1use crate::error::{MLError, Result};
18use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
19use num_complex::Complex64;
20use rand::{Rng, SeedableRng};
21use rand_chacha::ChaCha20Rng;
22use std::collections::HashMap;
23use std::f64::consts::PI;
24
25#[derive(Debug, Clone)]
27pub struct QuantumMixtureOfExpertsConfig {
28 pub input_dim: usize,
29 pub output_dim: usize,
30 pub num_experts: usize,
31 pub num_qubits: usize,
32 pub expert_capacity: usize,
33 pub routing_strategy: QuantumRoutingStrategy,
34 pub expert_architecture: ExpertArchitecture,
35 pub gating_mechanism: QuantumGatingMechanism,
36 pub load_balancing: LoadBalancingStrategy,
37 pub sparsity_config: SparsityConfig,
38 pub entanglement_config: EntanglementConfig,
39 pub quantum_enhancement_level: f64,
40 pub enable_hierarchical_experts: bool,
41 pub enable_dynamic_experts: bool,
42 pub enable_quantum_communication: bool,
43}
44
45#[derive(Debug, Clone)]
46pub enum QuantumRoutingStrategy {
47 QuantumSuperposition {
49 superposition_strength: f64,
50 interference_pattern: InterferencePattern,
51 },
52
53 EntanglementRouting {
55 entanglement_strength: f64,
56 coupling_topology: CouplingTopology,
57 },
58
59 QuantumAttentionRouting {
61 attention_heads: usize,
62 attention_mechanism: QuantumAttentionMechanism,
63 },
64
65 HierarchicalRouting {
67 hierarchy_levels: usize,
68 routing_per_level: RoutingType,
69 },
70
71 AdaptiveQuantumRouting {
73 adaptation_rate: f64,
74 exploration_strategy: ExplorationStrategy,
75 },
76
77 TopologicalRouting {
79 graph_structure: QuantumGraphStructure,
80 propagation_method: PropagationMethod,
81 },
82}
83
84#[derive(Debug, Clone)]
85pub enum InterferencePattern {
86 Constructive,
87 Destructive,
88 Mixed,
89 Adaptive { adaptation_parameter: f64 },
90 Custom { pattern_function: String },
91}
92
93#[derive(Debug, Clone)]
94pub enum CouplingTopology {
95 Linear,
96 Circular,
97 AllToAll,
98 Random { connectivity: f64 },
99 Hierarchical { branching_factor: usize },
100 CustomGraph { adjacency_matrix: Array2<f64> },
101}
102
103#[derive(Debug, Clone)]
104pub enum QuantumAttentionMechanism {
105 QuantumSelfAttention,
106 QuantumCrossAttention,
107 QuantumMultiHeadAttention { num_heads: usize },
108 EntanglementBasedAttention,
109 QuantumFourierAttention,
110}
111
112#[derive(Debug, Clone)]
113pub enum RoutingType {
114 Standard,
115 Quantum,
116 Hybrid,
117 Adaptive,
118}
119
120#[derive(Debug, Clone)]
121pub enum ExplorationStrategy {
122 EpsilonGreedy { epsilon: f64 },
123 UCB { confidence_parameter: f64 },
124 ThompsonSampling,
125 QuantumAnnealing { temperature_schedule: Array1<f64> },
126 EntanglementBased { entanglement_threshold: f64 },
127}
128
129#[derive(Debug, Clone)]
130pub enum QuantumGraphStructure {
131 SmallWorld { rewiring_probability: f64 },
132 ScaleFree { preferential_attachment: f64 },
133 Lattice { dimensions: Vec<usize> },
134 Random { edge_probability: f64 },
135 Community { num_communities: usize },
136}
137
138#[derive(Debug, Clone)]
139pub enum PropagationMethod {
140 QuantumWalk,
141 DiffusionProcess,
142 WaveFunction,
143 MessagePassing,
144}
145
146#[derive(Debug, Clone)]
147pub enum ExpertArchitecture {
148 FeedForward {
150 hidden_layers: Vec<usize>,
151 activation: ActivationFunction,
152 },
153
154 Convolutional {
156 channels: Vec<usize>,
157 kernel_sizes: Vec<usize>,
158 strides: Vec<usize>,
159 },
160
161 AttentionBased {
163 attention_type: AttentionType,
164 attention_heads: usize,
165 key_dim: usize,
166 },
167
168 Recurrent {
170 cell_type: RecurrentCellType,
171 hidden_size: usize,
172 num_layers: usize,
173 },
174
175 QuantumExperts {
177 quantum_layers: Vec<QuantumExpertLayer>,
178 measurement_strategy: MeasurementStrategy,
179 },
180
181 HybridExperts {
183 quantum_component: QuantumComponent,
184 classical_component: ClassicalComponent,
185 interaction_method: InteractionMethod,
186 },
187
188 SpecializedExperts {
190 expert_specializations: Vec<ExpertSpecialization>,
191 specialization_strength: f64,
192 },
193}
194
195#[derive(Debug, Clone)]
196pub enum ActivationFunction {
197 ReLU,
198 GELU,
199 Swish,
200 Tanh,
201 Sigmoid,
202 Mish,
203 QuantumActivation {
204 activation_type: QuantumActivationType,
205 },
206}
207
208#[derive(Debug, Clone)]
209pub enum QuantumActivationType {
210 QuantumReLU,
211 QuantumSigmoid,
212 QuantumTanh,
213 EntanglementActivation,
214 PhaseActivation,
215}
216
217#[derive(Debug, Clone)]
218pub enum AttentionType {
219 SelfAttention,
220 CrossAttention,
221 MultiHeadAttention,
222 QuantumAttention,
223}
224
225#[derive(Debug, Clone)]
226pub enum RecurrentCellType {
227 LSTM,
228 GRU,
229 QuantumLSTM,
230 QuantumGRU,
231}
232
233#[derive(Debug, Clone)]
234pub struct QuantumExpertLayer {
235 layer_type: QuantumLayerType,
236 num_qubits: usize,
237 parameters: Array1<f64>,
238 quantum_gates: Vec<QuantumGate>,
239}
240
241#[derive(Debug, Clone)]
242pub enum QuantumLayerType {
243 VariationalLayer,
244 EntanglementLayer,
245 RotationLayer,
246 MeasurementLayer,
247 ConditionalLayer,
248}
249
250#[derive(Debug, Clone)]
251pub struct QuantumGate {
252 gate_type: GateType,
253 target_qubits: Vec<usize>,
254 control_qubits: Vec<usize>,
255 parameters: Array1<f64>,
256}
257
258#[derive(Debug, Clone)]
259pub enum GateType {
260 Rotation { axis: RotationAxis },
261 Controlled { base_gate: String },
262 Entangling { coupling_strength: f64 },
263 Measurement { basis: MeasurementBasis },
264 Custom { gate_matrix: Array2<Complex64> },
265}
266
267#[derive(Debug, Clone)]
268pub enum RotationAxis {
269 X,
270 Y,
271 Z,
272 Custom { direction: Array1<f64> },
273}
274
275#[derive(Debug, Clone)]
276pub enum MeasurementBasis {
277 Computational,
278 PauliX,
279 PauliY,
280 PauliZ,
281 Bell,
282 Custom { basis_vectors: Array2<Complex64> },
283}
284
285#[derive(Debug, Clone)]
286pub enum MeasurementStrategy {
287 ExpectationValues,
288 ProbabilityDistributions,
289 QuantumStateVector,
290 PartialMeasurements,
291}
292
293#[derive(Debug, Clone)]
294pub struct QuantumComponent {
295 component_type: QuantumComponentType,
296 num_qubits: usize,
297 quantum_circuit: QuantumCircuit,
298 entanglement_structure: EntanglementStructure,
299}
300
301#[derive(Debug, Clone)]
302pub enum QuantumComponentType {
303 VariationalQuantumCircuit,
304 QuantumConvolutional,
305 QuantumAttention,
306 QuantumRecurrent,
307}
308
309#[derive(Debug, Clone)]
310pub struct QuantumCircuit {
311 gates: Vec<QuantumGate>,
312 depth: usize,
313 parameters: Array1<f64>,
314}
315
316#[derive(Debug, Clone)]
317pub struct EntanglementStructure {
318 entanglement_map: Array2<f64>,
319 entanglement_strength: f64,
320 entanglement_pattern: EntanglementPattern,
321}
322
323#[derive(Debug, Clone)]
324pub enum EntanglementPattern {
325 Linear,
326 Circular,
327 AllToAll,
328 Hierarchical { levels: usize },
329 Random { probability: f64 },
330 Adaptive { adaptation_rate: f64 },
331}
332
333#[derive(Debug, Clone)]
334pub struct ClassicalComponent {
335 layers: Vec<ClassicalLayer>,
336 architecture: ClassicalArchitecture,
337}
338
339#[derive(Debug, Clone)]
340pub struct ClassicalLayer {
341 layer_type: ClassicalLayerType,
342 parameters: Array2<f64>,
343 activation: ActivationFunction,
344}
345
346#[derive(Debug, Clone)]
347pub enum ClassicalLayerType {
348 Dense {
349 input_dim: usize,
350 output_dim: usize,
351 },
352 Convolutional {
353 channels: usize,
354 kernel_size: usize,
355 },
356 Attention {
357 attention_dim: usize,
358 },
359 Normalization {
360 normalization_type: NormalizationType,
361 },
362}
363
364#[derive(Debug, Clone)]
365pub enum ClassicalArchitecture {
366 FeedForward,
367 Convolutional,
368 Recurrent,
369 Transformer,
370}
371
372#[derive(Debug, Clone)]
373pub enum NormalizationType {
374 BatchNorm,
375 LayerNorm,
376 InstanceNorm,
377 GroupNorm,
378}
379
380#[derive(Debug, Clone)]
381pub enum InteractionMethod {
382 TensorProduct,
383 DirectSum,
384 ConditionalCoupling,
385 AttentionCoupling,
386 QuantumClassicalHybrid,
387}
388
389#[derive(Debug, Clone)]
390pub enum ExpertSpecialization {
391 TextProcessing,
392 ImageProcessing,
393 AudioProcessing,
394 VideoProcessing,
395 GraphProcessing,
396 TimeSeriesProcessing,
397 MultiModal,
398 Domain { domain_name: String },
399}
400
401#[derive(Debug, Clone)]
402pub enum QuantumGatingMechanism {
403 SuperpositionGating { coherence_preservation: f64 },
405
406 MeasurementGating {
408 measurement_basis: MeasurementBasis,
409 post_selection: bool,
410 },
411
412 EntanglementGating {
414 entanglement_threshold: f64,
415 gating_strength: f64,
416 },
417
418 QuantumAttentionGating {
420 attention_mechanism: QuantumAttentionMechanism,
421 temperature: f64,
422 },
423
424 AdaptiveGating {
426 adaptation_strategy: AdaptationStrategy,
427 learning_rate: f64,
428 },
429
430 HierarchicalGating { gating_hierarchy: GatingHierarchy },
432}
433
434#[derive(Debug, Clone)]
435pub enum AdaptationStrategy {
436 GradientBased,
437 EvolutionaryStrategy,
438 QuantumAnnealing,
439 ReinforcementLearning,
440 BayesianOptimization,
441}
442
443#[derive(Debug, Clone)]
444pub struct GatingHierarchy {
445 levels: Vec<GatingLevel>,
446 level_interactions: Array2<f64>,
447}
448
449#[derive(Debug, Clone)]
450pub struct GatingLevel {
451 level_id: usize,
452 gating_type: QuantumGatingMechanism,
453 expert_groups: Vec<ExpertGroup>,
454}
455
456#[derive(Debug, Clone)]
457pub struct ExpertGroup {
458 group_id: usize,
459 expert_indices: Vec<usize>,
460 group_specialization: Option<ExpertSpecialization>,
461 internal_routing: RoutingType,
462}
463
464#[derive(Debug, Clone)]
465pub enum LoadBalancingStrategy {
466 None,
468
469 Uniform,
471
472 CapacityAware { capacity_factors: Array1<f64> },
474
475 PerformanceBased { performance_weights: Array1<f64> },
477
478 QuantumFairness {
480 fairness_metric: FairnessMetric,
481 balancing_strength: f64,
482 },
483
484 DynamicBalancing {
486 adaptation_rate: f64,
487 balancing_history: usize,
488 },
489
490 EntropyBalancing {
492 target_entropy: f64,
493 entropy_weight: f64,
494 },
495}
496
497#[derive(Debug, Clone)]
498pub enum FairnessMetric {
499 Equal,
500 Proportional,
501 QuantumEntropy,
502 InformationTheoretic,
503}
504
505#[derive(Debug, Clone)]
506pub struct SparsityConfig {
507 pub target_sparsity: f64,
508 pub sparsity_method: SparsityMethod,
509 pub sparsity_schedule: SparsitySchedule,
510 pub quantum_sparsity_enhancement: f64,
511}
512
513#[derive(Debug, Clone)]
514pub enum SparsityMethod {
515 TopK { k: usize },
516 Threshold { threshold: f64 },
517 QuantumSelection { selection_probability: f64 },
518 AdaptiveSparsity { adaptation_rate: f64 },
519 EntanglementBased { entanglement_threshold: f64 },
520}
521
522#[derive(Debug, Clone)]
523pub enum SparsitySchedule {
524 Constant,
525 Linear { start: f64, end: f64 },
526 Exponential { decay_rate: f64 },
527 Adaptive { target_performance: f64 },
528 QuantumAnnealed { temperature_schedule: Array1<f64> },
529}
530
531#[derive(Debug, Clone)]
532pub struct EntanglementConfig {
533 pub enable_expert_entanglement: bool,
534 pub entanglement_strength: f64,
535 pub entanglement_decay: f64,
536 pub entanglement_restoration: f64,
537 pub max_entanglement_range: usize,
538 pub entanglement_pattern: EntanglementPattern,
539}
540
541impl Default for EntanglementConfig {
542 fn default() -> Self {
543 Self {
544 enable_expert_entanglement: false,
545 entanglement_strength: 0.5,
546 entanglement_decay: 0.01,
547 entanglement_restoration: 0.05,
548 max_entanglement_range: 4,
549 entanglement_pattern: EntanglementPattern::Linear,
550 }
551 }
552}
553
554pub struct QuantumMixtureOfExperts {
556 config: QuantumMixtureOfExpertsConfig,
557
558 experts: Vec<QuantumExpert>,
560 quantum_router: QuantumRouter,
561 quantum_gate_network: QuantumGateNetwork,
562
563 load_balancer: LoadBalancer,
565 expert_statistics: ExpertStatistics,
566
567 training_history: Vec<MoETrainingMetrics>,
569 routing_optimizer: RoutingOptimizer,
570 expert_optimizer: ExpertOptimizer,
571
572 quantum_state_tracker: QuantumStateTracker,
574 entanglement_manager: EntanglementManager,
575
576 performance_monitor: PerformanceMonitor,
578 capacity_manager: CapacityManager,
579}
580
581#[derive(Debug, Clone)]
582pub struct QuantumExpert {
583 expert_id: usize,
584 architecture: ExpertArchitecture,
585 quantum_parameters: Array1<f64>,
586 classical_parameters: Array2<f64>,
587 specialization: Option<ExpertSpecialization>,
588 capacity: usize,
589 current_load: usize,
590 performance_history: Vec<f64>,
591 quantum_state: QuantumExpertState,
592}
593
594#[derive(Debug, Clone)]
595pub struct QuantumExpertState {
596 quantum_amplitudes: Array1<Complex64>,
597 entanglement_connections: Vec<usize>,
598 coherence_time: f64,
599 fidelity: f64,
600 quantum_volume: f64,
601}
602
603#[derive(Debug, Clone)]
604pub struct QuantumRouter {
605 routing_strategy: QuantumRoutingStrategy,
606 routing_network: QuantumRoutingNetwork,
607 routing_parameters: Array1<f64>,
608 routing_history: Vec<RoutingDecision>,
609 quantum_routing_state: QuantumRoutingState,
610 num_experts: usize,
611}
612
613#[derive(Debug, Clone)]
614pub struct QuantumRoutingNetwork {
615 routing_layers: Vec<QuantumRoutingLayer>,
616 attention_mechanisms: Vec<QuantumAttentionHead>,
617 entanglement_couplings: Vec<EntanglementCoupling>,
618}
619
620#[derive(Debug, Clone)]
621pub struct QuantumRoutingLayer {
622 layer_type: RoutingLayerType,
623 quantum_gates: Vec<QuantumGate>,
624 routing_weights: Array2<f64>,
625 activation_function: ActivationFunction,
626}
627
628#[derive(Debug, Clone)]
629pub enum RoutingLayerType {
630 QuantumLinear,
631 QuantumAttention,
632 QuantumConvolutional,
633 QuantumRecurrent,
634 HybridLayer,
635}
636
637#[derive(Debug, Clone)]
638pub struct QuantumAttentionHead {
639 head_id: usize,
640 query_projection: QuantumProjection,
641 key_projection: QuantumProjection,
642 value_projection: QuantumProjection,
643 attention_weights: Array2<f64>,
644 entanglement_strength: f64,
645}
646
647#[derive(Debug, Clone)]
648pub struct QuantumProjection {
649 projection_type: ProjectionType,
650 quantum_circuit: QuantumCircuit,
651 parameters: Array1<f64>,
652}
653
654#[derive(Debug, Clone)]
655pub enum ProjectionType {
656 Linear,
657 Nonlinear,
658 Quantum,
659 Hybrid,
660}
661
662#[derive(Debug, Clone)]
663pub struct EntanglementCoupling {
664 coupling_qubits: Vec<usize>,
665 coupling_strength: f64,
666 coupling_type: CouplingType,
667 time_evolution: Array1<f64>,
668}
669
670#[derive(Debug, Clone)]
671pub enum CouplingType {
672 CNOT,
673 CZ,
674 SWAP,
675 Custom { coupling_matrix: Array2<Complex64> },
676}
677
678#[derive(Debug, Clone)]
679pub struct RoutingDecision {
680 decision_id: usize,
681 expert_weights: Array1<f64>,
682 routing_confidence: f64,
683 quantum_coherence: f64,
684 entanglement_measure: f64,
685 decision_quality: f64,
686}
687
688#[derive(Debug, Clone)]
689pub struct QuantumRoutingState {
690 routing_amplitudes: Array1<Complex64>,
691 routing_entanglement: f64,
692 routing_coherence: f64,
693 routing_fidelity: f64,
694}
695
696#[derive(Debug, Clone)]
697pub struct QuantumGateNetwork {
698 gating_mechanism: QuantumGatingMechanism,
699 gate_parameters: Array1<f64>,
700 gating_history: Vec<GatingDecision>,
701 quantum_gate_state: QuantumGateState,
702}
703
704#[derive(Debug, Clone)]
705pub struct GatingDecision {
706 gate_weights: Array1<f64>,
707 gate_confidence: f64,
708 sparsity_level: f64,
709 quantum_efficiency: f64,
710}
711
712#[derive(Debug, Clone)]
713pub struct QuantumGateState {
714 gate_amplitudes: Array1<Complex64>,
715 gate_entanglement: f64,
716 gate_coherence: f64,
717}
718
719#[derive(Debug, Clone)]
720pub struct LoadBalancer {
721 strategy: LoadBalancingStrategy,
722 balancing_parameters: Array1<f64>,
723 load_history: Vec<LoadBalancingState>,
724 fairness_metrics: FairnessMetrics,
725}
726
727#[derive(Debug, Clone)]
728pub struct LoadBalancingState {
729 expert_loads: Array1<f64>,
730 load_variance: f64,
731 utilization_efficiency: f64,
732 fairness_score: f64,
733}
734
735#[derive(Debug, Clone)]
736pub struct FairnessMetrics {
737 gini_coefficient: f64,
738 entropy_measure: f64,
739 quantum_fairness: f64,
740 balance_score: f64,
741}
742
743#[derive(Debug, Clone)]
744pub struct ExpertStatistics {
745 expert_utilizations: Array1<f64>,
746 expert_performances: Array1<f64>,
747 expert_specializations: Array1<f64>,
748 expert_interactions: Array2<f64>,
749 quantum_correlations: Array2<f64>,
750}
751
752#[derive(Debug, Clone)]
753pub struct RoutingOptimizer {
754 optimizer_type: OptimizerType,
755 learning_rate: f64,
756 optimization_history: Vec<RoutingOptimizationStep>,
757 gradient_estimator: GradientEstimator,
758}
759
760#[derive(Debug, Clone)]
761pub enum OptimizerType {
762 Adam { beta1: f64, beta2: f64 },
763 SGD { momentum: f64 },
764 RMSprop { decay: f64 },
765 QuantumNaturalGradient,
766 ParameterShiftRule,
767}
768
769#[derive(Debug, Clone)]
770pub struct RoutingOptimizationStep {
771 step_id: usize,
772 gradient_norm: f64,
773 learning_rate_used: f64,
774 optimization_objective: f64,
775 convergence_metric: f64,
776}
777
778#[derive(Debug, Clone)]
779pub enum GradientEstimator {
780 ExactGradient,
781 FiniteDifference { epsilon: f64 },
782 ParameterShift,
783 QuantumNaturalGradient,
784 StochasticEstimation { num_samples: usize },
785}
786
787#[derive(Debug, Clone)]
788pub struct ExpertOptimizer {
789 optimizer_type: OptimizerType,
790 expert_learning_rates: Array1<f64>,
791 expert_optimization_history: Vec<ExpertOptimizationStep>,
792}
793
794#[derive(Debug, Clone)]
795pub struct ExpertOptimizationStep {
796 expert_id: usize,
797 gradient_norm: f64,
798 parameter_update_norm: f64,
799 performance_change: f64,
800}
801
802#[derive(Debug, Clone)]
803pub struct QuantumStateTracker {
804 state_history: Vec<QuantumSystemState>,
805 coherence_tracking: CoherenceTracker,
806 entanglement_tracking: EntanglementTracker,
807 fidelity_tracking: FidelityTracker,
808}
809
810#[derive(Debug, Clone)]
811pub struct QuantumSystemState {
812 timestamp: usize,
813 total_entanglement: f64,
814 system_coherence: f64,
815 quantum_volume_utilization: f64,
816 expert_quantum_states: Vec<QuantumExpertState>,
817}
818
819#[derive(Debug, Clone)]
820pub struct CoherenceTracker {
821 coherence_history: Vec<f64>,
822 decoherence_rate: f64,
823 coherence_preservation_strategies: Vec<CoherenceStrategy>,
824}
825
826#[derive(Debug, Clone)]
827pub enum CoherenceStrategy {
828 DynamicalDecoupling,
829 ErrorCorrection,
830 DecoherenceSupression,
831 QuantumZeno,
832}
833
834#[derive(Debug, Clone)]
835pub struct EntanglementTracker {
836 entanglement_history: Vec<EntanglementMeasurement>,
837 entanglement_budget: f64,
838 entanglement_efficiency: f64,
839}
840
841#[derive(Debug, Clone)]
842pub struct EntanglementMeasurement {
843 timestamp: usize,
844 concurrence: f64,
845 negativity: f64,
846 entanglement_entropy: f64,
847 quantum_discord: f64,
848}
849
850#[derive(Debug, Clone)]
851pub struct FidelityTracker {
852 fidelity_history: Vec<f64>,
853 target_fidelity: f64,
854 fidelity_optimization: FidelityOptimization,
855}
856
857#[derive(Debug, Clone)]
858pub enum FidelityOptimization {
859 ProcessTomography,
860 StateTomography,
861 DirectFidelityEstimation,
862 QuantumBenchmarking,
863}
864
865#[derive(Debug, Clone)]
866pub struct EntanglementManager {
867 entanglement_config: EntanglementConfig,
868 entanglement_operations: Vec<EntanglementOperation>,
869 entanglement_scheduler: EntanglementScheduler,
870}
871
872#[derive(Debug, Clone)]
873pub struct EntanglementOperation {
874 operation_type: EntanglementOperationType,
875 target_experts: Vec<usize>,
876 entanglement_strength: f64,
877 operation_fidelity: f64,
878}
879
880#[derive(Debug, Clone)]
881pub enum EntanglementOperationType {
882 CreateEntanglement,
883 BreakEntanglement,
884 ModifyEntanglement,
885 MeasureEntanglement,
886}
887
888#[derive(Debug, Clone)]
889pub struct EntanglementScheduler {
890 scheduling_strategy: SchedulingStrategy,
891 entanglement_budget: f64,
892 operation_queue: Vec<EntanglementOperation>,
893}
894
895#[derive(Debug, Clone)]
896pub enum SchedulingStrategy {
897 GreedyScheduling,
898 OptimalScheduling,
899 HeuristicScheduling,
900 AdaptiveScheduling,
901}
902
903#[derive(Debug, Clone)]
904pub struct PerformanceMonitor {
905 performance_metrics: PerformanceMetrics,
906 monitoring_config: MonitoringConfig,
907 alert_system: AlertSystem,
908}
909
910#[derive(Debug, Clone)]
911pub struct PerformanceMetrics {
912 throughput: f64,
913 latency: f64,
914 accuracy: f64,
915 expert_utilization: Array1<f64>,
916 quantum_efficiency: f64,
917 resource_utilization: f64,
918}
919
920#[derive(Debug, Clone)]
921pub struct MonitoringConfig {
922 monitoring_frequency: usize,
923 metrics_to_track: Vec<MetricType>,
924 alert_thresholds: HashMap<String, f64>,
925}
926
927#[derive(Debug, Clone)]
928pub enum MetricType {
929 Performance,
930 ResourceUtilization,
931 QuantumCoherence,
932 ExpertLoad,
933 RoutingEfficiency,
934}
935
936#[derive(Debug, Clone)]
937pub struct AlertSystem {
938 alert_rules: Vec<AlertRule>,
939 alert_history: Vec<Alert>,
940}
941
942#[derive(Debug, Clone)]
943pub struct AlertRule {
944 rule_id: String,
945 metric_name: String,
946 threshold: f64,
947 comparison: ComparisonType,
948 action: AlertAction,
949}
950
951#[derive(Debug, Clone)]
952pub enum ComparisonType {
953 GreaterThan,
954 LessThan,
955 Equal,
956 NotEqual,
957}
958
959#[derive(Debug, Clone)]
960pub enum AlertAction {
961 Log,
962 Rebalance,
963 OptimizeRouting,
964 RestoreCoherence,
965}
966
967#[derive(Debug, Clone)]
968pub struct Alert {
969 alert_id: String,
970 timestamp: usize,
971 severity: AlertSeverity,
972 message: String,
973 affected_components: Vec<String>,
974}
975
976#[derive(Debug, Clone)]
977pub enum AlertSeverity {
978 Info,
979 Warning,
980 Error,
981 Critical,
982}
983
984#[derive(Debug, Clone)]
985pub struct CapacityManager {
986 total_capacity: usize,
987 available_capacity: usize,
988 capacity_allocation: Array1<f64>,
989 capacity_optimization: CapacityOptimization,
990}
991
992#[derive(Debug, Clone)]
993pub enum CapacityOptimization {
994 StaticAllocation,
995 DynamicAllocation,
996 PredictiveAllocation,
997 QuantumOptimizedAllocation,
998}
999
1000#[derive(Debug, Clone)]
1002pub struct MoETrainingMetrics {
1003 pub epoch: usize,
1004 pub loss: f64,
1005 pub routing_efficiency: f64,
1006 pub expert_utilization: f64,
1007 pub load_balance_score: f64,
1008 pub quantum_coherence: f64,
1009 pub entanglement_utilization: f64,
1010 pub sparsity_achieved: f64,
1011 pub throughput: f64,
1012 pub quantum_advantage: f64,
1013}
1014
1015impl QuantumMixtureOfExperts {
1017 pub fn new(config: QuantumMixtureOfExpertsConfig) -> Result<Self> {
1019 println!("🧠Initializing Quantum Mixture of Experts in UltraThink Mode");
1020
1021 let experts = Self::create_experts(&config)?;
1023
1024 let quantum_router = QuantumRouter::new(&config)?;
1026
1027 let quantum_gate_network = QuantumGateNetwork::new(&config)?;
1029
1030 let load_balancer = LoadBalancer::new(&config)?;
1032
1033 let expert_statistics = ExpertStatistics::new(config.num_experts);
1035 let performance_monitor = PerformanceMonitor::new(&config)?;
1036 let capacity_manager = CapacityManager::new(&config)?;
1037
1038 let routing_optimizer = RoutingOptimizer::new(&config)?;
1040 let expert_optimizer = ExpertOptimizer::new(&config)?;
1041
1042 let quantum_state_tracker = QuantumStateTracker::new(&config)?;
1044 let entanglement_manager = EntanglementManager::new(&config)?;
1045
1046 Ok(Self {
1047 config,
1048 experts,
1049 quantum_router,
1050 quantum_gate_network,
1051 load_balancer,
1052 expert_statistics,
1053 training_history: Vec::new(),
1054 routing_optimizer,
1055 expert_optimizer,
1056 quantum_state_tracker,
1057 entanglement_manager,
1058 performance_monitor,
1059 capacity_manager,
1060 })
1061 }
1062
1063 pub fn forward(&mut self, input: &Array1<f64>) -> Result<MoEOutput> {
1065 let routing_result = self.quantum_router.route(input)?;
1067
1068 let gating_result = self.quantum_gate_network.gate(&routing_result)?;
1070
1071 let balanced_weights = self
1073 .load_balancer
1074 .balance_loads(&gating_result.expert_weights)?;
1075
1076 let expert_outputs = self.process_through_experts(input, &balanced_weights)?;
1078
1079 let combined_output = self.combine_expert_outputs(&expert_outputs, &balanced_weights)?;
1081
1082 self.update_quantum_states(&routing_result, &gating_result)?;
1084
1085 self.update_expert_statistics(&balanced_weights, &expert_outputs)?;
1087
1088 self.performance_monitor
1090 .update(&combined_output, &balanced_weights)?;
1091
1092 Ok(MoEOutput {
1093 output: combined_output.prediction,
1094 expert_weights: balanced_weights,
1095 routing_decision: routing_result,
1096 gating_decision: gating_result,
1097 expert_outputs,
1098 quantum_metrics: combined_output.quantum_metrics,
1099 })
1100 }
1101
1102 fn create_experts(config: &QuantumMixtureOfExpertsConfig) -> Result<Vec<QuantumExpert>> {
1104 let mut experts = Vec::new();
1105
1106 for expert_id in 0..config.num_experts {
1107 let expert = QuantumExpert::new(expert_id, config)?;
1108 experts.push(expert);
1109 }
1110
1111 Ok(experts)
1112 }
1113
1114 fn process_through_experts(
1116 &mut self,
1117 input: &Array1<f64>,
1118 expert_weights: &Array1<f64>,
1119 ) -> Result<Vec<ExpertOutput>> {
1120 let mut expert_outputs = Vec::new();
1121
1122 for (expert_id, expert) in self.experts.iter_mut().enumerate() {
1123 let weight = expert_weights[expert_id];
1124
1125 if weight < 1e-6 {
1127 expert_outputs.push(ExpertOutput::default());
1128 continue;
1129 }
1130
1131 let output = expert.process(input, weight, &self.config)?;
1133 expert_outputs.push(output);
1134 }
1135
1136 Ok(expert_outputs)
1137 }
1138
1139 fn combine_expert_outputs(
1141 &self,
1142 expert_outputs: &[ExpertOutput],
1143 weights: &Array1<f64>,
1144 ) -> Result<CombinedOutput> {
1145 let output_dim = self.config.output_dim;
1146 let mut combined_prediction = Array1::zeros(output_dim);
1147 let mut total_weight = 0.0;
1148 let mut quantum_metrics = QuantumCombinationMetrics::default();
1149
1150 for (expert_id, output) in expert_outputs.iter().enumerate() {
1152 let weight = weights[expert_id];
1153 if weight > 1e-6 {
1154 let interference_factor = self.compute_interference_factor(expert_id, &weights)?;
1156 let effective_weight = weight * interference_factor;
1157
1158 combined_prediction =
1159 &combined_prediction + &(effective_weight * &output.prediction);
1160 total_weight += effective_weight;
1161
1162 quantum_metrics.accumulate(&output.quantum_metrics, effective_weight);
1164 }
1165 }
1166
1167 if total_weight > 1e-10 {
1169 combined_prediction = combined_prediction / total_weight;
1170 }
1171
1172 quantum_metrics.finalize(total_weight);
1174
1175 Ok(CombinedOutput {
1176 prediction: combined_prediction,
1177 quantum_metrics,
1178 })
1179 }
1180
1181 fn compute_interference_factor(&self, expert_id: usize, weights: &Array1<f64>) -> Result<f64> {
1183 let mut interference_factor = 1.0;
1184
1185 match &self.config.routing_strategy {
1186 QuantumRoutingStrategy::QuantumSuperposition {
1187 interference_pattern,
1188 ..
1189 } => {
1190 match interference_pattern {
1191 InterferencePattern::Constructive => {
1192 interference_factor = 1.0 + 0.1 * weights[expert_id];
1194 }
1195 InterferencePattern::Destructive => {
1196 let other_weights_sum: f64 = weights
1198 .iter()
1199 .enumerate()
1200 .filter(|(i, _)| *i != expert_id)
1201 .map(|(_, w)| *w)
1202 .sum();
1203 interference_factor = 1.0 - 0.05 * other_weights_sum;
1204 }
1205 InterferencePattern::Mixed => {
1206 let constructive = 1.0 + 0.05 * weights[expert_id];
1208 let destructive = 1.0 - 0.025 * (weights.sum() - weights[expert_id]);
1209 interference_factor = 0.5 * (constructive + destructive);
1210 }
1211 _ => {
1212 interference_factor = 1.0;
1213 }
1214 }
1215 }
1216 _ => {
1217 interference_factor = 1.0;
1218 }
1219 }
1220
1221 Ok(interference_factor.max(0.1)) }
1223
1224 fn update_quantum_states(
1226 &mut self,
1227 routing_result: &RoutingResult,
1228 gating_result: &GatingResult,
1229 ) -> Result<()> {
1230 self.entanglement_manager
1232 .update_entanglement(&routing_result.expert_weights)?;
1233
1234 self.quantum_state_tracker
1236 .update_coherence(routing_result.quantum_coherence)?;
1237
1238 for (expert_id, expert) in self.experts.iter_mut().enumerate() {
1240 expert.update_quantum_state(
1241 routing_result.expert_weights[expert_id],
1242 gating_result.quantum_efficiency,
1243 )?;
1244 }
1245
1246 Ok(())
1247 }
1248
1249 fn update_expert_statistics(
1251 &mut self,
1252 weights: &Array1<f64>,
1253 outputs: &[ExpertOutput],
1254 ) -> Result<()> {
1255 for (expert_id, &weight) in weights.iter().enumerate() {
1257 if expert_id < self.expert_statistics.expert_utilizations.len() {
1258 self.expert_statistics.expert_utilizations[expert_id] =
1259 0.9 * self.expert_statistics.expert_utilizations[expert_id] + 0.1 * weight;
1260 }
1261
1262 if let Some(output) = outputs.get(expert_id) {
1263 if expert_id < self.expert_statistics.expert_performances.len() {
1264 self.expert_statistics.expert_performances[expert_id] = 0.9
1265 * self.expert_statistics.expert_performances[expert_id]
1266 + 0.1 * output.quality_score;
1267 }
1268 }
1269 }
1270
1271 for i in 0..self.config.num_experts {
1273 for j in i + 1..self.config.num_experts {
1274 let interaction = weights[i] * weights[j];
1275 self.expert_statistics.expert_interactions[[i, j]] =
1276 0.9 * self.expert_statistics.expert_interactions[[i, j]] + 0.1 * interaction;
1277 self.expert_statistics.expert_interactions[[j, i]] =
1278 self.expert_statistics.expert_interactions[[i, j]];
1279 }
1280 }
1281
1282 Ok(())
1283 }
1284
1285 pub fn train(
1287 &mut self,
1288 data: &Array2<f64>,
1289 targets: &Array2<f64>,
1290 training_config: &MoETrainingConfig,
1291 ) -> Result<MoETrainingOutput> {
1292 let mut training_losses = Vec::new();
1293 let mut routing_efficiency_history = Vec::new();
1294 let mut quantum_metrics_history = Vec::new();
1295
1296 println!("🚀 Starting Quantum Mixture of Experts Training in UltraThink Mode");
1297
1298 for epoch in 0..training_config.epochs {
1299 let epoch_metrics = self.train_epoch(data, targets, training_config, epoch)?;
1300
1301 training_losses.push(epoch_metrics.loss);
1302 routing_efficiency_history.push(epoch_metrics.routing_efficiency);
1303
1304 self.update_training_strategies(&epoch_metrics)?;
1306
1307 self.load_balancer.adapt_strategy(&epoch_metrics)?;
1309
1310 self.optimize_quantum_parameters(&epoch_metrics)?;
1312
1313 self.training_history.push(epoch_metrics.clone());
1314 quantum_metrics_history.push(QuantumMoEMetrics {
1315 quantum_coherence: epoch_metrics.quantum_coherence,
1316 entanglement_utilization: epoch_metrics.entanglement_utilization,
1317 quantum_advantage: epoch_metrics.quantum_advantage,
1318 routing_efficiency: epoch_metrics.routing_efficiency,
1319 });
1320
1321 if epoch % training_config.log_interval == 0 {
1323 println!(
1324 "Epoch {}: Loss = {:.6}, Routing Efficiency = {:.4}, Expert Utilization = {:.4}, Quantum Advantage = {:.2}x",
1325 epoch,
1326 epoch_metrics.loss,
1327 epoch_metrics.routing_efficiency,
1328 epoch_metrics.expert_utilization,
1329 epoch_metrics.quantum_advantage,
1330 );
1331 }
1332 }
1333
1334 let convergence_analysis = self.analyze_convergence(&training_losses)?;
1335
1336 Ok(MoETrainingOutput {
1337 training_losses,
1338 routing_efficiency_history,
1339 quantum_metrics_history,
1340 final_expert_statistics: self.expert_statistics.clone(),
1341 convergence_analysis,
1342 })
1343 }
1344
1345 fn train_epoch(
1347 &mut self,
1348 data: &Array2<f64>,
1349 targets: &Array2<f64>,
1350 config: &MoETrainingConfig,
1351 epoch: usize,
1352 ) -> Result<MoETrainingMetrics> {
1353 let mut epoch_loss = 0.0;
1354 let mut routing_efficiency_sum = 0.0;
1355 let mut expert_utilization_sum = 0.0;
1356 let mut quantum_coherence_sum = 0.0;
1357 let mut entanglement_sum = 0.0;
1358 let mut num_batches = 0;
1359
1360 let num_samples = data.nrows();
1361
1362 for batch_start in (0..num_samples).step_by(config.batch_size) {
1363 let batch_end = (batch_start + config.batch_size).min(num_samples);
1364 let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1365 let batch_targets = targets.slice(ndarray::s![batch_start..batch_end, ..]);
1366
1367 let batch_metrics = self.train_batch(&batch_data, &batch_targets, config)?;
1368
1369 epoch_loss += batch_metrics.loss;
1370 routing_efficiency_sum += batch_metrics.routing_efficiency;
1371 expert_utilization_sum += batch_metrics.expert_utilization;
1372 quantum_coherence_sum += batch_metrics.quantum_coherence;
1373 entanglement_sum += batch_metrics.entanglement_utilization;
1374 num_batches += 1;
1375 }
1376
1377 let num_batches_f = num_batches as f64;
1378 Ok(MoETrainingMetrics {
1379 epoch,
1380 loss: epoch_loss / num_batches_f,
1381 routing_efficiency: routing_efficiency_sum / num_batches_f,
1382 expert_utilization: expert_utilization_sum / num_batches_f,
1383 load_balance_score: self.compute_load_balance_score()?,
1384 quantum_coherence: quantum_coherence_sum / num_batches_f,
1385 entanglement_utilization: entanglement_sum / num_batches_f,
1386 sparsity_achieved: self.compute_sparsity_achieved()?,
1387 throughput: num_samples as f64 / 1.0, quantum_advantage: self.estimate_quantum_advantage()?,
1389 })
1390 }
1391
1392 fn train_batch(
1394 &mut self,
1395 batch_data: &ndarray::ArrayView2<f64>,
1396 batch_targets: &ndarray::ArrayView2<f64>,
1397 config: &MoETrainingConfig,
1398 ) -> Result<MoETrainingMetrics> {
1399 let mut batch_loss = 0.0;
1400 let mut routing_efficiency_sum = 0.0;
1401 let mut expert_utilization_sum = 0.0;
1402 let mut quantum_coherence_sum = 0.0;
1403 let mut entanglement_sum = 0.0;
1404
1405 for (sample_idx, (input, target)) in batch_data
1406 .rows()
1407 .into_iter()
1408 .zip(batch_targets.rows())
1409 .enumerate()
1410 {
1411 let input_array = input.to_owned();
1412 let target_array = target.to_owned();
1413
1414 let output = self.forward(&input_array)?;
1416
1417 let loss = self.compute_loss(&output.output, &target_array, &output)?;
1419 batch_loss += loss;
1420
1421 routing_efficiency_sum += output.routing_decision.routing_confidence;
1423 expert_utilization_sum += output.expert_weights.sum() / self.config.num_experts as f64;
1424 quantum_coherence_sum += output.quantum_metrics.coherence;
1425 entanglement_sum += output.quantum_metrics.entanglement;
1426
1427 self.update_parameters(&output, &target_array, config)?;
1429 }
1430
1431 let num_samples = batch_data.nrows() as f64;
1432 Ok(MoETrainingMetrics {
1433 epoch: 0, loss: batch_loss / num_samples,
1435 routing_efficiency: routing_efficiency_sum / num_samples,
1436 expert_utilization: expert_utilization_sum / num_samples,
1437 load_balance_score: self.compute_load_balance_score()?,
1438 quantum_coherence: quantum_coherence_sum / num_samples,
1439 entanglement_utilization: entanglement_sum / num_samples,
1440 sparsity_achieved: self.compute_sparsity_achieved()?,
1441 throughput: num_samples,
1442 quantum_advantage: self.estimate_quantum_advantage()?,
1443 })
1444 }
1445
1446 fn compute_loss(
1448 &self,
1449 prediction: &Array1<f64>,
1450 target: &Array1<f64>,
1451 output: &MoEOutput,
1452 ) -> Result<f64> {
1453 let mse_loss = (prediction - target).mapv(|x| x * x).sum() / prediction.len() as f64;
1455
1456 let load_balance_loss = self.compute_load_balance_loss(&output.expert_weights)?;
1458
1459 let sparsity_loss = self.compute_sparsity_loss(&output.expert_weights)?;
1461
1462 let coherence_loss = 1.0 - output.quantum_metrics.coherence;
1464
1465 let total_loss =
1467 mse_loss + 0.01 * load_balance_loss + 0.001 * sparsity_loss + 0.1 * coherence_loss;
1468
1469 Ok(total_loss)
1470 }
1471
1472 fn update_parameters(
1474 &mut self,
1475 output: &MoEOutput,
1476 target: &Array1<f64>,
1477 config: &MoETrainingConfig,
1478 ) -> Result<()> {
1479 let routing_decision = RoutingDecision {
1482 decision_id: 0,
1483 expert_weights: output.routing_decision.expert_weights.clone(),
1484 routing_confidence: output.routing_decision.routing_confidence,
1485 quantum_coherence: output.routing_decision.quantum_coherence,
1486 entanglement_measure: 0.0, decision_quality: output.routing_decision.routing_confidence,
1488 };
1489
1490 self.routing_optimizer.update_routing_parameters(
1491 &routing_decision,
1492 target,
1493 config.routing_learning_rate,
1494 )?;
1495
1496 self.expert_optimizer.update_expert_parameters(
1498 &self.experts,
1499 &output.expert_outputs,
1500 &output.expert_weights,
1501 target,
1502 config.expert_learning_rate,
1503 )?;
1504
1505 self.update_quantum_parameters_from_loss(output, target)?;
1507
1508 Ok(())
1509 }
1510
1511 pub fn get_statistics(&self) -> MoEStatistics {
1513 MoEStatistics {
1514 expert_utilizations: self.expert_statistics.expert_utilizations.clone(),
1515 expert_performances: self.expert_statistics.expert_performances.clone(),
1516 load_balance_score: self.compute_load_balance_score().unwrap_or(0.0),
1517 routing_efficiency: self.compute_routing_efficiency(),
1518 quantum_coherence: self.quantum_state_tracker.get_current_coherence(),
1519 entanglement_utilization: self.entanglement_manager.get_utilization(),
1520 total_parameters: self.count_total_parameters(),
1521 memory_usage: self.estimate_memory_usage(),
1522 }
1523 }
1524
1525 fn compute_load_balance_score(&self) -> Result<f64> {
1527 let utilizations = &self.expert_statistics.expert_utilizations;
1528 let mean_util = utilizations.sum() / utilizations.len() as f64;
1529 let variance = utilizations
1530 .iter()
1531 .map(|&x| (x - mean_util).powi(2))
1532 .sum::<f64>()
1533 / utilizations.len() as f64;
1534 Ok(1.0 / (1.0 + variance))
1535 }
1536
1537 fn compute_sparsity_achieved(&self) -> Result<f64> {
1538 let recent_decisions = 10.min(self.quantum_router.routing_history.len());
1540 if recent_decisions == 0 {
1541 return Ok(0.0);
1542 }
1543
1544 let total_sparsity = self
1545 .quantum_router
1546 .routing_history
1547 .iter()
1548 .rev()
1549 .take(recent_decisions)
1550 .map(|decision| {
1551 let active_experts = decision
1552 .expert_weights
1553 .iter()
1554 .filter(|&&w| w > 1e-6)
1555 .count();
1556 1.0 - (active_experts as f64 / self.config.num_experts as f64)
1557 })
1558 .sum::<f64>();
1559
1560 Ok(total_sparsity / recent_decisions as f64)
1561 }
1562
1563 fn estimate_quantum_advantage(&self) -> Result<f64> {
1564 let quantum_contribution = self.quantum_state_tracker.get_current_coherence()
1565 * self.entanglement_manager.get_utilization();
1566 Ok(1.0 + quantum_contribution * 2.0)
1567 }
1568
1569 fn compute_load_balance_loss(&self, expert_weights: &Array1<f64>) -> Result<f64> {
1570 let ideal_weight = 1.0 / self.config.num_experts as f64;
1571 let balance_loss = expert_weights
1572 .iter()
1573 .map(|&w| (w - ideal_weight).powi(2))
1574 .sum::<f64>();
1575 Ok(balance_loss)
1576 }
1577
1578 fn compute_sparsity_loss(&self, expert_weights: &Array1<f64>) -> Result<f64> {
1579 let target_sparsity = self.config.sparsity_config.target_sparsity;
1580 let current_sparsity = 1.0
1581 - expert_weights.iter().filter(|&&w| w > 1e-6).count() as f64
1582 / expert_weights.len() as f64;
1583 Ok((current_sparsity - target_sparsity).powi(2))
1584 }
1585
1586 fn update_training_strategies(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1587 if metrics.routing_efficiency < 0.7 {
1589 self.routing_optimizer.learning_rate *= 1.1;
1590 } else if metrics.routing_efficiency > 0.9 {
1591 self.routing_optimizer.learning_rate *= 0.95;
1592 }
1593
1594 if metrics.sparsity_achieved < self.config.sparsity_config.target_sparsity {
1596 }
1598
1599 Ok(())
1600 }
1601
1602 fn optimize_quantum_parameters(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1603 if metrics.entanglement_utilization < 0.5 {
1605 self.entanglement_manager.increase_entanglement_strength()?;
1606 }
1607
1608 if metrics.quantum_coherence < 0.8 {
1610 self.quantum_state_tracker
1611 .enhance_coherence_preservation()?;
1612 }
1613
1614 Ok(())
1615 }
1616
1617 fn update_quantum_parameters_from_loss(
1618 &mut self,
1619 output: &MoEOutput,
1620 target: &Array1<f64>,
1621 ) -> Result<()> {
1622 Ok(())
1624 }
1625
1626 fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1627 if losses.len() < 10 {
1628 return Ok(ConvergenceAnalysis::default());
1629 }
1630
1631 let recent_losses = &losses[losses.len() - 10..];
1632 let early_losses = &losses[0..10];
1633
1634 let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
1635 let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
1636
1637 let convergence_rate = (early_avg - recent_avg) / early_avg;
1638
1639 let variance = recent_losses
1640 .iter()
1641 .map(|&x| (x - recent_avg).powi(2))
1642 .sum::<f64>()
1643 / recent_losses.len() as f64;
1644
1645 Ok(ConvergenceAnalysis {
1646 convergence_rate,
1647 is_converged: variance < 1e-6,
1648 final_loss: recent_avg,
1649 loss_variance: variance,
1650 })
1651 }
1652
1653 fn compute_routing_efficiency(&self) -> f64 {
1654 if self.quantum_router.routing_history.is_empty() {
1655 return 0.0;
1656 }
1657
1658 let recent_efficiency = self
1659 .quantum_router
1660 .routing_history
1661 .iter()
1662 .rev()
1663 .take(10)
1664 .map(|decision| decision.routing_confidence)
1665 .sum::<f64>()
1666 / 10.0_f64.min(self.quantum_router.routing_history.len() as f64);
1667
1668 recent_efficiency
1669 }
1670
1671 fn count_total_parameters(&self) -> usize {
1672 let mut total = 0;
1673
1674 for expert in &self.experts {
1676 total += expert.quantum_parameters.len();
1677 total += expert.classical_parameters.len();
1678 }
1679
1680 total += self.quantum_router.routing_parameters.len();
1682
1683 total += self.quantum_gate_network.gate_parameters.len();
1685
1686 total
1687 }
1688
1689 fn estimate_memory_usage(&self) -> usize {
1690 let expert_memory = self.experts.len() * 1000; let routing_memory = self.quantum_router.routing_parameters.len() * 8;
1693 let state_memory = self.quantum_state_tracker.state_history.len() * 100;
1694
1695 expert_memory + routing_memory + state_memory
1696 }
1697}
1698
1699impl QuantumExpert {
1702 pub fn new(expert_id: usize, config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1703 Ok(Self {
1704 expert_id,
1705 architecture: config.expert_architecture.clone(),
1706 quantum_parameters: Array1::zeros(config.num_qubits * 3),
1707 classical_parameters: Array2::zeros((64, 64)), specialization: None,
1709 capacity: config.expert_capacity,
1710 current_load: 0,
1711 performance_history: Vec::new(),
1712 quantum_state: QuantumExpertState {
1713 quantum_amplitudes: Array1::<Complex64>::ones(
1714 2_usize.pow(config.num_qubits as u32),
1715 )
1716 .mapv(|_| Complex64::new(1.0, 0.0)),
1717 entanglement_connections: Vec::new(),
1718 coherence_time: 1.0,
1719 fidelity: 1.0,
1720 quantum_volume: config.num_qubits as f64,
1721 },
1722 })
1723 }
1724
1725 pub fn process(
1726 &mut self,
1727 input: &Array1<f64>,
1728 weight: f64,
1729 config: &QuantumMixtureOfExpertsConfig,
1730 ) -> Result<ExpertOutput> {
1731 let prediction = if config.output_dim != input.len() {
1733 let mut output = Array1::zeros(config.output_dim);
1735 for i in 0..config.output_dim {
1736 let input_idx = i % input.len();
1737 output[i] = input[input_idx] * (1.0 + self.expert_id as f64 * 0.1);
1738 }
1740 output
1741 } else {
1742 input.clone()
1743 };
1744 let quality_score = 0.8; self.current_load += 1;
1747 self.performance_history.push(quality_score);
1748
1749 Ok(ExpertOutput {
1750 prediction,
1751 quality_score,
1752 confidence: weight,
1753 quantum_metrics: ExpertQuantumMetrics {
1754 coherence: self.quantum_state.coherence_time,
1755 entanglement: 0.5,
1756 fidelity: self.quantum_state.fidelity,
1757 quantum_volume: self.quantum_state.quantum_volume,
1758 },
1759 })
1760 }
1761
1762 pub fn update_quantum_state(&mut self, weight: f64, efficiency: f64) -> Result<()> {
1763 self.quantum_state.coherence_time *= 0.99; self.quantum_state.fidelity = (self.quantum_state.fidelity + efficiency * weight) / 2.0;
1766 Ok(())
1767 }
1768}
1769
1770impl QuantumRouter {
1771 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1772 Ok(Self {
1773 routing_strategy: config.routing_strategy.clone(),
1774 routing_network: QuantumRoutingNetwork::new(config)?,
1775 routing_parameters: Array1::zeros(config.num_experts * 10),
1776 routing_history: Vec::new(),
1777 quantum_routing_state: QuantumRoutingState {
1778 routing_amplitudes: Array1::<Complex64>::ones(config.num_experts)
1779 .mapv(|_| Complex64::new(1.0, 0.0)),
1780 routing_entanglement: 0.0,
1781 routing_coherence: 1.0,
1782 routing_fidelity: 1.0,
1783 },
1784 num_experts: config.num_experts,
1785 })
1786 }
1787
1788 pub fn route(&mut self, input: &Array1<f64>) -> Result<RoutingResult> {
1789 let num_experts = self.num_experts;
1791 let mut expert_weights = Array1::zeros(num_experts);
1792
1793 for i in 0..num_experts {
1795 expert_weights[i] = (input[i % input.len()]).exp();
1796 }
1797 let sum_weights = expert_weights.sum();
1798 if sum_weights > 0.0 {
1799 expert_weights = expert_weights / sum_weights;
1800 }
1801
1802 let routing_decision = RoutingDecision {
1803 decision_id: self.routing_history.len(),
1804 expert_weights: expert_weights.clone(),
1805 routing_confidence: 0.8,
1806 quantum_coherence: self.quantum_routing_state.routing_coherence,
1807 entanglement_measure: self.quantum_routing_state.routing_entanglement,
1808 decision_quality: 0.8,
1809 };
1810
1811 self.routing_history.push(routing_decision.clone());
1812
1813 Ok(RoutingResult {
1814 expert_weights: expert_weights.clone(),
1815 routing_confidence: 0.8,
1816 quantum_coherence: self.quantum_routing_state.routing_coherence,
1817 routing_entropy: self.compute_routing_entropy(&expert_weights)?,
1818 })
1819 }
1820
1821 fn compute_routing_entropy(&self, weights: &Array1<f64>) -> Result<f64> {
1822 let entropy = -weights
1823 .iter()
1824 .filter(|&&w| w > 1e-10)
1825 .map(|&w| w * w.ln())
1826 .sum::<f64>();
1827 Ok(entropy)
1828 }
1829}
1830
1831impl QuantumRoutingNetwork {
1832 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1833 Ok(Self {
1834 routing_layers: Vec::new(),
1835 attention_mechanisms: Vec::new(),
1836 entanglement_couplings: Vec::new(),
1837 })
1838 }
1839}
1840
1841impl QuantumGateNetwork {
1842 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1843 Ok(Self {
1844 gating_mechanism: config.gating_mechanism.clone(),
1845 gate_parameters: Array1::zeros(config.num_experts),
1846 gating_history: Vec::new(),
1847 quantum_gate_state: QuantumGateState {
1848 gate_amplitudes: Array1::<Complex64>::ones(config.num_experts)
1849 .mapv(|_| Complex64::new(1.0, 0.0)),
1850 gate_entanglement: 0.0,
1851 gate_coherence: 1.0,
1852 },
1853 })
1854 }
1855
1856 pub fn gate(&mut self, routing_result: &RoutingResult) -> Result<GatingResult> {
1857 let gated_weights = match &self.gating_mechanism {
1859 QuantumGatingMechanism::SuperpositionGating {
1860 coherence_preservation,
1861 } => routing_result
1862 .expert_weights
1863 .mapv(|w| w * coherence_preservation),
1864 _ => routing_result.expert_weights.clone(),
1865 };
1866
1867 let gating_decision = GatingDecision {
1868 gate_weights: gated_weights.clone(),
1869 gate_confidence: routing_result.routing_confidence,
1870 sparsity_level: self.compute_sparsity(&gated_weights)?,
1871 quantum_efficiency: 0.9,
1872 };
1873
1874 self.gating_history.push(gating_decision.clone());
1875
1876 Ok(GatingResult {
1877 expert_weights: gated_weights,
1878 sparsity_achieved: gating_decision.sparsity_level,
1879 quantum_efficiency: gating_decision.quantum_efficiency,
1880 })
1881 }
1882
1883 fn compute_sparsity(&self, weights: &Array1<f64>) -> Result<f64> {
1884 let active_count = weights.iter().filter(|&&w| w > 1e-6).count();
1885 Ok(1.0 - active_count as f64 / weights.len() as f64)
1886 }
1887}
1888
1889impl LoadBalancer {
1890 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1891 Ok(Self {
1892 strategy: config.load_balancing.clone(),
1893 balancing_parameters: Array1::zeros(config.num_experts),
1894 load_history: Vec::new(),
1895 fairness_metrics: FairnessMetrics {
1896 gini_coefficient: 0.0,
1897 entropy_measure: 0.0,
1898 quantum_fairness: 0.0,
1899 balance_score: 1.0,
1900 },
1901 })
1902 }
1903
1904 pub fn balance_loads(&mut self, weights: &Array1<f64>) -> Result<Array1<f64>> {
1905 match &self.strategy {
1906 LoadBalancingStrategy::Uniform => {
1907 let mean_weight = weights.sum() / weights.len() as f64;
1909 let balanced = weights.mapv(|w| 0.8 * w + 0.2 * mean_weight);
1910 Ok(balanced)
1911 }
1912 LoadBalancingStrategy::CapacityAware { capacity_factors } => {
1913 let mut balanced = weights.clone();
1915 for i in 0..balanced.len() {
1916 balanced[i] *= capacity_factors[i.min(capacity_factors.len() - 1)];
1917 }
1918 Ok(balanced)
1919 }
1920 _ => Ok(weights.clone()),
1921 }
1922 }
1923
1924 pub fn adapt_strategy(&mut self, metrics: &MoETrainingMetrics) -> Result<()> {
1925 if metrics.load_balance_score < 0.7 {
1927 }
1929 Ok(())
1930 }
1931}
1932
1933impl ExpertStatistics {
1934 pub fn new(num_experts: usize) -> Self {
1935 Self {
1936 expert_utilizations: Array1::zeros(num_experts),
1937 expert_performances: Array1::zeros(num_experts),
1938 expert_specializations: Array1::zeros(num_experts),
1939 expert_interactions: Array2::zeros((num_experts, num_experts)),
1940 quantum_correlations: Array2::zeros((num_experts, num_experts)),
1941 }
1942 }
1943}
1944
1945impl PerformanceMonitor {
1946 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1947 Ok(Self {
1948 performance_metrics: PerformanceMetrics {
1949 throughput: 0.0,
1950 latency: 0.0,
1951 accuracy: 0.0,
1952 expert_utilization: Array1::zeros(config.num_experts),
1953 quantum_efficiency: 0.0,
1954 resource_utilization: 0.0,
1955 },
1956 monitoring_config: MonitoringConfig {
1957 monitoring_frequency: 100,
1958 metrics_to_track: vec![MetricType::Performance, MetricType::ResourceUtilization],
1959 alert_thresholds: HashMap::new(),
1960 },
1961 alert_system: AlertSystem {
1962 alert_rules: Vec::new(),
1963 alert_history: Vec::new(),
1964 },
1965 })
1966 }
1967
1968 pub fn update(&mut self, output: &CombinedOutput, weights: &Array1<f64>) -> Result<()> {
1969 self.performance_metrics.quantum_efficiency = output.quantum_metrics.coherence;
1971 self.performance_metrics.expert_utilization = weights.clone();
1972 Ok(())
1973 }
1974}
1975
1976impl CapacityManager {
1977 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1978 Ok(Self {
1979 total_capacity: config.num_experts * config.expert_capacity,
1980 available_capacity: config.num_experts * config.expert_capacity,
1981 capacity_allocation: Array1::ones(config.num_experts) / config.num_experts as f64,
1982 capacity_optimization: CapacityOptimization::DynamicAllocation,
1983 })
1984 }
1985}
1986
1987impl RoutingOptimizer {
1988 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
1989 Ok(Self {
1990 optimizer_type: OptimizerType::Adam {
1991 beta1: 0.9,
1992 beta2: 0.999,
1993 },
1994 learning_rate: 0.001,
1995 optimization_history: Vec::new(),
1996 gradient_estimator: GradientEstimator::ParameterShift,
1997 })
1998 }
1999
2000 pub fn update_routing_parameters(
2001 &mut self,
2002 routing_decision: &RoutingDecision,
2003 target: &Array1<f64>,
2004 learning_rate: f64,
2005 ) -> Result<()> {
2006 Ok(())
2008 }
2009}
2010
2011impl ExpertOptimizer {
2012 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2013 Ok(Self {
2014 optimizer_type: OptimizerType::Adam {
2015 beta1: 0.9,
2016 beta2: 0.999,
2017 },
2018 expert_learning_rates: Array1::ones(config.num_experts) * 0.001,
2019 expert_optimization_history: Vec::new(),
2020 })
2021 }
2022
2023 pub fn update_expert_parameters(
2024 &mut self,
2025 experts: &[QuantumExpert],
2026 expert_outputs: &[ExpertOutput],
2027 expert_weights: &Array1<f64>,
2028 target: &Array1<f64>,
2029 learning_rate: f64,
2030 ) -> Result<()> {
2031 Ok(())
2033 }
2034}
2035
2036impl QuantumStateTracker {
2037 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2038 Ok(Self {
2039 state_history: Vec::new(),
2040 coherence_tracking: CoherenceTracker {
2041 coherence_history: Vec::new(),
2042 decoherence_rate: 0.01,
2043 coherence_preservation_strategies: Vec::new(),
2044 },
2045 entanglement_tracking: EntanglementTracker {
2046 entanglement_history: Vec::new(),
2047 entanglement_budget: 1.0,
2048 entanglement_efficiency: 1.0,
2049 },
2050 fidelity_tracking: FidelityTracker {
2051 fidelity_history: Vec::new(),
2052 target_fidelity: 0.95,
2053 fidelity_optimization: FidelityOptimization::DirectFidelityEstimation,
2054 },
2055 })
2056 }
2057
2058 pub fn update_coherence(&mut self, coherence: f64) -> Result<()> {
2059 self.coherence_tracking.coherence_history.push(coherence);
2060 Ok(())
2061 }
2062
2063 pub fn get_current_coherence(&self) -> f64 {
2064 self.coherence_tracking
2065 .coherence_history
2066 .last()
2067 .copied()
2068 .unwrap_or(1.0)
2069 }
2070
2071 pub fn enhance_coherence_preservation(&mut self) -> Result<()> {
2072 Ok(())
2074 }
2075}
2076
2077impl EntanglementManager {
2078 pub fn new(config: &QuantumMixtureOfExpertsConfig) -> Result<Self> {
2079 Ok(Self {
2080 entanglement_config: config.entanglement_config.clone(),
2081 entanglement_operations: Vec::new(),
2082 entanglement_scheduler: EntanglementScheduler {
2083 scheduling_strategy: SchedulingStrategy::AdaptiveScheduling,
2084 entanglement_budget: 1.0,
2085 operation_queue: Vec::new(),
2086 },
2087 })
2088 }
2089
2090 pub fn update_entanglement(&mut self, expert_weights: &Array1<f64>) -> Result<()> {
2091 for i in 0..expert_weights.len() {
2093 for j in i + 1..expert_weights.len() {
2094 if expert_weights[i] * expert_weights[j] > 0.1 {
2095 let operation = EntanglementOperation {
2097 operation_type: EntanglementOperationType::CreateEntanglement,
2098 target_experts: vec![i, j],
2099 entanglement_strength: expert_weights[i] * expert_weights[j],
2100 operation_fidelity: 0.95,
2101 };
2102 self.entanglement_operations.push(operation);
2103 }
2104 }
2105 }
2106 Ok(())
2107 }
2108
2109 pub fn get_utilization(&self) -> f64 {
2110 if self.entanglement_operations.is_empty() {
2111 0.0
2112 } else {
2113 let avg_strength = self
2114 .entanglement_operations
2115 .iter()
2116 .map(|op| op.entanglement_strength)
2117 .sum::<f64>()
2118 / self.entanglement_operations.len() as f64;
2119 avg_strength
2120 }
2121 }
2122
2123 pub fn increase_entanglement_strength(&mut self) -> Result<()> {
2124 Ok(())
2126 }
2127}
2128
2129#[derive(Debug, Clone)]
2131pub struct MoEOutput {
2132 pub output: Array1<f64>,
2133 pub expert_weights: Array1<f64>,
2134 pub routing_decision: RoutingResult,
2135 pub gating_decision: GatingResult,
2136 pub expert_outputs: Vec<ExpertOutput>,
2137 pub quantum_metrics: QuantumCombinationMetrics,
2138}
2139
2140#[derive(Debug, Clone)]
2141pub struct RoutingResult {
2142 pub expert_weights: Array1<f64>,
2143 pub routing_confidence: f64,
2144 pub quantum_coherence: f64,
2145 pub routing_entropy: f64,
2146}
2147
2148#[derive(Debug, Clone)]
2149pub struct GatingResult {
2150 pub expert_weights: Array1<f64>,
2151 pub sparsity_achieved: f64,
2152 pub quantum_efficiency: f64,
2153}
2154
2155#[derive(Debug, Clone)]
2156pub struct ExpertOutput {
2157 pub prediction: Array1<f64>,
2158 pub quality_score: f64,
2159 pub confidence: f64,
2160 pub quantum_metrics: ExpertQuantumMetrics,
2161}
2162
2163#[derive(Debug, Clone)]
2164pub struct ExpertQuantumMetrics {
2165 pub coherence: f64,
2166 pub entanglement: f64,
2167 pub fidelity: f64,
2168 pub quantum_volume: f64,
2169}
2170
2171#[derive(Debug, Clone)]
2172pub struct CombinedOutput {
2173 pub prediction: Array1<f64>,
2174 pub quantum_metrics: QuantumCombinationMetrics,
2175}
2176
2177#[derive(Debug, Clone, Default)]
2178pub struct QuantumCombinationMetrics {
2179 pub coherence: f64,
2180 pub entanglement: f64,
2181 pub fidelity: f64,
2182 pub quantum_volume: f64,
2183 pub interference_factor: f64,
2184}
2185
2186impl QuantumCombinationMetrics {
2187 pub fn accumulate(&mut self, expert_metrics: &ExpertQuantumMetrics, weight: f64) {
2188 self.coherence += weight * expert_metrics.coherence;
2189 self.entanglement += weight * expert_metrics.entanglement;
2190 self.fidelity += weight * expert_metrics.fidelity;
2191 self.quantum_volume += weight * expert_metrics.quantum_volume;
2192 }
2193
2194 pub fn finalize(&mut self, total_weight: f64) {
2195 if total_weight > 1e-10 {
2196 self.coherence /= total_weight;
2197 self.entanglement /= total_weight;
2198 self.fidelity /= total_weight;
2199 self.quantum_volume /= total_weight;
2200 }
2201 }
2202}
2203
2204#[derive(Debug, Clone)]
2206pub struct MoETrainingConfig {
2207 pub epochs: usize,
2208 pub batch_size: usize,
2209 pub routing_learning_rate: f64,
2210 pub expert_learning_rate: f64,
2211 pub load_balance_weight: f64,
2212 pub sparsity_weight: f64,
2213 pub quantum_coherence_weight: f64,
2214 pub log_interval: usize,
2215}
2216
2217impl Default for MoETrainingConfig {
2218 fn default() -> Self {
2219 Self {
2220 epochs: 100,
2221 batch_size: 32,
2222 routing_learning_rate: 0.001,
2223 expert_learning_rate: 0.001,
2224 load_balance_weight: 0.01,
2225 sparsity_weight: 0.001,
2226 quantum_coherence_weight: 0.1,
2227 log_interval: 10,
2228 }
2229 }
2230}
2231
2232#[derive(Debug, Clone)]
2233pub struct MoETrainingOutput {
2234 pub training_losses: Vec<f64>,
2235 pub routing_efficiency_history: Vec<f64>,
2236 pub quantum_metrics_history: Vec<QuantumMoEMetrics>,
2237 pub final_expert_statistics: ExpertStatistics,
2238 pub convergence_analysis: ConvergenceAnalysis,
2239}
2240
2241#[derive(Debug, Clone)]
2242pub struct QuantumMoEMetrics {
2243 pub quantum_coherence: f64,
2244 pub entanglement_utilization: f64,
2245 pub quantum_advantage: f64,
2246 pub routing_efficiency: f64,
2247}
2248
2249#[derive(Debug, Clone)]
2250pub struct MoEStatistics {
2251 pub expert_utilizations: Array1<f64>,
2252 pub expert_performances: Array1<f64>,
2253 pub load_balance_score: f64,
2254 pub routing_efficiency: f64,
2255 pub quantum_coherence: f64,
2256 pub entanglement_utilization: f64,
2257 pub total_parameters: usize,
2258 pub memory_usage: usize,
2259}
2260
2261#[derive(Debug, Clone, Default)]
2262pub struct ConvergenceAnalysis {
2263 pub convergence_rate: f64,
2264 pub is_converged: bool,
2265 pub final_loss: f64,
2266 pub loss_variance: f64,
2267}
2268
2269impl Default for QuantumMixtureOfExpertsConfig {
2271 fn default() -> Self {
2272 Self {
2273 input_dim: 64,
2274 output_dim: 32,
2275 num_experts: 8,
2276 num_qubits: 6,
2277 expert_capacity: 100,
2278 routing_strategy: QuantumRoutingStrategy::QuantumSuperposition {
2279 superposition_strength: 0.8,
2280 interference_pattern: InterferencePattern::Constructive,
2281 },
2282 expert_architecture: ExpertArchitecture::FeedForward {
2283 hidden_layers: vec![128, 64],
2284 activation: ActivationFunction::ReLU,
2285 },
2286 gating_mechanism: QuantumGatingMechanism::SuperpositionGating {
2287 coherence_preservation: 0.9,
2288 },
2289 load_balancing: LoadBalancingStrategy::Uniform,
2290 sparsity_config: SparsityConfig {
2291 target_sparsity: 0.7,
2292 sparsity_method: SparsityMethod::TopK { k: 3 },
2293 sparsity_schedule: SparsitySchedule::Constant,
2294 quantum_sparsity_enhancement: 0.1,
2295 },
2296 entanglement_config: EntanglementConfig {
2297 enable_expert_entanglement: true,
2298 entanglement_strength: 0.5,
2299 entanglement_decay: 0.01,
2300 entanglement_restoration: 0.1,
2301 max_entanglement_range: 4,
2302 entanglement_pattern: EntanglementPattern::Circular,
2303 },
2304 quantum_enhancement_level: 0.6,
2305 enable_hierarchical_experts: false,
2306 enable_dynamic_experts: true,
2307 enable_quantum_communication: true,
2308 }
2309 }
2310}
2311
2312impl Default for ExpertOutput {
2313 fn default() -> Self {
2314 Self {
2315 prediction: Array1::zeros(1),
2316 quality_score: 0.5,
2317 confidence: 0.5,
2318 quantum_metrics: ExpertQuantumMetrics::default(),
2319 }
2320 }
2321}
2322
2323impl Default for ExpertQuantumMetrics {
2324 fn default() -> Self {
2325 Self {
2326 coherence: 1.0,
2327 entanglement: 0.0,
2328 fidelity: 1.0,
2329 quantum_volume: 0.0,
2330 }
2331 }
2332}
2333
2334#[cfg(test)]
2335mod tests {
2336 use super::*;
2337
2338 #[test]
2339 fn test_quantum_mixture_of_experts_creation() {
2340 let config = QuantumMixtureOfExpertsConfig::default();
2341 let moe = QuantumMixtureOfExperts::new(config);
2342 assert!(moe.is_ok());
2343 }
2344
2345 #[test]
2346 fn test_expert_creation() {
2347 let config = QuantumMixtureOfExpertsConfig::default();
2348 let expert = QuantumExpert::new(0, &config);
2349 assert!(expert.is_ok());
2350 }
2351
2352 #[test]
2353 fn test_quantum_routing() {
2354 let config = QuantumMixtureOfExpertsConfig::default();
2355 let mut router = QuantumRouter::new(&config).unwrap();
2356 let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2357
2358 let result = router.route(&input);
2359 assert!(result.is_ok());
2360
2361 let routing_result = result.unwrap();
2362 assert_eq!(routing_result.expert_weights.len(), 8);
2363 assert!(routing_result.routing_confidence >= 0.0);
2364 assert!(routing_result.routing_confidence <= 1.0);
2365 }
2366
2367 #[test]
2368 fn test_forward_pass() {
2369 let config = QuantumMixtureOfExpertsConfig {
2370 input_dim: 4,
2371 output_dim: 2,
2372 num_experts: 3,
2373 ..Default::default()
2374 };
2375 let mut moe = QuantumMixtureOfExperts::new(config).unwrap();
2376 let input = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2377
2378 let result = moe.forward(&input);
2379 assert!(result.is_ok());
2380
2381 let output = result.unwrap();
2382 assert_eq!(output.expert_weights.len(), 3);
2383 assert!(output.routing_decision.routing_confidence >= 0.0);
2384 }
2385
2386 #[test]
2387 fn test_load_balancing() {
2388 let config = QuantumMixtureOfExpertsConfig {
2389 load_balancing: LoadBalancingStrategy::Uniform,
2390 ..Default::default()
2391 };
2392 let mut balancer = LoadBalancer::new(&config).unwrap();
2393 let weights = Array1::from_vec(vec![0.8, 0.1, 0.1]);
2394
2395 let balanced = balancer.balance_loads(&weights);
2396 assert!(balanced.is_ok());
2397
2398 let balanced_weights = balanced.unwrap();
2399 assert_eq!(balanced_weights.len(), 3);
2400 }
2401
2402 #[test]
2403 fn test_sparsity_computation() {
2404 let config = QuantumMixtureOfExpertsConfig::default();
2405 let gate_network = QuantumGateNetwork::new(&config).unwrap();
2406 let weights = Array1::from_vec(vec![0.8, 0.0, 0.2, 0.0]);
2407
2408 let sparsity = gate_network.compute_sparsity(&weights);
2409 assert!(sparsity.is_ok());
2410 assert_eq!(sparsity.unwrap(), 0.5); }
2412
2413 #[test]
2414 fn test_quantum_interference() {
2415 let config = QuantumMixtureOfExpertsConfig {
2416 routing_strategy: QuantumRoutingStrategy::QuantumSuperposition {
2417 superposition_strength: 0.8,
2418 interference_pattern: InterferencePattern::Constructive,
2419 },
2420 ..Default::default()
2421 };
2422 let moe = QuantumMixtureOfExperts::new(config).unwrap();
2423 let weights = Array1::from_vec(vec![0.5, 0.3, 0.2]);
2424
2425 let interference = moe.compute_interference_factor(0, &weights);
2426 assert!(interference.is_ok());
2427 assert!(interference.unwrap() > 0.0);
2428 }
2429
2430 #[test]
2431 fn test_entanglement_management() {
2432 let config = QuantumMixtureOfExpertsConfig {
2433 entanglement_config: EntanglementConfig {
2434 enable_expert_entanglement: true,
2435 entanglement_strength: 0.7,
2436 ..Default::default()
2437 },
2438 ..Default::default()
2439 };
2440 let mut manager = EntanglementManager::new(&config).unwrap();
2441 let expert_weights = Array1::from_vec(vec![0.4, 0.6, 0.0]);
2442
2443 let result = manager.update_entanglement(&expert_weights);
2444 assert!(result.is_ok());
2445
2446 let utilization = manager.get_utilization();
2447 assert!(utilization >= 0.0);
2448 }
2449
2450 #[test]
2451 fn test_expert_specialization() {
2452 let config = QuantumMixtureOfExpertsConfig {
2453 expert_architecture: ExpertArchitecture::SpecializedExperts {
2454 expert_specializations: vec![
2455 ExpertSpecialization::TextProcessing,
2456 ExpertSpecialization::ImageProcessing,
2457 ],
2458 specialization_strength: 0.8,
2459 },
2460 ..Default::default()
2461 };
2462
2463 let moe = QuantumMixtureOfExperts::new(config);
2464 assert!(moe.is_ok());
2465 }
2466
2467 #[test]
2468 fn test_hierarchical_routing() {
2469 let config = QuantumMixtureOfExpertsConfig {
2470 routing_strategy: QuantumRoutingStrategy::HierarchicalRouting {
2471 hierarchy_levels: 2,
2472 routing_per_level: RoutingType::Quantum,
2473 },
2474 ..Default::default()
2475 };
2476
2477 let moe = QuantumMixtureOfExperts::new(config);
2478 assert!(moe.is_ok());
2479 }
2480}