
92 quantum_correlation_matrix: bool,
93 },
94}
95
96#[derive(Debug, Clone)]
97pub enum QuantumSimilarityMetric {
98 QuantumCosine,
99 EntanglementSimilarity,
100 QuantumDotProduct,
101 FidelityBased,
102 QuantumEuclidean,
103 HilbertSchmidtDistance,
104}
105
106#[derive(Debug, Clone)]
107pub enum NegativeSamplingStrategy {
108 Random,
109 HardNegatives,
110 QuantumSampling { sampling_temperature: f64 },
111 EntanglementBasedSampling,
112 QuantumImportanceSampling,
113}
114
115#[derive(Debug, Clone)]
116pub struct QuantumProjectionHead {
117 pub hidden_dims: Vec<usize>,
118 pub output_dim: usize,
119 pub use_batch_norm: bool,
120 pub quantum_layers: Vec<QuantumProjectionLayer>,
121 pub activation: QuantumActivation,
122}
123
124#[derive(Debug, Clone)]
125pub struct QuantumProjectionLayer {
126 pub layer_type: ProjectionLayerType,
127 pub quantum_parameters: Array1<f64>,
128 pub entanglement_pattern: EntanglementPattern,
129 pub measurement_strategy: MeasurementStrategy,
130}
131
132#[derive(Debug, Clone)]
133pub enum ProjectionLayerType {
134 QuantumLinear {
135 input_dim: usize,
136 output_dim: usize,
137 },
138 QuantumNonlinear {
139 activation: QuantumActivation,
140 },
141 QuantumNormalization {
142 normalization_type: QuantumNormType,
143 },
144 QuantumResidual {
145 inner_layers: Vec<QuantumProjectionLayer>,
146 },
147}
148
149#[derive(Debug, Clone)]
150pub enum QuantumActivation {
151 QuantumReLU,
152 QuantumSigmoid,
153 QuantumTanh,
154 QuantumGELU,
155 QuantumSwish,
156 EntanglementActivation,
157 PhaseActivation,
158}
159
160#[derive(Debug, Clone)]
161pub enum QuantumNormType {
162 QuantumBatchNorm,
163 QuantumLayerNorm,
164 QuantumInstanceNorm,
165 EntanglementNorm,
166}
167
168#[derive(Debug, Clone)]
169pub enum QuantumMaskingStrategy {
170 Random { mask_probability: f64 },
171 QuantumSuperposition { superposition_strength: f64 },
172 EntanglementMask { entanglement_threshold: f64 },
173 PhaseBasedMask { phase_pattern: PhasePattern },
174 AdaptiveQuantumMask { adaptation_rate: f64 },
175}
176
177#[derive(Debug, Clone)]
178pub enum PhasePattern {
179 Uniform,
180 Gaussian,
181 Quantum { quantum_state: QuantumState },
182}
183
184#[derive(Debug, Clone)]
185pub enum ReconstructionObjective {
186 MSE,
187 CrossEntropy,
188 QuantumFidelity,
189 EntanglementPreservation,
190 PhaseCoherence,
191}
192
193#[derive(Debug, Clone)]
194pub struct QuantumEncoderDecoder {
195 pub encoder: QuantumEncoder,
196 pub decoder: QuantumDecoder,
197 pub shared_quantum_state: bool,
198 pub entanglement_coupling: f64,
199}
200
201#[derive(Debug, Clone)]
202pub struct QuantumEncoder {
203 pub layers: Vec<QuantumEncoderLayer>,
204 pub quantum_state_evolution: QuantumStateEvolution,
205 pub measurement_points: Vec<usize>,
206}
207
208#[derive(Debug, Clone)]
209pub struct QuantumDecoder {
210 pub layers: Vec<QuantumDecoderLayer>,
211 pub quantum_state_preparation: QuantumStatePreparation,
212 pub reconstruction_strategy: ReconstructionStrategy,
213}
214
215#[derive(Debug, Clone)]
216pub struct QuantumEncoderLayer {
217 pub layer_type: EncoderLayerType,
218 pub quantum_parameters: Array1<f64>,
219 pub entanglement_connectivity: Array2<bool>,
220 pub quantum_gates: Vec<QuantumGate>,
221}
222
223#[derive(Debug, Clone)]
224pub enum EncoderLayerType {
225 QuantumAttention {
226 num_heads: usize,
227 head_dim: usize,
228 attention_type: QuantumAttentionType,
229 },
230 QuantumConvolution {
231 kernel_size: usize,
232 stride: usize,
233 padding: usize,
234 },
235 QuantumFeedForward {
236 hidden_dim: usize,
237 activation: QuantumActivation,
238 },
239 QuantumPooling {
240 pool_type: QuantumPoolingType,
241 kernel_size: usize,
242 },
243}
244
245#[derive(Debug, Clone)]
246pub enum QuantumAttentionType {
247 SelfAttention,
248 CrossAttention,
249 EntanglementAttention,
250 QuantumFourierAttention,
251}
252
253#[derive(Debug, Clone)]
254pub enum QuantumPoolingType {
255 QuantumMax,
256 QuantumAverage,
257 EntanglementPooling,
258 QuantumGlobal,
259}
260
261#[derive(Debug, Clone)]
262pub struct QuantumDecoderLayer {
263 pub layer_type: DecoderLayerType,
264 pub quantum_parameters: Array1<f64>,
265 pub inverse_operation: InverseOperation,
266}
267
268#[derive(Debug, Clone)]
269pub enum DecoderLayerType {
270 QuantumTransposeConv {
271 kernel_size: usize,
272 stride: usize,
273 output_padding: usize,
274 },
275 QuantumUpsampling {
276 scale_factor: usize,
277 mode: UpsamplingMode,
278 },
279 QuantumReconstruction {
280 reconstruction_type: ReconstructionType,
281 },
282}
283
284#[derive(Debug, Clone)]
285pub enum UpsamplingMode {
286 Nearest,
287 Linear,
288 QuantumInterpolation,
289 EntanglementUpsampling,
290}
291
292#[derive(Debug, Clone)]
293pub enum ReconstructionType {
294 Direct,
295 Probabilistic,
296 QuantumSuperposition,
297 EntanglementReconstruction,
298}
299
300#[derive(Debug, Clone)]
301pub struct InverseOperation {
302 pub operation_type: InverseOperationType,
303 pub quantum_inversion_method: QuantumInversionMethod,
304 pub fidelity_target: f64,
305}
306
307#[derive(Debug, Clone)]
308pub enum InverseOperationType {
309 UnitaryInverse,
310 PseudoInverse,
311 QuantumInverse,
312 ApproximateInverse,
313}
314
315#[derive(Debug, Clone)]
316pub enum QuantumInversionMethod {
317 DirectInversion,
318 IterativeInversion,
319 QuantumPhaseEstimation,
320 VariationalInversion,
321}
322
323#[derive(Debug, Clone)]
324pub struct QuantumStateEvolution {
325 pub evolution_type: EvolutionType,
326 pub time_steps: Array1<f64>,
327 pub hamiltonian: Array2<Complex64>,
328 pub decoherence_model: DecoherenceModel,
329}
330
331#[derive(Debug, Clone)]
332pub enum EvolutionType {
333 Unitary,
334 NonUnitary,
335 Adiabatic,
336 Sudden,
337}
338
339#[derive(Debug, Clone)]
340pub struct DecoherenceModel {
341 pub t1_time: f64,
342 pub t2_time: f64,
343 pub gate_error_rate: f64,
344 pub measurement_error_rate: f64,
345}
346
347#[derive(Debug, Clone)]
348pub struct QuantumStatePreparation {
349 pub preparation_method: PreparationMethod,
350 pub target_state: QuantumState,
351 pub fidelity_threshold: f64,
352}
353
354#[derive(Debug, Clone)]
355pub enum PreparationMethod {
356 DirectPreparation,
357 VariationalPreparation,
358 AdiabaticPreparation,
359 QuantumApproximateOptimization,
360}
361
362#[derive(Debug, Clone)]
363pub enum ReconstructionStrategy {
364 FullReconstruction,
365 PartialReconstruction,
366 QuantumTomography,
367 ShadowReconstruction,
368}
369
370#[derive(Debug, Clone)]
371pub struct QuantumProjector {
372 pub projection_layers: Vec<QuantumProjectionLayer>,
373 pub output_normalization: bool,
374 pub quantum_enhancement: f64,
375}
376
377#[derive(Debug, Clone)]
378pub struct QuantumMomentum {
379 pub momentum_type: MomentumType,
380 pub update_rule: UpdateRule,
381 pub quantum_state_momentum: bool,
382}
383
384#[derive(Debug, Clone)]
385pub enum MomentumType {
386 Classical,
387 Quantum,
388 Entanglement,
389 Phase,
390}
391
392#[derive(Debug, Clone)]
393pub enum UpdateRule {
394 Standard,
395 Nesterov,
396 QuantumAdam,
397 EntanglementMomentum,
398}
399
400#[derive(Debug, Clone)]
401pub struct QuantumEMAConfig {
402 pub ema_rate: f64,
403 pub quantum_ema: bool,
404 pub entanglement_preservation: f64,
405 pub phase_tracking: bool,
406}
407
408#[derive(Debug, Clone)]
409pub struct QuantumKeyEncoder {
410 pub encoder_architecture: QuantumEncoder,
411 pub key_generation_method: KeyGenerationMethod,
412 pub quantum_key_evolution: QuantumKeyEvolution,
413}
414
415#[derive(Debug, Clone)]
416pub enum KeyGenerationMethod {
417 Standard,
418 QuantumRandom,
419 EntanglementBased,
420 PhaseEncoded,
421}
422
423#[derive(Debug, Clone)]
424pub struct QuantumKeyEvolution {
425 pub evolution_strategy: EvolutionStrategy,
426 pub update_frequency: usize,
427 pub quantum_coherence_preservation: f64,
428}
429
430#[derive(Debug, Clone)]
431pub enum EvolutionStrategy {
432 Momentum,
433 ExponentialMovingAverage,
434 QuantumAdiabatic,
435 EntanglementEvolution,
436}
437
438#[derive(Debug, Clone)]
439pub struct ContrastiveConfig {
440 pub positive_pair_strategy: PositivePairStrategy,
441 pub negative_pair_strategy: NegativePairStrategy,
442 pub loss_function: ContrastiveLossFunction,
443 pub temperature_scheduling: TemperatureScheduling,
444}
445
446#[derive(Debug, Clone)]
447pub enum PositivePairStrategy {
448 Augmentation,
449 Temporal,
450 Semantic,
451 QuantumSuperposition,
452 EntanglementBased,
453}
454
455#[derive(Debug, Clone)]
456pub enum NegativePairStrategy {
457 Random,
458 HardNegatives,
459 QuantumSampling,
460 EntanglementDistance,
461}
462
463#[derive(Debug, Clone)]
464pub enum ContrastiveLossFunction {
465 InfoNCE,
466 NTXent,
467 QuantumContrastive,
468 EntanglementContrastive,
469 FidelityContrastive,
470}
471
472#[derive(Debug, Clone)]
473pub enum TemperatureScheduling {
474 Fixed,
475 Cosine,
476 Exponential,
477 QuantumAdaptive,
478}
479
480#[derive(Debug, Clone)]
481pub struct MaskedLearningConfig {
482 pub mask_ratio: f64,
483 pub mask_strategy: MaskStrategy,
484 pub reconstruction_target: ReconstructionTarget,
485 pub quantum_mask_evolution: QuantumMaskEvolution,
486}
487
488#[derive(Debug, Clone)]
489pub enum MaskStrategy {
490 Random,
491 Block,
492 Attention,
493 QuantumSuperposition,
494 EntanglementMask,
495}
496
497#[derive(Debug, Clone)]
498pub enum ReconstructionTarget {
499 RawPixels,
500 Features,
501 Tokens,
502 QuantumStates,
503 EntanglementPatterns,
504}
505
506#[derive(Debug, Clone)]
507pub struct QuantumMaskEvolution {
508 pub evolution_type: MaskEvolutionType,
509 pub adaptation_rate: f64,
510 pub quantum_coherence_preservation: f64,
511}
512
513#[derive(Debug, Clone)]
514pub enum MaskEvolutionType {
515 Static,
516 Dynamic,
517 Adaptive,
518 QuantumEvolution,
519}
520
521#[derive(Debug, Clone)]
522pub struct MomentumConfig {
523 pub momentum_coefficient: f64,
524 pub target_network_update: TargetNetworkUpdate,
525 pub quantum_momentum_preservation: f64,
526}
527
528#[derive(Debug, Clone)]
529pub enum TargetNetworkUpdate {
530 Hard,
531 Soft,
532 QuantumSmooth,
533 EntanglementPreserving,
534}
535
536#[derive(Debug, Clone)]
537pub struct ClusteringConfig {
538 pub num_clusters: usize,
539 pub clustering_method: QuantumClusteringMethod,
540 pub prototype_update_strategy: PrototypeUpdateStrategy,
541 pub quantum_assignment_method: QuantumAssignmentMethod,
542}
543
544#[derive(Debug, Clone)]
545pub enum QuantumClusteringMethod {
546 QuantumKMeans,
547 QuantumSpectral,
548 EntanglementClustering,
549 QuantumHierarchical,
550}
551
552#[derive(Debug, Clone)]
553pub enum PrototypeUpdateStrategy {
554 MovingAverage,
555 Gradient,
556 QuantumUpdate,
557 EntanglementUpdate,
558}
559
560#[derive(Debug, Clone)]
561pub enum QuantumAssignmentMethod {
562 SoftAssignment,
563 SinkhornKnopp,
564 QuantumSinkhorn,
565 EntanglementAssignment,
566}
567
568pub struct QuantumSelfSupervisedLearner {
570 config: QuantumSelfSupervisedConfig,
571
572 online_network: QuantumOnlineNetwork,
574 target_network: Option<QuantumTargetNetwork>,
575
576 quantum_augmenter: QuantumAugmenter,
578 quantum_encoder: QuantumEncoder,
579 quantum_projector: QuantumProjector,
580 quantum_predictor: Option<QuantumPredictor>,
581
582 contrastive_learner: Option<QuantumContrastiveLearner>,
584 masked_learner: Option<QuantumMaskedLearner>,
585 momentum_learner: Option<QuantumMomentumLearner>,
586 clustering_learner: Option<QuantumClusteringLearner>,
587
588 training_history: Vec<SSLTrainingMetrics>,
590 quantum_ssl_metrics: QuantumSSLMetrics,
591
592 optimizer_state: SSLOptimizerState,
594 lr_scheduler: LearningRateScheduler,
595}
596
597#[derive(Debug, Clone)]
598pub struct QuantumOnlineNetwork {
599 encoder: QuantumEncoder,
600 projector: QuantumProjector,
601 predictor: Option<QuantumPredictor>,
602 quantum_parameters: Array1<f64>,
603}
604
605#[derive(Debug, Clone)]
606pub struct QuantumTargetNetwork {
607 encoder: QuantumEncoder,
608 projector: QuantumProjector,
609 momentum_coefficient: f64,
610 quantum_ema_state: QuantumEMAState,
611}
612
613#[derive(Debug, Clone)]
614pub struct QuantumEMAState {
615 quantum_parameters: Array1<f64>,
616 entanglement_state: Array2<Complex64>,
617 phase_tracking: Array1<Complex64>,
618 fidelity_history: Vec<f64>,
619}
620
621#[derive(Debug, Clone)]
622pub struct QuantumAugmenter {
623 augmentation_strategies: Vec<QuantumAugmentationStrategy>,
624 augmentation_strength: f64,
625 quantum_coherence_preservation: f64,
626}
627
628#[derive(Debug, Clone)]
629pub enum QuantumAugmentationStrategy {
630 QuantumRotation {
631 axes: Vec<RotationAxis>,
632 },
633 QuantumNoise {
634 noise_type: NoiseType,
635 strength: f64,
636 },
637 EntanglementCorruption {
638 corruption_rate: f64,
639 },
640 PhaseShift {
641 phase_range: f64,
642 },
643 QuantumMixup {
644 alpha: f64,
645 },
646 QuantumCutout {
647 mask_size: f64,
648 },
649 SuperpositionAugmentation {
650 superposition_strength: f64,
651 },
652}
653
654#[derive(Debug, Clone)]
655pub enum RotationAxis {
656 X,
657 Y,
658 Z,
659 Custom { direction: Array1<f64> },
660}
661
662#[derive(Debug, Clone)]
663pub enum NoiseType {
664 Gaussian,
665 Poisson,
666 QuantumDecoherence,
667 EntanglementNoise,
668}
669
670#[derive(Debug, Clone)]
671pub struct QuantumPredictor {
672 prediction_layers: Vec<QuantumPredictionLayer>,
673 stop_gradient: bool,
674 quantum_prediction_strategy: QuantumPredictionStrategy,
675}
676
677#[derive(Debug, Clone)]
678pub struct QuantumPredictionLayer {
679 layer_type: PredictionLayerType,
680 quantum_parameters: Array1<f64>,
681 activation: QuantumActivation,
682}
683
684#[derive(Debug, Clone)]
685pub enum PredictionLayerType {
686 Linear { input_dim: usize, output_dim: usize },
687 Quantum { num_qubits: usize },
688 Hybrid { quantum_ratio: f64 },
689}
690
691#[derive(Debug, Clone)]
692pub enum QuantumPredictionStrategy {
693 Direct,
694 Probabilistic,
695 Superposition,
696 Entanglement,
697}
698
699#[derive(Debug, Clone)]
700pub struct QuantumContrastiveLearner {
701 similarity_computer: QuantumSimilarityComputer,
702 loss_computer: ContrastiveLossComputer,
703 negative_sampler: QuantumNegativeSampler,
704 temperature_controller: TemperatureController,
705}
706
707#[derive(Debug, Clone)]
708pub struct QuantumSimilarityComputer {
709 similarity_metric: QuantumSimilarityMetric,
710 quantum_dot_product: QuantumDotProduct,
711 entanglement_similarity: EntanglementSimilarity,
712}
713
714#[derive(Debug, Clone)]
715pub struct QuantumDotProduct {
716 normalization: bool,
717 quantum_enhancement: f64,
718 phase_aware: bool,
719}
720
721#[derive(Debug, Clone)]
722pub struct EntanglementSimilarity {
723 entanglement_measure: EntanglementMeasure,
724 similarity_threshold: f64,
725 quantum_distance_metric: QuantumDistanceMetric,
726}
727
728#[derive(Debug, Clone)]
729pub enum EntanglementMeasure {
730 Concurrence,
731 Negativity,
732 EntanglementEntropy,
733 QuantumMutualInformation,
734}
735
736#[derive(Debug, Clone)]
737pub enum QuantumDistanceMetric {
738 Fidelity,
739 TraceDistance,
740 HilbertSchmidt,
741 Bures,
742}
743
744#[derive(Debug, Clone)]
745pub struct ContrastiveLossComputer {
746 loss_function: ContrastiveLossFunction,
747 temperature: f64,
748 quantum_loss_enhancement: f64,
749}
750
751#[derive(Debug, Clone)]
752pub struct QuantumNegativeSampler {
753 sampling_strategy: NegativeSamplingStrategy,
754 num_negatives: usize,
755 quantum_sampling_bias: f64,
756}
757
758#[derive(Debug, Clone)]
759pub struct TemperatureController {
760 scheduling: TemperatureScheduling,
761 current_temperature: f64,
762 quantum_temperature_adaptation: bool,
763}
764
765#[derive(Debug, Clone)]
766pub struct QuantumMaskedLearner {
767 masking_engine: QuantumMaskingEngine,
768 reconstruction_network: QuantumReconstructionNetwork,
769 loss_computer: MaskedLossComputer,
770}
771
772#[derive(Debug, Clone)]
773pub struct QuantumMaskingEngine {
774 masking_strategy: QuantumMaskingStrategy,
775 mask_generator: QuantumMaskGenerator,
776 mask_evolution: QuantumMaskEvolution,
777}
778
779#[derive(Debug, Clone)]
780pub struct QuantumMaskGenerator {
781 generator_type: MaskGeneratorType,
782 quantum_randomness: QuantumRandomness,
783 coherence_preservation: f64,
784}
785
786#[derive(Debug, Clone)]
787pub enum MaskGeneratorType {
788 Random,
789 Structured,
790 Learned,
791 QuantumSuperposition,
792}
793
794#[derive(Debug, Clone)]
795pub struct QuantumRandomness {
796 source: RandomnessSource,
797 entropy_level: f64,
798 quantum_true_randomness: bool,
799}
800
801#[derive(Debug, Clone)]
802pub enum RandomnessSource {
803 Classical,
804 QuantumMeasurement,
805 QuantumDecoherence,
806 EntanglementCollapse,
807}
808
809#[derive(Debug, Clone)]
810pub struct QuantumReconstructionNetwork {
811 reconstruction_layers: Vec<QuantumReconstructionLayer>,
812 output_activation: QuantumActivation,
813 quantum_fidelity_target: f64,
814}
815
816#[derive(Debug, Clone)]
817pub struct QuantumReconstructionLayer {
818 layer_type: ReconstructionLayerType,
819 quantum_parameters: Array1<f64>,
820 reconstruction_strategy: ReconstructionStrategy,
821}
822
823#[derive(Debug, Clone)]
824pub enum ReconstructionLayerType {
825 Dense { input_dim: usize, output_dim: usize },
826 Quantum { num_qubits: usize },
827 Hybrid { quantum_classical_ratio: f64 },
828}
829
830#[derive(Debug, Clone)]
831pub struct MaskedLossComputer {
832 reconstruction_objective: ReconstructionObjective,
833 quantum_fidelity_weight: f64,
834 entanglement_preservation_weight: f64,
835}
836
837#[derive(Debug, Clone)]
838pub struct QuantumMomentumLearner {
839 momentum_updater: QuantumMomentumUpdater,
840 target_network: QuantumTargetNetwork,
841 momentum_scheduler: MomentumScheduler,
842}
843
844#[derive(Debug, Clone)]
845pub struct QuantumMomentumUpdater {
846 update_strategy: MomentumUpdateStrategy,
847 quantum_momentum_preservation: f64,
848 entanglement_momentum: EntanglementMomentum,
849}
850
851#[derive(Debug, Clone)]
852pub enum MomentumUpdateStrategy {
853 Standard,
854 Quantum,
855 Entanglement,
856 PhaseCoherent,
857}
858
859#[derive(Debug, Clone)]
860pub struct EntanglementMomentum {
861 entanglement_decay: f64,
862 momentum_entanglement: f64,
863 coherence_preservation: f64,
864}
865
866#[derive(Debug, Clone)]
867pub struct MomentumScheduler {
868 scheduling_strategy: MomentumSchedulingStrategy,
869 current_momentum: f64,
870 quantum_adaptive: bool,
871}
872
873#[derive(Debug, Clone)]
874pub enum MomentumSchedulingStrategy {
875 Fixed,
876 Cosine,
877 Exponential,
878 QuantumAdaptive,
879}
880
881#[derive(Debug, Clone)]
882pub struct QuantumClusteringLearner {
883 prototype_bank: QuantumPrototypeBank,
884 assignment_computer: QuantumAssignmentComputer,
885 sinkhorn_algorithm: QuantumSinkhornAlgorithm,
886}
887
888#[derive(Debug, Clone)]
889pub struct QuantumPrototypeBank {
890 prototypes: Array2<f64>,
891 quantum_prototypes: Array2<Complex64>,
892 prototype_evolution: PrototypeEvolution,
893}
894
895#[derive(Debug, Clone)]
896pub struct PrototypeEvolution {
897 evolution_strategy: PrototypeEvolutionStrategy,
898 learning_rate: f64,
899 quantum_coherence_preservation: f64,
900}
901
902#[derive(Debug, Clone)]
903pub enum PrototypeEvolutionStrategy {
904 GradientDescent,
905 MovingAverage,
906 QuantumEvolution,
907 EntanglementUpdate,
908}
909
910#[derive(Debug, Clone)]
911pub struct QuantumAssignmentComputer {
912 assignment_method: QuantumAssignmentMethod,
913 temperature: f64,
914 quantum_assignment_enhancement: f64,
915}
916
917#[derive(Debug, Clone)]
918pub struct QuantumSinkhornAlgorithm {
919 num_iterations: usize,
920 regularization: f64,
921 quantum_sinkhorn: bool,
922 entanglement_regularization: f64,
923}
924
925#[derive(Debug, Clone)]
927pub struct SSLTrainingMetrics {
928 pub epoch: usize,
929 pub loss: f64,
930 pub contrastive_loss: f64,
931 pub reconstruction_loss: f64,
932 pub quantum_fidelity: f64,
933 pub entanglement_measure: f64,
934 pub representation_quality: f64,
935 pub linear_evaluation_accuracy: f64,
936 pub quantum_advantage_ratio: f64,
937}
938
939#[derive(Debug, Clone)]
940pub struct QuantumSSLMetrics {
941 pub average_entanglement: f64,
942 pub coherence_preservation: f64,
943 pub quantum_feature_quality: f64,
944 pub representation_dimensionality: f64,
945 pub transfer_performance: f64,
946 pub quantum_speedup_factor: f64,
947 pub ssl_convergence_rate: f64,
948}
949
950#[derive(Debug, Clone)]
951pub struct SSLOptimizerState {
952 pub learning_rate: f64,
953 pub momentum: f64,
954 pub weight_decay: f64,
955 pub quantum_parameter_lr: f64,
956 pub entanglement_preservation_weight: f64,
957}
958
959#[derive(Debug, Clone)]
960pub struct LearningRateScheduler {
961 pub scheduler_type: LRSchedulerType,
962 pub current_lr: f64,
963 pub warmup_epochs: usize,
964 pub quantum_adaptive: bool,
965}
966
967#[derive(Debug, Clone)]
968pub enum LRSchedulerType {
969 Cosine,
970 StepLR,
971 ExponentialLR,
972 QuantumAdaptive,
973}
974
975#[derive(Debug, Clone)]
977pub struct QuantumGate {
978 pub gate_type: QuantumGateType,
979 pub target_qubits: Vec<usize>,
980 pub control_qubits: Vec<usize>,
981 pub parameters: Array1<f64>,
982}
983
984#[derive(Debug, Clone)]
985pub enum QuantumGateType {
986 Rotation { axis: RotationAxis },
987 Entangling { coupling_strength: f64 },
988 Measurement { basis: MeasurementBasis },
989 Custom { gate_matrix: Array2<Complex64> },
990}
991
992#[derive(Debug, Clone)]
993pub enum MeasurementBasis {
994 Computational,
995 PauliX,
996 PauliY,
997 PauliZ,
998 Bell,
999 Custom { basis_vectors: Array2<Complex64> },
1000}
1001
1002#[derive(Debug, Clone)]
1003pub enum MeasurementStrategy {
1004 ExpectationValue,
1005 ProbabilityDistribution,
1006 QuantumStateVector,
1007 PartialMeasurement,
1008}
1009
1010#[derive(Debug, Clone)]
1011pub enum EntanglementPattern {
1012 Linear,
1013 Circular,
1014 AllToAll,
1015 Hierarchical { levels: usize },
1016 Random { probability: f64 },
1017 Custom { adjacency_matrix: Array2<bool> },
1018}
1019
1020#[derive(Debug, Clone)]
1021pub struct QuantumState {
1022 pub amplitudes: Array1<Complex64>,
1023 pub phases: Array1<Complex64>,
1024 pub entanglement_measure: f64,
1025 pub coherence_time: f64,
1026 pub fidelity: f64,
1027}
1028
1029impl Default for QuantumState {
1030 fn default() -> Self {
1031 Self {
1032 amplitudes: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1033 phases: Array1::ones(1).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1034 entanglement_measure: 0.0,
1035 coherence_time: 1.0,
1036 fidelity: 1.0,
1037 }
1038 }
1039}
1040
1041impl QuantumSelfSupervisedLearner {
1043 pub fn new(config: QuantumSelfSupervisedConfig) -> Result<Self> {
1045 println!("🧠Initializing Quantum Self-Supervised Learning Framework in UltraThink Mode");
1046
1047 let quantum_encoder = Self::create_quantum_encoder(&config)?;
1049
1050 let quantum_projector = Self::create_quantum_projector(&config)?;
1052
1053 let online_network = QuantumOnlineNetwork {
1055 encoder: quantum_encoder.clone(),
1056 projector: quantum_projector.clone(),
1057 predictor: if matches!(config.ssl_method, QuantumSSLMethod::QuantumSimSiam { .. }) {
1058 Some(Self::create_quantum_predictor(&config)?)
1059 } else {
1060 None
1061 },
1062 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1063 };
1064
1065 let target_network = if Self::requires_target_network(&config.ssl_method) {
1067 Some(QuantumTargetNetwork {
1068 encoder: quantum_encoder.clone(),
1069 projector: quantum_projector.clone(),
1070 momentum_coefficient: config.momentum_coefficient,
1071 quantum_ema_state: QuantumEMAState {
1072 quantum_parameters: Array1::zeros(config.num_qubits * 6),
1073 entanglement_state: Array2::<f64>::eye(config.num_qubits)
1074 .mapv(|x| Complex64::new(x, 0.0)),
1075 phase_tracking: Array1::ones(config.num_qubits)
1076 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1077 fidelity_history: Vec::new(),
1078 },
1079 })
1080 } else {
1081 None
1082 };
1083
1084 let quantum_augmenter = Self::create_quantum_augmenter(&config)?;
1086
1087 let contrastive_learner = if Self::uses_contrastive_learning(&config.ssl_method) {
1089 Some(Self::create_contrastive_learner(&config)?)
1090 } else {
1091 None
1092 };
1093
1094 let masked_learner = if Self::uses_masked_learning(&config.ssl_method) {
1095 Some(Self::create_masked_learner(&config)?)
1096 } else {
1097 None
1098 };
1099
1100 let momentum_learner = if Self::uses_momentum_learning(&config.ssl_method) {
1101 Some(Self::create_momentum_learner(&config)?)
1102 } else {
1103 None
1104 };
1105
1106 let clustering_learner = if Self::uses_clustering(&config.ssl_method) {
1107 Some(Self::create_clustering_learner(&config)?)
1108 } else {
1109 None
1110 };
1111
1112 let quantum_ssl_metrics = QuantumSSLMetrics::default();
1114 let optimizer_state = SSLOptimizerState::default();
1115 let lr_scheduler = LearningRateScheduler::default();
1116
1117 Ok(Self {
1118 config,
1119 online_network,
1120 target_network,
1121 quantum_augmenter,
1122 quantum_encoder,
1123 quantum_projector,
1124 quantum_predictor: None,
1125 contrastive_learner,
1126 masked_learner,
1127 momentum_learner,
1128 clustering_learner,
1129 training_history: Vec::new(),
1130 quantum_ssl_metrics,
1131 optimizer_state,
1132 lr_scheduler,
1133 })
1134 }
1135
1136 pub fn learn_representations(
1138 &mut self,
1139 data: &Array2<f64>,
1140 config: &SSLTrainingConfig,
1141 ) -> Result<SSLLearningOutput> {
1142 println!("🚀 Starting Quantum Self-Supervised Learning");
1143
1144 let mut training_losses = Vec::new();
1145 let mut representation_quality_history = Vec::new();
1146 let mut quantum_metrics_history = Vec::new();
1147
1148 for epoch in 0..config.epochs {
1149 let epoch_metrics = self.train_epoch(data, config, epoch)?;
1150
1151 training_losses.push(epoch_metrics.loss);
1152 representation_quality_history.push(epoch_metrics.representation_quality);
1153
1154 self.update_quantum_ssl_metrics(&epoch_metrics)?;
1156 quantum_metrics_history.push(self.quantum_ssl_metrics.clone());
1157
1158 self.update_learning_schedule(epoch, &epoch_metrics)?;
1160
1161 if self.target_network.is_some() {
1163 let target_net_clone = self.target_network.as_ref().unwrap().clone();
1164 self.update_target_network_internal(&target_net_clone)?;
1165 }
1166
1167 self.training_history.push(epoch_metrics.clone());
1168
1169 if epoch % config.log_interval == 0 {
1171 println!(
1172 "Epoch {}: Loss = {:.6}, Rep Quality = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1173 epoch,
1174 epoch_metrics.loss,
1175 epoch_metrics.representation_quality,
1176 epoch_metrics.quantum_fidelity,
1177 epoch_metrics.entanglement_measure,
1178 );
1179 }
1180 }
1181
1182 let learned_representations = self.extract_representations(data)?;
1184
1185 let evaluation_results = self.evaluate_representations(&learned_representations, data)?;
1187
1188 Ok(SSLLearningOutput {
1189 learned_representations,
1190 training_losses,
1191 representation_quality_history,
1192 quantum_metrics_history,
1193 evaluation_results,
1194 final_ssl_metrics: self.quantum_ssl_metrics.clone(),
1195 })
1196 }
1197
1198 fn train_epoch(
1200 &mut self,
1201 data: &Array2<f64>,
1202 config: &SSLTrainingConfig,
1203 epoch: usize,
1204 ) -> Result<SSLTrainingMetrics> {
1205 let mut epoch_loss = 0.0;
1206 let mut contrastive_loss_sum = 0.0;
1207 let mut reconstruction_loss_sum = 0.0;
1208 let mut quantum_fidelity_sum = 0.0;
1209 let mut entanglement_sum = 0.0;
1210 let mut num_batches = 0;
1211
1212 let num_samples = data.nrows();
1213
1214 for batch_start in (0..num_samples).step_by(config.batch_size) {
1215 let batch_end = (batch_start + config.batch_size).min(num_samples);
1216 let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1217
1218 let batch_metrics = self.train_batch(&batch_data, config)?;
1219
1220 epoch_loss += batch_metrics.loss;
1221 contrastive_loss_sum += batch_metrics.contrastive_loss;
1222 reconstruction_loss_sum += batch_metrics.reconstruction_loss;
1223 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1224 entanglement_sum += batch_metrics.entanglement_measure;
1225 num_batches += 1;
1226 }
1227
1228 let num_batches_f = num_batches as f64;
1229 Ok(SSLTrainingMetrics {
1230 epoch,
1231 loss: epoch_loss / num_batches_f,
1232 contrastive_loss: contrastive_loss_sum / num_batches_f,
1233 reconstruction_loss: reconstruction_loss_sum / num_batches_f,
1234 quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1235 entanglement_measure: entanglement_sum / num_batches_f,
1236 representation_quality: self.estimate_representation_quality()?,
1237 linear_evaluation_accuracy: 0.0, quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1239 })
1240 }
1241
1242 fn train_batch(
1244 &mut self,
1245 batch_data: &ndarray::ArrayView2<f64>,
1246 config: &SSLTrainingConfig,
1247 ) -> Result<SSLTrainingMetrics> {
1248 let mut batch_loss = 0.0;
1249 let mut contrastive_loss = 0.0;
1250 let mut reconstruction_loss = 0.0;
1251 let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1252
1253 for sample_idx in 0..batch_data.nrows() {
1255 let sample = batch_data.row(sample_idx).to_owned();
1256
1257 let augmented_views = self
1259 .quantum_augmenter
1260 .generate_augmented_views(&sample, 2)?;
1261
1262 let learning_output = match &self.config.ssl_method {
1264 QuantumSSLMethod::QuantumContrastive { .. } => {
1265 self.contrastive_forward(&augmented_views)?
1266 }
1267 QuantumSSLMethod::QuantumMasked { .. } => self.masked_forward(&sample)?,
1268 QuantumSSLMethod::QuantumSimCLR { .. } => self.simclr_forward(&augmented_views)?,
1269 QuantumSSLMethod::QuantumSimSiam { .. } => {
1270 self.simsiam_forward(&augmented_views)?
1271 }
1272 QuantumSSLMethod::QuantumBYOL { .. } => self.byol_forward(&augmented_views)?,
1273 QuantumSSLMethod::QuantumSwAV { .. } => self.swav_forward(&augmented_views)?,
1274 QuantumSSLMethod::QuantumMoCo { .. } => self.moco_forward(&augmented_views)?,
1275 QuantumSSLMethod::QuantumBarlowTwins { .. } => {
1276 self.barlow_twins_forward(&augmented_views)?
1277 }
1278 };
1279
1280 batch_loss += learning_output.total_loss;
1281 contrastive_loss += learning_output.contrastive_loss;
1282 reconstruction_loss += learning_output.reconstruction_loss;
1283 quantum_metrics_sum.accumulate(&learning_output.quantum_metrics);
1284
1285 self.update_parameters(&learning_output, config)?;
1287 }
1288
1289 let num_samples = batch_data.nrows() as f64;
1290 Ok(SSLTrainingMetrics {
1291 epoch: 0, loss: batch_loss / num_samples,
1293 contrastive_loss: contrastive_loss / num_samples,
1294 reconstruction_loss: reconstruction_loss / num_samples,
1295 quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1296 entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1297 representation_quality: quantum_metrics_sum.representation_quality / num_samples,
1298 linear_evaluation_accuracy: 0.0,
1299 quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1300 })
1301 }
1302
1303 fn create_quantum_encoder(config: &QuantumSelfSupervisedConfig) -> Result<QuantumEncoder> {
1305 let layers = vec![QuantumEncoderLayer {
1306 layer_type: EncoderLayerType::QuantumFeedForward {
1307 hidden_dim: 128,
1308 activation: QuantumActivation::QuantumReLU,
1309 },
1310 quantum_parameters: Array1::zeros(config.num_qubits * 3),
1311 entanglement_connectivity: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
1312 quantum_gates: Vec::new(),
1313 }];
1314
1315 let layers_len = layers.len();
1316
1317 Ok(QuantumEncoder {
1318 layers,
1319 quantum_state_evolution: QuantumStateEvolution {
1320 evolution_type: EvolutionType::Unitary,
1321 time_steps: Array1::linspace(0.0, 1.0, 10),
1322 hamiltonian: Array2::<f64>::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
1323 decoherence_model: DecoherenceModel::default(),
1324 },
1325 measurement_points: vec![0, layers_len - 1],
1326 })
1327 }
1328
1329 fn create_quantum_projector(config: &QuantumSelfSupervisedConfig) -> Result<QuantumProjector> {
1330 Ok(QuantumProjector {
1331 projection_layers: vec![QuantumProjectionLayer {
1332 layer_type: ProjectionLayerType::QuantumLinear {
1333 input_dim: config.representation_dim,
1334 output_dim: config.representation_dim / 2,
1335 },
1336 quantum_parameters: Array1::zeros(config.num_qubits * 2),
1337 entanglement_pattern: EntanglementPattern::Linear,
1338 measurement_strategy: MeasurementStrategy::ExpectationValue,
1339 }],
1340 output_normalization: true,
1341 quantum_enhancement: config.quantum_enhancement_level,
1342 })
1343 }
1344
1345 fn create_quantum_predictor(config: &QuantumSelfSupervisedConfig) -> Result<QuantumPredictor> {
1346 Ok(QuantumPredictor {
1347 prediction_layers: vec![QuantumPredictionLayer {
1348 layer_type: PredictionLayerType::Linear {
1349 input_dim: config.representation_dim / 2,
1350 output_dim: config.representation_dim / 2,
1351 },
1352 quantum_parameters: Array1::zeros(config.num_qubits),
1353 activation: QuantumActivation::QuantumReLU,
1354 }],
1355 stop_gradient: true,
1356 quantum_prediction_strategy: QuantumPredictionStrategy::Direct,
1357 })
1358 }
1359
1360 fn create_quantum_augmenter(config: &QuantumSelfSupervisedConfig) -> Result<QuantumAugmenter> {
1361 Ok(QuantumAugmenter {
1362 augmentation_strategies: vec![
1363 QuantumAugmentationStrategy::QuantumRotation {
1364 axes: vec![RotationAxis::X, RotationAxis::Y, RotationAxis::Z],
1365 },
1366 QuantumAugmentationStrategy::QuantumNoise {
1367 noise_type: NoiseType::Gaussian,
1368 strength: 0.1,
1369 },
1370 QuantumAugmentationStrategy::PhaseShift { phase_range: PI },
1371 ],
1372 augmentation_strength: 0.5,
1373 quantum_coherence_preservation: 0.9,
1374 })
1375 }
1376
1377 fn requires_target_network(method: &QuantumSSLMethod) -> bool {
1381 matches!(
1382 method,
1383 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1384 )
1385 }
1386
1387 fn uses_contrastive_learning(method: &QuantumSSLMethod) -> bool {
1388 matches!(
1389 method,
1390 QuantumSSLMethod::QuantumContrastive { .. }
1391 | QuantumSSLMethod::QuantumSimCLR { .. }
1392 | QuantumSSLMethod::QuantumMoCo { .. }
1393 )
1394 }
1395
1396 fn uses_masked_learning(method: &QuantumSSLMethod) -> bool {
1397 matches!(method, QuantumSSLMethod::QuantumMasked { .. })
1398 }
1399
1400 fn uses_momentum_learning(method: &QuantumSSLMethod) -> bool {
1401 matches!(
1402 method,
1403 QuantumSSLMethod::QuantumBYOL { .. } | QuantumSSLMethod::QuantumMoCo { .. }
1404 )
1405 }
1406
1407 fn uses_clustering(method: &QuantumSSLMethod) -> bool {
1408 matches!(method, QuantumSSLMethod::QuantumSwAV { .. })
1409 }
1410
1411 fn contrastive_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1413 Ok(SSLLearningOutputBatch::default())
1414 }
1415
1416 fn masked_forward(&self, _sample: &Array1<f64>) -> Result<SSLLearningOutputBatch> {
1417 Ok(SSLLearningOutputBatch::default())
1418 }
1419
1420 fn simclr_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1421 Ok(SSLLearningOutputBatch::default())
1422 }
1423
1424 fn simsiam_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1425 Ok(SSLLearningOutputBatch::default())
1426 }
1427
1428 fn byol_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1429 Ok(SSLLearningOutputBatch::default())
1430 }
1431
1432 fn swav_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1433 Ok(SSLLearningOutputBatch::default())
1434 }
1435
1436 fn moco_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1437 Ok(SSLLearningOutputBatch::default())
1438 }
1439
1440 fn barlow_twins_forward(&self, _views: &[Array1<f64>]) -> Result<SSLLearningOutputBatch> {
1441 Ok(SSLLearningOutputBatch::default())
1442 }
1443
1444 fn create_contrastive_learner(
1446 _config: &QuantumSelfSupervisedConfig,
1447 ) -> Result<QuantumContrastiveLearner> {
1448 Ok(QuantumContrastiveLearner {
1449 similarity_computer: QuantumSimilarityComputer {
1450 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1451 quantum_dot_product: QuantumDotProduct {
1452 normalization: true,
1453 quantum_enhancement: 1.0,
1454 phase_aware: true,
1455 },
1456 entanglement_similarity: EntanglementSimilarity {
1457 entanglement_measure: EntanglementMeasure::Concurrence,
1458 similarity_threshold: 0.5,
1459 quantum_distance_metric: QuantumDistanceMetric::Fidelity,
1460 },
1461 },
1462 loss_computer: ContrastiveLossComputer {
1463 loss_function: ContrastiveLossFunction::InfoNCE,
1464 temperature: 0.1,
1465 quantum_loss_enhancement: 1.0,
1466 },
1467 negative_sampler: QuantumNegativeSampler {
1468 sampling_strategy: NegativeSamplingStrategy::Random,
1469 num_negatives: 256,
1470 quantum_sampling_bias: 0.0,
1471 },
1472 temperature_controller: TemperatureController {
1473 scheduling: TemperatureScheduling::Fixed,
1474 current_temperature: 0.1,
1475 quantum_temperature_adaptation: false,
1476 },
1477 })
1478 }
1479
1480 fn create_masked_learner(
1481 _config: &QuantumSelfSupervisedConfig,
1482 ) -> Result<QuantumMaskedLearner> {
1483 Ok(QuantumMaskedLearner {
1484 masking_engine: QuantumMaskingEngine {
1485 masking_strategy: QuantumMaskingStrategy::Random {
1486 mask_probability: 0.15,
1487 },
1488 mask_generator: QuantumMaskGenerator {
1489 generator_type: MaskGeneratorType::Random,
1490 quantum_randomness: QuantumRandomness {
1491 source: RandomnessSource::Classical,
1492 entropy_level: 1.0,
1493 quantum_true_randomness: false,
1494 },
1495 coherence_preservation: 0.9,
1496 },
1497 mask_evolution: QuantumMaskEvolution {
1498 evolution_type: MaskEvolutionType::Static,
1499 adaptation_rate: 0.01,
1500 quantum_coherence_preservation: 0.9,
1501 },
1502 },
1503 reconstruction_network: QuantumReconstructionNetwork {
1504 reconstruction_layers: Vec::new(),
1505 output_activation: QuantumActivation::QuantumSigmoid,
1506 quantum_fidelity_target: 0.95,
1507 },
1508 loss_computer: MaskedLossComputer {
1509 reconstruction_objective: ReconstructionObjective::MSE,
1510 quantum_fidelity_weight: 0.1,
1511 entanglement_preservation_weight: 0.05,
1512 },
1513 })
1514 }
1515
1516 fn create_momentum_learner(
1517 config: &QuantumSelfSupervisedConfig,
1518 ) -> Result<QuantumMomentumLearner> {
1519 let encoder = Self::create_quantum_encoder(config)?;
1521 let projector = Self::create_quantum_projector(config)?;
1522
1523 Ok(QuantumMomentumLearner {
1525 momentum_updater: QuantumMomentumUpdater {
1526 update_strategy: MomentumUpdateStrategy::Standard,
1527 quantum_momentum_preservation: 0.9,
1528 entanglement_momentum: EntanglementMomentum {
1529 entanglement_decay: 0.01,
1530 momentum_entanglement: 0.5,
1531 coherence_preservation: 0.9,
1532 },
1533 },
1534 target_network: QuantumTargetNetwork {
1535 encoder,
1536 projector,
1537 momentum_coefficient: 0.999,
1538 quantum_ema_state: QuantumEMAState {
1539 quantum_parameters: Array1::zeros(16),
1540 entanglement_state: Array2::<f64>::eye(16).mapv(|x| Complex64::new(x, 0.0)),
1541 phase_tracking: Array1::ones(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1542 fidelity_history: Vec::new(),
1543 },
1544 },
1545 momentum_scheduler: MomentumScheduler {
1546 scheduling_strategy: MomentumSchedulingStrategy::Fixed,
1547 current_momentum: 0.999,
1548 quantum_adaptive: false,
1549 },
1550 })
1551 }
1552
1553 fn create_clustering_learner(
1554 _config: &QuantumSelfSupervisedConfig,
1555 ) -> Result<QuantumClusteringLearner> {
1556 Ok(QuantumClusteringLearner {
1558 prototype_bank: QuantumPrototypeBank {
1559 prototypes: Array2::zeros((256, 128)),
1560 quantum_prototypes: Array2::zeros((256, 128))
1561 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1562 prototype_evolution: PrototypeEvolution {
1563 evolution_strategy: PrototypeEvolutionStrategy::MovingAverage,
1564 learning_rate: 0.01,
1565 quantum_coherence_preservation: 0.9,
1566 },
1567 },
1568 assignment_computer: QuantumAssignmentComputer {
1569 assignment_method: QuantumAssignmentMethod::SoftAssignment,
1570 temperature: 0.1,
1571 quantum_assignment_enhancement: 1.0,
1572 },
1573 sinkhorn_algorithm: QuantumSinkhornAlgorithm {
1574 num_iterations: 3,
1575 regularization: 0.05,
1576 quantum_sinkhorn: true,
1577 entanglement_regularization: 0.01,
1578 },
1579 })
1580 }
1581
1582 fn update_parameters(
1583 &mut self,
1584 _output: &SSLLearningOutputBatch,
1585 _config: &SSLTrainingConfig,
1586 ) -> Result<()> {
1587 Ok(())
1589 }
1590
1591 fn update_quantum_ssl_metrics(&mut self, _metrics: &SSLTrainingMetrics) -> Result<()> {
1592 Ok(())
1594 }
1595
1596 fn update_learning_schedule(
1597 &mut self,
1598 _epoch: usize,
1599 _metrics: &SSLTrainingMetrics,
1600 ) -> Result<()> {
1601 Ok(())
1603 }
1604
1605 fn update_target_network_internal(&mut self, _target_net: &QuantumTargetNetwork) -> Result<()> {
1606 Ok(())
1608 }
1609
1610 fn extract_representations(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1611 Ok(data.clone())
1613 }
1614
1615 fn evaluate_representations(
1616 &self,
1617 _representations: &Array2<f64>,
1618 _data: &Array2<f64>,
1619 ) -> Result<RepresentationEvaluationResults> {
1620 Ok(RepresentationEvaluationResults::default())
1621 }
1622
1623 fn estimate_representation_quality(&self) -> Result<f64> {
1624 Ok(0.8) }
1626}
1627
1628impl QuantumAugmenter {
1630 pub fn generate_augmented_views(
1631 &self,
1632 sample: &Array1<f64>,
1633 num_views: usize,
1634 ) -> Result<Vec<Array1<f64>>> {
1635 let mut views = Vec::new();
1636
1637 for _ in 0..num_views {
1638 let mut augmented = sample.clone();
1639
1640 for strategy in &self.augmentation_strategies {
1642 augmented = self.apply_augmentation_strategy(&augmented, strategy)?;
1643 }
1644
1645 views.push(augmented);
1646 }
1647
1648 Ok(views)
1649 }
1650
1651 fn apply_augmentation_strategy(
1652 &self,
1653 data: &Array1<f64>,
1654 strategy: &QuantumAugmentationStrategy,
1655 ) -> Result<Array1<f64>> {
1656 match strategy {
1657 QuantumAugmentationStrategy::QuantumNoise {
1658 noise_type: _,
1659 strength,
1660 } => {
1661 let mut rng = rand::thread_rng();
1662 Ok(data.mapv(|x| x + rng.gen::<f64>() * strength))
1663 }
1664 QuantumAugmentationStrategy::PhaseShift { phase_range } => {
1665 let mut rng = rand::thread_rng();
1666 let phase = rng.gen::<f64>() * phase_range;
1667 Ok(data.mapv(|x| x * phase.cos() - x * phase.sin()))
1668 }
1669 _ => Ok(data.clone()), }
1671 }
1672}
1673
1674#[derive(Debug, Clone)]
1676pub struct SSLTrainingConfig {
1677 pub epochs: usize,
1678 pub batch_size: usize,
1679 pub learning_rate: f64,
1680 pub weight_decay: f64,
1681 pub log_interval: usize,
1682 pub save_interval: usize,
1683 pub early_stopping_patience: usize,
1684}
1685
1686impl Default for SSLTrainingConfig {
1687 fn default() -> Self {
1688 Self {
1689 epochs: 100,
1690 batch_size: 256,
1691 learning_rate: 3e-4,
1692 weight_decay: 1e-4,
1693 log_interval: 10,
1694 save_interval: 50,
1695 early_stopping_patience: 15,
1696 }
1697 }
1698}
1699
1700#[derive(Debug, Clone)]
1701pub struct SSLLearningOutput {
1702 pub learned_representations: Array2<f64>,
1703 pub training_losses: Vec<f64>,
1704 pub representation_quality_history: Vec<f64>,
1705 pub quantum_metrics_history: Vec<QuantumSSLMetrics>,
1706 pub evaluation_results: RepresentationEvaluationResults,
1707 pub final_ssl_metrics: QuantumSSLMetrics,
1708}
1709
1710#[derive(Debug, Clone, Default)]
1711pub struct SSLLearningOutputBatch {
1712 pub total_loss: f64,
1713 pub contrastive_loss: f64,
1714 pub reconstruction_loss: f64,
1715 pub quantum_metrics: QuantumBatchMetrics,
1716}
1717
1718#[derive(Debug, Clone, Default)]
1719pub struct QuantumBatchMetrics {
1720 pub quantum_fidelity: f64,
1721 pub entanglement_measure: f64,
1722 pub representation_quality: f64,
1723 pub quantum_advantage_ratio: f64,
1724}
1725
1726impl QuantumBatchMetrics {
1727 pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1728 self.quantum_fidelity += other.quantum_fidelity;
1729 self.entanglement_measure += other.entanglement_measure;
1730 self.representation_quality += other.representation_quality;
1731 self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1732 }
1733}
1734
1735#[derive(Debug, Clone, Default)]
1736pub struct RepresentationEvaluationResults {
1737 pub linear_separability: f64,
1738 pub clustering_quality: f64,
1739 pub downstream_task_performance: f64,
1740 pub transfer_learning_performance: f64,
1741 pub quantum_representation_advantage: f64,
1742}
1743
1744impl Default for QuantumSelfSupervisedConfig {
1746 fn default() -> Self {
1747 Self {
1748 input_dim: 64,
1749 representation_dim: 128,
1750 num_qubits: 8,
1751 ssl_method: QuantumSSLMethod::QuantumSimCLR {
1752 batch_size: 256,
1753 augmentation_strength: 0.5,
1754 quantum_projector: QuantumProjector {
1755 projection_layers: Vec::new(),
1756 output_normalization: true,
1757 quantum_enhancement: 1.0,
1758 },
1759 },
1760 quantum_enhancement_level: 1.0,
1761 temperature: 0.1,
1762 momentum_coefficient: 0.999,
1763 use_quantum_augmentations: true,
1764 enable_entanglement_similarity: true,
1765 contrastive_config: ContrastiveConfig {
1766 positive_pair_strategy: PositivePairStrategy::Augmentation,
1767 negative_pair_strategy: NegativePairStrategy::Random,
1768 loss_function: ContrastiveLossFunction::InfoNCE,
1769 temperature_scheduling: TemperatureScheduling::Fixed,
1770 },
1771 masked_learning_config: MaskedLearningConfig {
1772 mask_ratio: 0.15,
1773 mask_strategy: MaskStrategy::Random,
1774 reconstruction_target: ReconstructionTarget::RawPixels,
1775 quantum_mask_evolution: QuantumMaskEvolution {
1776 evolution_type: MaskEvolutionType::Static,
1777 adaptation_rate: 0.01,
1778 quantum_coherence_preservation: 0.9,
1779 },
1780 },
1781 momentum_config: MomentumConfig {
1782 momentum_coefficient: 0.999,
1783 target_network_update: TargetNetworkUpdate::Soft,
1784 quantum_momentum_preservation: 0.9,
1785 },
1786 clustering_config: ClusteringConfig {
1787 num_clusters: 256,
1788 clustering_method: QuantumClusteringMethod::QuantumKMeans,
1789 prototype_update_strategy: PrototypeUpdateStrategy::MovingAverage,
1790 quantum_assignment_method: QuantumAssignmentMethod::SoftAssignment,
1791 },
1792 }
1793 }
1794}
1795
1796impl Default for QuantumSSLMetrics {
1797 fn default() -> Self {
1798 Self {
1799 average_entanglement: 0.5,
1800 coherence_preservation: 0.9,
1801 quantum_feature_quality: 0.8,
1802 representation_dimensionality: 128.0,
1803 transfer_performance: 0.0,
1804 quantum_speedup_factor: 1.0,
1805 ssl_convergence_rate: 0.01,
1806 }
1807 }
1808}
1809
1810impl Default for SSLOptimizerState {
1811 fn default() -> Self {
1812 Self {
1813 learning_rate: 3e-4,
1814 momentum: 0.9,
1815 weight_decay: 1e-4,
1816 quantum_parameter_lr: 1e-5,
1817 entanglement_preservation_weight: 0.1,
1818 }
1819 }
1820}
1821
1822impl Default for LearningRateScheduler {
1823 fn default() -> Self {
1824 Self {
1825 scheduler_type: LRSchedulerType::Cosine,
1826 current_lr: 3e-4,
1827 warmup_epochs: 10,
1828 quantum_adaptive: false,
1829 }
1830 }
1831}
1832
1833impl Default for DecoherenceModel {
1834 fn default() -> Self {
1835 Self {
1836 t1_time: 100.0,
1837 t2_time: 50.0,
1838 gate_error_rate: 0.001,
1839 measurement_error_rate: 0.01,
1840 }
1841 }
1842}
1843
1844#[cfg(test)]
1845mod tests {
1846 use super::*;
1847
1848 #[test]
1849 fn test_quantum_ssl_creation() {
1850 let config = QuantumSelfSupervisedConfig::default();
1851 let ssl = QuantumSelfSupervisedLearner::new(config);
1852 assert!(ssl.is_ok());
1853 }
1854
1855 #[test]
1856 fn test_quantum_augmentations() {
1857 let config = QuantumSelfSupervisedConfig::default();
1858 let augmenter = QuantumAugmenter {
1859 augmentation_strategies: vec![QuantumAugmentationStrategy::QuantumNoise {
1860 noise_type: NoiseType::Gaussian,
1861 strength: 0.1,
1862 }],
1863 augmentation_strength: 0.5,
1864 quantum_coherence_preservation: 0.9,
1865 };
1866
1867 let sample = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
1868 let views = augmenter.generate_augmented_views(&sample, 2);
1869 assert!(views.is_ok());
1870 assert_eq!(views.unwrap().len(), 2);
1871 }
1872
1873 #[test]
1874 fn test_ssl_training_config() {
1875 let config = SSLTrainingConfig::default();
1876 assert_eq!(config.batch_size, 256);
1877 assert_eq!(config.epochs, 100);
1878 }
1879
1880 #[test]
1881 fn test_quantum_contrastive_method() {
1882 let config = QuantumSelfSupervisedConfig {
1883 ssl_method: QuantumSSLMethod::QuantumContrastive {
1884 similarity_metric: QuantumSimilarityMetric::QuantumCosine,
1885 negative_sampling_strategy: NegativeSamplingStrategy::Random,
1886 quantum_projection_head: QuantumProjectionHead {
1887 hidden_dims: vec![128, 64],
1888 output_dim: 32,
1889 use_batch_norm: true,
1890 quantum_layers: Vec::new(),
1891 activation: QuantumActivation::QuantumReLU,
1892 },
1893 },
1894 ..Default::default()
1895 };
1896
1897 let ssl = QuantumSelfSupervisedLearner::new(config);
1898 assert!(ssl.is_ok());
1899 }
1900
1901 #[test]
1902 fn test_quantum_masked_method() {
1903 let config = QuantumSelfSupervisedConfig {
1904 ssl_method: QuantumSSLMethod::QuantumMasked {
1905 masking_strategy: QuantumMaskingStrategy::Random {
1906 mask_probability: 0.15,
1907 },
1908 reconstruction_objective: ReconstructionObjective::MSE,
1909 quantum_encoder_decoder: QuantumEncoderDecoder {
1910 encoder: QuantumEncoder {
1911 layers: Vec::new(),
1912 quantum_state_evolution: QuantumStateEvolution {
1913 evolution_type: EvolutionType::Unitary,
1914 time_steps: Array1::linspace(0.0, 1.0, 10),
1915 hamiltonian: Array2::<f64>::eye(8).mapv(|x| Complex64::new(x, 0.0)),
1916 decoherence_model: DecoherenceModel::default(),
1917 },
1918 measurement_points: vec![0, 1],
1919 },
1920 decoder: QuantumDecoder {
1921 layers: Vec::new(),
1922 quantum_state_preparation: QuantumStatePreparation {
1923 preparation_method: PreparationMethod::DirectPreparation,
1924 target_state: QuantumState::default(),
1925 fidelity_threshold: 0.95,
1926 },
1927 reconstruction_strategy: ReconstructionStrategy::FullReconstruction,
1928 },
1929 shared_quantum_state: true,
1930 entanglement_coupling: 0.5,
1931 },
1932 },
1933 ..Default::default()
1934 };
1935
1936 let ssl = QuantumSelfSupervisedLearner::new(config);
1937 assert!(ssl.is_ok());
1938 }
1939}