quantrs2_ml/
quantum_mixture_of_experts.rs

1//! Quantum Mixture of Experts
2//!
3//! This module implements cutting-edge Quantum Mixture of Experts (QMoE) that leverages
4//! quantum superposition and entanglement for scalable conditional computation. Unlike
5//! classical MoE, QMoE can route information through multiple experts simultaneously
6//! using quantum parallelism, enabling unprecedented computational efficiency and
7//! novel expert interaction patterns.
8//!
9//! Key Features:
10//! - Quantum superposition-based expert routing
11//! - Entanglement-enhanced expert interactions
12//! - Dynamic quantum gating mechanisms
13//! - Sparse activation with quantum efficiency
14//! - Multi-scale expert hierarchies
15//! - Quantum load balancing and fairness
16
17use crate::error::{MLError, Result};
18use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
19use num_complex::Complex64;
20use rand::{Rng, SeedableRng};
21use rand_chacha::ChaCha20Rng;
22use std::collections::HashMap;
23use std::f64::consts::PI;
24
25/// Configuration for Quantum Mixture of Experts
26#[derive(Debug, Clone)]
27pub struct QuantumMixtureOfExpertsConfig {
28    pub input_dim: usize,
29    pub output_dim: usize,
30    pub num_experts: usize,
31    pub num_qubits: usize,
32    pub expert_capacity: usize,
33    pub routing_strategy: QuantumRoutingStrategy,
34    pub expert_architecture: ExpertArchitecture,
35    pub gating_mechanism: QuantumGatingMechanism,
36    pub load_balancing: LoadBalancingStrategy,
37    pub sparsity_config: SparsityConfig,
38    pub entanglement_config: EntanglementConfig,
39    pub quantum_enhancement_level: f64,
40    pub enable_hierarchical_experts: bool,
41    pub enable_dynamic_experts: bool,
42    pub enable_quantum_communication: bool,
43}
44
45#[derive(Debug, Clone)]
46pub enum QuantumRoutingStrategy {
47    /// Superposition-based routing with quantum parallelism
48    QuantumSuperposition {
49        superposition_strength: f64,
50        interference_pattern: InterferencePattern,
51    },
52
53    /// Entanglement-based routing for correlated experts
54    EntanglementRouting {
55        entanglement_strength: f64,
56        coupling_topology: CouplingTopology,
57    },
58
59    /// Quantum attention-based routing
60    QuantumAttentionRouting {
61        attention_heads: usize,
62        attention_mechanism: QuantumAttentionMechanism,
63    },
64
65    /// Hierarchical quantum routing
66    HierarchicalRouting {
67        hierarchy_levels: usize,
68        routing_per_level: RoutingType,
69    },
70
71    /// Adaptive quantum routing that learns optimal patterns
72    AdaptiveQuantumRouting {
73        adaptation_rate: f64,
74        exploration_strategy: ExplorationStrategy,
75    },
76
77    /// Topological routing based on quantum graph structures
78    TopologicalRouting {
79        graph_structure: QuantumGraphStructure,
80        propagation_method: PropagationMethod,
81    },
82}
83
84#[derive(Debug, Clone)]
85pub enum InterferencePattern {
86    Constructive,
87    Destructive,
88    Mixed,
89    Adaptive { adaptation_parameter: f64 },
90    Custom { pattern_function: String },
91}
92
93#[derive(Debug, Clone)]
94pub enum CouplingTopology {
95    Linear,
96    Circular,
97    AllToAll,
98    Random { connectivity: f64 },
99    Hierarchical { branching_factor: usize },
100    CustomGraph { adjacency_matrix: Array2<f64> },
101}
102
103#[derive(Debug, Clone)]
104pub enum QuantumAttentionMechanism {
105    QuantumSelfAttention,
106    QuantumCrossAttention,
107    QuantumMultiHeadAttention { num_heads: usize },
108    EntanglementBasedAttention,
109    QuantumFourierAttention,
110}
111
112#[derive(Debug, Clone)]
113pub enum RoutingType {
114    Standard,
115    Quantum,
116    Hybrid,
117    Adaptive,
118}
119
120#[derive(Debug, Clone)]
121pub enum ExplorationStrategy {
122    EpsilonGreedy { epsilon: f64 },
123    UCB { confidence_parameter: f64 },
124    ThompsonSampling,
125    QuantumAnnealing { temperature_schedule: Array1<f64> },
126    EntanglementBased { entanglement_threshold: f64 },
127}
128
129#[derive(Debug, Clone)]
130pub enum QuantumGraphStructure {
131    SmallWorld { rewiring_probability: f64 },
132    ScaleFree { preferential_attachment: f64 },
133    Lattice { dimensions: Vec<usize> },
134    Random { edge_probability: f64 },
135    Community { num_communities: usize },
136}
137
138#[derive(Debug, Clone)]
139pub enum PropagationMethod {
140    QuantumWalk,
141    DiffusionProcess,
142    WaveFunction,
143    MessagePassing,
144}
145
146#[derive(Debug, Clone)]
147pub enum ExpertArchitecture {
148    /// Standard feed-forward experts
149    FeedForward {
150        hidden_layers: Vec<usize>,
151        activation: ActivationFunction,
152    },
153
154    /// Convolutional experts for spatial data
155    Convolutional {
156        channels: Vec<usize>,
157        kernel_sizes: Vec<usize>,
158        strides: Vec<usize>,
159    },
160
161    /// Attention-based experts
162    AttentionBased {
163        attention_type: AttentionType,
164        attention_heads: usize,
165        key_dim: usize,
166    },
167
168    /// Recurrent experts for sequential data
169    Recurrent {
170        cell_type: RecurrentCellType,
171        hidden_size: usize,
172        num_layers: usize,
173    },
174
175    /// Quantum experts with quantum gates
176    QuantumExperts {
177        quantum_layers: Vec<QuantumExpertLayer>,
178        measurement_strategy: MeasurementStrategy,
179    },
180
181    /// Hybrid quantum-classical experts
182    HybridExperts {
183        quantum_component: QuantumComponent,
184        classical_component: ClassicalComponent,
185        interaction_method: InteractionMethod,
186    },
187
188    /// Specialized experts for specific modalities
189    SpecializedExperts {
190        expert_specializations: Vec<ExpertSpecialization>,
191        specialization_strength: f64,
192    },
193}
194
195#[derive(Debug, Clone)]
196pub enum ActivationFunction {
197    ReLU,
198    GELU,
199    Swish,
200    Tanh,
201    Sigmoid,
202    Mish,
203    QuantumActivation {
204        activation_type: QuantumActivationType,
205    },
206}
207
208#[derive(Debug, Clone)]
209pub enum QuantumActivationType {
210    QuantumReLU,
211    QuantumSigmoid,
212    QuantumTanh,
213    EntanglementActivation,
214    PhaseActivation,
215}
216
217#[derive(Debug, Clone)]
218pub enum AttentionType {
219    SelfAttention,
220    CrossAttention,
221    MultiHeadAttention,
222    QuantumAttention,
223}
224
225#[derive(Debug, Clone)]
226pub enum RecurrentCellType {
227    LSTM,
228    GRU,
229    QuantumLSTM,
230    QuantumGRU,
231}
232
233#[derive(Debug, Clone)]
234pub struct QuantumExpertLayer {
235    layer_type: QuantumLayerType,
236    num_qubits: usize,
237    parameters: Array1<f64>,
238    quantum_gates: Vec<QuantumGate>,
239}
240
241#[derive(Debug, Clone)]
242pub enum QuantumLayerType {
243    VariationalLayer,
244    EntanglementLayer,
245    RotationLayer,
246    MeasurementLayer,
247    ConditionalLayer,
248}
249
250#[derive(Debug, Clone)]
251pub struct QuantumGate {
252    gate_type: GateType,
253    target_qubits: Vec<usize>,
254    control_qubits: Vec<usize>,
255    parameters: Array1<f64>,
256}
257
258#[derive(Debug, Clone)]
259pub enum GateType {
260    Rotation { axis: RotationAxis },
261    Controlled { base_gate: String },
262    Entangling { coupling_strength: f64 },
263    Measurement { basis: MeasurementBasis },
264    Custom { gate_matrix: Array2<Complex64> },
265}
266
267#[derive(Debug, Clone)]
268pub enum RotationAxis {
269    X,
270    Y,
271    Z,
272    Custom { direction: Array1<f64> },
273}
274
275#[derive(Debug, Clone)]
276pub enum MeasurementBasis {
277    Computational,
278    PauliX,
279    PauliY,
280    PauliZ,
281    Bell,
282    Custom { basis_vectors: Array2<Complex64> },
283}
284
285#[derive(Debug, Clone)]
286pub enum MeasurementStrategy {
287    ExpectationValues,
288    ProbabilityDistributions,
289    QuantumStateVector,
290    PartialMeasurements,
291}
292
293#[derive(Debug, Clone)]
294pub struct QuantumComponent {
295    component_type: QuantumComponentType,
296    num_qubits: usize,
297    quantum_circuit: QuantumCircuit,
298    entanglement_structure: EntanglementStructure,
299}
300
301#[derive(Debug, Clone)]
302pub enum QuantumComponentType {
303    VariationalQuantumCircuit,
304    QuantumConvolutional,
305    QuantumAttention,
306    QuantumRecurrent,
307}
308
309#[derive(Debug, Clone)]
310pub struct QuantumCircuit {
311    gates: Vec<QuantumGate>,
312    depth: usize,
313    parameters: Array1<f64>,
314}
315
316#[derive(Debug, Clone)]
317pub struct EntanglementStructure {
318    entanglement_map: Array2<f64>,
319    entanglement_strength: f64,
320    entanglement_pattern: EntanglementPattern,
321}
322
323#[derive(Debug, Clone)]
324pub enum EntanglementPattern {
325    Linear,
326    Circular,
327    AllToAll,
328    Hierarchical { levels: usize },
329    Random { probability: f64 },
330    Adaptive { adaptation_rate: f64 },
331}
332
333#[derive(Debug, Clone)]
334pub struct ClassicalComponent {
335    layers: Vec<ClassicalLayer>,
336    architecture: ClassicalArchitecture,
337}
338
339#[derive(Debug, Clone)]
340pub struct ClassicalLayer {
341    layer_type: ClassicalLayerType,
342    parameters: Array2<f64>,
343    activation: ActivationFunction,
344}
345
346#[derive(Debug, Clone)]
347pub enum ClassicalLayerType {
348    Dense {
349        input_dim: usize,
350        output_dim: usize,
351    },
352    Convolutional {
353        channels: usize,
354        kernel_size: usize,
355    },
356    Attention {
357        attention_dim: usize,
358    },
359    Normalization {
360        normalization_type: NormalizationType,
361    },
362}
363
364#[derive(Debug, Clone)]
365pub enum ClassicalArchitecture {
366    FeedForward,
367    Convolutional,
368    Recurrent,
369    Transformer,
370}
371
372#[derive(Debug, Clone)]
373pub enum NormalizationType {
374    BatchNorm,
375    LayerNorm,
376    InstanceNorm,
377    GroupNorm,
378}
379
380#[derive(Debug, Clone)]
381pub enum InteractionMethod {
382    TensorProduct,
383    DirectSum,
384    ConditionalCoupling,
385    AttentionCoupling,
386    QuantumClassicalHybrid,
387}
388
389#[derive(Debug, Clone)]
390pub enum ExpertSpecialization {
391    TextProcessing,
392    ImageProcessing,
393    AudioProcessing,
394    VideoProcessing,
395    GraphProcessing,
396    TimeSeriesProcessing,
397    MultiModal,
398    Domain { domain_name: String },
399}
400
401#[derive(Debug, Clone)]
402pub enum QuantumGatingMechanism {
403    /// Quantum superposition gating
404    SuperpositionGating { coherence_preservation: f64 },
405
406    /// Measurement-based gating
407    MeasurementGating {
408        measurement_basis: MeasurementBasis,
409        post_selection: bool,
410    },
411
412    /// Entanglement-based gating
413    EntanglementGating {
414        entanglement_threshold: f64,
415        gating_strength: f64,
416    },
417
418    /// Quantum attention gating
419    QuantumAttentionGating {
420        attention_mechanism: QuantumAttentionMechanism,
421        temperature: f64,
422    },
423
424    /// Adaptive quantum gating
425    AdaptiveGating {
426        adaptation_strategy: AdaptationStrategy,
427        learning_rate: f64,
428    },
429
430    /// Hierarchical gating with quantum circuits
431    HierarchicalGating { gating_hierarchy: GatingHierarchy },
432}
433
434#[derive(Debug, Clone)]
435pub enum AdaptationStrategy {
436    GradientBased,
437    EvolutionaryStrategy,
438    QuantumAnnealing,
439    ReinforcementLearning,
440    BayesianOptimization,
441}
442
443#[derive(Debug, Clone)]
444pub struct GatingHierarchy {
445    levels: Vec<GatingLevel>,
446    level_interactions: Array2<f64>,
447}
448
449#[derive(Debug, Clone)]
450pub struct GatingLevel {
451    level_id: usize,
452    gating_type: QuantumGatingMechanism,
453    expert_groups: Vec<ExpertGroup>,
454}
455
456#[derive(Debug, Clone)]
457pub struct ExpertGroup {
458    group_id: usize,
459    expert_indices: Vec<usize>,
460    group_specialization: Option<ExpertSpecialization>,
461    internal_routing: RoutingType,
462}
463
464#[derive(Debug, Clone)]
465pub enum LoadBalancingStrategy {
466    /// No load balancing
467    None,
468
469    /// Uniform load balancing
470    Uniform,
471
472    /// Capacity-aware balancing
473    CapacityAware { capacity_factors: Array1<f64> },
474
475    /// Performance-based balancing
476    PerformanceBased { performance_weights: Array1<f64> },
477
478    /// Quantum fairness balancing
479    QuantumFairness {
480        fairness_metric: FairnessMetric,
481        balancing_strength: f64,
482    },
483
484    /// Dynamic balancing with adaptation
485    DynamicBalancing {
486        adaptation_rate: f64,
487        balancing_history: usize,
488    },
489
490    /// Entropy-based balancing
491    EntropyBalancing {
492        target_entropy: f64,
493        entropy_weight: f64,
494    },
495}
496
497#[derive(Debug, Clone)]
498pub enum FairnessMetric {
499    Equal,
500    Proportional,
501    QuantumEntropy,
502    InformationTheoretic,
503}
504
505#[derive(Debug, Clone)]
506pub struct SparsityConfig {
507    pub target_sparsity: f64,
508    pub sparsity_method: SparsityMethod,
509    pub sparsity_schedule: SparsitySchedule,
510    pub quantum_sparsity_enhancement: f64,
511}
512
513#[derive(Debug, Clone)]
514pub enum SparsityMethod {
515    TopK { k: usize },
516    Threshold { threshold: f64 },
517    QuantumSelection { selection_probability: f64 },
518    AdaptiveSparsity { adaptation_rate: f64 },
519    EntanglementBased { entanglement_threshold: f64 },
520}
521
522#[derive(Debug, Clone)]
523pub enum SparsitySchedule {
524    Constant,
525    Linear { start: f64, end: f64 },
526    Exponential { decay_rate: f64 },
527    Adaptive { target_performance: f64 },
528    QuantumAnnealed { temperature_schedule: Array1<f64> },
529}
530
531#[derive(Debug, Clone)]
532pub struct EntanglementConfig {
533    pub enable_expert_entanglement: bool,
534    pub entanglement_strength: f64,
535    pub entanglement_decay: f64,
536    pub entanglement_restoration: f64,
537    pub max_entanglement_range: usize,
538    pub entanglement_pattern: EntanglementPattern,
539}
540
541impl Default for EntanglementConfig {
542    fn default() -> Self {
543        Self {
544            enable_expert_entanglement: false,
545            entanglement_strength: 0.5,
546            entanglement_decay: 0.01,
547            entanglement_restoration: 0.05,
548            max_entanglement_range: 4,
549            entanglement_pattern: EntanglementPattern::Linear,
550        }
551    }
552}
553
554/// Main Quantum Mixture of Experts model
555pub struct QuantumMixtureOfExperts {
556    config: QuantumMixtureOfExpertsConfig,
557
558    // Core components
559    experts: Vec<QuantumExpert>,
560    quantum_router: QuantumRouter,
561    quantum_gate_network: QuantumGateNetwork,
562
563    // Load balancing and fairness
564    load_balancer: LoadBalancer,
565    expert_statistics: ExpertStatistics,
566
567    // Training and optimization
568    training_history: Vec<MoETrainingMetrics>,
569    routing_optimizer: RoutingOptimizer,
570    expert_optimizer: ExpertOptimizer,
571
572    // Quantum state management
573    quantum_state_tracker: QuantumStateTracker,
574    entanglement_manager: EntanglementManager,
575
576    // Performance monitoring
577    performance_monitor: PerformanceMonitor,
578    capacity_manager: CapacityManager,
579}
580
581#[derive(Debug, Clone)]
582pub struct QuantumExpert {
583    expert_id: usize,
584    architecture: ExpertArchitecture,
585    quantum_parameters: Array1<f64>,
586    classical_parameters: Array2<f64>,
587    specialization: Option<ExpertSpecialization>,
588    capacity: usize,
589    current_load: usize,
590    performance_history: Vec<f64>,
591    quantum_state: QuantumExpertState,
592}
593
594#[derive(Debug, Clone)]
595pub struct QuantumExpertState {
596    quantum_amplitudes: Array1<Complex64>,
597    entanglement_connections: Vec<usize>,
598    coherence_time: f64,
599    fidelity: f64,
600    quantum_volume: f64,
601}
602
603#[derive(Debug, Clone)]
604pub struct QuantumRouter {
605    routing_strategy: QuantumRoutingStrategy,
606    routing_network: QuantumRoutingNetwork,
607    routing_parameters: Array1<f64>,
608    routing_history: Vec<RoutingDecision>,
609    quantum_routing_state: QuantumRoutingState,
610    num_experts: usize,
611}
612
613#[derive(Debug, Clone)]
614pub struct QuantumRoutingNetwork {
615    routing_layers: Vec<QuantumRoutingLayer>,
616    attention_mechanisms: Vec<QuantumAttentionHead>,
617    entanglement_couplings: Vec<EntanglementCoupling>,
618}
619
620#[derive(Debug, Clone)]
621pub struct QuantumRoutingLayer {
622    layer_type: RoutingLayerType,
623    quantum_gates: Vec<QuantumGate>,
624    routing_weights: Array2<f64>,
625    activation_function: ActivationFunction,
626}
627
628#[derive(Debug, Clone)]
629pub enum RoutingLayerType {
630    QuantumLinear,
631    QuantumAttention,
632    QuantumConvolutional,
633    QuantumRecurrent,
634    HybridLayer,
635}
636
637#[derive(Debug, Clone)]
638pub struct QuantumAttentionHead {
639    head_id: usize,
640    query_projection: QuantumProjection,
641    key_projection: QuantumProjection,
642    value_projection: QuantumProjection,
643    attention_weights: Array2<f64>,
644    entanglement_strength: f64,
645}
646
647#[derive(Debug, Clone)]
648pub struct QuantumProjection {
649    projection_type: ProjectionType,
650    quantum_circuit: QuantumCircuit,
651    parameters: Array1<f64>,
652}
653
654#[derive(Debug, Clone)]
655pub enum ProjectionType {
656    Linear,
657    Nonlinear,
658    Quantum,
659    Hybrid,
660}
661
662#[derive(Debug, Clone)]
663pub struct EntanglementCoupling {
664    coupling_qubits: Vec<usize>,
665    coupling_strength: f64,
666    coupling_type: CouplingType,
667    time_evolution: Array1<f64>,
668}
669
670#[derive(Debug, Clone)]
671pub enum CouplingType {
672    CNOT,
673    CZ,
674    SWAP,
675    Custom { coupling_matrix: Array2<Complex64> },
676}
677
678#[derive(Debug, Clone)]
679pub struct RoutingDecision {
680    decision_id: usize,
681    expert_weights: Array1<f64>,
682    routing_confidence: f64,
683    quantum_coherence: f64,
684    entanglement_measure: f64,
685    decision_quality: f64,
686}
687
688#[derive(Debug, Clone)]
689pub struct QuantumRoutingState {
690    routing_amplitudes: Array1<Complex64>,
691    routing_entanglement: f64,
692    routing_coherence: f64,
693    routing_fidelity: f64,
694}
695
696#[derive(Debug, Clone)]
697pub struct QuantumGateNetwork {
698    gating_mechanism: QuantumGatingMechanism,
699    gate_parameters: Array1<f64>,
700    gating_history: Vec<GatingDecision>,
701    quantum_gate_state: QuantumGateState,
702}
703
704#[derive(Debug, Clone)]
705pub struct GatingDecision {
706    gate_weights: Array1<f64>,
707    gate_confidence: f64,
708    sparsity_level: f64,
709    quantum_efficiency: f64,
710}
711
712#[derive(Debug, Clone)]
713pub struct QuantumGateState {
714    gate_amplitudes: Array1<Complex64>,
715    gate_entanglement: f64,
716    gate_coherence: f64,
717}
718
719#[derive(Debug, Clone)]
720pub struct LoadBalancer {
721    strategy: LoadBalancingStrategy,
722    balancing_parameters: Array1<f64>,
723    load_history: Vec<LoadBalancingState>,
724    fairness_metrics: FairnessMetrics,
725}
726
727#[derive(Debug, Clone)]
728pub struct LoadBalancingState {
729    expert_loads: Array1<f64>,
730    load_variance: f64,
731    utilization_efficiency: f64,
732    fairness_score: f64,
733}
734
735#[derive(Debug, Clone)]
736pub struct FairnessMetrics {
737    gini_coefficient: f64,
738    entropy_measure: f64,
739    quantum_fairness: f64,
740    balance_score: f64,
741}
742
743#[derive(Debug, Clone)]
744pub struct ExpertStatistics {
745    expert_utilizations: Array1<f64>,
746    expert_performances: Array1<f64>,
747    expert_specializations: Array1<f64>,
748    expert_interactions: Array2<f64>,
749    quantum_correlations: Array2<f64>,
750}
751
752#[derive(Debug, Clone)]
753pub struct RoutingOptimizer {
754    optimizer_type: OptimizerType,
755    learning_rate: f64,
756    optimization_history: Vec<RoutingOptimizationStep>,
757    gradient_estimator: GradientEstimator,
758}
759
760#[derive(Debug, Clone)]
761pub enum OptimizerType {
762    Adam { beta1: f64, beta2: f64 },
763    SGD { momentum: f64 },
764    RMSprop { decay: f64 },
765    QuantumNaturalGradient,
766    ParameterShiftRule,
767}
768
769#[derive(Debug, Clone)]
770pub struct RoutingOptimizationStep {
771    step_id: usize,
772    gradient_norm: f64,
773    learning_rate_used: f64,
774    optimization_objective: f64,
775    convergence_metric: f64,
776}
777
778#[derive(Debug, Clone)]
779pub enum GradientEstimator {
780    ExactGradient,
781    FiniteDifference { epsilon: f64 },
782    ParameterShift,
783    QuantumNaturalGradient,
784    StochasticEstimation { num_samples: usize },
785}
786
787#[derive(Debug, Clone)]
788pub struct ExpertOptimizer {
789    optimizer_type: OptimizerType,
790    expert_learning_rates: Array1<f64>,
791    expert_optimization_history: Vec<ExpertOptimizationStep>,
792}
793
794#[derive(Debug, Clone)]
795pub struct ExpertOptimizationStep {
796    expert_id: usize,
797    gradient_norm: f64,
798    parameter_update_norm: f64,
799    performance_change: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct QuantumStateTracker {
804    state_history: Vec<QuantumSystemState>,
805    coherence_tracking: CoherenceTracker,
806    entanglement_tracking: EntanglementTracker,
807    fidelity_tracking: FidelityTracker,
808}
809
810#[derive(Debug, Clone)]
811pub struct QuantumSystemState {
812    timestamp: usize,
813    total_entanglement: f64,
814    system_coherence: f64,
815    quantum_volume_utilization: f64,
816    expert_quantum_states: Vec<QuantumExpertState>,
817}
818
819#[derive(Debug, Clone)]
820pub struct CoherenceTracker {
821    coherence_history: Vec<f64>,
822    decoherence_rate: f64,
823    coherence_preservation_strategies: Vec<CoherenceStrategy>,
824}
825
826#[derive(Debug, Clone)]
827pub enum CoherenceStrategy {
828    DynamicalDecoupling,
829    ErrorCorrection,
830    DecoherenceSupression,
831    QuantumZeno,
832}
833
834#[derive(Debug, Clone)]
835pub struct EntanglementTracker {
836    entanglement_history: Vec<EntanglementMeasurement>,
837    entanglement_budget: f64,
838    entanglement_efficiency: f64,
839}
840
841#[derive(Debug, Clone)]
842pub struct EntanglementMeasurement {
843    timestamp: usize,
844    concurrence: f64,
845    negativity: f64,
846    entanglement_entropy: f64,
847    quantum_discord: f64,
848}
849
850#[derive(Debug, Clone)]
851pub struct FidelityTracker {
852    fidelity_history: Vec<f64>,
853    target_fidelity: f64,
854    fidelity_optimization: FidelityOptimization,
855}
856
857#[derive(Debug, Clone)]
858pub enum FidelityOptimization {
859    ProcessTomography,
860    StateTomography,
861    DirectFidelityEstimation,
862    QuantumBenchmarking,
863}
864
865#[derive(Debug, Clone)]
866pub struct EntanglementManager {
867    entanglement_config: EntanglementConfig,
868    entanglement_operations: Vec<EntanglementOperation>,
869    entanglement_scheduler: EntanglementScheduler,
870}
871
872#[derive(Debug, Clone)]
873pub struct EntanglementOperation {
874    operation_type: EntanglementOperationType,
875    target_experts: Vec<usize>,
876    entanglement_strength: f64,
877    operation_fidelity: f64,
878}
879
880#[derive(Debug, Clone)]
881pub enum EntanglementOperationType {
882    CreateEntanglement,
883    BreakEntanglement,
884    ModifyEntanglement,
885    MeasureEntanglement,
886}
887
888#[derive(Debug, Clone)]
889pub struct EntanglementScheduler {
890    scheduling_strategy: SchedulingStrategy,
891    entanglement_budget: f64,
892    operation_queue: Vec<EntanglementOperation>,
893}
894
895#[derive(Debug, Clone)]
896pub enum SchedulingStrategy {
897    GreedyScheduling,
898    OptimalScheduling,
899    HeuristicScheduling,
900    AdaptiveScheduling,
901}
902
903#[derive(Debug, Clone)]
904pub struct PerformanceMonitor {
905    performance_metrics: PerformanceMetrics,
906    monitoring_config: MonitoringConfig,
907    alert_system: AlertSystem,
908}
909
910#[derive(Debug, Clone)]
911pub struct PerformanceMetrics {
912    throughput: f64,
913    latency: f64,
914    accuracy: f64,
915    expert_utilization: Array1<f64>,
916    quantum_efficiency: f64,
917    resource_utilization: f64,
918}
919
920#[derive(Debug, Clone)]
921pub struct MonitoringConfig {
922    monitoring_frequency: usize,
923    metrics_to_track: Vec<MetricType>,
924    alert_thresholds: HashMap<String, f64>,
925}
926
927#[derive(Debug, Clone)]
928pub enum MetricType {
929    Performance,
930    ResourceUtilization,
931    QuantumCoherence,
932    ExpertLoad,
933    RoutingEfficiency,
934}
935
936#[derive(Debug, Clone)]
937pub struct AlertSystem {
938    alert_rules: Vec<AlertRule>,
939    alert_history: Vec<Alert>,
940}
941
942#[derive(Debug, Clone)]
943pub struct AlertRule {
944    rule_id: String,
945    metric_name: String,
946    threshold: f64,
947    comparison: ComparisonType,
948    action: AlertAction,
949}
950
951#[derive(Debug, Clone)]
952pub enum ComparisonType {
953    GreaterThan,
954    LessThan,
955    Equal,
956    NotEqual,
957}
958
959#[derive(Debug, Clone)]
960pub enum AlertAction {
961    Log,
962    Rebalance,
963    OptimizeRouting,
964    RestoreCoherence,
965}
966
967#[derive(Debug, Clone)]
968pub struct Alert {
969    alert_id: String,
970    timestamp: usize,
971    severity: AlertSeverity,
972    message: String,
973    affected_components: Vec<String>,
974}
975
976#[derive(Debug, Clone)]
977pub enum AlertSeverity {
978    Info,
979    Warning,
980    Error,
981    Critical,
982}
983
984#[derive(Debug, Clone)]
985pub struct CapacityManager {
986    total_capacity: usize,
987    available_capacity: usize,
988    capacity_allocation: Array1<f64>,
989    capacity_optimization: CapacityOptimization,
990}
991
992#[derive(Debug, Clone)]
993pub enum CapacityOptimization {
994    StaticAllocation,
995    DynamicAllocation,
996    PredictiveAllocation,
997    QuantumOptimizedAllocation,
998}
999
1000// Training and evaluation structures
1001#[derive(Debug, Clone)]
1002pub struct MoETrainingMetrics {
1003    pub epoch: usize,
1004    pub loss: f64,
1005    pub routing_efficiency: f64,
1006    pub expert_utilization: f64,
1007    pub load_balance_score: f64,
1008    pub quantum_coherence: f64,
1009    pub entanglement_utilization: f64,
1010    pub sparsity_achieved: f64,
1011    pub throughput: f64,
1012    pub quantum_advantage: f64,
1013}
1014
1015// Main implementation
1016impl QuantumMixtureOfExperts {
1017    /// Create a new Quantum Mixture of Experts
1018    pub fn new(config: QuantumMixtureOfExpertsConfig) -> Result<Self> {
1019        println!("🧠 Initializing Quantum Mixture of Experts in UltraThink Mode");
1020
1021        // Initialize experts
1022        let experts = Self::create_experts(&config)?;
1023
1024        // Initialize quantum router
1025        let quantum_router = QuantumRouter::new(&config)?;
1026
1027        // Initialize quantum gate network
1028        let quantum_gate_network = QuantumGateNetwork::new(&config)?;
1029
1030        // Initialize load balancer
1031        let load_balancer = LoadBalancer::new(&config)?;
1032
1033        // Initialize statistics and monitoring
1034        let expert_statistics = ExpertStatistics::new(config.num_experts);
1035        let performance_monitor = PerformanceMonitor::new(&config)?;
1036        let capacity_manager = CapacityManager::new(&config)?;
1037
1038        // Initialize optimizers
1039        let routing_optimizer = RoutingOptimizer::new(&config)?;
1040        let expert_optimizer = ExpertOptimizer::new(&config)?;
1041
1042        // Initialize quantum state management
1043        let quantum_state_tracker = QuantumStateTracker::new(&config)?;
1044        let entanglement_manager = EntanglementManager::new(&config)?;
1045
1046        Ok(Self {
1047            config,
1048            experts,
1049            quantum_router,
1050            quantum_gate_network,
1051            load_balancer,
1052            expert_statistics,
1053            training_history: Vec::new(),
1054            routing_optimizer,
1055            expert_optimizer,
1056            quantum_state_tracker,
1057            entanglement_manager,
1058            performance_monitor,
1059            capacity_manager,
1060        })
1061    }
1062
1063    /// Forward pass through the quantum mixture of experts
1064    pub fn forward(&mut self, input: &Array1<f64>) -> Result<MoEOutput> {
1065        // Quantum routing to determine expert weights
1066        let routing_result = self.quantum_router.route(input)?;
1067
1068        // Apply quantum gating mechanism
1069        let gating_result = self.quantum_gate_network.gate(&routing_result)?;
1070
1071        // Apply load balancing
1072        let balanced_weights = self
1073            .load_balancer
1074            .balance_loads(&gating_result.expert_weights)?;
1075
1076        // Process through selected experts in quantum superposition
1077        let expert_outputs = self.process_through_experts(input, &balanced_weights)?;
1078
1079        // Combine expert outputs using quantum interference
1080        let combined_output = self.combine_expert_outputs(&expert_outputs, &balanced_weights)?;
1081
1082        // Update quantum states and entanglement
1083        self.update_quantum_states(&routing_result, &gating_result)?;
1084
1085        // Update statistics
1086        self.update_expert_statistics(&balanced_weights, &expert_outputs)?;
1087
1088        // Monitor performance
1089        self.performance_monitor
1090            .update(&combined_output, &balanced_weights)?;
1091
1092        Ok(MoEOutput {
1093            output: combined_output.prediction,
1094            expert_weights: balanced_weights,
1095            routing_decision: routing_result,
1096            gating_decision: gating_result,
1097            expert_outputs,
1098            quantum_metrics: combined_output.quantum_metrics,
1099        })
1100    }
1101
1102    /// Create experts based on configuration
1103    fn create_experts(config: &QuantumMixtureOfExpertsConfig) -> Result<Vec<QuantumExpert>> {
1104        let mut experts = Vec::new();
1105
1106        for expert_id in 0..config.num_experts {
1107            let expert = QuantumExpert::new(expert_id, config)?;
1108            experts.push(expert);
1109        }
1110
1111        Ok(experts)
1112    }
1113
1114    /// Process input through selected experts
1115    fn process_through_experts(
1116        &mut self,
1117        input: &Array1<f64>,
1118        expert_weights: &Array1<f64>,
1119    ) -> Result<Vec<ExpertOutput>> {
1120        let mut expert_outputs = Vec::new();
1121
1122        for (expert_id, expert) in self.experts.iter_mut().enumerate() {
1123            let weight = expert_weights[expert_id];
1124
1125            // Skip experts with negligible weights for efficiency
1126            if weight < 1e-6 {
1127                expert_outputs.push(ExpertOutput::default());
1128                continue;
1129            }
1130
1131            // Process through expert
1132            let output = expert.process(input, weight, &self.config)?;
1133            expert_outputs.push(output);
1134        }
1135
1136        Ok(expert_outputs)
1137    }
1138
1139    /// Combine expert outputs using quantum interference
1140    fn combine_expert_outputs(
1141        &self,
1142        expert_outputs: &[ExpertOutput],
1143        weights: &Array1<f64>,
1144    ) -> Result<CombinedOutput> {
1145        let output_dim = self.config.output_dim;
1146        let mut combined_prediction = Array1::zeros(output_dim);
1147        let mut total_weight = 0.0;
1148        let mut quantum_metrics = QuantumCombinationMetrics::default();
1149
1150        // Weighted combination with quantum interference effects
1151        for (expert_id, output) in expert_outputs.iter().enumerate() {
1152            let weight = weights[expert_id];
1153            if weight > 1e-6 {
1154                // Apply quantum interference pattern
1155                let interference_factor = self.compute_interference_factor(expert_id, &weights)?;
1156                let effective_weight = weight * interference_factor;
1157
1158                combined_prediction =
1159                    &combined_prediction + &(effective_weight * &output.prediction);
1160                total_weight += effective_weight;
1161
1162                // Accumulate quantum metrics
1163                quantum_metrics.accumulate(&output.quantum_metrics, effective_weight);
1164            }
1165        }
1166
1167        // Normalize
1168        if total_weight > 1e-10 {
1169            combined_prediction = combined_prediction / total_weight;
1170        }
1171
1172        // Finalize quantum metrics
1173        quantum_metrics.finalize(total_weight);
1174
1175        Ok(CombinedOutput {
1176            prediction: combined_prediction,
1177            quantum_metrics,
1178        })
1179    }
1180
1181    /// Compute quantum interference factor between experts
1182    fn compute_interference_factor(&self, expert_id: usize, weights: &Array1<f64>) -> Result<f64> {
1183        let mut interference_factor = 1.0;
1184
1185        match &self.config.routing_strategy {
1186            QuantumRoutingStrategy::QuantumSuperposition {
1187                interference_pattern,
1188                ..
1189            } => {
1190                match interference_pattern {
1191                    InterferencePattern::Constructive => {
1192                        // Enhance contributions from highly weighted experts
1193                        interference_factor = 1.0 + 0.1 * weights[expert_id];
1194                    }
1195                    InterferencePattern::Destructive => {
1196                        // Reduce contributions based on other expert weights
1197                        let other_weights_sum: f64 = weights
1198                            .iter()
1199                            .enumerate()
1200                            .filter(|(i, _)| *i != expert_id)
1201                            .map(|(_, w)| *w)
1202                            .sum();
1203                        interference_factor = 1.0 - 0.05 * other_weights_sum;
1204                    }
1205                    InterferencePattern::Mixed => {
1206                        // Combine constructive and destructive effects
1207                        let constructive = 1.0 + 0.05 * weights[expert_id];
1208                        let destructive = 1.0 - 0.025 * (weights.sum() - weights[expert_id]);
1209                        interference_factor = 0.5 * (constructive + destructive);
1210                    }
1211                    _ => {
1212                        interference_factor = 1.0;
1213                    }
1214                }
1215            }
1216            _ => {
1217                interference_factor = 1.0;
1218            }
1219        }
1220
1221        Ok(interference_factor.max(0.1)) // Ensure positive interference
1222    }
1223
1224    /// Update quantum states after processing
1225    fn update_quantum_states(
1226        &mut self,
1227        routing_result: &RoutingResult,
1228        gating_result: &GatingResult,
1229    ) -> Result<()> {
1230        // Update entanglement between experts
1231        self.entanglement_manager
1232            .update_entanglement(&routing_result.expert_weights)?;
1233
1234        // Track quantum coherence
1235        self.quantum_state_tracker
1236            .update_coherence(routing_result.quantum_coherence)?;
1237
1238        // Update expert quantum states
1239        for (expert_id, expert) in self.experts.iter_mut().enumerate() {
1240            expert.update_quantum_state(
1241                routing_result.expert_weights[expert_id],
1242                gating_result.quantum_efficiency,
1243            )?;
1244        }
1245
1246        Ok(())
1247    }
1248
1249    /// Update expert utilization statistics
1250    fn update_expert_statistics(
1251        &mut self,
1252        weights: &Array1<f64>,
1253        outputs: &[ExpertOutput],
1254    ) -> Result<()> {
1255        // Update utilization statistics
1256        for (expert_id, &weight) in weights.iter().enumerate() {
1257            if expert_id < self.expert_statistics.expert_utilizations.len() {
1258                self.expert_statistics.expert_utilizations[expert_id] =
1259                    0.9 * self.expert_statistics.expert_utilizations[expert_id] + 0.1 * weight;
1260            }
1261
1262            if let Some(output) = outputs.get(expert_id) {
1263                if expert_id < self.expert_statistics.expert_performances.len() {
1264                    self.expert_statistics.expert_performances[expert_id] = 0.9
1265                        * self.expert_statistics.expert_performances[expert_id]
1266                        + 0.1 * output.quality_score;
1267                }
1268            }
1269        }
1270
1271        // Update expert interaction matrix
1272        for i in 0..self.config.num_experts {
1273            for j in i + 1..self.config.num_experts {
1274                let interaction = weights[i] * weights[j];
1275                self.expert_statistics.expert_interactions[[i, j]] =
1276                    0.9 * self.expert_statistics.expert_interactions[[i, j]] + 0.1 * interaction;
1277                self.expert_statistics.expert_interactions[[j, i]] =
1278                    self.expert_statistics.expert_interactions[[i, j]];
1279            }
1280        }
1281
1282        Ok(())
1283    }
1284
1285    /// Train the quantum mixture of experts
1286    pub fn train(
1287        &mut self,
1288        data: &Array2<f64>,
1289        targets: &Array2<f64>,
1290        training_config: &MoETrainingConfig,
1291    ) -> Result<MoETrainingOutput> {
1292        let mut training_losses = Vec::new();
1293        let mut routing_efficiency_history = Vec::new();
1294        let mut quantum_metrics_history = Vec::new();
1295
1296        println!("🚀 Starting Quantum Mixture of Experts Training in UltraThink Mode");
1297
1298        for epoch in 0..training_config.epochs {
1299            let epoch_metrics = self.train_epoch(data, targets, training_config, epoch)?;
1300
1301            training_losses.push(epoch_metrics.loss);
1302            routing_efficiency_history.push(epoch_metrics.routing_efficiency);
1303
1304            // Update learning rates and strategies
1305            self.update_training_strategies(&epoch_metrics)?;
1306
1307            // Apply load balancing adjustments
1308            self.load_balancer.adapt_strategy(&epoch_metrics)?;
1309
1310            // Optimize quantum parameters
1311            self.optimize_quantum_parameters(&epoch_metrics)?;
1312
1313            self.training_history.push(epoch_metrics.clone());
1314            quantum_metrics_history.push(QuantumMoEMetrics {
1315                quantum_coherence: epoch_metrics.quantum_coherence,
1316                entanglement_utilization: epoch_metrics.entanglement_utilization,
1317                quantum_advantage: epoch_metrics.quantum_advantage,
1318                routing_efficiency: epoch_metrics.routing_efficiency,
1319            });
1320
1321            // Logging
1322            if epoch % training_config.log_interval == 0 {
1323                println!(
1324                    "Epoch {}: Loss = {:.6}, Routing Efficiency = {:.4}, Expert Utilization = {:.4}, Quantum Advantage = {:.2}x",
1325                    epoch,
1326                    epoch_metrics.loss,
1327                    epoch_metrics.routing_efficiency,
1328                    epoch_metrics.expert_utilization,
1329                    epoch_metrics.quantum_advantage,
1330                );
1331            }
1332        }
1333
1334        let convergence_analysis = self.analyze_convergence(&training_losses)?;
1335
1336        Ok(MoETrainingOutput {
1337            training_losses,
1338            routing_efficiency_history,
1339            quantum_metrics_history,
1340            final_expert_statistics: self.expert_statistics.clone(),
1341            convergence_analysis,
1342        })
1343    }
1344
1345    /// Train single epoch
1346    fn train_epoch(
1347        &mut self,
1348        data: &Array2<f64>,
1349        targets: &Array2<f64>,
1350        config: &MoETrainingConfig,
1351        epoch: usize,
1352    ) -> Result<MoETrainingMetrics> {
1353        let mut epoch_loss = 0.0;
1354        let mut routing_efficiency_sum = 0.0;
1355        let mut expert_utilization_sum = 0.0;
1356        let mut quantum_coherence_sum = 0.0;
1357        let mut entanglement_sum = 0.0;
1358        let mut num_batches = 0;
1359
1360        let num_samples = data.nrows();
1361
1362        for batch_start in (0..num_samples).step_by(config.batch_size) {
1363            let batch_end = (batch_start + config.batch_size).min(num_samples);
1364            let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1365            let batch_targets = targets.slice(ndarray::s![batch_start..batch_end, ..]);
1366
1367            let batch_metrics = self.train_batch(&batch_data, &batch_targets, config)?;
1368
1369            epoch_loss += batch_metrics.loss;
1370            routing_efficiency_sum += batch_metrics.routing_efficiency;
1371            expert_utilization_sum += batch_metrics.expert_utilization;
1372            quantum_coherence_sum += batch_metrics.quantum_coherence;
1373            entanglement_sum += batch_metrics.entanglement_utilization;
1374            num_batches += 1;
1375        }
1376
1377        let num_batches_f = num_batches as f64;
1378        Ok(MoETrainingMetrics {
1379            epoch,
1380            loss: epoch_loss / num_batches_f,
1381            routing_efficiency: routing_efficiency_sum / num_batches_f,
1382            expert_utilization: expert_utilization_sum / num_batches_f,
1383            load_balance_score: self.compute_load_balance_score()?,
1384            quantum_coherence: quantum_coherence_sum / num_batches_f,
1385            entanglement_utilization: entanglement_sum / num_batches_f,
1386            sparsity_achieved: self.compute_sparsity_achieved()?,
1387            throughput: num_samples as f64 / 1.0, // Simplified throughput
1388            quantum_advantage: self.estimate_quantum_advantage()?,
1389        })
1390    }
1391
1392    /// Train single batch
1393    fn train_batch(
1394        &mut self,
1395        batch_data: &ndarray::ArrayView2<f64>,
1396        batch_targets: &ndarray::ArrayView2<f64>,
1397        config: &MoETrainingConfig,
1398    ) -> Result<MoETrainingMetrics> {
1399        let mut batch_loss = 0.0;
1400        let mut routing_efficiency_sum = 0.0;
1401        let mut expert_utilization_sum = 0.0;
1402        let mut quantum_coherence_sum = 0.0;
1403        let mut entanglement_sum = 0.0;
1404
1405        for (sample_idx, (input, target)) in batch_data
1406            .rows()
1407            .into_iter()
1408            .zip(batch_targets.rows())
1409            .enumerate()
1410        {
1411            let input_array = input.to_owned();
1412            let target_array = target.to_owned();
1413
1414            // Forward pass
1415            let output = self.forward(&input_array)?;
1416
1417            // Compute loss
1418            let loss = self.compute_loss(&output.output, &target_array, &output)?;
1419            batch_loss += loss;
1420
1421            // Accumulate metrics
1422            routing_efficiency_sum += output.routing_decision.routing_confidence;
1423            expert_utilization_sum += output.expert_weights.sum() / self.config.num_experts as f64;
1424            quantum_coherence_sum += output.quantum_metrics.coherence;
1425            entanglement_sum += output.quantum_metrics.entanglement;
1426
1427            // Backward pass and parameter updates
1428            self.update_parameters(&output, &target_array, config)?;
1429        }
1430
1431        let num_samples = batch_data.nrows() as f64;
1432        Ok(MoETrainingMetrics {
1433            epoch: 0, // Will be set by caller
1434            loss: batch_loss / num_samples,
1435            routing_efficiency: routing_efficiency_sum / num_samples,
1436            expert_utilization: expert_utilization_sum / num_samples,
1437            load_balance_score: self.compute_load_balance_score()?,
1438            quantum_coherence: quantum_coherence_sum / num_samples,
1439            entanglement_utilization: entanglement_sum / num_samples,
1440            sparsity_achieved: self.compute_sparsity_achieved()?,
1441            throughput: num_samples,
1442            quantum_advantage: self.estimate_quantum_advantage()?,
1443        })
1444    }
1445
1446    /// Compute loss function
1447    fn compute_loss(
1448        &self,
1449        prediction: &Array1<f64>,
1450        target: &Array1<f64>,
1451        output: &MoEOutput,
1452    ) -> Result<f64> {
1453        // Base prediction loss (MSE)
1454        let mse_loss = (prediction - target).mapv(|x| x * x).sum() / prediction.len() as f64;
1455
1456        // Load balancing loss
1457        let load_balance_loss = self.compute_load_balance_loss(&output.expert_weights)?;
1458
1459        // Sparsity loss
1460        let sparsity_loss = self.compute_sparsity_loss(&output.expert_weights)?;
1461
1462        // Quantum coherence preservation loss
1463        let coherence_loss = 1.0 - output.quantum_metrics.coherence;
1464
1465        // Total loss
1466        let total_loss =
1467            mse_loss + 0.01 * load_balance_loss + 0.001 * sparsity_loss + 0.1 * coherence_loss;
1468
1469        Ok(total_loss)
1470    }
1471
1472    /// Update model parameters
1473    fn update_parameters(
1474        &mut self,
1475        output: &MoEOutput,
1476        target: &Array1<f64>,
1477        config: &MoETrainingConfig,
1478    ) -> Result<()> {
1479        // Update routing parameters
1480        // Convert RoutingResult to RoutingDecision for compatibility
1481        let routing_decision = RoutingDecision {
1482            decision_id: 0,
1483            expert_weights: output.routing_decision.expert_weights.clone(),
1484            routing_confidence: output.routing_decision.routing_confidence,
1485            quantum_coherence: output.routing_decision.quantum_coherence,
1486            entanglement_measure: 0.0, // Default value
1487            decision_quality: output.routing_decision.routing_confidence,
1488        };
1489
1490        self.routing_optimizer.update_routing_parameters(
1491            &routing_decision,
1492            target,
1493            config.routing_learning_rate,
1494        )?;
1495
1496        // Update expert parameters
1497        self.expert_optimizer.update_expert_parameters(
1498            &self.experts,
1499            &output.expert_outputs,
1500            &output.expert_weights,
1501            target,
1502            config.expert_learning_rate,
1503        )?;
1504
1505        // Update quantum parameters
1506        self.update_quantum_parameters_from_loss(output, target)?;
1507
1508        Ok(())
1509    }
1510
1511    /// Get current model statistics
1512    pub fn get_statistics(&self) -> MoEStatistics {
1513        MoEStatistics {
1514            expert_utilizations: self.expert_statistics.expert_utilizations.clone(),
1515            expert_performances: self.expert_statistics.expert_performances.clone(),
1516            load_balance_score: self.compute_load_balance_score().unwrap_or(0.0),
1517            routing_efficiency: self.compute_routing_efficiency(),
1518            quantum_coherence: self.quantum_state_tracker.get_current_coherence(),
1519            entanglement_utilization: self.entanglement_manager.get_utilization(),
1520            total_parameters: self.count_total_parameters(),
1521            memory_usage: self.estimate_memory_usage(),
1522        }
1523    }
1524
1525    // Helper methods (implementation details)
1526    fn compute_load_balance_score(&self) -> Result<f64> {
1527        let utilizations = &self.expert_statistics.expert_utilizations;
1528        let mean_util = utilizations.sum() / utilizations.len() as f64;
1529        let variance = utilizations
1530            .iter()
1531            .map(|&x| (x - mean_util).powi(2))
1532            .sum::<f64>()
1533            / utilizations.len() as f64;
1534        Ok(1.0 / (1.0 + variance))
1535    }
1536
1537    fn compute_sparsity_achieved(&self) -> Result<f64> {
1538        // Compute average sparsity across recent routing decisions
1539        let recent_decisions = 10.min(self.quantum_router.routing_history.len());
1540        if recent_decisions == 0 {
1541            return Ok(0.0);
1542        }
1543
1544        let total_sparsity = self
1545            .quantum_router
1546            .routing_history
1547            .iter()
1548            .rev()
1549            .take(recent_decisions)
1550            .map(|decision| {
1551                let active_experts = decision
1552                    .expert_weights
1553                    .iter()
1554                    .filter(|&&w| w > 1e-6)
1555                    .count();
1556                1.0 - (active_experts as f64 / self.config.num_experts as f64)
1557            })
1558            .sum::<f64>();
1559
1560        Ok(total_sparsity / recent_decisions as f64)
1561    }
1562
1563    fn estimate_quantum_advantage(&self) -> Result<f64> {
1564        let quantum_contribution = self.quantum_state_tracker.get_current_coherence()
1565            * self.entanglement_manager.get_utilization();
1566        Ok(1.0 + quantum_contribution * 2.0)
1567    }
1568
1569    fn compute_load_balance_loss(&self, expert_weights: &Array1<f64>) -> Result<f64> {
1570        let ideal_weight = 1.0 / self.config.num_experts as f64;
1571        let balance_loss = expert_weights
1572            .iter()
1573            .map(|&w| (w - ideal_weight).powi(2))
1574            .sum::<f64>();
1575        Ok(balance_loss)
1576    }
1577
1578    fn compute_sparsity_loss(&self, expert_weights: &Array1<f64>) -> Result<f64> {
1579        let target_sparsity = self.config.sparsity_config.target_sparsity;
1580        let current_sparsity = 1.0
1581            - expert_weights.iter().filter(|&&w| w > 1e-6).count() as f64
1582                / expert_weights.len() as f64;
1583        Ok((current_sparsity - target_sparsity).powi(2))
1584    }
1585
1586    fn update_training_strategies(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1587        // Adaptive learning rate adjustment
1588        if metrics.routing_efficiency < 0.7 {
1589            self.routing_optimizer.learning_rate *= 1.1;
1590        } else if metrics.routing_efficiency > 0.9 {
1591            self.routing_optimizer.learning_rate *= 0.95;
1592        }
1593
1594        // Sparsity adjustment
1595        if metrics.sparsity_achieved < self.config.sparsity_config.target_sparsity {
1596            // Increase sparsity pressure
1597        }
1598
1599        Ok(())
1600    }
1601
1602    fn optimize_quantum_parameters(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1603        // Optimize entanglement parameters
1604        if metrics.entanglement_utilization < 0.5 {
1605            self.entanglement_manager.increase_entanglement_strength()?;
1606        }
1607
1608        // Optimize coherence preservation
1609        if metrics.quantum_coherence < 0.8 {
1610            self.quantum_state_tracker
1611                .enhance_coherence_preservation()?;
1612        }
1613
1614        Ok(())
1615    }
1616
1617    fn update_quantum_parameters_from_loss(
1618        &mut self,
1619        output: &MoEOutput,
1620        target: &Array1<f64>,
1621    ) -> Result<()> {
1622        // Placeholder for quantum parameter updates based on loss
1623        Ok(())
1624    }
1625
1626    fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1627        if losses.len() < 10 {
1628            return Ok(ConvergenceAnalysis::default());
1629        }
1630
1631        let recent_losses = &losses[losses.len() - 10..];
1632        let early_losses = &losses[0..10];
1633
1634        let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
1635        let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
1636
1637        let convergence_rate = (early_avg - recent_avg) / early_avg;
1638
1639        let variance = recent_losses
1640            .iter()
1641            .map(|&x| (x - recent_avg).powi(2))
1642            .sum::<f64>()
1643            / recent_losses.len() as f64;
1644
1645        Ok(ConvergenceAnalysis {
1646            convergence_rate,
1647            is_converged: variance < 1e-6,
1648            final_loss: recent_avg,
1649            loss_variance: variance,
1650        })
1651    }
1652
1653    fn compute_routing_efficiency(&self) -> f64 {
1654        if self.quantum_router.routing_history.is_empty() {
1655            return 0.0;
1656        }
1657
1658        let recent_efficiency = self
1659            .quantum_router
1660            .routing_history
1661            .iter()
1662            .rev()
1663            .take(10)
1664            .map(|decision| decision.routing_confidence)
1665            .sum::<f64>()
1666            / 10.0_f64.min(self.quantum_router.routing_history.len() as f64);
1667
1668        recent_efficiency
1669    }
1670
1671    fn count_total_parameters(&self) -> usize {
1672        let mut total = 0;
1673
1674        // Count expert parameters
1675        for expert in &self.experts {
1676            total += expert.quantum_parameters.len();
1677            total += expert.classical_parameters.len();
1678        }
1679
1680        // Count routing parameters
1681        total += self.quantum_router.routing_parameters.len();
1682
1683        // Count gating parameters
1684        total += self.quantum_gate_network.gate_parameters.len();
1685
1686        total
1687    }
1688
1689    fn estimate_memory_usage(&self) -> usize {
1690        // Simplified memory usage estimation
1691        let expert_memory = self.experts.len() * 1000; // Placeholder
1692        let routing_memory = self.quantum_router.routing_parameters.len() * 8;
1693        let state_memory = self.quantum_state_tracker.state_history.len() * 100;
1694
1695        expert_memory + routing_memory + state_memory
1696    }
1697}
1698
1699// Component implementations (abbreviated for space)
1700
1701impl QuantumExpert {
1702    pub fn new(expert_id: usize, config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1703        Ok(Self {
1704            expert_id,
1705            architecture: config.expert_architecture.clone(),
1706            quantum_parameters: Array1::zeros(config.num_qubits * 3),
1707            classical_parameters: Array2::zeros((64, 64)), // Default size
1708            specialization: None,
1709            capacity: config.expert_capacity,
1710            current_load: 0,
1711            performance_history: Vec::new(),
1712            quantum_state: QuantumExpertState {
1713                quantum_amplitudes: Array1::<Complex64>::ones(
1714                    2_usize.pow(config.num_qubits as u32),
1715                )
1716                .mapv(|_| Complex64::new(1.0, 0.0)),
1717                entanglement_connections: Vec::new(),
1718                coherence_time: 1.0,
1719                fidelity: 1.0,
1720                quantum_volume: config.num_qubits as f64,
1721            },
1722        })
1723    }
1724
1725    pub fn process(
1726        &mut self,
1727        input: &Array1<f64>,
1728        weight: f64,
1729        config: &QuantumMixtureOfExpertsConfig,
1730    ) -> Result<ExpertOutput> {
1731        // Transform input to output dimension using quantum transformation
1732        let prediction = if config.output_dim != input.len() {
1733            // Simple linear transformation for dimension matching
1734            let mut output = Array1::zeros(config.output_dim);
1735            for i in 0..config.output_dim {
1736                let input_idx = i % input.len();
1737                output[i] = input[input_idx] * (1.0 + self.expert_id as f64 * 0.1);
1738                // Expert-specific transformation
1739            }
1740            output
1741        } else {
1742            input.clone()
1743        };
1744        let quality_score = 0.8; // Placeholder
1745
1746        self.current_load += 1;
1747        self.performance_history.push(quality_score);
1748
1749        Ok(ExpertOutput {
1750            prediction,
1751            quality_score,
1752            confidence: weight,
1753            quantum_metrics: ExpertQuantumMetrics {
1754                coherence: self.quantum_state.coherence_time,
1755                entanglement: 0.5,
1756                fidelity: self.quantum_state.fidelity,
1757                quantum_volume: self.quantum_state.quantum_volume,
1758            },
1759        })
1760    }
1761
1762    pub fn update_quantum_state(&mut self, weight: f64, efficiency: f64) -> Result<()> {
1763        // Update quantum state based on usage
1764        self.quantum_state.coherence_time *= 0.99; // Gradual decoherence
1765        self.quantum_state.fidelity = (self.quantum_state.fidelity + efficiency * weight) / 2.0;
1766        Ok(())
1767    }
1768}
1769
1770impl QuantumRouter {
1771    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1772        Ok(Self {
1773            routing_strategy: config.routing_strategy.clone(),
1774            routing_network: QuantumRoutingNetwork::new(config)?,
1775            routing_parameters: Array1::zeros(config.num_experts * 10),
1776            routing_history: Vec::new(),
1777            quantum_routing_state: QuantumRoutingState {
1778                routing_amplitudes: Array1::<Complex64>::ones(config.num_experts)
1779                    .mapv(|_| Complex64::new(1.0, 0.0)),
1780                routing_entanglement: 0.0,
1781                routing_coherence: 1.0,
1782                routing_fidelity: 1.0,
1783            },
1784            num_experts: config.num_experts,
1785        })
1786    }
1787
1788    pub fn route(&mut self, input: &Array1<f64>) -> Result<RoutingResult> {
1789        // Simplified routing implementation
1790        let num_experts = self.num_experts;
1791        let mut expert_weights = Array1::zeros(num_experts);
1792
1793        // Simple softmax routing
1794        for i in 0..num_experts {
1795            expert_weights[i] = (input[i % input.len()]).exp();
1796        }
1797        let sum_weights = expert_weights.sum();
1798        if sum_weights > 0.0 {
1799            expert_weights = expert_weights / sum_weights;
1800        }
1801
1802        let routing_decision = RoutingDecision {
1803            decision_id: self.routing_history.len(),
1804            expert_weights: expert_weights.clone(),
1805            routing_confidence: 0.8,
1806            quantum_coherence: self.quantum_routing_state.routing_coherence,
1807            entanglement_measure: self.quantum_routing_state.routing_entanglement,
1808            decision_quality: 0.8,
1809        };
1810
1811        self.routing_history.push(routing_decision.clone());
1812
1813        Ok(RoutingResult {
1814            expert_weights: expert_weights.clone(),
1815            routing_confidence: 0.8,
1816            quantum_coherence: self.quantum_routing_state.routing_coherence,
1817            routing_entropy: self.compute_routing_entropy(&expert_weights)?,
1818        })
1819    }
1820
1821    fn compute_routing_entropy(&self, weights: &Array1<f64>) -> Result<f64> {
1822        let entropy = -weights
1823            .iter()
1824            .filter(|&&w| w > 1e-10)
1825            .map(|&w| w * w.ln())
1826            .sum::<f64>();
1827        Ok(entropy)
1828    }
1829}
1830
1831impl QuantumRoutingNetwork {
1832    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1833        Ok(Self {
1834            routing_layers: Vec::new(),
1835            attention_mechanisms: Vec::new(),
1836            entanglement_couplings: Vec::new(),
1837        })
1838    }
1839}
1840
1841impl QuantumGateNetwork {
1842    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1843        Ok(Self {
1844            gating_mechanism: config.gating_mechanism.clone(),
1845            gate_parameters: Array1::zeros(config.num_experts),
1846            gating_history: Vec::new(),
1847            quantum_gate_state: QuantumGateState {
1848                gate_amplitudes: Array1::<Complex64>::ones(config.num_experts)
1849                    .mapv(|_| Complex64::new(1.0, 0.0)),
1850                gate_entanglement: 0.0,
1851                gate_coherence: 1.0,
1852            },
1853        })
1854    }
1855
1856    pub fn gate(&mut self, routing_result: &RoutingResult) -> Result<GatingResult> {
1857        // Apply gating mechanism to routing weights
1858        let gated_weights = match &self.gating_mechanism {
1859            QuantumGatingMechanism::SuperpositionGating {
1860                coherence_preservation,
1861            } => routing_result
1862                .expert_weights
1863                .mapv(|w| w * coherence_preservation),
1864            _ => routing_result.expert_weights.clone(),
1865        };
1866
1867        let gating_decision = GatingDecision {
1868            gate_weights: gated_weights.clone(),
1869            gate_confidence: routing_result.routing_confidence,
1870            sparsity_level: self.compute_sparsity(&gated_weights)?,
1871            quantum_efficiency: 0.9,
1872        };
1873
1874        self.gating_history.push(gating_decision.clone());
1875
1876        Ok(GatingResult {
1877            expert_weights: gated_weights,
1878            sparsity_achieved: gating_decision.sparsity_level,
1879            quantum_efficiency: gating_decision.quantum_efficiency,
1880        })
1881    }
1882
1883    fn compute_sparsity(&self, weights: &Array1<f64>) -> Result<f64> {
1884        let active_count = weights.iter().filter(|&&w| w > 1e-6).count();
1885        Ok(1.0 - active_count as f64 / weights.len() as f64)
1886    }
1887}
1888
1889impl LoadBalancer {
1890    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1891        Ok(Self {
1892            strategy: config.load_balancing.clone(),
1893            balancing_parameters: Array1::zeros(config.num_experts),
1894            load_history: Vec::new(),
1895            fairness_metrics: FairnessMetrics {
1896                gini_coefficient: 0.0,
1897                entropy_measure: 0.0,
1898                quantum_fairness: 0.0,
1899                balance_score: 1.0,
1900            },
1901        })
1902    }
1903
1904    pub fn balance_loads(&mut self, weights: &Array1<f64>) -> Result<Array1<f64>> {
1905        match &self.strategy {
1906            LoadBalancingStrategy::Uniform => {
1907                // Apply uniform balancing
1908                let mean_weight = weights.sum() / weights.len() as f64;
1909                let balanced = weights.mapv(|w| 0.8 * w + 0.2 * mean_weight);
1910                Ok(balanced)
1911            }
1912            LoadBalancingStrategy::CapacityAware { capacity_factors } => {
1913                // Apply capacity-aware balancing
1914                let mut balanced = weights.clone();
1915                for i in 0..balanced.len() {
1916                    balanced[i] *= capacity_factors[i.min(capacity_factors.len() - 1)];
1917                }
1918                Ok(balanced)
1919            }
1920            _ => Ok(weights.clone()),
1921        }
1922    }
1923
1924    pub fn adapt_strategy(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1925        // Adapt balancing strategy based on performance
1926        if metrics.load_balance_score < 0.7 {
1927            // Increase balancing strength
1928        }
1929        Ok(())
1930    }
1931}
1932
1933impl ExpertStatistics {
1934    pub fn new(num_experts: usize) -> Self {
1935        Self {
1936            expert_utilizations: Array1::zeros(num_experts),
1937            expert_performances: Array1::zeros(num_experts),
1938            expert_specializations: Array1::zeros(num_experts),
1939            expert_interactions: Array2::zeros((num_experts, num_experts)),
1940            quantum_correlations: Array2::zeros((num_experts, num_experts)),
1941        }
1942    }
1943}
1944
1945impl PerformanceMonitor {
1946    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1947        Ok(Self {
1948            performance_metrics: PerformanceMetrics {
1949                throughput: 0.0,
1950                latency: 0.0,
1951                accuracy: 0.0,
1952                expert_utilization: Array1::zeros(config.num_experts),
1953                quantum_efficiency: 0.0,
1954                resource_utilization: 0.0,
1955            },
1956            monitoring_config: MonitoringConfig {
1957                monitoring_frequency: 100,
1958                metrics_to_track: vec![MetricType::Performance, MetricType::ResourceUtilization],
1959                alert_thresholds: HashMap::new(),
1960            },
1961            alert_system: AlertSystem {
1962                alert_rules: Vec::new(),
1963                alert_history: Vec::new(),
1964            },
1965        })
1966    }
1967
1968    pub fn update(&mut self, output: &CombinedOutput, weights: &Array1<f64>) -> Result<()> {
1969        // Update performance metrics
1970        self.performance_metrics.quantum_efficiency = output.quantum_metrics.coherence;
1971        self.performance_metrics.expert_utilization = weights.clone();
1972        Ok(())
1973    }
1974}
1975
1976impl CapacityManager {
1977    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1978        Ok(Self {
1979            total_capacity: config.num_experts * config.expert_capacity,
1980            available_capacity: config.num_experts * config.expert_capacity,
1981            capacity_allocation: Array1::ones(config.num_experts) / config.num_experts as f64,
1982            capacity_optimization: CapacityOptimization::DynamicAllocation,
1983        })
1984    }
1985}
1986
1987impl RoutingOptimizer {
1988    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1989        Ok(Self {
1990            optimizer_type: OptimizerType::Adam {
1991                beta1: 0.9,
1992                beta2: 0.999,
1993            },
1994            learning_rate: 0.001,
1995            optimization_history: Vec::new(),
1996            gradient_estimator: GradientEstimator::ParameterShift,
1997        })
1998    }
1999
2000    pub fn update_routing_parameters(
2001        &mut self,
2002        routing_decision: &RoutingDecision,
2003        target: &Array1<f64>,
2004        learning_rate: f64,
2005    ) -> Result<()> {
2006        // Placeholder for routing parameter updates
2007        Ok(())
2008    }
2009}
2010
2011impl ExpertOptimizer {
2012    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2013        Ok(Self {
2014            optimizer_type: OptimizerType::Adam {
2015                beta1: 0.9,
2016                beta2: 0.999,
2017            },
2018            expert_learning_rates: Array1::ones(config.num_experts) * 0.001,
2019            expert_optimization_history: Vec::new(),
2020        })
2021    }
2022
2023    pub fn update_expert_parameters(
2024        &mut self,
2025        experts: &[QuantumExpert],
2026        expert_outputs: &[ExpertOutput],
2027        expert_weights: &Array1<f64>,
2028        target: &Array1<f64>,
2029        learning_rate: f64,
2030    ) -> Result<()> {
2031        // Placeholder for expert parameter updates
2032        Ok(())
2033    }
2034}
2035
2036impl QuantumStateTracker {
2037    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2038        Ok(Self {
2039            state_history: Vec::new(),
2040            coherence_tracking: CoherenceTracker {
2041                coherence_history: Vec::new(),
2042                decoherence_rate: 0.01,
2043                coherence_preservation_strategies: Vec::new(),
2044            },
2045            entanglement_tracking: EntanglementTracker {
2046                entanglement_history: Vec::new(),
2047                entanglement_budget: 1.0,
2048                entanglement_efficiency: 1.0,
2049            },
2050            fidelity_tracking: FidelityTracker {
2051                fidelity_history: Vec::new(),
2052                target_fidelity: 0.95,
2053                fidelity_optimization: FidelityOptimization::DirectFidelityEstimation,
2054            },
2055        })
2056    }
2057
2058    pub fn update_coherence(&mut self, coherence: f64) -> Result<()> {
2059        self.coherence_tracking.coherence_history.push(coherence);
2060        Ok(())
2061    }
2062
2063    pub fn get_current_coherence(&self) -> f64 {
2064        self.coherence_tracking
2065            .coherence_history
2066            .last()
2067            .copied()
2068            .unwrap_or(1.0)
2069    }
2070
2071    pub fn enhance_coherence_preservation(&mut self) -> Result<()> {
2072        // Implement coherence enhancement strategies
2073        Ok(())
2074    }
2075}
2076
2077impl EntanglementManager {
2078    pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2079        Ok(Self {
2080            entanglement_config: config.entanglement_config.clone(),
2081            entanglement_operations: Vec::new(),
2082            entanglement_scheduler: EntanglementScheduler {
2083                scheduling_strategy: SchedulingStrategy::AdaptiveScheduling,
2084                entanglement_budget: 1.0,
2085                operation_queue: Vec::new(),
2086            },
2087        })
2088    }
2089
2090    pub fn update_entanglement(&mut self, expert_weights: &Array1<f64>) -> Result<()> {
2091        // Update entanglement based on expert interactions
2092        for i in 0..expert_weights.len() {
2093            for j in i + 1..expert_weights.len() {
2094                if expert_weights[i] * expert_weights[j] > 0.1 {
2095                    // Create entanglement between interacting experts
2096                    let operation = EntanglementOperation {
2097                        operation_type: EntanglementOperationType::CreateEntanglement,
2098                        target_experts: vec![i, j],
2099                        entanglement_strength: expert_weights[i] * expert_weights[j],
2100                        operation_fidelity: 0.95,
2101                    };
2102                    self.entanglement_operations.push(operation);
2103                }
2104            }
2105        }
2106        Ok(())
2107    }
2108
2109    pub fn get_utilization(&self) -> f64 {
2110        if self.entanglement_operations.is_empty() {
2111            0.0
2112        } else {
2113            let avg_strength = self
2114                .entanglement_operations
2115                .iter()
2116                .map(|op| op.entanglement_strength)
2117                .sum::<f64>()
2118                / self.entanglement_operations.len() as f64;
2119            avg_strength
2120        }
2121    }
2122
2123    pub fn increase_entanglement_strength(&mut self) -> Result<()> {
2124        // Increase entanglement strength across the system
2125        Ok(())
2126    }
2127}
2128
2129// Output structures
2130#[derive(Debug, Clone)]
2131pub struct MoEOutput {
2132    pub output: Array1<f64>,
2133    pub expert_weights: Array1<f64>,
2134    pub routing_decision: RoutingResult,
2135    pub gating_decision: GatingResult,
2136    pub expert_outputs: Vec<ExpertOutput>,
2137    pub quantum_metrics: QuantumCombinationMetrics,
2138}
2139
2140#[derive(Debug, Clone)]
2141pub struct RoutingResult {
2142    pub expert_weights: Array1<f64>,
2143    pub routing_confidence: f64,
2144    pub quantum_coherence: f64,
2145    pub routing_entropy: f64,
2146}
2147
2148#[derive(Debug, Clone)]
2149pub struct GatingResult {
2150    pub expert_weights: Array1<f64>,
2151    pub sparsity_achieved: f64,
2152    pub quantum_efficiency: f64,
2153}
2154
2155#[derive(Debug, Clone)]
2156pub struct ExpertOutput {
2157    pub prediction: Array1<f64>,
2158    pub quality_score: f64,
2159    pub confidence: f64,
2160    pub quantum_metrics: ExpertQuantumMetrics,
2161}
2162
2163#[derive(Debug, Clone)]
2164pub struct ExpertQuantumMetrics {
2165    pub coherence: f64,
2166    pub entanglement: f64,
2167    pub fidelity: f64,
2168    pub quantum_volume: f64,
2169}
2170
2171#[derive(Debug, Clone)]
2172pub struct CombinedOutput {
2173    pub prediction: Array1<f64>,
2174    pub quantum_metrics: QuantumCombinationMetrics,
2175}
2176
2177#[derive(Debug, Clone, Default)]
2178pub struct QuantumCombinationMetrics {
2179    pub coherence: f64,
2180    pub entanglement: f64,
2181    pub fidelity: f64,
2182    pub quantum_volume: f64,
2183    pub interference_factor: f64,
2184}
2185
2186impl QuantumCombinationMetrics {
2187    pub fn accumulate(&mut self, expert_metrics: &ExpertQuantumMetrics, weight: f64) {
2188        self.coherence += weight * expert_metrics.coherence;
2189        self.entanglement += weight * expert_metrics.entanglement;
2190        self.fidelity += weight * expert_metrics.fidelity;
2191        self.quantum_volume += weight * expert_metrics.quantum_volume;
2192    }
2193
2194    pub fn finalize(&mut self, total_weight: f64) {
2195        if total_weight > 1e-10 {
2196            self.coherence /= total_weight;
2197            self.entanglement /= total_weight;
2198            self.fidelity /= total_weight;
2199            self.quantum_volume /= total_weight;
2200        }
2201    }
2202}
2203
2204// Training structures
2205#[derive(Debug, Clone)]
2206pub struct MoETrainingConfig {
2207    pub epochs: usize,
2208    pub batch_size: usize,
2209    pub routing_learning_rate: f64,
2210    pub expert_learning_rate: f64,
2211    pub load_balance_weight: f64,
2212    pub sparsity_weight: f64,
2213    pub quantum_coherence_weight: f64,
2214    pub log_interval: usize,
2215}
2216
2217impl Default for MoETrainingConfig {
2218    fn default() -> Self {
2219        Self {
2220            epochs: 100,
2221            batch_size: 32,
2222            routing_learning_rate: 0.001,
2223            expert_learning_rate: 0.001,
2224            load_balance_weight: 0.01,
2225            sparsity_weight: 0.001,
2226            quantum_coherence_weight: 0.1,
2227            log_interval: 10,
2228        }
2229    }
2230}
2231
2232#[derive(Debug, Clone)]
2233pub struct MoETrainingOutput {
2234    pub training_losses: Vec<f64>,
2235    pub routing_efficiency_history: Vec<f64>,
2236    pub quantum_metrics_history: Vec<QuantumMoEMetrics>,
2237    pub final_expert_statistics: ExpertStatistics,
2238    pub convergence_analysis: ConvergenceAnalysis,
2239}
2240
2241#[derive(Debug, Clone)]
2242pub struct QuantumMoEMetrics {
2243    pub quantum_coherence: f64,
2244    pub entanglement_utilization: f64,
2245    pub quantum_advantage: f64,
2246    pub routing_efficiency: f64,
2247}
2248
2249#[derive(Debug, Clone)]
2250pub struct MoEStatistics {
2251    pub expert_utilizations: Array1<f64>,
2252    pub expert_performances: Array1<f64>,
2253    pub load_balance_score: f64,
2254    pub routing_efficiency: f64,
2255    pub quantum_coherence: f64,
2256    pub entanglement_utilization: f64,
2257    pub total_parameters: usize,
2258    pub memory_usage: usize,
2259}
2260
2261#[derive(Debug, Clone, Default)]
2262pub struct ConvergenceAnalysis {
2263    pub convergence_rate: f64,
2264    pub is_converged: bool,
2265    pub final_loss: f64,
2266    pub loss_variance: f64,
2267}
2268
2269// Default implementations
2270impl Default for QuantumMixtureOfExpertsConfig {
2271    fn default() -> Self {
2272        Self {
2273            input_dim: 64,
2274            output_dim: 32,
2275            num_experts: 8,
2276            num_qubits: 6,
2277            expert_capacity: 100,
2278            routing_strategy: QuantumRoutingStrategy::QuantumSuperposition {
2279                superposition_strength: 0.8,
2280                interference_pattern: InterferencePattern::Constructive,
2281            },
2282            expert_architecture: ExpertArchitecture::FeedForward {
2283                hidden_layers: vec![128, 64],
2284                activation: ActivationFunction::ReLU,
2285            },
2286            gating_mechanism: QuantumGatingMechanism::SuperpositionGating {
2287                coherence_preservation: 0.9,
2288            },
2289            load_balancing: LoadBalancingStrategy::Uniform,
2290            sparsity_config: SparsityConfig {
2291                target_sparsity: 0.7,
2292                sparsity_method: SparsityMethod::TopK { k: 3 },
2293                sparsity_schedule: SparsitySchedule::Constant,
2294                quantum_sparsity_enhancement: 0.1,
2295            },
2296            entanglement_config: EntanglementConfig {
2297                enable_expert_entanglement: true,
2298                entanglement_strength: 0.5,
2299                entanglement_decay: 0.01,
2300                entanglement_restoration: 0.1,
2301                max_entanglement_range: 4,
2302                entanglement_pattern: EntanglementPattern::Circular,
2303            },
2304            quantum_enhancement_level: 0.6,
2305            enable_hierarchical_experts: false,
2306            enable_dynamic_experts: true,
2307            enable_quantum_communication: true,
2308        }
2309    }
2310}
2311
2312impl Default for ExpertOutput {
2313    fn default() -> Self {
2314        Self {
2315            prediction: Array1::zeros(1),
2316            quality_score: 0.5,
2317            confidence: 0.5,
2318            quantum_metrics: ExpertQuantumMetrics::default(),
2319        }
2320    }
2321}
2322
2323impl Default for ExpertQuantumMetrics {
2324    fn default() -> Self {
2325        Self {
2326            coherence: 1.0,
2327            entanglement: 0.0,
2328            fidelity: 1.0,
2329            quantum_volume: 0.0,
2330        }
2331    }
2332}
2333
2334#[cfg(test)]
2335mod tests {
2336    use super::*;
2337
2338    #[test]
2339    fn test_quantum_mixture_of_experts_creation() {
2340        let config = QuantumMixtureOfExpertsConfig::default();
2341        let moe = QuantumMixtureOfExperts::new(config);
2342        assert!(moe.is_ok());
2343    }
2344
2345    #[test]
2346    fn test_expert_creation() {
2347        let config = QuantumMixtureOfExpertsConfig::default();
2348        let expert = QuantumExpert::new(0, &config);
2349        assert!(expert.is_ok());
2350    }
2351
2352    #[test]
2353    fn test_quantum_routing() {
2354        let config = QuantumMixtureOfExpertsConfig::default();
2355        let mut router = QuantumRouter::new(&config).unwrap();
2356        let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2357
2358        let result = router.route(&input);
2359        assert!(result.is_ok());
2360
2361        let routing_result = result.unwrap();
2362        assert_eq!(routing_result.expert_weights.len(), 8);
2363        assert!(routing_result.routing_confidence >= 0.0);
2364        assert!(routing_result.routing_confidence <= 1.0);
2365    }
2366
2367    #[test]
2368    fn test_forward_pass() {
2369        let config = QuantumMixtureOfExpertsConfig {
2370            input_dim: 4,
2371            output_dim: 2,
2372            num_experts: 3,
2373            ..Default::default()
2374        };
2375        let mut moe = QuantumMixtureOfExperts::new(config).unwrap();
2376        let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2377
2378        let result = moe.forward(&input);
2379        assert!(result.is_ok());
2380
2381        let output = result.unwrap();
2382        assert_eq!(output.expert_weights.len(), 3);
2383        assert!(output.routing_decision.routing_confidence >= 0.0);
2384    }
2385
2386    #[test]
2387    fn test_load_balancing() {
2388        let config = QuantumMixtureOfExpertsConfig {
2389            load_balancing: LoadBalancingStrategy::Uniform,
2390            ..Default::default()
2391        };
2392        let mut balancer = LoadBalancer::new(&config).unwrap();
2393        let weights = Array1::from_vec(vec![0.8, 0.1, 0.1]);
2394
2395        let balanced = balancer.balance_loads(&weights);
2396        assert!(balanced.is_ok());
2397
2398        let balanced_weights = balanced.unwrap();
2399        assert_eq!(balanced_weights.len(), 3);
2400    }
2401
2402    #[test]
2403    fn test_sparsity_computation() {
2404        let config = QuantumMixtureOfExpertsConfig::default();
2405        let gate_network = QuantumGateNetwork::new(&config).unwrap();
2406        let weights = Array1::from_vec(vec![0.8, 0.0, 0.2, 0.0]);
2407
2408        let sparsity = gate_network.compute_sparsity(&weights);
2409        assert!(sparsity.is_ok());
2410        assert_eq!(sparsity.unwrap(), 0.5); // 2 out of 4 are zero
2411    }
2412
2413    #[test]
2414    fn test_quantum_interference() {
2415        let config = QuantumMixtureOfExpertsConfig {
2416            routing_strategy: QuantumRoutingStrategy::QuantumSuperposition {
2417                superposition_strength: 0.8,
2418                interference_pattern: InterferencePattern::Constructive,
2419            },
2420            ..Default::default()
2421        };
2422        let moe = QuantumMixtureOfExperts::new(config).unwrap();
2423        let weights = Array1::from_vec(vec![0.5, 0.3, 0.2]);
2424
2425        let interference = moe.compute_interference_factor(0, &weights);
2426        assert!(interference.is_ok());
2427        assert!(interference.unwrap() > 0.0);
2428    }
2429
2430    #[test]
2431    fn test_entanglement_management() {
2432        let config = QuantumMixtureOfExpertsConfig {
2433            entanglement_config: EntanglementConfig {
2434                enable_expert_entanglement: true,
2435                entanglement_strength: 0.7,
2436                ..Default::default()
2437            },
2438            ..Default::default()
2439        };
2440        let mut manager = EntanglementManager::new(&config).unwrap();
2441        let expert_weights = Array1::from_vec(vec![0.4, 0.6, 0.0]);
2442
2443        let result = manager.update_entanglement(&expert_weights);
2444        assert!(result.is_ok());
2445
2446        let utilization = manager.get_utilization();
2447        assert!(utilization >= 0.0);
2448    }
2449
2450    #[test]
2451    fn test_expert_specialization() {
2452        let config = QuantumMixtureOfExpertsConfig {
2453            expert_architecture: ExpertArchitecture::SpecializedExperts {
2454                expert_specializations: vec![
2455                    ExpertSpecialization::TextProcessing,
2456                    ExpertSpecialization::ImageProcessing,
2457                ],
2458                specialization_strength: 0.8,
2459            },
2460            ..Default::default()
2461        };
2462
2463        let moe = QuantumMixtureOfExperts::new(config);
2464        assert!(moe.is_ok());
2465    }
2466
2467    #[test]
2468    fn test_hierarchical_routing() {
2469        let config = QuantumMixtureOfExpertsConfig {
2470            routing_strategy: QuantumRoutingStrategy::HierarchicalRouting {
2471                hierarchy_levels: 2,
2472                routing_per_level: RoutingType::Quantum,
2473            },
2474            ..Default::default()
2475        };
2476
2477        let moe = QuantumMixtureOfExperts::new(config);
2478        assert!(moe.is_ok());
2479    }
2480}