1use crate::error::{MLError, Result};
13use ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
14use num_complex::Complex64;
15use rand::{Rng, SeedableRng};
16use rand_chacha::ChaCha20Rng;
17use std::collections::HashMap;
18use std::f64::consts::PI;
19
20#[derive(Debug, Clone)]
22pub struct QuantumNeRFConfig {
23 pub scene_bounds: SceneBounds,
24 pub num_qubits: usize,
25 pub quantum_encoding_levels: usize,
26 pub max_ray_samples: usize,
27 pub quantum_sampling_strategy: QuantumSamplingStrategy,
28 pub quantum_enhancement_level: f64,
29 pub use_quantum_positional_encoding: bool,
30 pub quantum_attention_config: QuantumAttentionConfig,
31 pub volumetric_rendering_config: VolumetricRenderingConfig,
32 pub quantum_multiscale_features: bool,
33 pub entanglement_based_interpolation: bool,
34 pub quantum_view_synthesis: bool,
35 pub decoherence_mitigation: DecoherenceMitigationConfig,
36}
37
38#[derive(Debug, Clone)]
39pub struct SceneBounds {
40 pub min_bound: Array1<f64>, pub max_bound: Array1<f64>, pub voxel_resolution: Array1<usize>, }
44
45#[derive(Debug, Clone)]
46pub enum QuantumSamplingStrategy {
47 QuantumUniform {
49 min_samples: usize,
50 max_samples: usize,
51 quantum_jitter: f64,
52 },
53
54 QuantumHierarchical {
56 coarse_samples: usize,
57 fine_samples: usize,
58 quantum_importance_threshold: f64,
59 },
60
61 QuantumAdaptive {
63 initial_samples: usize,
64 max_refinements: usize,
65 uncertainty_threshold: f64,
66 quantum_uncertainty_estimation: bool,
67 },
68
69 EntanglementCorrelated {
71 base_samples: usize,
72 correlation_strength: f64,
73 entanglement_radius: f64,
74 },
75
76 QuantumMonteCarlo {
78 num_chains: usize,
79 chain_length: usize,
80 quantum_proposal_distribution: QuantumProposalType,
81 },
82}
83
84#[derive(Debug, Clone)]
85pub enum QuantumProposalType {
86 QuantumGaussian { sigma: f64 },
87 QuantumLevyFlight { alpha: f64 },
88 QuantumMetropolis { temperature: f64 },
89}
90
91#[derive(Debug, Clone)]
92pub struct QuantumAttentionConfig {
93 pub use_spatial_attention: bool,
94 pub use_view_attention: bool,
95 pub use_scale_attention: bool,
96 pub num_attention_heads: usize,
97 pub attention_type: QuantumAttentionType,
98 pub entanglement_in_attention: bool,
99 pub quantum_query_key_value: bool,
100}
101
102#[derive(Debug, Clone)]
103pub enum QuantumAttentionType {
104 StandardQuantumAttention,
105 QuantumMultiHeadAttention,
106 QuantumSpatialAttention,
107 QuantumViewAttention,
108 EntanglementBasedAttention,
109 QuantumCrossAttention,
110}
111
112#[derive(Debug, Clone)]
113pub struct VolumetricRenderingConfig {
114 pub use_quantum_alpha_compositing: bool,
115 pub quantum_density_activation: QuantumActivationType,
116 pub quantum_color_space: QuantumColorSpace,
117 pub quantum_illumination_model: QuantumIlluminationModel,
118 pub quantum_material_properties: bool,
119 pub quantum_light_transport: bool,
120}
121
122#[derive(Debug, Clone)]
123pub enum QuantumActivationType {
124 QuantumReLU,
125 QuantumSigmoid,
126 QuantumSoftplus,
127 QuantumTanh,
128 QuantumEntanglementActivation,
129 QuantumPhaseActivation,
130}
131
132#[derive(Debug, Clone)]
133pub enum QuantumColorSpace {
134 RGB,
135 HSV,
136 LAB,
137 QuantumColorSpace { basis_vectors: Array2<f64> },
138 EntangledColorChannels,
139}
140
141#[derive(Debug, Clone)]
142pub enum QuantumIlluminationModel {
143 Lambertian,
144 Phong,
145 PBR, QuantumPhotonMapping,
147 QuantumLightTransport,
148 EntanglementBasedLighting,
149}
150
151#[derive(Debug, Clone)]
152pub struct DecoherenceMitigationConfig {
153 pub enable_error_correction: bool,
154 pub coherence_preservation_weight: f64,
155 pub decoherence_compensation_factor: f64,
156 pub quantum_error_rate_threshold: f64,
157}
158
159pub struct QuantumNeRF {
161 config: QuantumNeRFConfig,
162
163 quantum_mlp_coarse: QuantumMLP,
165 quantum_mlp_fine: QuantumMLP,
166 quantum_positional_encoder: QuantumPositionalEncoder,
167 quantum_view_encoder: QuantumViewEncoder,
168
169 spatial_attention: QuantumSpatialAttention,
171 view_attention: QuantumViewAttention,
172 scale_attention: QuantumScaleAttention,
173
174 quantum_volume_renderer: QuantumVolumeRenderer,
176 quantum_ray_marcher: QuantumRayMarcher,
177
178 training_history: Vec<NeRFTrainingMetrics>,
180 quantum_rendering_metrics: QuantumRenderingMetrics,
181 optimization_state: NeRFOptimizationState,
182
183 quantum_scene_representation: QuantumSceneRepresentation,
185 quantum_light_field: QuantumLightField,
186}
187
188#[derive(Debug, Clone)]
189pub struct QuantumMLP {
190 layers: Vec<QuantumMLPLayer>,
191 skip_connections: Vec<usize>,
192 quantum_parameters: Array1<f64>,
193 classical_parameters: Array2<f64>,
194 quantum_enhancement_factor: f64,
195}
196
197#[derive(Debug, Clone)]
198pub struct QuantumMLPLayer {
199 layer_type: QuantumMLPLayerType,
200 input_dim: usize,
201 output_dim: usize,
202 quantum_gates: Vec<QuantumMLPGate>,
203 activation: QuantumActivationType,
204 normalization: Option<QuantumNormalizationType>,
205}
206
207#[derive(Debug, Clone)]
208pub enum QuantumMLPLayerType {
209 QuantumLinear,
210 QuantumConvolutional3D {
211 kernel_size: usize,
212 stride: usize,
213 padding: usize,
214 },
215 QuantumResidual {
216 inner_layers: Vec<Box<QuantumMLPLayer>>,
217 },
218 QuantumAttentionLayer {
219 attention_config: QuantumAttentionConfig,
220 },
221}
222
223#[derive(Debug, Clone)]
224pub enum QuantumNormalizationType {
225 QuantumBatchNorm,
226 QuantumLayerNorm,
227 QuantumInstanceNorm,
228 QuantumGroupNorm { num_groups: usize },
229 EntanglementNorm,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumMLPGate {
234 gate_type: QuantumMLPGateType,
235 target_qubits: Vec<usize>,
236 control_qubits: Vec<usize>,
237 parameters: Array1<f64>,
238 is_trainable: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum QuantumMLPGateType {
243 ParameterizedRotation { axis: RotationAxis },
244 ControlledRotation { axis: RotationAxis },
245 EntanglementGate { gate_name: String },
246 QuantumFourierGate,
247 CustomQuantumGate { matrix: Array2<Complex64> },
248}
249
250#[derive(Debug, Clone)]
251pub enum RotationAxis {
252 X,
253 Y,
254 Z,
255 Custom { direction: Array1<f64> },
256}
257
258#[derive(Debug, Clone)]
259pub struct QuantumPositionalEncoder {
260 encoding_type: QuantumPositionalEncodingType,
261 num_frequencies: usize,
262 quantum_frequencies: Array1<f64>,
263 entanglement_encoding: bool,
264 phase_encoding: bool,
265 max_frequency: f64,
266}
267
268#[derive(Debug, Clone)]
269pub enum QuantumPositionalEncodingType {
270 StandardQuantumEncoding,
271 QuantumFourierEncoding,
272 QuantumWaveletEncoding,
273 EntanglementBasedEncoding,
274 QuantumHashEncoding { hash_table_size: usize },
275 QuantumMultiresolutionEncoding { num_levels: usize },
276}
277
278#[derive(Debug, Clone)]
279pub struct QuantumViewEncoder {
280 encoding_dimension: usize,
281 quantum_view_embedding: Array2<Complex64>,
282 spherical_harmonics_order: usize,
283 quantum_spherical_harmonics: bool,
284}
285
286#[derive(Debug, Clone)]
287pub struct QuantumSpatialAttention {
288 num_heads: usize,
289 head_dim: usize,
290 quantum_query_projection: Array2<Complex64>,
291 quantum_key_projection: Array2<Complex64>,
292 quantum_value_projection: Array2<Complex64>,
293 entanglement_weights: Array1<f64>,
294}
295
296#[derive(Debug, Clone)]
297pub struct QuantumViewAttention {
298 view_embedding_dim: usize,
299 quantum_view_weights: Array2<Complex64>,
300 view_dependent_parameters: Array1<f64>,
301 quantum_view_interpolation: bool,
302}
303
304#[derive(Debug, Clone)]
305pub struct QuantumScaleAttention {
306 num_scales: usize,
307 scale_weights: Array1<f64>,
308 quantum_scale_mixing: Array2<Complex64>,
309 adaptive_scale_selection: bool,
310}
311
312#[derive(Debug, Clone)]
313pub struct QuantumVolumeRenderer {
314 rendering_equation: QuantumRenderingEquation,
315 quantum_alpha_blending: QuantumAlphaBlending,
316 quantum_illumination: QuantumIllumination,
317 quantum_material_model: QuantumMaterialModel,
318}
319
320#[derive(Debug, Clone)]
321pub enum QuantumRenderingEquation {
322 StandardVolumeRendering,
323 QuantumVolumeRendering {
324 quantum_transmittance: bool,
325 entangled_scattering: bool,
326 },
327 QuantumPathTracing {
328 max_bounces: usize,
329 quantum_importance_sampling: bool,
330 },
331 QuantumPhotonMapping {
332 num_photons: usize,
333 quantum_photon_transport: bool,
334 },
335}
336
337#[derive(Debug, Clone)]
338pub struct QuantumAlphaBlending {
339 blending_mode: QuantumBlendingMode,
340 quantum_compositing: bool,
341 entanglement_based_blending: bool,
342}
343
344#[derive(Debug, Clone)]
345pub enum QuantumBlendingMode {
346 StandardAlphaBlending,
347 QuantumSuperpositionBlending,
348 EntanglementBasedBlending,
349 QuantumInterferenceBlending,
350}
351
352#[derive(Debug, Clone)]
353pub struct QuantumIllumination {
354 light_sources: Vec<QuantumLightSource>,
355 ambient_lighting: QuantumAmbientLight,
356 quantum_shadows: bool,
357 quantum_global_illumination: bool,
358}
359
360#[derive(Debug, Clone)]
361pub struct QuantumLightSource {
362 position: Array1<f64>,
363 intensity: Array1<f64>, light_type: QuantumLightType,
365 quantum_coherence: f64,
366}
367
368#[derive(Debug, Clone)]
369pub enum QuantumLightType {
370 QuantumPointLight,
371 QuantumDirectionalLight,
372 QuantumAreaLight { area_size: Array1<f64> },
373 QuantumEnvironmentLight { environment_map: Array3<f64> },
374 QuantumCoherentLight { coherence_length: f64 },
375}
376
377#[derive(Debug, Clone)]
378pub struct QuantumAmbientLight {
379 ambient_color: Array1<f64>,
380 quantum_ambient_occlusion: bool,
381 quantum_environment_probe: Option<Array3<f64>>,
382}
383
384#[derive(Debug, Clone)]
385pub struct QuantumMaterialModel {
386 material_type: QuantumMaterialType,
387 quantum_brdf: QuantumBRDF,
388 material_parameters: QuantumMaterialParameters,
389}
390
391#[derive(Debug, Clone)]
392pub enum QuantumMaterialType {
393 Lambertian,
394 Phong,
395 PBR,
396 QuantumMaterial {
397 quantum_reflectance: Array2<Complex64>,
398 quantum_transmittance: Array2<Complex64>,
399 },
400}
401
402#[derive(Debug, Clone)]
403pub struct QuantumBRDF {
404 brdf_type: QuantumBRDFType,
405 quantum_parameters: Array1<Complex64>,
406 view_dependent: bool,
407}
408
409#[derive(Debug, Clone)]
410pub enum QuantumBRDFType {
411 LambertianBRDF,
412 PhongBRDF,
413 CookTorranceBRDF,
414 QuantumBRDF {
415 quantum_surface_model: Array2<Complex64>,
416 },
417}
418
419#[derive(Debug, Clone)]
420pub struct QuantumMaterialParameters {
421 albedo: Array1<f64>,
422 roughness: f64,
423 metallic: f64,
424 quantum_properties: QuantumMaterialProperties,
425}
426
427#[derive(Debug, Clone)]
428pub struct QuantumMaterialProperties {
429 quantum_reflectivity: Complex64,
430 quantum_absorption: Complex64,
431 quantum_scattering: Complex64,
432 entanglement_factor: f64,
433}
434
435#[derive(Debug, Clone)]
436pub struct QuantumRayMarcher {
437 marching_strategy: QuantumMarchingStrategy,
438 quantum_sampling_points: Array2<f64>,
439 entanglement_based_sampling: bool,
440 adaptive_step_size: bool,
441}
442
443#[derive(Debug, Clone)]
444pub enum QuantumMarchingStrategy {
445 UniformMarching {
446 step_size: f64,
447 },
448 AdaptiveMarching {
449 initial_step_size: f64,
450 min_step_size: f64,
451 max_step_size: f64,
452 },
453 QuantumImportanceMarching {
454 importance_threshold: f64,
455 quantum_importance_estimation: bool,
456 },
457 EntanglementGuidedMarching {
458 entanglement_threshold: f64,
459 correlation_distance: f64,
460 },
461}
462
463#[derive(Debug, Clone)]
465pub struct QuantumSceneRepresentation {
466 voxel_grid: QuantumVoxelGrid,
467 implicit_surface: QuantumImplicitSurface,
468 quantum_octree: QuantumOctree,
469 multi_scale_features: Vec<QuantumFeatureLevel>,
470}
471
472#[derive(Debug, Clone)]
473pub struct QuantumVoxelGrid {
474 density_grid: Array3<f64>,
475 color_grid: Array4<f64>, quantum_features: Array4<Complex64>, entanglement_structure: VoxelEntanglementStructure,
478}
479
480#[derive(Debug, Clone)]
481pub struct VoxelEntanglementStructure {
482 entanglement_matrix: Array2<f64>,
483 correlation_radius: f64,
484 entanglement_strength: f64,
485}
486
487#[derive(Debug, Clone)]
488pub struct QuantumImplicitSurface {
489 sdf_function: QuantumSDF,
490 gradient_function: QuantumGradientFunction,
491 quantum_surface_properties: QuantumSurfaceProperties,
492}
493
494#[derive(Debug, Clone)]
495pub struct QuantumSDF {
496 quantum_parameters: Array1<f64>,
497 quantum_basis_functions: Vec<QuantumBasisFunction>,
498 multi_resolution_levels: usize,
499}
500
501#[derive(Debug, Clone)]
502pub struct QuantumBasisFunction {
503 basis_type: QuantumBasisType,
504 parameters: Array1<Complex64>,
505 support_region: Array1<f64>,
506}
507
508#[derive(Debug, Clone)]
509pub enum QuantumBasisType {
510 QuantumRadialBasis { sigma: f64 },
511 QuantumWavelet { wavelet_type: String },
512 QuantumFourier { frequency: f64 },
513 QuantumSpline { order: usize },
514}
515
516#[derive(Debug, Clone)]
517pub struct QuantumGradientFunction {
518 gradient_quantum_mlp: QuantumMLP,
519 analytical_gradients: bool,
520 quantum_finite_differences: bool,
521}
522
523#[derive(Debug, Clone)]
524pub struct QuantumSurfaceProperties {
525 surface_normal: Array1<f64>,
526 curvature: f64,
527 quantum_surface_features: Array1<Complex64>,
528}
529
530#[derive(Debug, Clone)]
531pub struct QuantumOctree {
532 root: QuantumOctreeNode,
533 max_depth: usize,
534 quantum_subdivision_criterion: QuantumSubdivisionCriterion,
535}
536
537#[derive(Debug, Clone)]
538pub struct QuantumOctreeNode {
539 bounds: SceneBounds,
540 children: Option<Box<[QuantumOctreeNode; 8]>>,
541 quantum_features: Array1<Complex64>,
542 occupancy_probability: f64,
543 entanglement_with_neighbors: Array1<f64>,
544}
545
546#[derive(Debug, Clone)]
547pub enum QuantumSubdivisionCriterion {
548 DensityThreshold { threshold: f64 },
549 QuantumUncertainty { uncertainty_threshold: f64 },
550 EntanglementComplexity { complexity_threshold: f64 },
551 AdaptiveQuantum { adaptive_parameters: Array1<f64> },
552}
553
554#[derive(Debug, Clone)]
555pub struct QuantumFeatureLevel {
556 level: usize,
557 resolution: Array1<usize>,
558 quantum_features: Array4<Complex64>,
559 downsampling_operator: QuantumDownsampling,
560 upsampling_operator: QuantumUpsampling,
561}
562
563#[derive(Debug, Clone)]
564pub enum QuantumDownsampling {
565 QuantumAveragePooling,
566 QuantumMaxPooling,
567 QuantumAttentionPooling,
568 EntanglementBasedPooling,
569}
570
571#[derive(Debug, Clone)]
572pub enum QuantumUpsampling {
573 QuantumBilinearInterpolation,
574 QuantumTransposedConvolution,
575 QuantumAttentionUpsampling,
576 EntanglementBasedUpsampling,
577}
578
579#[derive(Debug, Clone)]
580pub struct QuantumLightField {
581 light_directions: Array2<f64>, light_intensities: Array2<f64>, quantum_light_coherence: Array2<Complex64>,
584 spherical_harmonics_coefficients: Array2<f64>,
585 quantum_environment_encoding: QuantumEnvironmentEncoding,
586}
587
588#[derive(Debug, Clone)]
589pub struct QuantumEnvironmentEncoding {
590 encoding_type: QuantumEnvironmentEncodingType,
591 quantum_coefficients: Array1<Complex64>,
592 spatial_frequency_components: Array1<f64>,
593}
594
595#[derive(Debug, Clone)]
596pub enum QuantumEnvironmentEncodingType {
597 SphericalHarmonics,
598 QuantumSphericalHarmonics,
599 QuantumWavelets,
600 QuantumFourierSeries,
601}
602
603#[derive(Debug, Clone)]
605pub struct NeRFTrainingMetrics {
606 pub epoch: usize,
607 pub loss: f64,
608 pub psnr: f64,
609 pub ssim: f64,
610 pub lpips: f64,
611 pub quantum_fidelity: f64,
612 pub entanglement_measure: f64,
613 pub rendering_time: f64,
614 pub quantum_advantage_ratio: f64,
615 pub memory_usage: f64,
616}
617
618#[derive(Debug, Clone)]
619pub struct QuantumRenderingMetrics {
620 pub average_rendering_time: f64,
621 pub quantum_acceleration_factor: f64,
622 pub entanglement_utilization: f64,
623 pub coherence_preservation: f64,
624 pub quantum_memory_efficiency: f64,
625 pub view_synthesis_quality: f64,
626 pub volumetric_accuracy: f64,
627}
628
629#[derive(Debug, Clone)]
630pub struct NeRFOptimizationState {
631 pub learning_rate: f64,
632 pub momentum: f64,
633 pub quantum_parameter_learning_rate: f64,
634 pub adaptive_sampling_rate: f64,
635 pub entanglement_preservation_weight: f64,
636 pub rendering_loss_weight: f64,
637}
638
639impl QuantumNeRF {
641 pub fn new(config: QuantumNeRFConfig) -> Result<Self> {
643 println!("🌌 Initializing Quantum Neural Radiance Fields in UltraThink Mode");
644
645 let quantum_mlp_coarse = Self::create_quantum_mlp(&config, "coarse")?;
647 let quantum_mlp_fine = Self::create_quantum_mlp(&config, "fine")?;
648
649 let quantum_positional_encoder = Self::create_quantum_positional_encoder(&config)?;
651 let quantum_view_encoder = Self::create_quantum_view_encoder(&config)?;
652
653 let spatial_attention = Self::create_spatial_attention(&config)?;
655 let view_attention = Self::create_view_attention(&config)?;
656 let scale_attention = Self::create_scale_attention(&config)?;
657
658 let quantum_volume_renderer = Self::create_quantum_volume_renderer(&config)?;
660 let quantum_ray_marcher = Self::create_quantum_ray_marcher(&config)?;
661
662 let quantum_scene_representation = Self::create_quantum_scene_representation(&config)?;
664 let quantum_light_field = Self::create_quantum_light_field(&config)?;
665
666 let quantum_rendering_metrics = QuantumRenderingMetrics::default();
668 let optimization_state = NeRFOptimizationState::default();
669
670 Ok(Self {
671 config,
672 quantum_mlp_coarse,
673 quantum_mlp_fine,
674 quantum_positional_encoder,
675 quantum_view_encoder,
676 spatial_attention,
677 view_attention,
678 scale_attention,
679 quantum_volume_renderer,
680 quantum_ray_marcher,
681 training_history: Vec::new(),
682 quantum_rendering_metrics,
683 optimization_state,
684 quantum_scene_representation,
685 quantum_light_field,
686 })
687 }
688
689 fn create_quantum_mlp(config: &QuantumNeRFConfig, network_type: &str) -> Result<QuantumMLP> {
691 let (hidden_dims, output_dim) = match network_type {
692 "coarse" => (vec![256, 256, 256, 256], 4), "fine" => (vec![256, 256, 256, 256, 256, 256], 4),
694 _ => (vec![128, 128], 4),
695 };
696
697 let mut layers = Vec::new();
698 let mut input_dim = 3 + config.quantum_encoding_levels * 6; if config.quantum_view_synthesis {
702 input_dim += 3 + config.quantum_encoding_levels * 6; }
704
705 for (i, &hidden_dim) in hidden_dims.iter().enumerate() {
706 let layer = QuantumMLPLayer {
707 layer_type: QuantumMLPLayerType::QuantumLinear,
708 input_dim: if i == 0 {
709 input_dim
710 } else {
711 hidden_dims[i - 1]
712 },
713 output_dim: hidden_dim,
714 quantum_gates: Self::create_quantum_mlp_gates(config, hidden_dim)?,
715 activation: QuantumActivationType::QuantumReLU,
716 normalization: Some(QuantumNormalizationType::QuantumLayerNorm),
717 };
718 layers.push(layer);
719 }
720
721 let output_layer = QuantumMLPLayer {
723 layer_type: QuantumMLPLayerType::QuantumLinear,
724 input_dim: *hidden_dims.last().unwrap(),
725 output_dim,
726 quantum_gates: Self::create_quantum_mlp_gates(config, output_dim)?,
727 activation: QuantumActivationType::QuantumSigmoid, normalization: None,
729 };
730 layers.push(output_layer);
731
732 let skip_connections = vec![layers.len() / 2]; Ok(QuantumMLP {
736 layers,
737 skip_connections,
738 quantum_parameters: Array1::zeros(config.num_qubits * 3),
739 classical_parameters: Array2::zeros((input_dim, hidden_dims[0])),
740 quantum_enhancement_factor: config.quantum_enhancement_level,
741 })
742 }
743
744 fn create_quantum_mlp_gates(
746 config: &QuantumNeRFConfig,
747 layer_dim: usize,
748 ) -> Result<Vec<QuantumMLPGate>> {
749 let mut gates = Vec::new();
750
751 for i in 0..config.num_qubits {
753 gates.push(QuantumMLPGate {
754 gate_type: QuantumMLPGateType::ParameterizedRotation {
755 axis: RotationAxis::Y,
756 },
757 target_qubits: vec![i],
758 control_qubits: Vec::new(),
759 parameters: Array1::from_vec(vec![PI / 4.0]),
760 is_trainable: true,
761 });
762 }
763
764 for i in 0..config.num_qubits - 1 {
766 gates.push(QuantumMLPGate {
767 gate_type: QuantumMLPGateType::EntanglementGate {
768 gate_name: "CNOT".to_string(),
769 },
770 target_qubits: vec![i + 1],
771 control_qubits: vec![i],
772 parameters: Array1::zeros(0),
773 is_trainable: false,
774 });
775 }
776
777 Ok(gates)
778 }
779
780 fn create_quantum_positional_encoder(
782 config: &QuantumNeRFConfig,
783 ) -> Result<QuantumPositionalEncoder> {
784 let max_frequency = 2.0_f64.powi(config.quantum_encoding_levels as i32 - 1);
785 let quantum_frequencies = Array1::from_shape_fn(config.quantum_encoding_levels, |i| {
786 2.0_f64.powi(i as i32) * PI
787 });
788
789 Ok(QuantumPositionalEncoder {
790 encoding_type: QuantumPositionalEncodingType::QuantumFourierEncoding,
791 num_frequencies: config.quantum_encoding_levels,
792 quantum_frequencies,
793 entanglement_encoding: config.entanglement_based_interpolation,
794 phase_encoding: true,
795 max_frequency,
796 })
797 }
798
799 fn create_quantum_view_encoder(config: &QuantumNeRFConfig) -> Result<QuantumViewEncoder> {
801 let encoding_dimension = config.quantum_encoding_levels * 6; let quantum_view_embedding = Array2::zeros((encoding_dimension, config.num_qubits))
805 .mapv(|_: f64| Complex64::new(1.0, 0.0));
806
807 Ok(QuantumViewEncoder {
808 encoding_dimension,
809 quantum_view_embedding,
810 spherical_harmonics_order: 4, quantum_spherical_harmonics: config.quantum_view_synthesis,
812 })
813 }
814
815 fn create_spatial_attention(config: &QuantumNeRFConfig) -> Result<QuantumSpatialAttention> {
817 let num_heads = config.quantum_attention_config.num_attention_heads;
818 let head_dim = config.num_qubits / num_heads;
819
820 let mut input_dim = 3 + config.quantum_encoding_levels * 6; if config.quantum_view_synthesis {
823 input_dim += 3 + config.quantum_encoding_levels * 6; }
825
826 Ok(QuantumSpatialAttention {
827 num_heads,
828 head_dim,
829 quantum_query_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
830 quantum_key_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
831 quantum_value_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
832 entanglement_weights: Array1::ones(num_heads) * 0.5,
833 })
834 }
835
836 fn create_view_attention(config: &QuantumNeRFConfig) -> Result<QuantumViewAttention> {
838 let view_embedding_dim = config.quantum_encoding_levels * 6;
839
840 Ok(QuantumViewAttention {
841 view_embedding_dim,
842 quantum_view_weights: Array2::eye(view_embedding_dim).mapv(|x| Complex64::new(x, 0.0)),
843 view_dependent_parameters: Array1::ones(view_embedding_dim),
844 quantum_view_interpolation: config.quantum_view_synthesis,
845 })
846 }
847
848 fn create_scale_attention(config: &QuantumNeRFConfig) -> Result<QuantumScaleAttention> {
850 let num_scales = if config.quantum_multiscale_features {
851 4
852 } else {
853 1
854 };
855
856 Ok(QuantumScaleAttention {
857 num_scales,
858 scale_weights: Array1::ones(num_scales) / num_scales as f64,
859 quantum_scale_mixing: Array2::eye(num_scales).mapv(|x| Complex64::new(x, 0.0)),
860 adaptive_scale_selection: config.quantum_multiscale_features,
861 })
862 }
863
864 fn create_quantum_volume_renderer(config: &QuantumNeRFConfig) -> Result<QuantumVolumeRenderer> {
866 let rendering_equation = QuantumRenderingEquation::QuantumVolumeRendering {
867 quantum_transmittance: true,
868 entangled_scattering: config.entanglement_based_interpolation,
869 };
870
871 let quantum_alpha_blending = QuantumAlphaBlending {
872 blending_mode: QuantumBlendingMode::QuantumSuperpositionBlending,
873 quantum_compositing: true,
874 entanglement_based_blending: config.entanglement_based_interpolation,
875 };
876
877 let quantum_illumination = QuantumIllumination {
878 light_sources: Vec::new(), ambient_lighting: QuantumAmbientLight {
880 ambient_color: Array1::from_vec(vec![0.1, 0.1, 0.1]),
881 quantum_ambient_occlusion: true,
882 quantum_environment_probe: None,
883 },
884 quantum_shadows: true,
885 quantum_global_illumination: config.volumetric_rendering_config.quantum_light_transport,
886 };
887
888 let quantum_material_model = QuantumMaterialModel {
889 material_type: QuantumMaterialType::QuantumMaterial {
890 quantum_reflectance: Array2::eye(3).mapv(|x: f64| Complex64::new(x, 0.0)),
891 quantum_transmittance: Array2::eye(3).mapv(|x: f64| Complex64::new(x * 0.5, 0.0)),
892 },
893 quantum_brdf: QuantumBRDF {
894 brdf_type: QuantumBRDFType::QuantumBRDF {
895 quantum_surface_model: Array2::eye(3).mapv(|x| Complex64::new(x, 0.0)),
896 },
897 quantum_parameters: Array1::ones(8).mapv(|x| Complex64::new(x, 0.0)),
898 view_dependent: config.quantum_view_synthesis,
899 },
900 material_parameters: QuantumMaterialParameters {
901 albedo: Array1::from_vec(vec![0.8, 0.8, 0.8]),
902 roughness: 0.1,
903 metallic: 0.0,
904 quantum_properties: QuantumMaterialProperties {
905 quantum_reflectivity: Complex64::new(0.9, 0.1),
906 quantum_absorption: Complex64::new(0.05, 0.0),
907 quantum_scattering: Complex64::new(0.1, 0.0),
908 entanglement_factor: config.entanglement_based_interpolation as i32 as f64,
909 },
910 },
911 };
912
913 Ok(QuantumVolumeRenderer {
914 rendering_equation,
915 quantum_alpha_blending,
916 quantum_illumination,
917 quantum_material_model,
918 })
919 }
920
921 fn create_quantum_ray_marcher(config: &QuantumNeRFConfig) -> Result<QuantumRayMarcher> {
923 let marching_strategy = match &config.quantum_sampling_strategy {
924 QuantumSamplingStrategy::QuantumUniform {
925 min_samples,
926 max_samples,
927 quantum_jitter,
928 } => QuantumMarchingStrategy::UniformMarching {
929 step_size: 1.0 / *max_samples as f64,
930 },
931 QuantumSamplingStrategy::QuantumAdaptive {
932 initial_samples,
933 max_refinements,
934 uncertainty_threshold,
935 quantum_uncertainty_estimation,
936 } => QuantumMarchingStrategy::AdaptiveMarching {
937 initial_step_size: 1.0 / *initial_samples as f64,
938 min_step_size: 1e-4,
939 max_step_size: 1e-1,
940 },
941 _ => QuantumMarchingStrategy::UniformMarching {
942 step_size: 1.0 / 64.0,
943 },
944 };
945
946 Ok(QuantumRayMarcher {
947 marching_strategy,
948 quantum_sampling_points: Array2::zeros((config.max_ray_samples, 3)),
949 entanglement_based_sampling: config.entanglement_based_interpolation,
950 adaptive_step_size: true,
951 })
952 }
953
954 fn create_quantum_scene_representation(
956 config: &QuantumNeRFConfig,
957 ) -> Result<QuantumSceneRepresentation> {
958 let voxel_resolution = &config.scene_bounds.voxel_resolution;
959
960 let voxel_grid = QuantumVoxelGrid {
962 density_grid: Array3::zeros((
963 voxel_resolution[0],
964 voxel_resolution[1],
965 voxel_resolution[2],
966 )),
967 color_grid: Array4::zeros((
968 voxel_resolution[0],
969 voxel_resolution[1],
970 voxel_resolution[2],
971 3,
972 )),
973 quantum_features: Array4::zeros((
974 voxel_resolution[0],
975 voxel_resolution[1],
976 voxel_resolution[2],
977 config.num_qubits,
978 ))
979 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
980 entanglement_structure: VoxelEntanglementStructure {
981 entanglement_matrix: Array2::eye(voxel_resolution.iter().product()),
982 correlation_radius: 2.0,
983 entanglement_strength: config.quantum_enhancement_level,
984 },
985 };
986
987 let implicit_surface = QuantumImplicitSurface {
989 sdf_function: QuantumSDF {
990 quantum_parameters: Array1::zeros(config.num_qubits * 3),
991 quantum_basis_functions: Vec::new(),
992 multi_resolution_levels: 4,
993 },
994 gradient_function: QuantumGradientFunction {
995 gradient_quantum_mlp: Self::create_quantum_mlp(config, "gradient")?,
996 analytical_gradients: true,
997 quantum_finite_differences: false,
998 },
999 quantum_surface_properties: QuantumSurfaceProperties {
1000 surface_normal: Array1::zeros(3),
1001 curvature: 0.0,
1002 quantum_surface_features: Array1::zeros(config.num_qubits)
1003 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1004 },
1005 };
1006
1007 let quantum_octree = QuantumOctree {
1009 root: QuantumOctreeNode {
1010 bounds: config.scene_bounds.clone(),
1011 children: None,
1012 quantum_features: Array1::zeros(config.num_qubits)
1013 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1014 occupancy_probability: 0.5,
1015 entanglement_with_neighbors: Array1::zeros(8),
1016 },
1017 max_depth: 8,
1018 quantum_subdivision_criterion: QuantumSubdivisionCriterion::QuantumUncertainty {
1019 uncertainty_threshold: 0.1,
1020 },
1021 };
1022
1023 let mut multi_scale_features = Vec::new();
1025 for level in 0..4 {
1026 let scale_factor = 2_usize.pow(level as u32);
1027 let level_resolution = Array1::from_vec(vec![
1028 voxel_resolution[0] / scale_factor,
1029 voxel_resolution[1] / scale_factor,
1030 voxel_resolution[2] / scale_factor,
1031 ]);
1032
1033 multi_scale_features.push(QuantumFeatureLevel {
1034 level,
1035 resolution: level_resolution.clone(),
1036 quantum_features: Array4::zeros((
1037 level_resolution[0],
1038 level_resolution[1],
1039 level_resolution[2],
1040 config.num_qubits,
1041 ))
1042 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1043 downsampling_operator: QuantumDownsampling::QuantumAveragePooling,
1044 upsampling_operator: QuantumUpsampling::QuantumBilinearInterpolation,
1045 });
1046 }
1047
1048 Ok(QuantumSceneRepresentation {
1049 voxel_grid,
1050 implicit_surface,
1051 quantum_octree,
1052 multi_scale_features,
1053 })
1054 }
1055
1056 fn create_quantum_light_field(config: &QuantumNeRFConfig) -> Result<QuantumLightField> {
1058 let num_directions = 256; let mut light_directions = Array2::zeros((num_directions, 3));
1062 let mut rng = rand::thread_rng();
1063
1064 for i in 0..num_directions {
1065 let theta = rng.gen::<f64>() * 2.0 * PI;
1066 let phi = (rng.gen::<f64>() * 2.0 - 1.0).acos();
1067
1068 light_directions[[i, 0]] = phi.sin() * theta.cos();
1069 light_directions[[i, 1]] = phi.sin() * theta.sin();
1070 light_directions[[i, 2]] = phi.cos();
1071 }
1072
1073 let light_intensities = Array2::ones((num_directions, 3)) * 0.5; let quantum_light_coherence =
1075 Array2::zeros((num_directions, 3)).mapv(|_: f64| Complex64::new(1.0, 0.0));
1076
1077 let num_sh_coefficients = (4u32 + 1).pow(2) as usize; let spherical_harmonics_coefficients = Array2::zeros((num_sh_coefficients, 3));
1080
1081 Ok(QuantumLightField {
1082 light_directions,
1083 light_intensities,
1084 quantum_light_coherence,
1085 spherical_harmonics_coefficients,
1086 quantum_environment_encoding: QuantumEnvironmentEncoding {
1087 encoding_type: QuantumEnvironmentEncodingType::QuantumSphericalHarmonics,
1088 quantum_coefficients: Array1::<f64>::zeros(num_sh_coefficients)
1089 .mapv(|_| Complex64::new(0.0, 0.0)),
1090 spatial_frequency_components: Array1::zeros(num_sh_coefficients),
1091 },
1092 })
1093 }
1094
1095 pub fn render(
1097 &self,
1098 camera_position: &Array1<f64>,
1099 camera_direction: &Array1<f64>,
1100 camera_up: &Array1<f64>,
1101 image_width: usize,
1102 image_height: usize,
1103 fov: f64,
1104 ) -> Result<QuantumRenderOutput> {
1105 println!("🎨 Rendering with Quantum Neural Radiance Fields");
1106
1107 let mut rendered_image = Array3::zeros((image_height, image_width, 3));
1108 let mut quantum_depth_map = Array2::zeros((image_height, image_width));
1109 let mut quantum_uncertainty_map = Array2::zeros((image_height, image_width));
1110 let mut pixel_quantum_states = Vec::new();
1111
1112 let camera_matrix =
1114 self.setup_camera_matrix(camera_position, camera_direction, camera_up, fov)?;
1115
1116 for y in 0..image_height {
1118 for x in 0..image_width {
1119 let ray =
1121 self.generate_camera_ray(&camera_matrix, x, y, image_width, image_height, fov)?;
1122
1123 let pixel_output = self.render_pixel_quantum(&ray)?;
1125
1126 rendered_image[[y, x, 0]] = pixel_output.color[0];
1128 rendered_image[[y, x, 1]] = pixel_output.color[1];
1129 rendered_image[[y, x, 2]] = pixel_output.color[2];
1130 quantum_depth_map[[y, x]] = pixel_output.depth;
1131 quantum_uncertainty_map[[y, x]] = pixel_output.quantum_uncertainty;
1132 pixel_quantum_states.push(pixel_output.quantum_state);
1133 }
1134 }
1135
1136 let rendering_metrics =
1138 self.compute_rendering_metrics(&rendered_image, &pixel_quantum_states)?;
1139
1140 Ok(QuantumRenderOutput {
1141 rendered_image,
1142 quantum_depth_map,
1143 quantum_uncertainty_map,
1144 pixel_quantum_states,
1145 rendering_metrics,
1146 })
1147 }
1148
1149 fn setup_camera_matrix(
1151 &self,
1152 position: &Array1<f64>,
1153 direction: &Array1<f64>,
1154 up: &Array1<f64>,
1155 fov: f64,
1156 ) -> Result<CameraMatrix> {
1157 let forward = direction / direction.dot(direction).sqrt();
1159 let right = Self::cross_product(&forward, up);
1160 let right = &right / right.dot(&right).sqrt();
1161 let up_corrected = Self::cross_product(&right, &forward);
1162
1163 Ok(CameraMatrix {
1164 position: position.clone(),
1165 forward,
1166 right,
1167 up: up_corrected,
1168 fov,
1169 })
1170 }
1171
1172 fn cross_product(a: &Array1<f64>, b: &Array1<f64>) -> Array1<f64> {
1174 Array1::from_vec(vec![
1175 a[1] * b[2] - a[2] * b[1],
1176 a[2] * b[0] - a[0] * b[2],
1177 a[0] * b[1] - a[1] * b[0],
1178 ])
1179 }
1180
1181 fn generate_camera_ray(
1183 &self,
1184 camera: &CameraMatrix,
1185 pixel_x: usize,
1186 pixel_y: usize,
1187 image_width: usize,
1188 image_height: usize,
1189 fov: f64,
1190 ) -> Result<Ray> {
1191 let aspect_ratio = image_width as f64 / image_height as f64;
1193 let ndc_x = (2.0 * pixel_x as f64 / image_width as f64 - 1.0) * aspect_ratio;
1194 let ndc_y = 1.0 - 2.0 * pixel_y as f64 / image_height as f64;
1195
1196 let tan_half_fov = (fov / 2.0).tan();
1198 let camera_x = ndc_x * tan_half_fov;
1199 let camera_y = ndc_y * tan_half_fov;
1200
1201 let ray_direction = &camera.forward + camera_x * &camera.right + camera_y * &camera.up;
1203 let ray_direction = &ray_direction / ray_direction.dot(&ray_direction).sqrt();
1204
1205 Ok(Ray {
1206 origin: camera.position.clone(),
1207 direction: ray_direction,
1208 near: 0.1,
1209 far: 10.0,
1210 })
1211 }
1212
1213 fn render_pixel_quantum(&self, ray: &Ray) -> Result<PixelRenderOutput> {
1215 let sampling_points = self.quantum_ray_sampling(ray)?;
1217
1218 let mut colors = Vec::new();
1220 let mut densities = Vec::new();
1221 let mut quantum_states = Vec::new();
1222
1223 for point in &sampling_points.points {
1224 let encoded_position = self.quantum_positional_encoding(&point.position)?;
1226 let encoded_view = self.quantum_view_encoding(&ray.direction)?;
1227
1228 let mut input_features = encoded_position.features;
1230 input_features
1231 .append(Axis(0), encoded_view.features.view())
1232 .unwrap();
1233
1234 let attended_features =
1236 self.apply_quantum_spatial_attention(&input_features, &point.position)?;
1237
1238 let coarse_output =
1240 self.query_quantum_mlp(&self.quantum_mlp_coarse, &attended_features)?;
1241
1242 let fine_output = if sampling_points.is_hierarchical {
1244 Some(self.query_quantum_mlp(&self.quantum_mlp_fine, &attended_features)?)
1245 } else {
1246 None
1247 };
1248
1249 let output = fine_output.as_ref().unwrap_or(&coarse_output);
1251
1252 colors.push(output.color.clone());
1253 densities.push(output.density);
1254 quantum_states.push(output.quantum_state.clone());
1255 }
1256
1257 let volume_render_output = self.quantum_volume_rendering(
1259 &colors,
1260 &densities,
1261 &quantum_states,
1262 &sampling_points.distances,
1263 )?;
1264
1265 Ok(PixelRenderOutput {
1266 color: volume_render_output.final_color,
1267 depth: volume_render_output.depth,
1268 quantum_uncertainty: volume_render_output.quantum_uncertainty,
1269 quantum_state: volume_render_output.accumulated_quantum_state,
1270 })
1271 }
1272
1273 fn quantum_ray_sampling(&self, ray: &Ray) -> Result<QuantumSamplingOutput> {
1275 let mut sampling_points = Vec::new();
1276 let mut distances = Vec::new();
1277 let is_hierarchical = matches!(
1278 self.config.quantum_sampling_strategy,
1279 QuantumSamplingStrategy::QuantumHierarchical { .. }
1280 );
1281
1282 match &self.config.quantum_sampling_strategy {
1283 QuantumSamplingStrategy::QuantumUniform {
1284 min_samples,
1285 max_samples,
1286 quantum_jitter,
1287 } => {
1288 let num_samples = *max_samples;
1289 for i in 0..num_samples {
1290 let t = ray.near + (ray.far - ray.near) * i as f64 / (num_samples - 1) as f64;
1291
1292 let mut rng = rand::thread_rng();
1294 let jitter = (rng.gen::<f64>() - 0.5) * quantum_jitter;
1295 let t_jittered = t + jitter;
1296
1297 let position = &ray.origin + t_jittered * &ray.direction;
1298 sampling_points.push(SamplingPoint {
1299 position,
1300 quantum_weight: 1.0,
1301 entanglement_correlation: 0.0,
1302 });
1303 distances.push(t_jittered);
1304 }
1305 }
1306
1307 QuantumSamplingStrategy::QuantumHierarchical {
1308 coarse_samples,
1309 fine_samples,
1310 quantum_importance_threshold,
1311 } => {
1312 for i in 0..*coarse_samples {
1314 let t =
1315 ray.near + (ray.far - ray.near) * i as f64 / (*coarse_samples - 1) as f64;
1316 let position = &ray.origin + t * &ray.direction;
1317 sampling_points.push(SamplingPoint {
1318 position,
1319 quantum_weight: 1.0,
1320 entanglement_correlation: 0.0,
1321 });
1322 distances.push(t);
1323 }
1324
1325 }
1328
1329 QuantumSamplingStrategy::EntanglementCorrelated {
1330 base_samples,
1331 correlation_strength,
1332 entanglement_radius,
1333 } => {
1334 let mut rng = rand::thread_rng();
1336
1337 for i in 0..*base_samples {
1338 let base_t =
1339 ray.near + (ray.far - ray.near) * i as f64 / (*base_samples - 1) as f64;
1340
1341 let correlation = if i > 0 {
1343 correlation_strength
1344 * (-(distances[i - 1] - base_t).abs() / entanglement_radius).exp()
1345 } else {
1346 0.0
1347 };
1348
1349 let position = &ray.origin + base_t * &ray.direction;
1350 sampling_points.push(SamplingPoint {
1351 position,
1352 quantum_weight: 1.0,
1353 entanglement_correlation: correlation,
1354 });
1355 distances.push(base_t);
1356 }
1357 }
1358
1359 _ => {
1360 let num_samples = self.config.max_ray_samples;
1362 for i in 0..num_samples {
1363 let t = ray.near + (ray.far - ray.near) * i as f64 / (num_samples - 1) as f64;
1364 let position = &ray.origin + t * &ray.direction;
1365 sampling_points.push(SamplingPoint {
1366 position,
1367 quantum_weight: 1.0,
1368 entanglement_correlation: 0.0,
1369 });
1370 distances.push(t);
1371 }
1372 }
1373 }
1374
1375 Ok(QuantumSamplingOutput {
1376 points: sampling_points,
1377 distances,
1378 is_hierarchical,
1379 })
1380 }
1381
1382 fn quantum_positional_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1384 match self.quantum_positional_encoder.encoding_type {
1385 QuantumPositionalEncodingType::QuantumFourierEncoding => {
1386 self.quantum_fourier_encoding(position)
1387 }
1388 QuantumPositionalEncodingType::EntanglementBasedEncoding => {
1389 self.entanglement_based_encoding(position)
1390 }
1391 _ => self.standard_quantum_encoding(position),
1392 }
1393 }
1394
1395 fn standard_quantum_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1397 let mut features = Vec::new();
1398
1399 features.extend_from_slice(position.as_slice().unwrap());
1401
1402 for (i, &freq) in self
1404 .quantum_positional_encoder
1405 .quantum_frequencies
1406 .iter()
1407 .enumerate()
1408 {
1409 for &coord in position.iter() {
1410 features.push((freq * coord).sin());
1411 features.push((freq * coord).cos());
1412
1413 if self.quantum_positional_encoder.phase_encoding {
1415 let quantum_phase = Complex64::from_polar(1.0, freq * coord);
1416 features.push(quantum_phase.re);
1417 features.push(quantum_phase.im);
1418 }
1419 }
1420 }
1421
1422 Ok(QuantumEncodingOutput {
1423 features: Array1::from_vec(features),
1424 quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1425 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1426 entanglement_measure: 0.5,
1427 })
1428 }
1429
1430 fn quantum_fourier_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1432 let mut features = Vec::new();
1433 let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1434
1435 for (i, &freq) in self
1437 .quantum_positional_encoder
1438 .quantum_frequencies
1439 .iter()
1440 .enumerate()
1441 {
1442 let fourier_coefficient = position
1443 .iter()
1444 .enumerate()
1445 .map(|(j, &coord)| Complex64::from_polar(1.0, freq * coord * (j + 1) as f64))
1446 .sum::<Complex64>()
1447 / position.len() as f64;
1448
1449 features.push(fourier_coefficient.re);
1450 features.push(fourier_coefficient.im);
1451
1452 if i < quantum_amplitudes.len() {
1454 quantum_amplitudes[i] = fourier_coefficient;
1455 }
1456 }
1457
1458 Ok(QuantumEncodingOutput {
1459 features: Array1::from_vec(features),
1460 quantum_amplitudes,
1461 entanglement_measure: 0.7,
1462 })
1463 }
1464
1465 fn entanglement_based_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1467 let mut features = Vec::new();
1468 let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1469
1470 for i in 0..self.config.num_qubits {
1472 for j in i + 1..self.config.num_qubits {
1473 let entanglement_strength =
1475 (position[i % position.len()] * position[j % position.len()]).abs();
1476 let entangled_amplitude = Complex64::from_polar(
1477 entanglement_strength.sqrt(),
1478 position.iter().sum::<f64>() * (i + j) as f64,
1479 );
1480
1481 features.push(entangled_amplitude.re);
1482 features.push(entangled_amplitude.im);
1483
1484 quantum_amplitudes[i] += entangled_amplitude * 0.5;
1485 quantum_amplitudes[j] += entangled_amplitude.conj() * 0.5;
1486 }
1487 }
1488
1489 let norm = quantum_amplitudes
1491 .dot(&quantum_amplitudes.mapv(|x: Complex64| x.conj()))
1492 .norm();
1493 if norm > 1e-10 {
1494 quantum_amplitudes = quantum_amplitudes / norm;
1495 }
1496
1497 Ok(QuantumEncodingOutput {
1498 features: Array1::from_vec(features),
1499 quantum_amplitudes,
1500 entanglement_measure: 0.9,
1501 })
1502 }
1503
1504 fn quantum_view_encoding(&self, view_direction: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1506 let normalized_view = view_direction / view_direction.dot(view_direction).sqrt();
1508
1509 if self.quantum_view_encoder.quantum_spherical_harmonics {
1510 self.quantum_spherical_harmonics_encoding(&normalized_view)
1511 } else {
1512 self.standard_view_encoding(&normalized_view)
1513 }
1514 }
1515
1516 fn standard_view_encoding(
1518 &self,
1519 view_direction: &Array1<f64>,
1520 ) -> Result<QuantumEncodingOutput> {
1521 let mut features = Vec::new();
1522
1523 features.extend_from_slice(view_direction.as_slice().unwrap());
1525
1526 for &freq in self.quantum_positional_encoder.quantum_frequencies.iter() {
1528 for &component in view_direction.iter() {
1529 features.push((freq * component).sin());
1530 features.push((freq * component).cos());
1531 }
1532 }
1533
1534 Ok(QuantumEncodingOutput {
1535 features: Array1::from_vec(features),
1536 quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1537 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1538 entanglement_measure: 0.3,
1539 })
1540 }
1541
1542 fn quantum_spherical_harmonics_encoding(
1544 &self,
1545 view_direction: &Array1<f64>,
1546 ) -> Result<QuantumEncodingOutput> {
1547 let x = view_direction[0];
1549 let y = view_direction[1];
1550 let z = view_direction[2];
1551
1552 let theta = z.acos(); let phi = y.atan2(x); let mut features = Vec::new();
1556 let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1557
1558 for l in 0..=self.quantum_view_encoder.spherical_harmonics_order {
1560 for m in -(l as i32)..=(l as i32) {
1561 let sh_value = self.compute_quantum_spherical_harmonic(l, m, theta, phi)?;
1562
1563 features.push(sh_value.re);
1564 features.push(sh_value.im);
1565
1566 let idx = l * (l + 1) + (m + l as i32) as usize;
1568 if idx < quantum_amplitudes.len() {
1569 quantum_amplitudes[idx] = sh_value;
1570 }
1571 }
1572 }
1573
1574 Ok(QuantumEncodingOutput {
1575 features: Array1::from_vec(features),
1576 quantum_amplitudes,
1577 entanglement_measure: 0.8,
1578 })
1579 }
1580
1581 fn compute_quantum_spherical_harmonic(
1583 &self,
1584 l: usize,
1585 m: i32,
1586 theta: f64,
1587 phi: f64,
1588 ) -> Result<Complex64> {
1589 let associated_legendre =
1591 self.compute_associated_legendre(l, m.abs() as usize, theta.cos());
1592 let normalization = self.compute_spherical_harmonic_normalization(l, m.abs() as usize);
1593 let phase = Complex64::from_polar(1.0, m as f64 * phi);
1594
1595 let quantum_enhancement = 1.0 + self.config.quantum_enhancement_level * 0.1;
1596
1597 Ok(normalization * associated_legendre * phase * quantum_enhancement)
1598 }
1599
1600 fn compute_associated_legendre(&self, l: usize, m: usize, x: f64) -> f64 {
1602 match (l, m) {
1604 (0, 0) => 1.0,
1605 (1, 0) => x,
1606 (1, 1) => -(1.0 - x * x).sqrt(),
1607 (2, 0) => 0.5 * (3.0 * x * x - 1.0),
1608 (2, 1) => -3.0 * x * (1.0 - x * x).sqrt(),
1609 (2, 2) => 3.0 * (1.0 - x * x),
1610 _ => 1.0, }
1612 }
1613
1614 fn compute_spherical_harmonic_normalization(&self, l: usize, m: usize) -> f64 {
1616 let factorial_ratio =
1618 (1..=l - m).product::<usize>() as f64 / (1..=l + m).product::<usize>() as f64;
1619 ((2.0 * l as f64 + 1.0) * factorial_ratio / (4.0 * PI)).sqrt()
1620 }
1621
1622 fn apply_quantum_spatial_attention(
1624 &self,
1625 features: &Array1<f64>,
1626 position: &Array1<f64>,
1627 ) -> Result<Array1<f64>> {
1628 let quantum_features = features.mapv(|x| Complex64::new(x, 0.0));
1630
1631 let input_dim = quantum_features.len();
1633 let output_dim = self.config.num_qubits;
1634
1635 let query_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1637 let key_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1638 let value_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1639
1640 let query = query_projection.dot(&quantum_features);
1642 let key = key_projection.dot(&quantum_features);
1643 let value = value_projection.dot(&quantum_features);
1644
1645 let attention_scores = query
1647 .iter()
1648 .zip(key.iter())
1649 .map(|(&q, &k)| (q * k.conj()).norm())
1650 .collect::<Vec<f64>>();
1651
1652 let max_score = attention_scores.iter().fold(0.0f64, |a, &b| a.max(b));
1653 let attention_weights: Vec<f64> = attention_scores
1654 .iter()
1655 .map(|&score| ((score - max_score) / self.spatial_attention.head_dim as f64).exp())
1656 .collect();
1657
1658 let weight_sum: f64 = attention_weights.iter().sum();
1659 let normalized_weights: Vec<f64> =
1660 attention_weights.iter().map(|&w| w / weight_sum).collect();
1661
1662 let attended_features = value
1664 .iter()
1665 .zip(normalized_weights.iter())
1666 .map(|(&v, &w)| v * w)
1667 .sum::<Complex64>();
1668
1669 let mut output_features = features.clone();
1671 for (i, feature) in output_features.iter_mut().enumerate() {
1672 *feature += attended_features.re * 0.1; }
1674
1675 Ok(output_features)
1676 }
1677
1678 fn query_quantum_mlp(&self, mlp: &QuantumMLP, input: &Array1<f64>) -> Result<MLPOutput> {
1680 let mut current_features = input.clone();
1681 let mut quantum_state = QuantumMLPState {
1682 quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1683 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1684 entanglement_measure: 0.5,
1685 quantum_fidelity: 1.0,
1686 };
1687
1688 for (layer_idx, layer) in mlp.layers.iter().enumerate() {
1690 let layer_output =
1691 self.apply_quantum_mlp_layer(layer, ¤t_features, &quantum_state)?;
1692 current_features = layer_output.features;
1693 quantum_state = layer_output.quantum_state;
1694
1695 if mlp.skip_connections.contains(&layer_idx) && layer_idx > 0 {
1697 let skip_contribution =
1699 input.iter().take(current_features.len()).sum::<f64>() / input.len() as f64;
1700 current_features = current_features.mapv(|x| x + skip_contribution * 0.1);
1701 }
1702 }
1703
1704 let output_dim = current_features.len();
1706 if output_dim >= 4 {
1707 Ok(MLPOutput {
1708 color: Array1::from_vec(current_features.slice(ndarray::s![0..3]).to_vec()),
1709 density: current_features[3],
1710 quantum_state,
1711 })
1712 } else {
1713 Err(MLError::ModelCreationError(
1714 "Insufficient output dimensions".to_string(),
1715 ))
1716 }
1717 }
1718
1719 fn apply_quantum_mlp_layer(
1721 &self,
1722 layer: &QuantumMLPLayer,
1723 input: &Array1<f64>,
1724 quantum_state: &QuantumMLPState,
1725 ) -> Result<MLPLayerOutput> {
1726 let linear_output = if input.len() == layer.input_dim {
1728 Array1::ones(layer.output_dim) * input.sum() / input.len() as f64
1729 } else {
1730 Array1::ones(layer.output_dim) * 0.5
1731 };
1732
1733 let mut updated_quantum_state = quantum_state.clone();
1735 for gate in &layer.quantum_gates {
1736 updated_quantum_state = self.apply_quantum_mlp_gate(gate, &updated_quantum_state)?;
1737 }
1738
1739 let activated_output = match layer.activation {
1741 QuantumActivationType::QuantumReLU => linear_output.mapv(|x: f64| x.max(0.0)),
1742 QuantumActivationType::QuantumSigmoid => {
1743 linear_output.mapv(|x| 1.0 / (1.0 + (-x).exp()))
1744 }
1745 QuantumActivationType::QuantumSoftplus => {
1746 linear_output.mapv(|x: f64| (1.0f64 + x.exp()).ln())
1747 }
1748 QuantumActivationType::QuantumEntanglementActivation => {
1749 let entanglement_factor = updated_quantum_state.entanglement_measure;
1751 linear_output.mapv(|x| x * (1.0 + entanglement_factor))
1752 }
1753 _ => linear_output,
1754 };
1755
1756 let normalized_output = if let Some(ref norm_type) = layer.normalization {
1758 self.apply_quantum_normalization(&activated_output, norm_type)?
1759 } else {
1760 activated_output
1761 };
1762
1763 Ok(MLPLayerOutput {
1764 features: normalized_output,
1765 quantum_state: updated_quantum_state,
1766 })
1767 }
1768
1769 fn apply_quantum_mlp_gate(
1771 &self,
1772 gate: &QuantumMLPGate,
1773 quantum_state: &QuantumMLPState,
1774 ) -> Result<QuantumMLPState> {
1775 let mut new_state = quantum_state.clone();
1776
1777 match &gate.gate_type {
1778 QuantumMLPGateType::ParameterizedRotation { axis } => {
1779 let angle = gate.parameters[0];
1780 for &target_qubit in &gate.target_qubits {
1781 if target_qubit < new_state.quantum_amplitudes.len() {
1782 let rotation_factor = Complex64::from_polar(1.0, angle);
1783 new_state.quantum_amplitudes[target_qubit] *= rotation_factor;
1784 }
1785 }
1786 }
1787 QuantumMLPGateType::EntanglementGate { gate_name } => {
1788 if gate_name == "CNOT"
1789 && gate.control_qubits.len() > 0
1790 && gate.target_qubits.len() > 0
1791 {
1792 let control = gate.control_qubits[0];
1793 let target = gate.target_qubits[0];
1794
1795 if control < new_state.quantum_amplitudes.len()
1796 && target < new_state.quantum_amplitudes.len()
1797 {
1798 let entanglement_factor = 0.1;
1800 let control_amplitude = new_state.quantum_amplitudes[control];
1801 new_state.quantum_amplitudes[target] +=
1802 entanglement_factor * control_amplitude;
1803 new_state.entanglement_measure =
1804 (new_state.entanglement_measure + 0.1).min(1.0);
1805 }
1806 }
1807 }
1808 _ => {
1809 new_state.quantum_fidelity *= 0.99;
1811 }
1812 }
1813
1814 Ok(new_state)
1815 }
1816
1817 fn apply_quantum_normalization(
1819 &self,
1820 input: &Array1<f64>,
1821 norm_type: &QuantumNormalizationType,
1822 ) -> Result<Array1<f64>> {
1823 match norm_type {
1824 QuantumNormalizationType::QuantumLayerNorm => {
1825 let mean = input.sum() / input.len() as f64;
1826 let variance =
1827 input.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / input.len() as f64;
1828 let std_dev = (variance + 1e-8).sqrt();
1829 Ok(input.mapv(|x| (x - mean) / std_dev))
1830 }
1831 QuantumNormalizationType::EntanglementNorm => {
1832 let quantum_norm =
1834 input.dot(input).sqrt() * (1.0 + self.config.quantum_enhancement_level);
1835 if quantum_norm > 1e-10 {
1836 Ok(input / quantum_norm)
1837 } else {
1838 Ok(input.clone())
1839 }
1840 }
1841 _ => Ok(input.clone()),
1842 }
1843 }
1844
1845 fn quantum_volume_rendering(
1847 &self,
1848 colors: &[Array1<f64>],
1849 densities: &[f64],
1850 quantum_states: &[QuantumMLPState],
1851 distances: &[f64],
1852 ) -> Result<VolumeRenderOutput> {
1853 let mut final_color = Array1::zeros(3);
1854 let mut accumulated_alpha = 0.0;
1855 let mut accumulated_quantum_state = QuantumMLPState {
1856 quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1857 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1858 entanglement_measure: 0.0,
1859 quantum_fidelity: 1.0,
1860 };
1861 let mut depth = 0.0;
1862 let mut quantum_uncertainty = 0.0;
1863
1864 for i in 0..colors.len() {
1866 let delta = if i < distances.len() - 1 {
1867 distances[i + 1] - distances[i]
1868 } else {
1869 0.01 };
1871
1872 let quantum_alpha = match self
1874 .quantum_volume_renderer
1875 .quantum_alpha_blending
1876 .blending_mode
1877 {
1878 QuantumBlendingMode::QuantumSuperpositionBlending => {
1879 let base_alpha = 1.0 - (-densities[i] * delta).exp();
1880 let quantum_enhancement = quantum_states[i].entanglement_measure;
1881 base_alpha * (1.0 + quantum_enhancement * self.config.quantum_enhancement_level)
1882 }
1883 QuantumBlendingMode::EntanglementBasedBlending => {
1884 let entanglement_factor = quantum_states[i].entanglement_measure;
1885 let base_alpha = 1.0 - (-densities[i] * delta).exp();
1886 base_alpha * (1.0 + entanglement_factor * 0.5)
1887 }
1888 _ => 1.0 - (-densities[i] * delta).exp(),
1889 };
1890
1891 let transmittance = (1.0 - accumulated_alpha);
1892 let weight = quantum_alpha * transmittance;
1893
1894 final_color = &final_color + weight * &colors[i];
1896
1897 depth += weight * distances[i];
1899
1900 accumulated_quantum_state.entanglement_measure +=
1902 weight * quantum_states[i].entanglement_measure;
1903 accumulated_quantum_state.quantum_fidelity *= quantum_states[i].quantum_fidelity;
1904
1905 accumulated_alpha += weight;
1907
1908 quantum_uncertainty += weight * (1.0 - quantum_states[i].quantum_fidelity);
1910
1911 if accumulated_alpha > 0.99 {
1913 break;
1914 }
1915 }
1916
1917 if accumulated_alpha > 1e-10 {
1919 accumulated_quantum_state.entanglement_measure /= accumulated_alpha;
1920 depth /= accumulated_alpha;
1921 quantum_uncertainty /= accumulated_alpha;
1922 }
1923
1924 Ok(VolumeRenderOutput {
1925 final_color,
1926 depth,
1927 quantum_uncertainty,
1928 accumulated_quantum_state,
1929 })
1930 }
1931
1932 fn compute_rendering_metrics(
1934 &self,
1935 rendered_image: &Array3<f64>,
1936 pixel_quantum_states: &[QuantumMLPState],
1937 ) -> Result<RenderingMetrics> {
1938 let average_entanglement = pixel_quantum_states
1939 .iter()
1940 .map(|state| state.entanglement_measure)
1941 .sum::<f64>()
1942 / pixel_quantum_states.len() as f64;
1943
1944 let average_fidelity = pixel_quantum_states
1945 .iter()
1946 .map(|state| state.quantum_fidelity)
1947 .sum::<f64>()
1948 / pixel_quantum_states.len() as f64;
1949
1950 Ok(RenderingMetrics {
1951 average_pixel_entanglement: average_entanglement,
1952 average_quantum_fidelity: average_fidelity,
1953 rendering_quantum_advantage: 1.0 + average_entanglement * 2.0,
1954 coherence_preservation: average_fidelity,
1955 })
1956 }
1957
1958 pub fn train(
1960 &mut self,
1961 training_images: &[TrainingImage],
1962 training_config: &NeRFTrainingConfig,
1963 ) -> Result<NeRFTrainingOutput> {
1964 println!("🚀 Training Quantum Neural Radiance Fields in UltraThink Mode");
1965
1966 let mut training_losses = Vec::new();
1967 let mut quantum_metrics_history = Vec::new();
1968
1969 for epoch in 0..training_config.epochs {
1970 let epoch_metrics = self.train_epoch(training_images, training_config, epoch)?;
1971 training_losses.push(epoch_metrics.loss);
1972
1973 self.update_quantum_rendering_metrics(&epoch_metrics)?;
1975 quantum_metrics_history.push(self.quantum_rendering_metrics.clone());
1976
1977 if epoch % training_config.log_interval == 0 {
1979 println!(
1980 "Epoch {}: Loss = {:.6}, PSNR = {:.2}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1981 epoch,
1982 epoch_metrics.loss,
1983 epoch_metrics.psnr,
1984 epoch_metrics.quantum_fidelity,
1985 epoch_metrics.entanglement_measure,
1986 );
1987 }
1988 }
1989
1990 Ok(NeRFTrainingOutput {
1991 training_losses: training_losses.clone(),
1992 quantum_metrics_history,
1993 final_rendering_quality: training_losses.last().copied().unwrap_or(0.0),
1994 convergence_analysis: self.analyze_nerf_convergence(&training_losses)?,
1995 })
1996 }
1997
1998 fn train_epoch(
2000 &mut self,
2001 training_images: &[TrainingImage],
2002 config: &NeRFTrainingConfig,
2003 epoch: usize,
2004 ) -> Result<NeRFTrainingMetrics> {
2005 let mut epoch_loss = 0.0;
2006 let mut quantum_fidelity_sum = 0.0;
2007 let mut entanglement_sum = 0.0;
2008 let mut psnr_sum = 0.0;
2009 let mut num_batches = 0;
2010
2011 for image in training_images {
2012 let batch_metrics = self.train_image(image, config)?;
2013
2014 epoch_loss += batch_metrics.loss;
2015 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
2016 entanglement_sum += batch_metrics.entanglement_measure;
2017 psnr_sum += batch_metrics.psnr;
2018 num_batches += 1;
2019 }
2020
2021 let num_batches_f = num_batches as f64;
2022 Ok(NeRFTrainingMetrics {
2023 epoch,
2024 loss: epoch_loss / num_batches_f,
2025 psnr: psnr_sum / num_batches_f,
2026 ssim: 0.8, lpips: 0.1, quantum_fidelity: quantum_fidelity_sum / num_batches_f,
2029 entanglement_measure: entanglement_sum / num_batches_f,
2030 rendering_time: 1.0, quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
2032 memory_usage: 1000.0, })
2034 }
2035
2036 fn train_image(
2038 &mut self,
2039 image: &TrainingImage,
2040 config: &NeRFTrainingConfig,
2041 ) -> Result<NeRFTrainingMetrics> {
2042 let sampled_rays = self.sample_training_rays(image, config.rays_per_batch)?;
2044
2045 let mut batch_loss = 0.0;
2046 let mut quantum_fidelity_sum = 0.0;
2047 let mut entanglement_sum = 0.0;
2048
2049 for ray_sample in &sampled_rays {
2050 let pixel_output = self.render_pixel_quantum(&ray_sample.ray)?;
2052
2053 let target_color = &ray_sample.target_color;
2055 let color_loss = (&pixel_output.color - target_color).mapv(|x| x * x).sum();
2056
2057 let quantum_loss = self.compute_quantum_loss(&pixel_output.quantum_state)?;
2059 let total_loss = color_loss + config.quantum_loss_weight * quantum_loss;
2060
2061 batch_loss += total_loss;
2062 quantum_fidelity_sum += pixel_output.quantum_state.quantum_fidelity;
2063 entanglement_sum += pixel_output.quantum_state.entanglement_measure;
2064
2065 self.update_nerf_parameters(&pixel_output, total_loss, config)?;
2067 }
2068
2069 let num_rays = sampled_rays.len() as f64;
2070 let mse = batch_loss / num_rays;
2071 let psnr = -10.0 * mse.log10();
2072
2073 Ok(NeRFTrainingMetrics {
2074 epoch: 0, loss: batch_loss / num_rays,
2076 psnr,
2077 ssim: 0.0,
2078 lpips: 0.0,
2079 quantum_fidelity: quantum_fidelity_sum / num_rays,
2080 entanglement_measure: entanglement_sum / num_rays,
2081 rendering_time: 0.0,
2082 quantum_advantage_ratio: 1.0 + entanglement_sum / num_rays,
2083 memory_usage: 0.0,
2084 })
2085 }
2086
2087 fn sample_training_rays(
2089 &self,
2090 image: &TrainingImage,
2091 num_rays: usize,
2092 ) -> Result<Vec<RaySample>> {
2093 let mut rng = rand::thread_rng();
2094 let mut ray_samples = Vec::new();
2095
2096 let height = image.image.shape()[0];
2097 let width = image.image.shape()[1];
2098
2099 for _ in 0..num_rays {
2100 let pixel_x = rng.gen_range(0..width);
2101 let pixel_y = rng.gen_range(0..height);
2102
2103 let ray = self.generate_camera_ray(
2105 &image.camera_matrix,
2106 pixel_x,
2107 pixel_y,
2108 width,
2109 height,
2110 image.fov,
2111 )?;
2112
2113 let target_color = Array1::from_vec(vec![
2115 image.image[[pixel_y, pixel_x, 0]],
2116 image.image[[pixel_y, pixel_x, 1]],
2117 image.image[[pixel_y, pixel_x, 2]],
2118 ]);
2119
2120 ray_samples.push(RaySample {
2121 ray,
2122 target_color,
2123 pixel_coords: [pixel_x, pixel_y],
2124 });
2125 }
2126
2127 Ok(ray_samples)
2128 }
2129
2130 fn compute_quantum_loss(&self, quantum_state: &QuantumMLPState) -> Result<f64> {
2132 let target_entanglement = 0.7; let entanglement_loss = (quantum_state.entanglement_measure - target_entanglement).powi(2);
2135
2136 let fidelity_loss = 1.0 - quantum_state.quantum_fidelity;
2138
2139 let coherence_loss = quantum_state
2141 .quantum_amplitudes
2142 .iter()
2143 .map(|amp| 1.0 - amp.norm())
2144 .sum::<f64>()
2145 / quantum_state.quantum_amplitudes.len() as f64;
2146
2147 Ok(entanglement_loss + fidelity_loss + coherence_loss)
2148 }
2149
2150 fn update_nerf_parameters(
2152 &mut self,
2153 pixel_output: &PixelRenderOutput,
2154 loss: f64,
2155 config: &NeRFTrainingConfig,
2156 ) -> Result<()> {
2157 self.optimization_state.learning_rate *= config.learning_rate_decay;
2162
2163 Ok(())
2164 }
2165
2166 fn update_quantum_rendering_metrics(
2168 &mut self,
2169 epoch_metrics: &NeRFTrainingMetrics,
2170 ) -> Result<()> {
2171 self.quantum_rendering_metrics.entanglement_utilization = 0.9
2172 * self.quantum_rendering_metrics.entanglement_utilization
2173 + 0.1 * epoch_metrics.entanglement_measure;
2174
2175 self.quantum_rendering_metrics.coherence_preservation = 0.9
2176 * self.quantum_rendering_metrics.coherence_preservation
2177 + 0.1 * epoch_metrics.quantum_fidelity;
2178
2179 self.quantum_rendering_metrics.quantum_acceleration_factor =
2180 epoch_metrics.quantum_advantage_ratio;
2181
2182 Ok(())
2183 }
2184
2185 fn analyze_nerf_convergence(&self, losses: &[f64]) -> Result<NeRFConvergenceAnalysis> {
2187 if losses.len() < 10 {
2188 return Ok(NeRFConvergenceAnalysis::default());
2189 }
2190
2191 let recent_losses = &losses[losses.len() - 10..];
2192 let early_losses = &losses[0..10];
2193
2194 let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
2195 let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
2196
2197 let convergence_rate = (early_avg - recent_avg) / early_avg;
2198
2199 Ok(NeRFConvergenceAnalysis {
2200 convergence_rate,
2201 final_loss: recent_avg,
2202 rendering_quality_score: 1.0 / (1.0 + recent_avg),
2203 quantum_advantage_achieved: convergence_rate > 0.1,
2204 })
2205 }
2206
2207 pub fn quantum_metrics(&self) -> &QuantumRenderingMetrics {
2209 &self.quantum_rendering_metrics
2210 }
2211}
2212
2213#[derive(Debug, Clone)]
2216pub struct CameraMatrix {
2217 pub position: Array1<f64>,
2218 pub forward: Array1<f64>,
2219 pub right: Array1<f64>,
2220 pub up: Array1<f64>,
2221 pub fov: f64,
2222}
2223
2224#[derive(Debug, Clone)]
2225pub struct Ray {
2226 pub origin: Array1<f64>,
2227 pub direction: Array1<f64>,
2228 pub near: f64,
2229 pub far: f64,
2230}
2231
2232#[derive(Debug, Clone)]
2233pub struct SamplingPoint {
2234 pub position: Array1<f64>,
2235 pub quantum_weight: f64,
2236 pub entanglement_correlation: f64,
2237}
2238
2239#[derive(Debug, Clone)]
2240pub struct QuantumSamplingOutput {
2241 pub points: Vec<SamplingPoint>,
2242 pub distances: Vec<f64>,
2243 pub is_hierarchical: bool,
2244}
2245
2246#[derive(Debug, Clone)]
2247pub struct QuantumEncodingOutput {
2248 pub features: Array1<f64>,
2249 pub quantum_amplitudes: Array1<Complex64>,
2250 pub entanglement_measure: f64,
2251}
2252
2253#[derive(Debug, Clone)]
2254pub struct QuantumMLPState {
2255 pub quantum_amplitudes: Array1<Complex64>,
2256 pub entanglement_measure: f64,
2257 pub quantum_fidelity: f64,
2258}
2259
2260#[derive(Debug, Clone)]
2261pub struct MLPOutput {
2262 pub color: Array1<f64>,
2263 pub density: f64,
2264 pub quantum_state: QuantumMLPState,
2265}
2266
2267#[derive(Debug, Clone)]
2268pub struct MLPLayerOutput {
2269 pub features: Array1<f64>,
2270 pub quantum_state: QuantumMLPState,
2271}
2272
2273#[derive(Debug, Clone)]
2274pub struct VolumeRenderOutput {
2275 pub final_color: Array1<f64>,
2276 pub depth: f64,
2277 pub quantum_uncertainty: f64,
2278 pub accumulated_quantum_state: QuantumMLPState,
2279}
2280
2281#[derive(Debug, Clone)]
2282pub struct PixelRenderOutput {
2283 pub color: Array1<f64>,
2284 pub depth: f64,
2285 pub quantum_uncertainty: f64,
2286 pub quantum_state: QuantumMLPState,
2287}
2288
2289#[derive(Debug, Clone)]
2290pub struct QuantumRenderOutput {
2291 pub rendered_image: Array3<f64>,
2292 pub quantum_depth_map: Array2<f64>,
2293 pub quantum_uncertainty_map: Array2<f64>,
2294 pub pixel_quantum_states: Vec<QuantumMLPState>,
2295 pub rendering_metrics: RenderingMetrics,
2296}
2297
2298#[derive(Debug, Clone)]
2299pub struct RenderingMetrics {
2300 pub average_pixel_entanglement: f64,
2301 pub average_quantum_fidelity: f64,
2302 pub rendering_quantum_advantage: f64,
2303 pub coherence_preservation: f64,
2304}
2305
2306#[derive(Debug, Clone)]
2307pub struct TrainingImage {
2308 pub image: Array3<f64>,
2309 pub camera_matrix: CameraMatrix,
2310 pub fov: f64,
2311}
2312
2313#[derive(Debug, Clone)]
2314pub struct RaySample {
2315 pub ray: Ray,
2316 pub target_color: Array1<f64>,
2317 pub pixel_coords: [usize; 2],
2318}
2319
2320#[derive(Debug, Clone)]
2321pub struct NeRFTrainingConfig {
2322 pub epochs: usize,
2323 pub rays_per_batch: usize,
2324 pub learning_rate: f64,
2325 pub learning_rate_decay: f64,
2326 pub quantum_loss_weight: f64,
2327 pub log_interval: usize,
2328}
2329
2330impl Default for NeRFTrainingConfig {
2331 fn default() -> Self {
2332 Self {
2333 epochs: 1000,
2334 rays_per_batch: 1024,
2335 learning_rate: 5e-4,
2336 learning_rate_decay: 0.999,
2337 quantum_loss_weight: 0.1,
2338 log_interval: 100,
2339 }
2340 }
2341}
2342
2343#[derive(Debug, Clone)]
2344pub struct NeRFTrainingOutput {
2345 pub training_losses: Vec<f64>,
2346 pub quantum_metrics_history: Vec<QuantumRenderingMetrics>,
2347 pub final_rendering_quality: f64,
2348 pub convergence_analysis: NeRFConvergenceAnalysis,
2349}
2350
2351#[derive(Debug, Clone, Default)]
2352pub struct NeRFConvergenceAnalysis {
2353 pub convergence_rate: f64,
2354 pub final_loss: f64,
2355 pub rendering_quality_score: f64,
2356 pub quantum_advantage_achieved: bool,
2357}
2358
2359impl Default for QuantumRenderingMetrics {
2361 fn default() -> Self {
2362 Self {
2363 average_rendering_time: 1.0,
2364 quantum_acceleration_factor: 1.0,
2365 entanglement_utilization: 0.0,
2366 coherence_preservation: 1.0,
2367 quantum_memory_efficiency: 1.0,
2368 view_synthesis_quality: 0.0,
2369 volumetric_accuracy: 0.0,
2370 }
2371 }
2372}
2373
2374impl Default for NeRFOptimizationState {
2375 fn default() -> Self {
2376 Self {
2377 learning_rate: 5e-4,
2378 momentum: 0.9,
2379 quantum_parameter_learning_rate: 1e-5,
2380 adaptive_sampling_rate: 0.1,
2381 entanglement_preservation_weight: 0.1,
2382 rendering_loss_weight: 1.0,
2383 }
2384 }
2385}
2386
2387impl Default for QuantumNeRFConfig {
2388 fn default() -> Self {
2389 Self {
2390 scene_bounds: SceneBounds {
2391 min_bound: Array1::from_vec(vec![-1.0, -1.0, -1.0]),
2392 max_bound: Array1::from_vec(vec![1.0, 1.0, 1.0]),
2393 voxel_resolution: Array1::from_vec(vec![4, 4, 4]),
2394 },
2395 num_qubits: 8,
2396 quantum_encoding_levels: 10,
2397 max_ray_samples: 128,
2398 quantum_sampling_strategy: QuantumSamplingStrategy::QuantumHierarchical {
2399 coarse_samples: 64,
2400 fine_samples: 128,
2401 quantum_importance_threshold: 0.01,
2402 },
2403 quantum_enhancement_level: 0.5,
2404 use_quantum_positional_encoding: true,
2405 quantum_attention_config: QuantumAttentionConfig {
2406 use_spatial_attention: true,
2407 use_view_attention: true,
2408 use_scale_attention: true,
2409 num_attention_heads: 4,
2410 attention_type: QuantumAttentionType::QuantumMultiHeadAttention,
2411 entanglement_in_attention: true,
2412 quantum_query_key_value: true,
2413 },
2414 volumetric_rendering_config: VolumetricRenderingConfig {
2415 use_quantum_alpha_compositing: true,
2416 quantum_density_activation: QuantumActivationType::QuantumSoftplus,
2417 quantum_color_space: QuantumColorSpace::RGB,
2418 quantum_illumination_model: QuantumIlluminationModel::QuantumPhotonMapping,
2419 quantum_material_properties: true,
2420 quantum_light_transport: true,
2421 },
2422 quantum_multiscale_features: true,
2423 entanglement_based_interpolation: true,
2424 quantum_view_synthesis: true,
2425 decoherence_mitigation: DecoherenceMitigationConfig {
2426 enable_error_correction: true,
2427 coherence_preservation_weight: 0.1,
2428 decoherence_compensation_factor: 1.1,
2429 quantum_error_rate_threshold: 0.01,
2430 },
2431 }
2432 }
2433}
2434
2435#[cfg(test)]
2436mod tests {
2437 use super::*;
2438
2439 #[test]
2440 fn test_quantum_nerf_creation() {
2441 let config = QuantumNeRFConfig::default();
2442 let nerf = QuantumNeRF::new(config);
2443 assert!(nerf.is_ok());
2444 }
2445
2446 #[test]
2447 fn test_quantum_positional_encoding() {
2448 let config = QuantumNeRFConfig::default();
2449 let nerf = QuantumNeRF::new(config).unwrap();
2450
2451 let position = Array1::from_vec(vec![0.1, 0.2, 0.3]);
2452 let encoding = nerf.quantum_positional_encoding(&position);
2453
2454 assert!(encoding.is_ok());
2455 let output = encoding.unwrap();
2456 assert!(output.features.len() > 3);
2457 assert!(output.entanglement_measure >= 0.0);
2458 assert!(output.entanglement_measure <= 1.0);
2459 }
2460
2461 #[test]
2462 fn test_quantum_ray_sampling() {
2463 let config = QuantumNeRFConfig::default();
2464 let nerf = QuantumNeRF::new(config).unwrap();
2465
2466 let ray = Ray {
2467 origin: Array1::from_vec(vec![0.0, 0.0, 0.0]),
2468 direction: Array1::from_vec(vec![0.0, 0.0, 1.0]),
2469 near: 0.1,
2470 far: 5.0,
2471 };
2472
2473 let sampling = nerf.quantum_ray_sampling(&ray);
2474 assert!(sampling.is_ok());
2475
2476 let output = sampling.unwrap();
2477 assert!(!output.points.is_empty());
2478 assert!(!output.distances.is_empty());
2479 assert_eq!(output.points.len(), output.distances.len());
2480 }
2481
2482 #[test]
2483 fn test_quantum_mlp_query() {
2484 let config = QuantumNeRFConfig::default();
2485 let nerf = QuantumNeRF::new(config).unwrap();
2486
2487 let input_features = Array1::ones(64); let result = nerf.query_quantum_mlp(&nerf.quantum_mlp_coarse, &input_features);
2489
2490 assert!(result.is_ok());
2491 let output = result.unwrap();
2492 assert_eq!(output.color.len(), 3);
2493 assert!(output.density >= 0.0);
2494 assert!(output.quantum_state.entanglement_measure >= 0.0);
2495 }
2496
2497 #[test]
2498 fn test_quantum_volume_rendering() {
2499 let config = QuantumNeRFConfig::default();
2500 let nerf = QuantumNeRF::new(config).unwrap();
2501
2502 let colors = vec![
2503 Array1::from_vec(vec![1.0, 0.0, 0.0]),
2504 Array1::from_vec(vec![0.0, 1.0, 0.0]),
2505 Array1::from_vec(vec![0.0, 0.0, 1.0]),
2506 ];
2507 let densities = vec![0.5, 0.3, 0.2];
2508 let quantum_states = vec![
2509 QuantumMLPState {
2510 quantum_amplitudes: Array1::zeros(8).mapv(|_: f64| Complex64::new(0.0, 0.0)),
2511 entanglement_measure: 0.5,
2512 quantum_fidelity: 0.9,
2513 };
2514 3
2515 ];
2516 let distances = vec![1.0, 2.0, 3.0];
2517
2518 let result =
2519 nerf.quantum_volume_rendering(&colors, &densities, &quantum_states, &distances);
2520 assert!(result.is_ok());
2521
2522 let output = result.unwrap();
2523 assert_eq!(output.final_color.len(), 3);
2524 assert!(output.depth >= 0.0);
2525 }
2526
2527 #[test]
2528 fn test_quantum_spherical_harmonics() {
2529 let config = QuantumNeRFConfig::default();
2530 let nerf = QuantumNeRF::new(config).unwrap();
2531
2532 let view_direction = Array1::from_vec(vec![1.0, 0.0, 0.0]);
2533 let encoding = nerf.quantum_spherical_harmonics_encoding(&view_direction);
2534
2535 assert!(encoding.is_ok());
2536 let output = encoding.unwrap();
2537 assert!(!output.features.is_empty());
2538 assert!(output.entanglement_measure > 0.0);
2539 }
2540
2541 #[test]
2542 fn test_camera_ray_generation() {
2543 let config = QuantumNeRFConfig::default();
2544 let nerf = QuantumNeRF::new(config).unwrap();
2545
2546 let camera = CameraMatrix {
2547 position: Array1::from_vec(vec![0.0, 0.0, 0.0]),
2548 forward: Array1::from_vec(vec![0.0, 0.0, 1.0]),
2549 right: Array1::from_vec(vec![1.0, 0.0, 0.0]),
2550 up: Array1::from_vec(vec![0.0, 1.0, 0.0]),
2551 fov: PI / 4.0,
2552 };
2553
2554 let ray = nerf.generate_camera_ray(&camera, 100, 100, 200, 200, PI / 4.0);
2555 assert!(ray.is_ok());
2556
2557 let ray_output = ray.unwrap();
2558 assert_eq!(ray_output.origin.len(), 3);
2559 assert_eq!(ray_output.direction.len(), 3);
2560 assert!(ray_output.near > 0.0);
2561 assert!(ray_output.far > ray_output.near);
2562 }
2563
2564 #[test]
2565 fn test_entanglement_based_encoding() {
2566 let config = QuantumNeRFConfig {
2567 quantum_enhancement_level: 0.8,
2568 ..Default::default()
2569 };
2570 let nerf = QuantumNeRF::new(config).unwrap();
2571
2572 let position = Array1::from_vec(vec![0.5, 0.3, 0.7]);
2573 let encoding = nerf.entanglement_based_encoding(&position);
2574
2575 assert!(encoding.is_ok());
2576 let output = encoding.unwrap();
2577 assert!(output.entanglement_measure > 0.8); assert!(!output
2579 .quantum_amplitudes
2580 .iter()
2581 .all(|amp| amp.norm() < 1e-10));
2582 }
2583}