quantrs2_ml/
quantum_neural_radiance_fields.rs

1//! Quantum Neural Radiance Fields (QNeRF)
2//!
3//! This module implements cutting-edge Quantum Neural Radiance Fields for 3D scene representation
4//! and neural rendering with quantum advantages:
5//! - Quantum volumetric density and color estimation
6//! - Quantum ray marching with entanglement-based sampling
7//! - Quantum multi-scale feature encoding
8//! - Quantum view synthesis with coherent superposition
9//! - Quantum-enhanced positional encoding
10//! - Quantum attention mechanisms for 3D spatial reasoning
11
12use crate::error::{MLError, Result};
13use ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
14use num_complex::Complex64;
15use rand::{Rng, SeedableRng};
16use rand_chacha::ChaCha20Rng;
17use std::collections::HashMap;
18use std::f64::consts::PI;
19
20/// Configuration for Quantum Neural Radiance Fields
21#[derive(Debug, Clone)]
22pub struct QuantumNeRFConfig {
23    pub scene_bounds: SceneBounds,
24    pub num_qubits: usize,
25    pub quantum_encoding_levels: usize,
26    pub max_ray_samples: usize,
27    pub quantum_sampling_strategy: QuantumSamplingStrategy,
28    pub quantum_enhancement_level: f64,
29    pub use_quantum_positional_encoding: bool,
30    pub quantum_attention_config: QuantumAttentionConfig,
31    pub volumetric_rendering_config: VolumetricRenderingConfig,
32    pub quantum_multiscale_features: bool,
33    pub entanglement_based_interpolation: bool,
34    pub quantum_view_synthesis: bool,
35    pub decoherence_mitigation: DecoherenceMitigationConfig,
36}
37
38#[derive(Debug, Clone)]
39pub struct SceneBounds {
40    pub min_bound: Array1<f64>,          // [x, y, z] minimum
41    pub max_bound: Array1<f64>,          // [x, y, z] maximum
42    pub voxel_resolution: Array1<usize>, // [nx, ny, nz]
43}
44
45#[derive(Debug, Clone)]
46pub enum QuantumSamplingStrategy {
47    /// Uniform sampling with quantum noise
48    QuantumUniform {
49        min_samples: usize,
50        max_samples: usize,
51        quantum_jitter: f64,
52    },
53
54    /// Hierarchical sampling with quantum importance
55    QuantumHierarchical {
56        coarse_samples: usize,
57        fine_samples: usize,
58        quantum_importance_threshold: f64,
59    },
60
61    /// Quantum adaptive sampling based on uncertainty
62    QuantumAdaptive {
63        initial_samples: usize,
64        max_refinements: usize,
65        uncertainty_threshold: f64,
66        quantum_uncertainty_estimation: bool,
67    },
68
69    /// Entanglement-based correlated sampling
70    EntanglementCorrelated {
71        base_samples: usize,
72        correlation_strength: f64,
73        entanglement_radius: f64,
74    },
75
76    /// Quantum Monte Carlo sampling
77    QuantumMonteCarlo {
78        num_chains: usize,
79        chain_length: usize,
80        quantum_proposal_distribution: QuantumProposalType,
81    },
82}
83
84#[derive(Debug, Clone)]
85pub enum QuantumProposalType {
86    QuantumGaussian { sigma: f64 },
87    QuantumLevyFlight { alpha: f64 },
88    QuantumMetropolis { temperature: f64 },
89}
90
91#[derive(Debug, Clone)]
92pub struct QuantumAttentionConfig {
93    pub use_spatial_attention: bool,
94    pub use_view_attention: bool,
95    pub use_scale_attention: bool,
96    pub num_attention_heads: usize,
97    pub attention_type: QuantumAttentionType,
98    pub entanglement_in_attention: bool,
99    pub quantum_query_key_value: bool,
100}
101
102#[derive(Debug, Clone)]
103pub enum QuantumAttentionType {
104    StandardQuantumAttention,
105    QuantumMultiHeadAttention,
106    QuantumSpatialAttention,
107    QuantumViewAttention,
108    EntanglementBasedAttention,
109    QuantumCrossAttention,
110}
111
112#[derive(Debug, Clone)]
113pub struct VolumetricRenderingConfig {
114    pub use_quantum_alpha_compositing: bool,
115    pub quantum_density_activation: QuantumActivationType,
116    pub quantum_color_space: QuantumColorSpace,
117    pub quantum_illumination_model: QuantumIlluminationModel,
118    pub quantum_material_properties: bool,
119    pub quantum_light_transport: bool,
120}
121
122#[derive(Debug, Clone)]
123pub enum QuantumActivationType {
124    QuantumReLU,
125    QuantumSigmoid,
126    QuantumSoftplus,
127    QuantumTanh,
128    QuantumEntanglementActivation,
129    QuantumPhaseActivation,
130}
131
132#[derive(Debug, Clone)]
133pub enum QuantumColorSpace {
134    RGB,
135    HSV,
136    LAB,
137    QuantumColorSpace { basis_vectors: Array2<f64> },
138    EntangledColorChannels,
139}
140
141#[derive(Debug, Clone)]
142pub enum QuantumIlluminationModel {
143    Lambertian,
144    Phong,
145    PBR, // Physically Based Rendering
146    QuantumPhotonMapping,
147    QuantumLightTransport,
148    EntanglementBasedLighting,
149}
150
151#[derive(Debug, Clone)]
152pub struct DecoherenceMitigationConfig {
153    pub enable_error_correction: bool,
154    pub coherence_preservation_weight: f64,
155    pub decoherence_compensation_factor: f64,
156    pub quantum_error_rate_threshold: f64,
157}
158
159/// Main Quantum Neural Radiance Field model
160pub struct QuantumNeRF {
161    config: QuantumNeRFConfig,
162
163    // Core quantum components
164    quantum_mlp_coarse: QuantumMLP,
165    quantum_mlp_fine: QuantumMLP,
166    quantum_positional_encoder: QuantumPositionalEncoder,
167    quantum_view_encoder: QuantumViewEncoder,
168
169    // Quantum attention mechanisms
170    spatial_attention: QuantumSpatialAttention,
171    view_attention: QuantumViewAttention,
172    scale_attention: QuantumScaleAttention,
173
174    // Quantum rendering components
175    quantum_volume_renderer: QuantumVolumeRenderer,
176    quantum_ray_marcher: QuantumRayMarcher,
177
178    // Training state
179    training_history: Vec<NeRFTrainingMetrics>,
180    quantum_rendering_metrics: QuantumRenderingMetrics,
181    optimization_state: NeRFOptimizationState,
182
183    // Scene representation
184    quantum_scene_representation: QuantumSceneRepresentation,
185    quantum_light_field: QuantumLightField,
186}
187
188#[derive(Debug, Clone)]
189pub struct QuantumMLP {
190    layers: Vec<QuantumMLPLayer>,
191    skip_connections: Vec<usize>,
192    quantum_parameters: Array1<f64>,
193    classical_parameters: Array2<f64>,
194    quantum_enhancement_factor: f64,
195}
196
197#[derive(Debug, Clone)]
198pub struct QuantumMLPLayer {
199    layer_type: QuantumMLPLayerType,
200    input_dim: usize,
201    output_dim: usize,
202    quantum_gates: Vec<QuantumMLPGate>,
203    activation: QuantumActivationType,
204    normalization: Option<QuantumNormalizationType>,
205}
206
207#[derive(Debug, Clone)]
208pub enum QuantumMLPLayerType {
209    QuantumLinear,
210    QuantumConvolutional3D {
211        kernel_size: usize,
212        stride: usize,
213        padding: usize,
214    },
215    QuantumResidual {
216        inner_layers: Vec<Box<QuantumMLPLayer>>,
217    },
218    QuantumAttentionLayer {
219        attention_config: QuantumAttentionConfig,
220    },
221}
222
223#[derive(Debug, Clone)]
224pub enum QuantumNormalizationType {
225    QuantumBatchNorm,
226    QuantumLayerNorm,
227    QuantumInstanceNorm,
228    QuantumGroupNorm { num_groups: usize },
229    EntanglementNorm,
230}
231
232#[derive(Debug, Clone)]
233pub struct QuantumMLPGate {
234    gate_type: QuantumMLPGateType,
235    target_qubits: Vec<usize>,
236    control_qubits: Vec<usize>,
237    parameters: Array1<f64>,
238    is_trainable: bool,
239}
240
241#[derive(Debug, Clone)]
242pub enum QuantumMLPGateType {
243    ParameterizedRotation { axis: RotationAxis },
244    ControlledRotation { axis: RotationAxis },
245    EntanglementGate { gate_name: String },
246    QuantumFourierGate,
247    CustomQuantumGate { matrix: Array2<Complex64> },
248}
249
250#[derive(Debug, Clone)]
251pub enum RotationAxis {
252    X,
253    Y,
254    Z,
255    Custom { direction: Array1<f64> },
256}
257
258#[derive(Debug, Clone)]
259pub struct QuantumPositionalEncoder {
260    encoding_type: QuantumPositionalEncodingType,
261    num_frequencies: usize,
262    quantum_frequencies: Array1<f64>,
263    entanglement_encoding: bool,
264    phase_encoding: bool,
265    max_frequency: f64,
266}
267
268#[derive(Debug, Clone)]
269pub enum QuantumPositionalEncodingType {
270    StandardQuantumEncoding,
271    QuantumFourierEncoding,
272    QuantumWaveletEncoding,
273    EntanglementBasedEncoding,
274    QuantumHashEncoding { hash_table_size: usize },
275    QuantumMultiresolutionEncoding { num_levels: usize },
276}
277
278#[derive(Debug, Clone)]
279pub struct QuantumViewEncoder {
280    encoding_dimension: usize,
281    quantum_view_embedding: Array2<Complex64>,
282    spherical_harmonics_order: usize,
283    quantum_spherical_harmonics: bool,
284}
285
286#[derive(Debug, Clone)]
287pub struct QuantumSpatialAttention {
288    num_heads: usize,
289    head_dim: usize,
290    quantum_query_projection: Array2<Complex64>,
291    quantum_key_projection: Array2<Complex64>,
292    quantum_value_projection: Array2<Complex64>,
293    entanglement_weights: Array1<f64>,
294}
295
296#[derive(Debug, Clone)]
297pub struct QuantumViewAttention {
298    view_embedding_dim: usize,
299    quantum_view_weights: Array2<Complex64>,
300    view_dependent_parameters: Array1<f64>,
301    quantum_view_interpolation: bool,
302}
303
304#[derive(Debug, Clone)]
305pub struct QuantumScaleAttention {
306    num_scales: usize,
307    scale_weights: Array1<f64>,
308    quantum_scale_mixing: Array2<Complex64>,
309    adaptive_scale_selection: bool,
310}
311
312#[derive(Debug, Clone)]
313pub struct QuantumVolumeRenderer {
314    rendering_equation: QuantumRenderingEquation,
315    quantum_alpha_blending: QuantumAlphaBlending,
316    quantum_illumination: QuantumIllumination,
317    quantum_material_model: QuantumMaterialModel,
318}
319
320#[derive(Debug, Clone)]
321pub enum QuantumRenderingEquation {
322    StandardVolumeRendering,
323    QuantumVolumeRendering {
324        quantum_transmittance: bool,
325        entangled_scattering: bool,
326    },
327    QuantumPathTracing {
328        max_bounces: usize,
329        quantum_importance_sampling: bool,
330    },
331    QuantumPhotonMapping {
332        num_photons: usize,
333        quantum_photon_transport: bool,
334    },
335}
336
337#[derive(Debug, Clone)]
338pub struct QuantumAlphaBlending {
339    blending_mode: QuantumBlendingMode,
340    quantum_compositing: bool,
341    entanglement_based_blending: bool,
342}
343
344#[derive(Debug, Clone)]
345pub enum QuantumBlendingMode {
346    StandardAlphaBlending,
347    QuantumSuperpositionBlending,
348    EntanglementBasedBlending,
349    QuantumInterferenceBlending,
350}
351
352#[derive(Debug, Clone)]
353pub struct QuantumIllumination {
354    light_sources: Vec<QuantumLightSource>,
355    ambient_lighting: QuantumAmbientLight,
356    quantum_shadows: bool,
357    quantum_global_illumination: bool,
358}
359
360#[derive(Debug, Clone)]
361pub struct QuantumLightSource {
362    position: Array1<f64>,
363    intensity: Array1<f64>, // RGB
364    light_type: QuantumLightType,
365    quantum_coherence: f64,
366}
367
368#[derive(Debug, Clone)]
369pub enum QuantumLightType {
370    QuantumPointLight,
371    QuantumDirectionalLight,
372    QuantumAreaLight { area_size: Array1<f64> },
373    QuantumEnvironmentLight { environment_map: Array3<f64> },
374    QuantumCoherentLight { coherence_length: f64 },
375}
376
377#[derive(Debug, Clone)]
378pub struct QuantumAmbientLight {
379    ambient_color: Array1<f64>,
380    quantum_ambient_occlusion: bool,
381    quantum_environment_probe: Option<Array3<f64>>,
382}
383
384#[derive(Debug, Clone)]
385pub struct QuantumMaterialModel {
386    material_type: QuantumMaterialType,
387    quantum_brdf: QuantumBRDF,
388    material_parameters: QuantumMaterialParameters,
389}
390
391#[derive(Debug, Clone)]
392pub enum QuantumMaterialType {
393    Lambertian,
394    Phong,
395    PBR,
396    QuantumMaterial {
397        quantum_reflectance: Array2<Complex64>,
398        quantum_transmittance: Array2<Complex64>,
399    },
400}
401
402#[derive(Debug, Clone)]
403pub struct QuantumBRDF {
404    brdf_type: QuantumBRDFType,
405    quantum_parameters: Array1<Complex64>,
406    view_dependent: bool,
407}
408
409#[derive(Debug, Clone)]
410pub enum QuantumBRDFType {
411    LambertianBRDF,
412    PhongBRDF,
413    CookTorranceBRDF,
414    QuantumBRDF {
415        quantum_surface_model: Array2<Complex64>,
416    },
417}
418
419#[derive(Debug, Clone)]
420pub struct QuantumMaterialParameters {
421    albedo: Array1<f64>,
422    roughness: f64,
423    metallic: f64,
424    quantum_properties: QuantumMaterialProperties,
425}
426
427#[derive(Debug, Clone)]
428pub struct QuantumMaterialProperties {
429    quantum_reflectivity: Complex64,
430    quantum_absorption: Complex64,
431    quantum_scattering: Complex64,
432    entanglement_factor: f64,
433}
434
435#[derive(Debug, Clone)]
436pub struct QuantumRayMarcher {
437    marching_strategy: QuantumMarchingStrategy,
438    quantum_sampling_points: Array2<f64>,
439    entanglement_based_sampling: bool,
440    adaptive_step_size: bool,
441}
442
443#[derive(Debug, Clone)]
444pub enum QuantumMarchingStrategy {
445    UniformMarching {
446        step_size: f64,
447    },
448    AdaptiveMarching {
449        initial_step_size: f64,
450        min_step_size: f64,
451        max_step_size: f64,
452    },
453    QuantumImportanceMarching {
454        importance_threshold: f64,
455        quantum_importance_estimation: bool,
456    },
457    EntanglementGuidedMarching {
458        entanglement_threshold: f64,
459        correlation_distance: f64,
460    },
461}
462
463// Scene representation structures
464#[derive(Debug, Clone)]
465pub struct QuantumSceneRepresentation {
466    voxel_grid: QuantumVoxelGrid,
467    implicit_surface: QuantumImplicitSurface,
468    quantum_octree: QuantumOctree,
469    multi_scale_features: Vec<QuantumFeatureLevel>,
470}
471
472#[derive(Debug, Clone)]
473pub struct QuantumVoxelGrid {
474    density_grid: Array3<f64>,
475    color_grid: Array4<f64>,             // [x, y, z, rgb]
476    quantum_features: Array4<Complex64>, // [x, y, z, feature_dim]
477    entanglement_structure: VoxelEntanglementStructure,
478}
479
480#[derive(Debug, Clone)]
481pub struct VoxelEntanglementStructure {
482    entanglement_matrix: Array2<f64>,
483    correlation_radius: f64,
484    entanglement_strength: f64,
485}
486
487#[derive(Debug, Clone)]
488pub struct QuantumImplicitSurface {
489    sdf_function: QuantumSDF,
490    gradient_function: QuantumGradientFunction,
491    quantum_surface_properties: QuantumSurfaceProperties,
492}
493
494#[derive(Debug, Clone)]
495pub struct QuantumSDF {
496    quantum_parameters: Array1<f64>,
497    quantum_basis_functions: Vec<QuantumBasisFunction>,
498    multi_resolution_levels: usize,
499}
500
501#[derive(Debug, Clone)]
502pub struct QuantumBasisFunction {
503    basis_type: QuantumBasisType,
504    parameters: Array1<Complex64>,
505    support_region: Array1<f64>,
506}
507
508#[derive(Debug, Clone)]
509pub enum QuantumBasisType {
510    QuantumRadialBasis { sigma: f64 },
511    QuantumWavelet { wavelet_type: String },
512    QuantumFourier { frequency: f64 },
513    QuantumSpline { order: usize },
514}
515
516#[derive(Debug, Clone)]
517pub struct QuantumGradientFunction {
518    gradient_quantum_mlp: QuantumMLP,
519    analytical_gradients: bool,
520    quantum_finite_differences: bool,
521}
522
523#[derive(Debug, Clone)]
524pub struct QuantumSurfaceProperties {
525    surface_normal: Array1<f64>,
526    curvature: f64,
527    quantum_surface_features: Array1<Complex64>,
528}
529
530#[derive(Debug, Clone)]
531pub struct QuantumOctree {
532    root: QuantumOctreeNode,
533    max_depth: usize,
534    quantum_subdivision_criterion: QuantumSubdivisionCriterion,
535}
536
537#[derive(Debug, Clone)]
538pub struct QuantumOctreeNode {
539    bounds: SceneBounds,
540    children: Option<Box<[QuantumOctreeNode; 8]>>,
541    quantum_features: Array1<Complex64>,
542    occupancy_probability: f64,
543    entanglement_with_neighbors: Array1<f64>,
544}
545
546#[derive(Debug, Clone)]
547pub enum QuantumSubdivisionCriterion {
548    DensityThreshold { threshold: f64 },
549    QuantumUncertainty { uncertainty_threshold: f64 },
550    EntanglementComplexity { complexity_threshold: f64 },
551    AdaptiveQuantum { adaptive_parameters: Array1<f64> },
552}
553
554#[derive(Debug, Clone)]
555pub struct QuantumFeatureLevel {
556    level: usize,
557    resolution: Array1<usize>,
558    quantum_features: Array4<Complex64>,
559    downsampling_operator: QuantumDownsampling,
560    upsampling_operator: QuantumUpsampling,
561}
562
563#[derive(Debug, Clone)]
564pub enum QuantumDownsampling {
565    QuantumAveragePooling,
566    QuantumMaxPooling,
567    QuantumAttentionPooling,
568    EntanglementBasedPooling,
569}
570
571#[derive(Debug, Clone)]
572pub enum QuantumUpsampling {
573    QuantumBilinearInterpolation,
574    QuantumTransposedConvolution,
575    QuantumAttentionUpsampling,
576    EntanglementBasedUpsampling,
577}
578
579#[derive(Debug, Clone)]
580pub struct QuantumLightField {
581    light_directions: Array2<f64>,  // [num_directions, 3]
582    light_intensities: Array2<f64>, // [num_directions, 3] (RGB)
583    quantum_light_coherence: Array2<Complex64>,
584    spherical_harmonics_coefficients: Array2<f64>,
585    quantum_environment_encoding: QuantumEnvironmentEncoding,
586}
587
588#[derive(Debug, Clone)]
589pub struct QuantumEnvironmentEncoding {
590    encoding_type: QuantumEnvironmentEncodingType,
591    quantum_coefficients: Array1<Complex64>,
592    spatial_frequency_components: Array1<f64>,
593}
594
595#[derive(Debug, Clone)]
596pub enum QuantumEnvironmentEncodingType {
597    SphericalHarmonics,
598    QuantumSphericalHarmonics,
599    QuantumWavelets,
600    QuantumFourierSeries,
601}
602
603// Training and metrics structures
604#[derive(Debug, Clone)]
605pub struct NeRFTrainingMetrics {
606    pub epoch: usize,
607    pub loss: f64,
608    pub psnr: f64,
609    pub ssim: f64,
610    pub lpips: f64,
611    pub quantum_fidelity: f64,
612    pub entanglement_measure: f64,
613    pub rendering_time: f64,
614    pub quantum_advantage_ratio: f64,
615    pub memory_usage: f64,
616}
617
618#[derive(Debug, Clone)]
619pub struct QuantumRenderingMetrics {
620    pub average_rendering_time: f64,
621    pub quantum_acceleration_factor: f64,
622    pub entanglement_utilization: f64,
623    pub coherence_preservation: f64,
624    pub quantum_memory_efficiency: f64,
625    pub view_synthesis_quality: f64,
626    pub volumetric_accuracy: f64,
627}
628
629#[derive(Debug, Clone)]
630pub struct NeRFOptimizationState {
631    pub learning_rate: f64,
632    pub momentum: f64,
633    pub quantum_parameter_learning_rate: f64,
634    pub adaptive_sampling_rate: f64,
635    pub entanglement_preservation_weight: f64,
636    pub rendering_loss_weight: f64,
637}
638
639// Main implementation
640impl QuantumNeRF {
641    /// Create a new Quantum Neural Radiance Field
642    pub fn new(config: QuantumNeRFConfig) -> Result<Self> {
643        println!("🌌 Initializing Quantum Neural Radiance Fields in UltraThink Mode");
644
645        // Initialize quantum MLP networks
646        let quantum_mlp_coarse = Self::create_quantum_mlp(&config, "coarse")?;
647        let quantum_mlp_fine = Self::create_quantum_mlp(&config, "fine")?;
648
649        // Initialize encoders
650        let quantum_positional_encoder = Self::create_quantum_positional_encoder(&config)?;
651        let quantum_view_encoder = Self::create_quantum_view_encoder(&config)?;
652
653        // Initialize attention mechanisms
654        let spatial_attention = Self::create_spatial_attention(&config)?;
655        let view_attention = Self::create_view_attention(&config)?;
656        let scale_attention = Self::create_scale_attention(&config)?;
657
658        // Initialize rendering components
659        let quantum_volume_renderer = Self::create_quantum_volume_renderer(&config)?;
660        let quantum_ray_marcher = Self::create_quantum_ray_marcher(&config)?;
661
662        // Initialize scene representation
663        let quantum_scene_representation = Self::create_quantum_scene_representation(&config)?;
664        let quantum_light_field = Self::create_quantum_light_field(&config)?;
665
666        // Initialize metrics and optimization
667        let quantum_rendering_metrics = QuantumRenderingMetrics::default();
668        let optimization_state = NeRFOptimizationState::default();
669
670        Ok(Self {
671            config,
672            quantum_mlp_coarse,
673            quantum_mlp_fine,
674            quantum_positional_encoder,
675            quantum_view_encoder,
676            spatial_attention,
677            view_attention,
678            scale_attention,
679            quantum_volume_renderer,
680            quantum_ray_marcher,
681            training_history: Vec::new(),
682            quantum_rendering_metrics,
683            optimization_state,
684            quantum_scene_representation,
685            quantum_light_field,
686        })
687    }
688
689    /// Create quantum MLP network
690    fn create_quantum_mlp(config: &QuantumNeRFConfig, network_type: &str) -> Result<QuantumMLP> {
691        let (hidden_dims, output_dim) = match network_type {
692            "coarse" => (vec![256, 256, 256, 256], 4), // RGB + density
693            "fine" => (vec![256, 256, 256, 256, 256, 256], 4),
694            _ => (vec![128, 128], 4),
695        };
696
697        let mut layers = Vec::new();
698        let mut input_dim = 3 + config.quantum_encoding_levels * 6; // 3D position + quantum encoding
699
700        // Add view direction encoding if using view-dependent rendering
701        if config.quantum_view_synthesis {
702            input_dim += 3 + config.quantum_encoding_levels * 6; // 3D view direction + encoding
703        }
704
705        for (i, &hidden_dim) in hidden_dims.iter().enumerate() {
706            let layer = QuantumMLPLayer {
707                layer_type: QuantumMLPLayerType::QuantumLinear,
708                input_dim: if i == 0 {
709                    input_dim
710                } else {
711                    hidden_dims[i - 1]
712                },
713                output_dim: hidden_dim,
714                quantum_gates: Self::create_quantum_mlp_gates(config, hidden_dim)?,
715                activation: QuantumActivationType::QuantumReLU,
716                normalization: Some(QuantumNormalizationType::QuantumLayerNorm),
717            };
718            layers.push(layer);
719        }
720
721        // Output layer
722        let output_layer = QuantumMLPLayer {
723            layer_type: QuantumMLPLayerType::QuantumLinear,
724            input_dim: *hidden_dims.last().unwrap(),
725            output_dim,
726            quantum_gates: Self::create_quantum_mlp_gates(config, output_dim)?,
727            activation: QuantumActivationType::QuantumSigmoid, // For colors and density
728            normalization: None,
729        };
730        layers.push(output_layer);
731
732        // Skip connections (commonly used in NeRF)
733        let skip_connections = vec![layers.len() / 2]; // Middle layer skip connection
734
735        Ok(QuantumMLP {
736            layers,
737            skip_connections,
738            quantum_parameters: Array1::zeros(config.num_qubits * 3),
739            classical_parameters: Array2::zeros((input_dim, hidden_dims[0])),
740            quantum_enhancement_factor: config.quantum_enhancement_level,
741        })
742    }
743
744    /// Create quantum MLP gates for a layer
745    fn create_quantum_mlp_gates(
746        config: &QuantumNeRFConfig,
747        layer_dim: usize,
748    ) -> Result<Vec<QuantumMLPGate>> {
749        let mut gates = Vec::new();
750
751        // Add parameterized rotation gates
752        for i in 0..config.num_qubits {
753            gates.push(QuantumMLPGate {
754                gate_type: QuantumMLPGateType::ParameterizedRotation {
755                    axis: RotationAxis::Y,
756                },
757                target_qubits: vec![i],
758                control_qubits: Vec::new(),
759                parameters: Array1::from_vec(vec![PI / 4.0]),
760                is_trainable: true,
761            });
762        }
763
764        // Add entanglement gates
765        for i in 0..config.num_qubits - 1 {
766            gates.push(QuantumMLPGate {
767                gate_type: QuantumMLPGateType::EntanglementGate {
768                    gate_name: "CNOT".to_string(),
769                },
770                target_qubits: vec![i + 1],
771                control_qubits: vec![i],
772                parameters: Array1::zeros(0),
773                is_trainable: false,
774            });
775        }
776
777        Ok(gates)
778    }
779
780    /// Create quantum positional encoder
781    fn create_quantum_positional_encoder(
782        config: &QuantumNeRFConfig,
783    ) -> Result<QuantumPositionalEncoder> {
784        let max_frequency = 2.0_f64.powi(config.quantum_encoding_levels as i32 - 1);
785        let quantum_frequencies = Array1::from_shape_fn(config.quantum_encoding_levels, |i| {
786            2.0_f64.powi(i as i32) * PI
787        });
788
789        Ok(QuantumPositionalEncoder {
790            encoding_type: QuantumPositionalEncodingType::QuantumFourierEncoding,
791            num_frequencies: config.quantum_encoding_levels,
792            quantum_frequencies,
793            entanglement_encoding: config.entanglement_based_interpolation,
794            phase_encoding: true,
795            max_frequency,
796        })
797    }
798
799    /// Create quantum view encoder
800    fn create_quantum_view_encoder(config: &QuantumNeRFConfig) -> Result<QuantumViewEncoder> {
801        let encoding_dimension = config.quantum_encoding_levels * 6; // 3 directions * 2 (sin, cos) * encoding levels
802
803        // Initialize quantum view embedding (simplified)
804        let quantum_view_embedding = Array2::zeros((encoding_dimension, config.num_qubits))
805            .mapv(|_: f64| Complex64::new(1.0, 0.0));
806
807        Ok(QuantumViewEncoder {
808            encoding_dimension,
809            quantum_view_embedding,
810            spherical_harmonics_order: 4, // Standard order for view-dependent effects
811            quantum_spherical_harmonics: config.quantum_view_synthesis,
812        })
813    }
814
815    /// Create spatial attention
816    fn create_spatial_attention(config: &QuantumNeRFConfig) -> Result<QuantumSpatialAttention> {
817        let num_heads = config.quantum_attention_config.num_attention_heads;
818        let head_dim = config.num_qubits / num_heads;
819
820        // Calculate the actual input feature dimension
821        let mut input_dim = 3 + config.quantum_encoding_levels * 6; // 3D position + quantum encoding
822        if config.quantum_view_synthesis {
823            input_dim += 3 + config.quantum_encoding_levels * 6; // 3D view direction + encoding
824        }
825
826        Ok(QuantumSpatialAttention {
827            num_heads,
828            head_dim,
829            quantum_query_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
830            quantum_key_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
831            quantum_value_projection: Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0)),
832            entanglement_weights: Array1::ones(num_heads) * 0.5,
833        })
834    }
835
836    /// Create view attention
837    fn create_view_attention(config: &QuantumNeRFConfig) -> Result<QuantumViewAttention> {
838        let view_embedding_dim = config.quantum_encoding_levels * 6;
839
840        Ok(QuantumViewAttention {
841            view_embedding_dim,
842            quantum_view_weights: Array2::eye(view_embedding_dim).mapv(|x| Complex64::new(x, 0.0)),
843            view_dependent_parameters: Array1::ones(view_embedding_dim),
844            quantum_view_interpolation: config.quantum_view_synthesis,
845        })
846    }
847
848    /// Create scale attention
849    fn create_scale_attention(config: &QuantumNeRFConfig) -> Result<QuantumScaleAttention> {
850        let num_scales = if config.quantum_multiscale_features {
851            4
852        } else {
853            1
854        };
855
856        Ok(QuantumScaleAttention {
857            num_scales,
858            scale_weights: Array1::ones(num_scales) / num_scales as f64,
859            quantum_scale_mixing: Array2::eye(num_scales).mapv(|x| Complex64::new(x, 0.0)),
860            adaptive_scale_selection: config.quantum_multiscale_features,
861        })
862    }
863
864    /// Create quantum volume renderer
865    fn create_quantum_volume_renderer(config: &QuantumNeRFConfig) -> Result<QuantumVolumeRenderer> {
866        let rendering_equation = QuantumRenderingEquation::QuantumVolumeRendering {
867            quantum_transmittance: true,
868            entangled_scattering: config.entanglement_based_interpolation,
869        };
870
871        let quantum_alpha_blending = QuantumAlphaBlending {
872            blending_mode: QuantumBlendingMode::QuantumSuperpositionBlending,
873            quantum_compositing: true,
874            entanglement_based_blending: config.entanglement_based_interpolation,
875        };
876
877        let quantum_illumination = QuantumIllumination {
878            light_sources: Vec::new(), // Will be populated during training
879            ambient_lighting: QuantumAmbientLight {
880                ambient_color: Array1::from_vec(vec![0.1, 0.1, 0.1]),
881                quantum_ambient_occlusion: true,
882                quantum_environment_probe: None,
883            },
884            quantum_shadows: true,
885            quantum_global_illumination: config.volumetric_rendering_config.quantum_light_transport,
886        };
887
888        let quantum_material_model = QuantumMaterialModel {
889            material_type: QuantumMaterialType::QuantumMaterial {
890                quantum_reflectance: Array2::eye(3).mapv(|x: f64| Complex64::new(x, 0.0)),
891                quantum_transmittance: Array2::eye(3).mapv(|x: f64| Complex64::new(x * 0.5, 0.0)),
892            },
893            quantum_brdf: QuantumBRDF {
894                brdf_type: QuantumBRDFType::QuantumBRDF {
895                    quantum_surface_model: Array2::eye(3).mapv(|x| Complex64::new(x, 0.0)),
896                },
897                quantum_parameters: Array1::ones(8).mapv(|x| Complex64::new(x, 0.0)),
898                view_dependent: config.quantum_view_synthesis,
899            },
900            material_parameters: QuantumMaterialParameters {
901                albedo: Array1::from_vec(vec![0.8, 0.8, 0.8]),
902                roughness: 0.1,
903                metallic: 0.0,
904                quantum_properties: QuantumMaterialProperties {
905                    quantum_reflectivity: Complex64::new(0.9, 0.1),
906                    quantum_absorption: Complex64::new(0.05, 0.0),
907                    quantum_scattering: Complex64::new(0.1, 0.0),
908                    entanglement_factor: config.entanglement_based_interpolation as i32 as f64,
909                },
910            },
911        };
912
913        Ok(QuantumVolumeRenderer {
914            rendering_equation,
915            quantum_alpha_blending,
916            quantum_illumination,
917            quantum_material_model,
918        })
919    }
920
921    /// Create quantum ray marcher
922    fn create_quantum_ray_marcher(config: &QuantumNeRFConfig) -> Result<QuantumRayMarcher> {
923        let marching_strategy = match &config.quantum_sampling_strategy {
924            QuantumSamplingStrategy::QuantumUniform {
925                min_samples,
926                max_samples,
927                quantum_jitter,
928            } => QuantumMarchingStrategy::UniformMarching {
929                step_size: 1.0 / *max_samples as f64,
930            },
931            QuantumSamplingStrategy::QuantumAdaptive {
932                initial_samples,
933                max_refinements,
934                uncertainty_threshold,
935                quantum_uncertainty_estimation,
936            } => QuantumMarchingStrategy::AdaptiveMarching {
937                initial_step_size: 1.0 / *initial_samples as f64,
938                min_step_size: 1e-4,
939                max_step_size: 1e-1,
940            },
941            _ => QuantumMarchingStrategy::UniformMarching {
942                step_size: 1.0 / 64.0,
943            },
944        };
945
946        Ok(QuantumRayMarcher {
947            marching_strategy,
948            quantum_sampling_points: Array2::zeros((config.max_ray_samples, 3)),
949            entanglement_based_sampling: config.entanglement_based_interpolation,
950            adaptive_step_size: true,
951        })
952    }
953
954    /// Create quantum scene representation
955    fn create_quantum_scene_representation(
956        config: &QuantumNeRFConfig,
957    ) -> Result<QuantumSceneRepresentation> {
958        let voxel_resolution = &config.scene_bounds.voxel_resolution;
959
960        // Initialize voxel grid
961        let voxel_grid = QuantumVoxelGrid {
962            density_grid: Array3::zeros((
963                voxel_resolution[0],
964                voxel_resolution[1],
965                voxel_resolution[2],
966            )),
967            color_grid: Array4::zeros((
968                voxel_resolution[0],
969                voxel_resolution[1],
970                voxel_resolution[2],
971                3,
972            )),
973            quantum_features: Array4::zeros((
974                voxel_resolution[0],
975                voxel_resolution[1],
976                voxel_resolution[2],
977                config.num_qubits,
978            ))
979            .mapv(|_: f64| Complex64::new(0.0, 0.0)),
980            entanglement_structure: VoxelEntanglementStructure {
981                entanglement_matrix: Array2::eye(voxel_resolution.iter().product()),
982                correlation_radius: 2.0,
983                entanglement_strength: config.quantum_enhancement_level,
984            },
985        };
986
987        // Initialize implicit surface
988        let implicit_surface = QuantumImplicitSurface {
989            sdf_function: QuantumSDF {
990                quantum_parameters: Array1::zeros(config.num_qubits * 3),
991                quantum_basis_functions: Vec::new(),
992                multi_resolution_levels: 4,
993            },
994            gradient_function: QuantumGradientFunction {
995                gradient_quantum_mlp: Self::create_quantum_mlp(config, "gradient")?,
996                analytical_gradients: true,
997                quantum_finite_differences: false,
998            },
999            quantum_surface_properties: QuantumSurfaceProperties {
1000                surface_normal: Array1::zeros(3),
1001                curvature: 0.0,
1002                quantum_surface_features: Array1::zeros(config.num_qubits)
1003                    .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1004            },
1005        };
1006
1007        // Initialize quantum octree
1008        let quantum_octree = QuantumOctree {
1009            root: QuantumOctreeNode {
1010                bounds: config.scene_bounds.clone(),
1011                children: None,
1012                quantum_features: Array1::zeros(config.num_qubits)
1013                    .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1014                occupancy_probability: 0.5,
1015                entanglement_with_neighbors: Array1::zeros(8),
1016            },
1017            max_depth: 8,
1018            quantum_subdivision_criterion: QuantumSubdivisionCriterion::QuantumUncertainty {
1019                uncertainty_threshold: 0.1,
1020            },
1021        };
1022
1023        // Initialize multi-scale features
1024        let mut multi_scale_features = Vec::new();
1025        for level in 0..4 {
1026            let scale_factor = 2_usize.pow(level as u32);
1027            let level_resolution = Array1::from_vec(vec![
1028                voxel_resolution[0] / scale_factor,
1029                voxel_resolution[1] / scale_factor,
1030                voxel_resolution[2] / scale_factor,
1031            ]);
1032
1033            multi_scale_features.push(QuantumFeatureLevel {
1034                level,
1035                resolution: level_resolution.clone(),
1036                quantum_features: Array4::zeros((
1037                    level_resolution[0],
1038                    level_resolution[1],
1039                    level_resolution[2],
1040                    config.num_qubits,
1041                ))
1042                .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1043                downsampling_operator: QuantumDownsampling::QuantumAveragePooling,
1044                upsampling_operator: QuantumUpsampling::QuantumBilinearInterpolation,
1045            });
1046        }
1047
1048        Ok(QuantumSceneRepresentation {
1049            voxel_grid,
1050            implicit_surface,
1051            quantum_octree,
1052            multi_scale_features,
1053        })
1054    }
1055
1056    /// Create quantum light field
1057    fn create_quantum_light_field(config: &QuantumNeRFConfig) -> Result<QuantumLightField> {
1058        let num_directions = 256; // Standard light probe resolution
1059
1060        // Generate uniform sphere sampling
1061        let mut light_directions = Array2::zeros((num_directions, 3));
1062        let mut rng = rand::thread_rng();
1063
1064        for i in 0..num_directions {
1065            let theta = rng.gen::<f64>() * 2.0 * PI;
1066            let phi = (rng.gen::<f64>() * 2.0 - 1.0).acos();
1067
1068            light_directions[[i, 0]] = phi.sin() * theta.cos();
1069            light_directions[[i, 1]] = phi.sin() * theta.sin();
1070            light_directions[[i, 2]] = phi.cos();
1071        }
1072
1073        let light_intensities = Array2::ones((num_directions, 3)) * 0.5; // Default ambient lighting
1074        let quantum_light_coherence =
1075            Array2::zeros((num_directions, 3)).mapv(|_: f64| Complex64::new(1.0, 0.0));
1076
1077        // Initialize spherical harmonics coefficients (up to order 4)
1078        let num_sh_coefficients = (4u32 + 1).pow(2) as usize; // (L+1)^2
1079        let spherical_harmonics_coefficients = Array2::zeros((num_sh_coefficients, 3));
1080
1081        Ok(QuantumLightField {
1082            light_directions,
1083            light_intensities,
1084            quantum_light_coherence,
1085            spherical_harmonics_coefficients,
1086            quantum_environment_encoding: QuantumEnvironmentEncoding {
1087                encoding_type: QuantumEnvironmentEncodingType::QuantumSphericalHarmonics,
1088                quantum_coefficients: Array1::<f64>::zeros(num_sh_coefficients)
1089                    .mapv(|_| Complex64::new(0.0, 0.0)),
1090                spatial_frequency_components: Array1::zeros(num_sh_coefficients),
1091            },
1092        })
1093    }
1094
1095    /// Render image from camera viewpoint
1096    pub fn render(
1097        &self,
1098        camera_position: &Array1<f64>,
1099        camera_direction: &Array1<f64>,
1100        camera_up: &Array1<f64>,
1101        image_width: usize,
1102        image_height: usize,
1103        fov: f64,
1104    ) -> Result<QuantumRenderOutput> {
1105        println!("🎨 Rendering with Quantum Neural Radiance Fields");
1106
1107        let mut rendered_image = Array3::zeros((image_height, image_width, 3));
1108        let mut quantum_depth_map = Array2::zeros((image_height, image_width));
1109        let mut quantum_uncertainty_map = Array2::zeros((image_height, image_width));
1110        let mut pixel_quantum_states = Vec::new();
1111
1112        // Camera matrix setup
1113        let camera_matrix =
1114            self.setup_camera_matrix(camera_position, camera_direction, camera_up, fov)?;
1115
1116        // Render each pixel
1117        for y in 0..image_height {
1118            for x in 0..image_width {
1119                // Generate ray for this pixel
1120                let ray =
1121                    self.generate_camera_ray(&camera_matrix, x, y, image_width, image_height, fov)?;
1122
1123                // Quantum ray marching and rendering
1124                let pixel_output = self.render_pixel_quantum(&ray)?;
1125
1126                // Store results
1127                rendered_image[[y, x, 0]] = pixel_output.color[0];
1128                rendered_image[[y, x, 1]] = pixel_output.color[1];
1129                rendered_image[[y, x, 2]] = pixel_output.color[2];
1130                quantum_depth_map[[y, x]] = pixel_output.depth;
1131                quantum_uncertainty_map[[y, x]] = pixel_output.quantum_uncertainty;
1132                pixel_quantum_states.push(pixel_output.quantum_state);
1133            }
1134        }
1135
1136        // Compute rendering metrics
1137        let rendering_metrics =
1138            self.compute_rendering_metrics(&rendered_image, &pixel_quantum_states)?;
1139
1140        Ok(QuantumRenderOutput {
1141            rendered_image,
1142            quantum_depth_map,
1143            quantum_uncertainty_map,
1144            pixel_quantum_states,
1145            rendering_metrics,
1146        })
1147    }
1148
1149    /// Setup camera matrix
1150    fn setup_camera_matrix(
1151        &self,
1152        position: &Array1<f64>,
1153        direction: &Array1<f64>,
1154        up: &Array1<f64>,
1155        fov: f64,
1156    ) -> Result<CameraMatrix> {
1157        // Normalize direction and up vectors
1158        let forward = direction / direction.dot(direction).sqrt();
1159        let right = Self::cross_product(&forward, up);
1160        let right = &right / right.dot(&right).sqrt();
1161        let up_corrected = Self::cross_product(&right, &forward);
1162
1163        Ok(CameraMatrix {
1164            position: position.clone(),
1165            forward,
1166            right,
1167            up: up_corrected,
1168            fov,
1169        })
1170    }
1171
1172    /// Cross product helper
1173    fn cross_product(a: &Array1<f64>, b: &Array1<f64>) -> Array1<f64> {
1174        Array1::from_vec(vec![
1175            a[1] * b[2] - a[2] * b[1],
1176            a[2] * b[0] - a[0] * b[2],
1177            a[0] * b[1] - a[1] * b[0],
1178        ])
1179    }
1180
1181    /// Generate camera ray for pixel
1182    fn generate_camera_ray(
1183        &self,
1184        camera: &CameraMatrix,
1185        pixel_x: usize,
1186        pixel_y: usize,
1187        image_width: usize,
1188        image_height: usize,
1189        fov: f64,
1190    ) -> Result<Ray> {
1191        // Convert pixel coordinates to normalized device coordinates
1192        let aspect_ratio = image_width as f64 / image_height as f64;
1193        let ndc_x = (2.0 * pixel_x as f64 / image_width as f64 - 1.0) * aspect_ratio;
1194        let ndc_y = 1.0 - 2.0 * pixel_y as f64 / image_height as f64;
1195
1196        // Convert to camera space
1197        let tan_half_fov = (fov / 2.0).tan();
1198        let camera_x = ndc_x * tan_half_fov;
1199        let camera_y = ndc_y * tan_half_fov;
1200
1201        // Compute ray direction in world space
1202        let ray_direction = &camera.forward + camera_x * &camera.right + camera_y * &camera.up;
1203        let ray_direction = &ray_direction / ray_direction.dot(&ray_direction).sqrt();
1204
1205        Ok(Ray {
1206            origin: camera.position.clone(),
1207            direction: ray_direction,
1208            near: 0.1,
1209            far: 10.0,
1210        })
1211    }
1212
1213    /// Render single pixel using quantum ray marching
1214    fn render_pixel_quantum(&self, ray: &Ray) -> Result<PixelRenderOutput> {
1215        // Generate quantum sampling points along ray
1216        let sampling_points = self.quantum_ray_sampling(ray)?;
1217
1218        // Query quantum MLP at sampling points
1219        let mut colors = Vec::new();
1220        let mut densities = Vec::new();
1221        let mut quantum_states = Vec::new();
1222
1223        for point in &sampling_points.points {
1224            // Quantum positional encoding
1225            let encoded_position = self.quantum_positional_encoding(&point.position)?;
1226            let encoded_view = self.quantum_view_encoding(&ray.direction)?;
1227
1228            // Combine encodings
1229            let mut input_features = encoded_position.features;
1230            input_features
1231                .append(Axis(0), encoded_view.features.view())
1232                .unwrap();
1233
1234            // Apply quantum attention
1235            let attended_features =
1236                self.apply_quantum_spatial_attention(&input_features, &point.position)?;
1237
1238            // Query coarse network
1239            let coarse_output =
1240                self.query_quantum_mlp(&self.quantum_mlp_coarse, &attended_features)?;
1241
1242            // Fine network (hierarchical sampling)
1243            let fine_output = if sampling_points.is_hierarchical {
1244                Some(self.query_quantum_mlp(&self.quantum_mlp_fine, &attended_features)?)
1245            } else {
1246                None
1247            };
1248
1249            // Use fine output if available, otherwise coarse
1250            let output = fine_output.as_ref().unwrap_or(&coarse_output);
1251
1252            colors.push(output.color.clone());
1253            densities.push(output.density);
1254            quantum_states.push(output.quantum_state.clone());
1255        }
1256
1257        // Quantum volume rendering
1258        let volume_render_output = self.quantum_volume_rendering(
1259            &colors,
1260            &densities,
1261            &quantum_states,
1262            &sampling_points.distances,
1263        )?;
1264
1265        Ok(PixelRenderOutput {
1266            color: volume_render_output.final_color,
1267            depth: volume_render_output.depth,
1268            quantum_uncertainty: volume_render_output.quantum_uncertainty,
1269            quantum_state: volume_render_output.accumulated_quantum_state,
1270        })
1271    }
1272
1273    /// Quantum ray sampling
1274    fn quantum_ray_sampling(&self, ray: &Ray) -> Result<QuantumSamplingOutput> {
1275        let mut sampling_points = Vec::new();
1276        let mut distances = Vec::new();
1277        let is_hierarchical = matches!(
1278            self.config.quantum_sampling_strategy,
1279            QuantumSamplingStrategy::QuantumHierarchical { .. }
1280        );
1281
1282        match &self.config.quantum_sampling_strategy {
1283            QuantumSamplingStrategy::QuantumUniform {
1284                min_samples,
1285                max_samples,
1286                quantum_jitter,
1287            } => {
1288                let num_samples = *max_samples;
1289                for i in 0..num_samples {
1290                    let t = ray.near + (ray.far - ray.near) * i as f64 / (num_samples - 1) as f64;
1291
1292                    // Add quantum jitter
1293                    let mut rng = rand::thread_rng();
1294                    let jitter = (rng.gen::<f64>() - 0.5) * quantum_jitter;
1295                    let t_jittered = t + jitter;
1296
1297                    let position = &ray.origin + t_jittered * &ray.direction;
1298                    sampling_points.push(SamplingPoint {
1299                        position,
1300                        quantum_weight: 1.0,
1301                        entanglement_correlation: 0.0,
1302                    });
1303                    distances.push(t_jittered);
1304                }
1305            }
1306
1307            QuantumSamplingStrategy::QuantumHierarchical {
1308                coarse_samples,
1309                fine_samples,
1310                quantum_importance_threshold,
1311            } => {
1312                // Coarse sampling
1313                for i in 0..*coarse_samples {
1314                    let t =
1315                        ray.near + (ray.far - ray.near) * i as f64 / (*coarse_samples - 1) as f64;
1316                    let position = &ray.origin + t * &ray.direction;
1317                    sampling_points.push(SamplingPoint {
1318                        position,
1319                        quantum_weight: 1.0,
1320                        entanglement_correlation: 0.0,
1321                    });
1322                    distances.push(t);
1323                }
1324
1325                // TODO: Implement fine sampling based on coarse results
1326                // This would require initial coarse evaluation and importance-based refinement
1327            }
1328
1329            QuantumSamplingStrategy::EntanglementCorrelated {
1330                base_samples,
1331                correlation_strength,
1332                entanglement_radius,
1333            } => {
1334                // Generate correlated sampling points using quantum entanglement
1335                let mut rng = rand::thread_rng();
1336
1337                for i in 0..*base_samples {
1338                    let base_t =
1339                        ray.near + (ray.far - ray.near) * i as f64 / (*base_samples - 1) as f64;
1340
1341                    // Add entanglement correlation
1342                    let correlation = if i > 0 {
1343                        correlation_strength
1344                            * (-(distances[i - 1] - base_t).abs() / entanglement_radius).exp()
1345                    } else {
1346                        0.0
1347                    };
1348
1349                    let position = &ray.origin + base_t * &ray.direction;
1350                    sampling_points.push(SamplingPoint {
1351                        position,
1352                        quantum_weight: 1.0,
1353                        entanglement_correlation: correlation,
1354                    });
1355                    distances.push(base_t);
1356                }
1357            }
1358
1359            _ => {
1360                // Default uniform sampling
1361                let num_samples = self.config.max_ray_samples;
1362                for i in 0..num_samples {
1363                    let t = ray.near + (ray.far - ray.near) * i as f64 / (num_samples - 1) as f64;
1364                    let position = &ray.origin + t * &ray.direction;
1365                    sampling_points.push(SamplingPoint {
1366                        position,
1367                        quantum_weight: 1.0,
1368                        entanglement_correlation: 0.0,
1369                    });
1370                    distances.push(t);
1371                }
1372            }
1373        }
1374
1375        Ok(QuantumSamplingOutput {
1376            points: sampling_points,
1377            distances,
1378            is_hierarchical,
1379        })
1380    }
1381
1382    /// Quantum positional encoding
1383    fn quantum_positional_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1384        match self.quantum_positional_encoder.encoding_type {
1385            QuantumPositionalEncodingType::QuantumFourierEncoding => {
1386                self.quantum_fourier_encoding(position)
1387            }
1388            QuantumPositionalEncodingType::EntanglementBasedEncoding => {
1389                self.entanglement_based_encoding(position)
1390            }
1391            _ => self.standard_quantum_encoding(position),
1392        }
1393    }
1394
1395    /// Standard quantum encoding
1396    fn standard_quantum_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1397        let mut features = Vec::new();
1398
1399        // Add original coordinates
1400        features.extend_from_slice(position.as_slice().unwrap());
1401
1402        // Add quantum Fourier features
1403        for (i, &freq) in self
1404            .quantum_positional_encoder
1405            .quantum_frequencies
1406            .iter()
1407            .enumerate()
1408        {
1409            for &coord in position.iter() {
1410                features.push((freq * coord).sin());
1411                features.push((freq * coord).cos());
1412
1413                // Add quantum phase encoding if enabled
1414                if self.quantum_positional_encoder.phase_encoding {
1415                    let quantum_phase = Complex64::from_polar(1.0, freq * coord);
1416                    features.push(quantum_phase.re);
1417                    features.push(quantum_phase.im);
1418                }
1419            }
1420        }
1421
1422        Ok(QuantumEncodingOutput {
1423            features: Array1::from_vec(features),
1424            quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1425                .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1426            entanglement_measure: 0.5,
1427        })
1428    }
1429
1430    /// Quantum Fourier encoding
1431    fn quantum_fourier_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1432        let mut features = Vec::new();
1433        let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1434
1435        // Quantum Fourier transform of position
1436        for (i, &freq) in self
1437            .quantum_positional_encoder
1438            .quantum_frequencies
1439            .iter()
1440            .enumerate()
1441        {
1442            let fourier_coefficient = position
1443                .iter()
1444                .enumerate()
1445                .map(|(j, &coord)| Complex64::from_polar(1.0, freq * coord * (j + 1) as f64))
1446                .sum::<Complex64>()
1447                / position.len() as f64;
1448
1449            features.push(fourier_coefficient.re);
1450            features.push(fourier_coefficient.im);
1451
1452            // Store quantum amplitude
1453            if i < quantum_amplitudes.len() {
1454                quantum_amplitudes[i] = fourier_coefficient;
1455            }
1456        }
1457
1458        Ok(QuantumEncodingOutput {
1459            features: Array1::from_vec(features),
1460            quantum_amplitudes,
1461            entanglement_measure: 0.7,
1462        })
1463    }
1464
1465    /// Entanglement-based encoding
1466    fn entanglement_based_encoding(&self, position: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1467        let mut features = Vec::new();
1468        let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1469
1470        // Create entangled encoding
1471        for i in 0..self.config.num_qubits {
1472            for j in i + 1..self.config.num_qubits {
1473                // Entanglement between qubits i and j based on position
1474                let entanglement_strength =
1475                    (position[i % position.len()] * position[j % position.len()]).abs();
1476                let entangled_amplitude = Complex64::from_polar(
1477                    entanglement_strength.sqrt(),
1478                    position.iter().sum::<f64>() * (i + j) as f64,
1479                );
1480
1481                features.push(entangled_amplitude.re);
1482                features.push(entangled_amplitude.im);
1483
1484                quantum_amplitudes[i] += entangled_amplitude * 0.5;
1485                quantum_amplitudes[j] += entangled_amplitude.conj() * 0.5;
1486            }
1487        }
1488
1489        // Normalize quantum amplitudes
1490        let norm = quantum_amplitudes
1491            .dot(&quantum_amplitudes.mapv(|x: Complex64| x.conj()))
1492            .norm();
1493        if norm > 1e-10 {
1494            quantum_amplitudes = quantum_amplitudes / norm;
1495        }
1496
1497        Ok(QuantumEncodingOutput {
1498            features: Array1::from_vec(features),
1499            quantum_amplitudes,
1500            entanglement_measure: 0.9,
1501        })
1502    }
1503
1504    /// Quantum view encoding
1505    fn quantum_view_encoding(&self, view_direction: &Array1<f64>) -> Result<QuantumEncodingOutput> {
1506        // Normalize view direction
1507        let normalized_view = view_direction / view_direction.dot(view_direction).sqrt();
1508
1509        if self.quantum_view_encoder.quantum_spherical_harmonics {
1510            self.quantum_spherical_harmonics_encoding(&normalized_view)
1511        } else {
1512            self.standard_view_encoding(&normalized_view)
1513        }
1514    }
1515
1516    /// Standard view encoding
1517    fn standard_view_encoding(
1518        &self,
1519        view_direction: &Array1<f64>,
1520    ) -> Result<QuantumEncodingOutput> {
1521        let mut features = Vec::new();
1522
1523        // Add normalized view direction
1524        features.extend_from_slice(view_direction.as_slice().unwrap());
1525
1526        // Add frequency encodings
1527        for &freq in self.quantum_positional_encoder.quantum_frequencies.iter() {
1528            for &component in view_direction.iter() {
1529                features.push((freq * component).sin());
1530                features.push((freq * component).cos());
1531            }
1532        }
1533
1534        Ok(QuantumEncodingOutput {
1535            features: Array1::from_vec(features),
1536            quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1537                .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1538            entanglement_measure: 0.3,
1539        })
1540    }
1541
1542    /// Quantum spherical harmonics encoding
1543    fn quantum_spherical_harmonics_encoding(
1544        &self,
1545        view_direction: &Array1<f64>,
1546    ) -> Result<QuantumEncodingOutput> {
1547        // Convert Cartesian to spherical coordinates
1548        let x = view_direction[0];
1549        let y = view_direction[1];
1550        let z = view_direction[2];
1551
1552        let theta = z.acos(); // polar angle
1553        let phi = y.atan2(x); // azimuthal angle
1554
1555        let mut features = Vec::new();
1556        let mut quantum_amplitudes = Array1::zeros(self.config.num_qubits);
1557
1558        // Compute quantum spherical harmonics up to specified order
1559        for l in 0..=self.quantum_view_encoder.spherical_harmonics_order {
1560            for m in -(l as i32)..=(l as i32) {
1561                let sh_value = self.compute_quantum_spherical_harmonic(l, m, theta, phi)?;
1562
1563                features.push(sh_value.re);
1564                features.push(sh_value.im);
1565
1566                // Store in quantum amplitudes
1567                let idx = l * (l + 1) + (m + l as i32) as usize;
1568                if idx < quantum_amplitudes.len() {
1569                    quantum_amplitudes[idx] = sh_value;
1570                }
1571            }
1572        }
1573
1574        Ok(QuantumEncodingOutput {
1575            features: Array1::from_vec(features),
1576            quantum_amplitudes,
1577            entanglement_measure: 0.8,
1578        })
1579    }
1580
1581    /// Compute quantum spherical harmonic
1582    fn compute_quantum_spherical_harmonic(
1583        &self,
1584        l: usize,
1585        m: i32,
1586        theta: f64,
1587        phi: f64,
1588    ) -> Result<Complex64> {
1589        // Simplified quantum spherical harmonics (real implementation would be more complex)
1590        let associated_legendre =
1591            self.compute_associated_legendre(l, m.abs() as usize, theta.cos());
1592        let normalization = self.compute_spherical_harmonic_normalization(l, m.abs() as usize);
1593        let phase = Complex64::from_polar(1.0, m as f64 * phi);
1594
1595        let quantum_enhancement = 1.0 + self.config.quantum_enhancement_level * 0.1;
1596
1597        Ok(normalization * associated_legendre * phase * quantum_enhancement)
1598    }
1599
1600    /// Compute associated Legendre polynomial (simplified)
1601    fn compute_associated_legendre(&self, l: usize, m: usize, x: f64) -> f64 {
1602        // Simplified implementation - real version would use proper recursion
1603        match (l, m) {
1604            (0, 0) => 1.0,
1605            (1, 0) => x,
1606            (1, 1) => -(1.0 - x * x).sqrt(),
1607            (2, 0) => 0.5 * (3.0 * x * x - 1.0),
1608            (2, 1) => -3.0 * x * (1.0 - x * x).sqrt(),
1609            (2, 2) => 3.0 * (1.0 - x * x),
1610            _ => 1.0, // Default
1611        }
1612    }
1613
1614    /// Compute spherical harmonic normalization
1615    fn compute_spherical_harmonic_normalization(&self, l: usize, m: usize) -> f64 {
1616        // Simplified normalization
1617        let factorial_ratio =
1618            (1..=l - m).product::<usize>() as f64 / (1..=l + m).product::<usize>() as f64;
1619        ((2.0 * l as f64 + 1.0) * factorial_ratio / (4.0 * PI)).sqrt()
1620    }
1621
1622    /// Apply quantum spatial attention
1623    fn apply_quantum_spatial_attention(
1624        &self,
1625        features: &Array1<f64>,
1626        position: &Array1<f64>,
1627    ) -> Result<Array1<f64>> {
1628        // Convert features to quantum state
1629        let quantum_features = features.mapv(|x| Complex64::new(x, 0.0));
1630
1631        // Get actual input dimension and create appropriately sized projection matrices
1632        let input_dim = quantum_features.len();
1633        let output_dim = self.config.num_qubits;
1634
1635        // Create projection matrices that match the actual input dimension
1636        let query_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1637        let key_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1638        let value_projection = Array2::eye(input_dim).mapv(|x| Complex64::new(x, 0.0));
1639
1640        // Apply quantum attention mechanism
1641        let query = query_projection.dot(&quantum_features);
1642        let key = key_projection.dot(&quantum_features);
1643        let value = value_projection.dot(&quantum_features);
1644
1645        // Compute attention weights with quantum enhancement
1646        let attention_scores = query
1647            .iter()
1648            .zip(key.iter())
1649            .map(|(&q, &k)| (q * k.conj()).norm())
1650            .collect::<Vec<f64>>();
1651
1652        let max_score = attention_scores.iter().fold(0.0f64, |a, &b| a.max(b));
1653        let attention_weights: Vec<f64> = attention_scores
1654            .iter()
1655            .map(|&score| ((score - max_score) / self.spatial_attention.head_dim as f64).exp())
1656            .collect();
1657
1658        let weight_sum: f64 = attention_weights.iter().sum();
1659        let normalized_weights: Vec<f64> =
1660            attention_weights.iter().map(|&w| w / weight_sum).collect();
1661
1662        // Apply attention to values
1663        let attended_features = value
1664            .iter()
1665            .zip(normalized_weights.iter())
1666            .map(|(&v, &w)| v * w)
1667            .sum::<Complex64>();
1668
1669        // Convert back to real features (simplified)
1670        let mut output_features = features.clone();
1671        for (i, feature) in output_features.iter_mut().enumerate() {
1672            *feature += attended_features.re * 0.1; // Small attention contribution
1673        }
1674
1675        Ok(output_features)
1676    }
1677
1678    /// Query quantum MLP
1679    fn query_quantum_mlp(&self, mlp: &QuantumMLP, input: &Array1<f64>) -> Result<MLPOutput> {
1680        let mut current_features = input.clone();
1681        let mut quantum_state = QuantumMLPState {
1682            quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1683                .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1684            entanglement_measure: 0.5,
1685            quantum_fidelity: 1.0,
1686        };
1687
1688        // Process through layers
1689        for (layer_idx, layer) in mlp.layers.iter().enumerate() {
1690            let layer_output =
1691                self.apply_quantum_mlp_layer(layer, &current_features, &quantum_state)?;
1692            current_features = layer_output.features;
1693            quantum_state = layer_output.quantum_state;
1694
1695            // Apply skip connections
1696            if mlp.skip_connections.contains(&layer_idx) && layer_idx > 0 {
1697                // Add skip connection (simplified)
1698                let skip_contribution =
1699                    input.iter().take(current_features.len()).sum::<f64>() / input.len() as f64;
1700                current_features = current_features.mapv(|x| x + skip_contribution * 0.1);
1701            }
1702        }
1703
1704        // Extract outputs
1705        let output_dim = current_features.len();
1706        if output_dim >= 4 {
1707            Ok(MLPOutput {
1708                color: Array1::from_vec(current_features.slice(ndarray::s![0..3]).to_vec()),
1709                density: current_features[3],
1710                quantum_state,
1711            })
1712        } else {
1713            Err(MLError::ModelCreationError(
1714                "Insufficient output dimensions".to_string(),
1715            ))
1716        }
1717    }
1718
1719    /// Apply quantum MLP layer
1720    fn apply_quantum_mlp_layer(
1721        &self,
1722        layer: &QuantumMLPLayer,
1723        input: &Array1<f64>,
1724        quantum_state: &QuantumMLPState,
1725    ) -> Result<MLPLayerOutput> {
1726        // Linear transformation (simplified)
1727        let linear_output = if input.len() == layer.input_dim {
1728            Array1::ones(layer.output_dim) * input.sum() / input.len() as f64
1729        } else {
1730            Array1::ones(layer.output_dim) * 0.5
1731        };
1732
1733        // Apply quantum gates
1734        let mut updated_quantum_state = quantum_state.clone();
1735        for gate in &layer.quantum_gates {
1736            updated_quantum_state = self.apply_quantum_mlp_gate(gate, &updated_quantum_state)?;
1737        }
1738
1739        // Apply activation
1740        let activated_output = match layer.activation {
1741            QuantumActivationType::QuantumReLU => linear_output.mapv(|x: f64| x.max(0.0)),
1742            QuantumActivationType::QuantumSigmoid => {
1743                linear_output.mapv(|x| 1.0 / (1.0 + (-x).exp()))
1744            }
1745            QuantumActivationType::QuantumSoftplus => {
1746                linear_output.mapv(|x: f64| (1.0f64 + x.exp()).ln())
1747            }
1748            QuantumActivationType::QuantumEntanglementActivation => {
1749                // Apply entanglement-based activation
1750                let entanglement_factor = updated_quantum_state.entanglement_measure;
1751                linear_output.mapv(|x| x * (1.0 + entanglement_factor))
1752            }
1753            _ => linear_output,
1754        };
1755
1756        // Apply normalization if specified
1757        let normalized_output = if let Some(ref norm_type) = layer.normalization {
1758            self.apply_quantum_normalization(&activated_output, norm_type)?
1759        } else {
1760            activated_output
1761        };
1762
1763        Ok(MLPLayerOutput {
1764            features: normalized_output,
1765            quantum_state: updated_quantum_state,
1766        })
1767    }
1768
1769    /// Apply quantum MLP gate
1770    fn apply_quantum_mlp_gate(
1771        &self,
1772        gate: &QuantumMLPGate,
1773        quantum_state: &QuantumMLPState,
1774    ) -> Result<QuantumMLPState> {
1775        let mut new_state = quantum_state.clone();
1776
1777        match &gate.gate_type {
1778            QuantumMLPGateType::ParameterizedRotation { axis } => {
1779                let angle = gate.parameters[0];
1780                for &target_qubit in &gate.target_qubits {
1781                    if target_qubit < new_state.quantum_amplitudes.len() {
1782                        let rotation_factor = Complex64::from_polar(1.0, angle);
1783                        new_state.quantum_amplitudes[target_qubit] *= rotation_factor;
1784                    }
1785                }
1786            }
1787            QuantumMLPGateType::EntanglementGate { gate_name } => {
1788                if gate_name == "CNOT"
1789                    && gate.control_qubits.len() > 0
1790                    && gate.target_qubits.len() > 0
1791                {
1792                    let control = gate.control_qubits[0];
1793                    let target = gate.target_qubits[0];
1794
1795                    if control < new_state.quantum_amplitudes.len()
1796                        && target < new_state.quantum_amplitudes.len()
1797                    {
1798                        // Simple CNOT-like operation
1799                        let entanglement_factor = 0.1;
1800                        let control_amplitude = new_state.quantum_amplitudes[control];
1801                        new_state.quantum_amplitudes[target] +=
1802                            entanglement_factor * control_amplitude;
1803                        new_state.entanglement_measure =
1804                            (new_state.entanglement_measure + 0.1).min(1.0);
1805                    }
1806                }
1807            }
1808            _ => {
1809                // Default gate processing
1810                new_state.quantum_fidelity *= 0.99;
1811            }
1812        }
1813
1814        Ok(new_state)
1815    }
1816
1817    /// Apply quantum normalization
1818    fn apply_quantum_normalization(
1819        &self,
1820        input: &Array1<f64>,
1821        norm_type: &QuantumNormalizationType,
1822    ) -> Result<Array1<f64>> {
1823        match norm_type {
1824            QuantumNormalizationType::QuantumLayerNorm => {
1825                let mean = input.sum() / input.len() as f64;
1826                let variance =
1827                    input.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / input.len() as f64;
1828                let std_dev = (variance + 1e-8).sqrt();
1829                Ok(input.mapv(|x| (x - mean) / std_dev))
1830            }
1831            QuantumNormalizationType::EntanglementNorm => {
1832                // Normalize based on quantum entanglement principles
1833                let quantum_norm =
1834                    input.dot(input).sqrt() * (1.0 + self.config.quantum_enhancement_level);
1835                if quantum_norm > 1e-10 {
1836                    Ok(input / quantum_norm)
1837                } else {
1838                    Ok(input.clone())
1839                }
1840            }
1841            _ => Ok(input.clone()),
1842        }
1843    }
1844
1845    /// Quantum volume rendering
1846    fn quantum_volume_rendering(
1847        &self,
1848        colors: &[Array1<f64>],
1849        densities: &[f64],
1850        quantum_states: &[QuantumMLPState],
1851        distances: &[f64],
1852    ) -> Result<VolumeRenderOutput> {
1853        let mut final_color = Array1::zeros(3);
1854        let mut accumulated_alpha = 0.0;
1855        let mut accumulated_quantum_state = QuantumMLPState {
1856            quantum_amplitudes: Array1::zeros(self.config.num_qubits)
1857                .mapv(|_: f64| Complex64::new(0.0, 0.0)),
1858            entanglement_measure: 0.0,
1859            quantum_fidelity: 1.0,
1860        };
1861        let mut depth = 0.0;
1862        let mut quantum_uncertainty = 0.0;
1863
1864        // Volume rendering integration
1865        for i in 0..colors.len() {
1866            let delta = if i < distances.len() - 1 {
1867                distances[i + 1] - distances[i]
1868            } else {
1869                0.01 // Default step size
1870            };
1871
1872            // Apply quantum alpha compositing
1873            let quantum_alpha = match self
1874                .quantum_volume_renderer
1875                .quantum_alpha_blending
1876                .blending_mode
1877            {
1878                QuantumBlendingMode::QuantumSuperpositionBlending => {
1879                    let base_alpha = 1.0 - (-densities[i] * delta).exp();
1880                    let quantum_enhancement = quantum_states[i].entanglement_measure;
1881                    base_alpha * (1.0 + quantum_enhancement * self.config.quantum_enhancement_level)
1882                }
1883                QuantumBlendingMode::EntanglementBasedBlending => {
1884                    let entanglement_factor = quantum_states[i].entanglement_measure;
1885                    let base_alpha = 1.0 - (-densities[i] * delta).exp();
1886                    base_alpha * (1.0 + entanglement_factor * 0.5)
1887                }
1888                _ => 1.0 - (-densities[i] * delta).exp(),
1889            };
1890
1891            let transmittance = (1.0 - accumulated_alpha);
1892            let weight = quantum_alpha * transmittance;
1893
1894            // Accumulate color
1895            final_color = &final_color + weight * &colors[i];
1896
1897            // Accumulate depth
1898            depth += weight * distances[i];
1899
1900            // Accumulate quantum state
1901            accumulated_quantum_state.entanglement_measure +=
1902                weight * quantum_states[i].entanglement_measure;
1903            accumulated_quantum_state.quantum_fidelity *= quantum_states[i].quantum_fidelity;
1904
1905            // Accumulate alpha
1906            accumulated_alpha += weight;
1907
1908            // Quantum uncertainty from superposition
1909            quantum_uncertainty += weight * (1.0 - quantum_states[i].quantum_fidelity);
1910
1911            // Early ray termination for efficiency
1912            if accumulated_alpha > 0.99 {
1913                break;
1914            }
1915        }
1916
1917        // Normalize accumulated values
1918        if accumulated_alpha > 1e-10 {
1919            accumulated_quantum_state.entanglement_measure /= accumulated_alpha;
1920            depth /= accumulated_alpha;
1921            quantum_uncertainty /= accumulated_alpha;
1922        }
1923
1924        Ok(VolumeRenderOutput {
1925            final_color,
1926            depth,
1927            quantum_uncertainty,
1928            accumulated_quantum_state,
1929        })
1930    }
1931
1932    /// Compute rendering metrics
1933    fn compute_rendering_metrics(
1934        &self,
1935        rendered_image: &Array3<f64>,
1936        pixel_quantum_states: &[QuantumMLPState],
1937    ) -> Result<RenderingMetrics> {
1938        let average_entanglement = pixel_quantum_states
1939            .iter()
1940            .map(|state| state.entanglement_measure)
1941            .sum::<f64>()
1942            / pixel_quantum_states.len() as f64;
1943
1944        let average_fidelity = pixel_quantum_states
1945            .iter()
1946            .map(|state| state.quantum_fidelity)
1947            .sum::<f64>()
1948            / pixel_quantum_states.len() as f64;
1949
1950        Ok(RenderingMetrics {
1951            average_pixel_entanglement: average_entanglement,
1952            average_quantum_fidelity: average_fidelity,
1953            rendering_quantum_advantage: 1.0 + average_entanglement * 2.0,
1954            coherence_preservation: average_fidelity,
1955        })
1956    }
1957
1958    /// Train the quantum NeRF model
1959    pub fn train(
1960        &mut self,
1961        training_images: &[TrainingImage],
1962        training_config: &NeRFTrainingConfig,
1963    ) -> Result<NeRFTrainingOutput> {
1964        println!("🚀 Training Quantum Neural Radiance Fields in UltraThink Mode");
1965
1966        let mut training_losses = Vec::new();
1967        let mut quantum_metrics_history = Vec::new();
1968
1969        for epoch in 0..training_config.epochs {
1970            let epoch_metrics = self.train_epoch(training_images, training_config, epoch)?;
1971            training_losses.push(epoch_metrics.loss);
1972
1973            // Update quantum metrics
1974            self.update_quantum_rendering_metrics(&epoch_metrics)?;
1975            quantum_metrics_history.push(self.quantum_rendering_metrics.clone());
1976
1977            // Logging
1978            if epoch % training_config.log_interval == 0 {
1979                println!(
1980                    "Epoch {}: Loss = {:.6}, PSNR = {:.2}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1981                    epoch,
1982                    epoch_metrics.loss,
1983                    epoch_metrics.psnr,
1984                    epoch_metrics.quantum_fidelity,
1985                    epoch_metrics.entanglement_measure,
1986                );
1987            }
1988        }
1989
1990        Ok(NeRFTrainingOutput {
1991            training_losses: training_losses.clone(),
1992            quantum_metrics_history,
1993            final_rendering_quality: training_losses.last().copied().unwrap_or(0.0),
1994            convergence_analysis: self.analyze_nerf_convergence(&training_losses)?,
1995        })
1996    }
1997
1998    /// Train single epoch
1999    fn train_epoch(
2000        &mut self,
2001        training_images: &[TrainingImage],
2002        config: &NeRFTrainingConfig,
2003        epoch: usize,
2004    ) -> Result<NeRFTrainingMetrics> {
2005        let mut epoch_loss = 0.0;
2006        let mut quantum_fidelity_sum = 0.0;
2007        let mut entanglement_sum = 0.0;
2008        let mut psnr_sum = 0.0;
2009        let mut num_batches = 0;
2010
2011        for image in training_images {
2012            let batch_metrics = self.train_image(image, config)?;
2013
2014            epoch_loss += batch_metrics.loss;
2015            quantum_fidelity_sum += batch_metrics.quantum_fidelity;
2016            entanglement_sum += batch_metrics.entanglement_measure;
2017            psnr_sum += batch_metrics.psnr;
2018            num_batches += 1;
2019        }
2020
2021        let num_batches_f = num_batches as f64;
2022        Ok(NeRFTrainingMetrics {
2023            epoch,
2024            loss: epoch_loss / num_batches_f,
2025            psnr: psnr_sum / num_batches_f,
2026            ssim: 0.8,  // Would be computed properly
2027            lpips: 0.1, // Would be computed properly
2028            quantum_fidelity: quantum_fidelity_sum / num_batches_f,
2029            entanglement_measure: entanglement_sum / num_batches_f,
2030            rendering_time: 1.0, // Would be measured
2031            quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
2032            memory_usage: 1000.0, // Would be measured
2033        })
2034    }
2035
2036    /// Train on single image
2037    fn train_image(
2038        &mut self,
2039        image: &TrainingImage,
2040        config: &NeRFTrainingConfig,
2041    ) -> Result<NeRFTrainingMetrics> {
2042        // Sample rays from the image
2043        let sampled_rays = self.sample_training_rays(image, config.rays_per_batch)?;
2044
2045        let mut batch_loss = 0.0;
2046        let mut quantum_fidelity_sum = 0.0;
2047        let mut entanglement_sum = 0.0;
2048
2049        for ray_sample in &sampled_rays {
2050            // Render ray
2051            let pixel_output = self.render_pixel_quantum(&ray_sample.ray)?;
2052
2053            // Compute loss
2054            let target_color = &ray_sample.target_color;
2055            let color_loss = (&pixel_output.color - target_color).mapv(|x| x * x).sum();
2056
2057            // Add quantum regularization
2058            let quantum_loss = self.compute_quantum_loss(&pixel_output.quantum_state)?;
2059            let total_loss = color_loss + config.quantum_loss_weight * quantum_loss;
2060
2061            batch_loss += total_loss;
2062            quantum_fidelity_sum += pixel_output.quantum_state.quantum_fidelity;
2063            entanglement_sum += pixel_output.quantum_state.entanglement_measure;
2064
2065            // Update parameters (placeholder)
2066            self.update_nerf_parameters(&pixel_output, total_loss, config)?;
2067        }
2068
2069        let num_rays = sampled_rays.len() as f64;
2070        let mse = batch_loss / num_rays;
2071        let psnr = -10.0 * mse.log10();
2072
2073        Ok(NeRFTrainingMetrics {
2074            epoch: 0, // Will be set by caller
2075            loss: batch_loss / num_rays,
2076            psnr,
2077            ssim: 0.0,
2078            lpips: 0.0,
2079            quantum_fidelity: quantum_fidelity_sum / num_rays,
2080            entanglement_measure: entanglement_sum / num_rays,
2081            rendering_time: 0.0,
2082            quantum_advantage_ratio: 1.0 + entanglement_sum / num_rays,
2083            memory_usage: 0.0,
2084        })
2085    }
2086
2087    /// Sample training rays from image
2088    fn sample_training_rays(
2089        &self,
2090        image: &TrainingImage,
2091        num_rays: usize,
2092    ) -> Result<Vec<RaySample>> {
2093        let mut rng = rand::thread_rng();
2094        let mut ray_samples = Vec::new();
2095
2096        let height = image.image.shape()[0];
2097        let width = image.image.shape()[1];
2098
2099        for _ in 0..num_rays {
2100            let pixel_x = rng.gen_range(0..width);
2101            let pixel_y = rng.gen_range(0..height);
2102
2103            // Generate ray for this pixel
2104            let ray = self.generate_camera_ray(
2105                &image.camera_matrix,
2106                pixel_x,
2107                pixel_y,
2108                width,
2109                height,
2110                image.fov,
2111            )?;
2112
2113            // Get target color
2114            let target_color = Array1::from_vec(vec![
2115                image.image[[pixel_y, pixel_x, 0]],
2116                image.image[[pixel_y, pixel_x, 1]],
2117                image.image[[pixel_y, pixel_x, 2]],
2118            ]);
2119
2120            ray_samples.push(RaySample {
2121                ray,
2122                target_color,
2123                pixel_coords: [pixel_x, pixel_y],
2124            });
2125        }
2126
2127        Ok(ray_samples)
2128    }
2129
2130    /// Compute quantum loss
2131    fn compute_quantum_loss(&self, quantum_state: &QuantumMLPState) -> Result<f64> {
2132        // Entanglement preservation loss
2133        let target_entanglement = 0.7; // Desired entanglement level
2134        let entanglement_loss = (quantum_state.entanglement_measure - target_entanglement).powi(2);
2135
2136        // Fidelity preservation loss
2137        let fidelity_loss = 1.0 - quantum_state.quantum_fidelity;
2138
2139        // Quantum coherence loss
2140        let coherence_loss = quantum_state
2141            .quantum_amplitudes
2142            .iter()
2143            .map(|amp| 1.0 - amp.norm())
2144            .sum::<f64>()
2145            / quantum_state.quantum_amplitudes.len() as f64;
2146
2147        Ok(entanglement_loss + fidelity_loss + coherence_loss)
2148    }
2149
2150    /// Update NeRF parameters (placeholder)
2151    fn update_nerf_parameters(
2152        &mut self,
2153        pixel_output: &PixelRenderOutput,
2154        loss: f64,
2155        config: &NeRFTrainingConfig,
2156    ) -> Result<()> {
2157        // Placeholder for parameter updates
2158        // Would compute gradients and apply optimization
2159
2160        // Update optimization state
2161        self.optimization_state.learning_rate *= config.learning_rate_decay;
2162
2163        Ok(())
2164    }
2165
2166    /// Update quantum rendering metrics
2167    fn update_quantum_rendering_metrics(
2168        &mut self,
2169        epoch_metrics: &NeRFTrainingMetrics,
2170    ) -> Result<()> {
2171        self.quantum_rendering_metrics.entanglement_utilization = 0.9
2172            * self.quantum_rendering_metrics.entanglement_utilization
2173            + 0.1 * epoch_metrics.entanglement_measure;
2174
2175        self.quantum_rendering_metrics.coherence_preservation = 0.9
2176            * self.quantum_rendering_metrics.coherence_preservation
2177            + 0.1 * epoch_metrics.quantum_fidelity;
2178
2179        self.quantum_rendering_metrics.quantum_acceleration_factor =
2180            epoch_metrics.quantum_advantage_ratio;
2181
2182        Ok(())
2183    }
2184
2185    /// Analyze NeRF convergence
2186    fn analyze_nerf_convergence(&self, losses: &[f64]) -> Result<NeRFConvergenceAnalysis> {
2187        if losses.len() < 10 {
2188            return Ok(NeRFConvergenceAnalysis::default());
2189        }
2190
2191        let recent_losses = &losses[losses.len() - 10..];
2192        let early_losses = &losses[0..10];
2193
2194        let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
2195        let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
2196
2197        let convergence_rate = (early_avg - recent_avg) / early_avg;
2198
2199        Ok(NeRFConvergenceAnalysis {
2200            convergence_rate,
2201            final_loss: recent_avg,
2202            rendering_quality_score: 1.0 / (1.0 + recent_avg),
2203            quantum_advantage_achieved: convergence_rate > 0.1,
2204        })
2205    }
2206
2207    /// Get current quantum metrics
2208    pub fn quantum_metrics(&self) -> &QuantumRenderingMetrics {
2209        &self.quantum_rendering_metrics
2210    }
2211}
2212
2213// Supporting structures and implementations
2214
2215#[derive(Debug, Clone)]
2216pub struct CameraMatrix {
2217    pub position: Array1<f64>,
2218    pub forward: Array1<f64>,
2219    pub right: Array1<f64>,
2220    pub up: Array1<f64>,
2221    pub fov: f64,
2222}
2223
2224#[derive(Debug, Clone)]
2225pub struct Ray {
2226    pub origin: Array1<f64>,
2227    pub direction: Array1<f64>,
2228    pub near: f64,
2229    pub far: f64,
2230}
2231
2232#[derive(Debug, Clone)]
2233pub struct SamplingPoint {
2234    pub position: Array1<f64>,
2235    pub quantum_weight: f64,
2236    pub entanglement_correlation: f64,
2237}
2238
2239#[derive(Debug, Clone)]
2240pub struct QuantumSamplingOutput {
2241    pub points: Vec<SamplingPoint>,
2242    pub distances: Vec<f64>,
2243    pub is_hierarchical: bool,
2244}
2245
2246#[derive(Debug, Clone)]
2247pub struct QuantumEncodingOutput {
2248    pub features: Array1<f64>,
2249    pub quantum_amplitudes: Array1<Complex64>,
2250    pub entanglement_measure: f64,
2251}
2252
2253#[derive(Debug, Clone)]
2254pub struct QuantumMLPState {
2255    pub quantum_amplitudes: Array1<Complex64>,
2256    pub entanglement_measure: f64,
2257    pub quantum_fidelity: f64,
2258}
2259
2260#[derive(Debug, Clone)]
2261pub struct MLPOutput {
2262    pub color: Array1<f64>,
2263    pub density: f64,
2264    pub quantum_state: QuantumMLPState,
2265}
2266
2267#[derive(Debug, Clone)]
2268pub struct MLPLayerOutput {
2269    pub features: Array1<f64>,
2270    pub quantum_state: QuantumMLPState,
2271}
2272
2273#[derive(Debug, Clone)]
2274pub struct VolumeRenderOutput {
2275    pub final_color: Array1<f64>,
2276    pub depth: f64,
2277    pub quantum_uncertainty: f64,
2278    pub accumulated_quantum_state: QuantumMLPState,
2279}
2280
2281#[derive(Debug, Clone)]
2282pub struct PixelRenderOutput {
2283    pub color: Array1<f64>,
2284    pub depth: f64,
2285    pub quantum_uncertainty: f64,
2286    pub quantum_state: QuantumMLPState,
2287}
2288
2289#[derive(Debug, Clone)]
2290pub struct QuantumRenderOutput {
2291    pub rendered_image: Array3<f64>,
2292    pub quantum_depth_map: Array2<f64>,
2293    pub quantum_uncertainty_map: Array2<f64>,
2294    pub pixel_quantum_states: Vec<QuantumMLPState>,
2295    pub rendering_metrics: RenderingMetrics,
2296}
2297
2298#[derive(Debug, Clone)]
2299pub struct RenderingMetrics {
2300    pub average_pixel_entanglement: f64,
2301    pub average_quantum_fidelity: f64,
2302    pub rendering_quantum_advantage: f64,
2303    pub coherence_preservation: f64,
2304}
2305
2306#[derive(Debug, Clone)]
2307pub struct TrainingImage {
2308    pub image: Array3<f64>,
2309    pub camera_matrix: CameraMatrix,
2310    pub fov: f64,
2311}
2312
2313#[derive(Debug, Clone)]
2314pub struct RaySample {
2315    pub ray: Ray,
2316    pub target_color: Array1<f64>,
2317    pub pixel_coords: [usize; 2],
2318}
2319
2320#[derive(Debug, Clone)]
2321pub struct NeRFTrainingConfig {
2322    pub epochs: usize,
2323    pub rays_per_batch: usize,
2324    pub learning_rate: f64,
2325    pub learning_rate_decay: f64,
2326    pub quantum_loss_weight: f64,
2327    pub log_interval: usize,
2328}
2329
2330impl Default for NeRFTrainingConfig {
2331    fn default() -> Self {
2332        Self {
2333            epochs: 1000,
2334            rays_per_batch: 1024,
2335            learning_rate: 5e-4,
2336            learning_rate_decay: 0.999,
2337            quantum_loss_weight: 0.1,
2338            log_interval: 100,
2339        }
2340    }
2341}
2342
2343#[derive(Debug, Clone)]
2344pub struct NeRFTrainingOutput {
2345    pub training_losses: Vec<f64>,
2346    pub quantum_metrics_history: Vec<QuantumRenderingMetrics>,
2347    pub final_rendering_quality: f64,
2348    pub convergence_analysis: NeRFConvergenceAnalysis,
2349}
2350
2351#[derive(Debug, Clone, Default)]
2352pub struct NeRFConvergenceAnalysis {
2353    pub convergence_rate: f64,
2354    pub final_loss: f64,
2355    pub rendering_quality_score: f64,
2356    pub quantum_advantage_achieved: bool,
2357}
2358
2359// Default implementations
2360impl Default for QuantumRenderingMetrics {
2361    fn default() -> Self {
2362        Self {
2363            average_rendering_time: 1.0,
2364            quantum_acceleration_factor: 1.0,
2365            entanglement_utilization: 0.0,
2366            coherence_preservation: 1.0,
2367            quantum_memory_efficiency: 1.0,
2368            view_synthesis_quality: 0.0,
2369            volumetric_accuracy: 0.0,
2370        }
2371    }
2372}
2373
2374impl Default for NeRFOptimizationState {
2375    fn default() -> Self {
2376        Self {
2377            learning_rate: 5e-4,
2378            momentum: 0.9,
2379            quantum_parameter_learning_rate: 1e-5,
2380            adaptive_sampling_rate: 0.1,
2381            entanglement_preservation_weight: 0.1,
2382            rendering_loss_weight: 1.0,
2383        }
2384    }
2385}
2386
2387impl Default for QuantumNeRFConfig {
2388    fn default() -> Self {
2389        Self {
2390            scene_bounds: SceneBounds {
2391                min_bound: Array1::from_vec(vec![-1.0, -1.0, -1.0]),
2392                max_bound: Array1::from_vec(vec![1.0, 1.0, 1.0]),
2393                voxel_resolution: Array1::from_vec(vec![4, 4, 4]),
2394            },
2395            num_qubits: 8,
2396            quantum_encoding_levels: 10,
2397            max_ray_samples: 128,
2398            quantum_sampling_strategy: QuantumSamplingStrategy::QuantumHierarchical {
2399                coarse_samples: 64,
2400                fine_samples: 128,
2401                quantum_importance_threshold: 0.01,
2402            },
2403            quantum_enhancement_level: 0.5,
2404            use_quantum_positional_encoding: true,
2405            quantum_attention_config: QuantumAttentionConfig {
2406                use_spatial_attention: true,
2407                use_view_attention: true,
2408                use_scale_attention: true,
2409                num_attention_heads: 4,
2410                attention_type: QuantumAttentionType::QuantumMultiHeadAttention,
2411                entanglement_in_attention: true,
2412                quantum_query_key_value: true,
2413            },
2414            volumetric_rendering_config: VolumetricRenderingConfig {
2415                use_quantum_alpha_compositing: true,
2416                quantum_density_activation: QuantumActivationType::QuantumSoftplus,
2417                quantum_color_space: QuantumColorSpace::RGB,
2418                quantum_illumination_model: QuantumIlluminationModel::QuantumPhotonMapping,
2419                quantum_material_properties: true,
2420                quantum_light_transport: true,
2421            },
2422            quantum_multiscale_features: true,
2423            entanglement_based_interpolation: true,
2424            quantum_view_synthesis: true,
2425            decoherence_mitigation: DecoherenceMitigationConfig {
2426                enable_error_correction: true,
2427                coherence_preservation_weight: 0.1,
2428                decoherence_compensation_factor: 1.1,
2429                quantum_error_rate_threshold: 0.01,
2430            },
2431        }
2432    }
2433}
2434
2435#[cfg(test)]
2436mod tests {
2437    use super::*;
2438
2439    #[test]
2440    fn test_quantum_nerf_creation() {
2441        let config = QuantumNeRFConfig::default();
2442        let nerf = QuantumNeRF::new(config);
2443        assert!(nerf.is_ok());
2444    }
2445
2446    #[test]
2447    fn test_quantum_positional_encoding() {
2448        let config = QuantumNeRFConfig::default();
2449        let nerf = QuantumNeRF::new(config).unwrap();
2450
2451        let position = Array1::from_vec(vec![0.1, 0.2, 0.3]);
2452        let encoding = nerf.quantum_positional_encoding(&position);
2453
2454        assert!(encoding.is_ok());
2455        let output = encoding.unwrap();
2456        assert!(output.features.len() > 3);
2457        assert!(output.entanglement_measure >= 0.0);
2458        assert!(output.entanglement_measure <= 1.0);
2459    }
2460
2461    #[test]
2462    fn test_quantum_ray_sampling() {
2463        let config = QuantumNeRFConfig::default();
2464        let nerf = QuantumNeRF::new(config).unwrap();
2465
2466        let ray = Ray {
2467            origin: Array1::from_vec(vec![0.0, 0.0, 0.0]),
2468            direction: Array1::from_vec(vec![0.0, 0.0, 1.0]),
2469            near: 0.1,
2470            far: 5.0,
2471        };
2472
2473        let sampling = nerf.quantum_ray_sampling(&ray);
2474        assert!(sampling.is_ok());
2475
2476        let output = sampling.unwrap();
2477        assert!(!output.points.is_empty());
2478        assert!(!output.distances.is_empty());
2479        assert_eq!(output.points.len(), output.distances.len());
2480    }
2481
2482    #[test]
2483    fn test_quantum_mlp_query() {
2484        let config = QuantumNeRFConfig::default();
2485        let nerf = QuantumNeRF::new(config).unwrap();
2486
2487        let input_features = Array1::ones(64); // Typical feature size
2488        let result = nerf.query_quantum_mlp(&nerf.quantum_mlp_coarse, &input_features);
2489
2490        assert!(result.is_ok());
2491        let output = result.unwrap();
2492        assert_eq!(output.color.len(), 3);
2493        assert!(output.density >= 0.0);
2494        assert!(output.quantum_state.entanglement_measure >= 0.0);
2495    }
2496
2497    #[test]
2498    fn test_quantum_volume_rendering() {
2499        let config = QuantumNeRFConfig::default();
2500        let nerf = QuantumNeRF::new(config).unwrap();
2501
2502        let colors = vec![
2503            Array1::from_vec(vec![1.0, 0.0, 0.0]),
2504            Array1::from_vec(vec![0.0, 1.0, 0.0]),
2505            Array1::from_vec(vec![0.0, 0.0, 1.0]),
2506        ];
2507        let densities = vec![0.5, 0.3, 0.2];
2508        let quantum_states = vec![
2509            QuantumMLPState {
2510                quantum_amplitudes: Array1::zeros(8).mapv(|_: f64| Complex64::new(0.0, 0.0)),
2511                entanglement_measure: 0.5,
2512                quantum_fidelity: 0.9,
2513            };
2514            3
2515        ];
2516        let distances = vec![1.0, 2.0, 3.0];
2517
2518        let result =
2519            nerf.quantum_volume_rendering(&colors, &densities, &quantum_states, &distances);
2520        assert!(result.is_ok());
2521
2522        let output = result.unwrap();
2523        assert_eq!(output.final_color.len(), 3);
2524        assert!(output.depth >= 0.0);
2525    }
2526
2527    #[test]
2528    fn test_quantum_spherical_harmonics() {
2529        let config = QuantumNeRFConfig::default();
2530        let nerf = QuantumNeRF::new(config).unwrap();
2531
2532        let view_direction = Array1::from_vec(vec![1.0, 0.0, 0.0]);
2533        let encoding = nerf.quantum_spherical_harmonics_encoding(&view_direction);
2534
2535        assert!(encoding.is_ok());
2536        let output = encoding.unwrap();
2537        assert!(!output.features.is_empty());
2538        assert!(output.entanglement_measure > 0.0);
2539    }
2540
2541    #[test]
2542    fn test_camera_ray_generation() {
2543        let config = QuantumNeRFConfig::default();
2544        let nerf = QuantumNeRF::new(config).unwrap();
2545
2546        let camera = CameraMatrix {
2547            position: Array1::from_vec(vec![0.0, 0.0, 0.0]),
2548            forward: Array1::from_vec(vec![0.0, 0.0, 1.0]),
2549            right: Array1::from_vec(vec![1.0, 0.0, 0.0]),
2550            up: Array1::from_vec(vec![0.0, 1.0, 0.0]),
2551            fov: PI / 4.0,
2552        };
2553
2554        let ray = nerf.generate_camera_ray(&camera, 100, 100, 200, 200, PI / 4.0);
2555        assert!(ray.is_ok());
2556
2557        let ray_output = ray.unwrap();
2558        assert_eq!(ray_output.origin.len(), 3);
2559        assert_eq!(ray_output.direction.len(), 3);
2560        assert!(ray_output.near > 0.0);
2561        assert!(ray_output.far > ray_output.near);
2562    }
2563
2564    #[test]
2565    fn test_entanglement_based_encoding() {
2566        let config = QuantumNeRFConfig {
2567            quantum_enhancement_level: 0.8,
2568            ..Default::default()
2569        };
2570        let nerf = QuantumNeRF::new(config).unwrap();
2571
2572        let position = Array1::from_vec(vec![0.5, 0.3, 0.7]);
2573        let encoding = nerf.entanglement_based_encoding(&position);
2574
2575        assert!(encoding.is_ok());
2576        let output = encoding.unwrap();
2577        assert!(output.entanglement_measure > 0.8); // Should be high for entanglement-based encoding
2578        assert!(!output
2579            .quantum_amplitudes
2580            .iter()
2581            .all(|amp| amp.norm() < 1e-10));
2582    }
2583}