1use crate::error::{MLError, Result};
16use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
17use num_complex::Complex64;
18use rand::{Rng, SeedableRng};
19use rand_chacha::ChaCha20Rng;
20use std::collections::HashMap;
21use std::f64::consts::PI;
22
23#[derive(Debug, Clone)]
25pub struct QuantumInContextLearningConfig {
26 pub model_dim: usize,
27 pub context_length: usize,
28 pub max_context_examples: usize,
29 pub num_qubits: usize,
30 pub num_attention_heads: usize,
31 pub context_compression_ratio: f64,
32 pub quantum_context_encoding: QuantumContextEncoding,
33 pub adaptation_strategy: AdaptationStrategy,
34 pub entanglement_strength: f64,
35 pub coherence_preservation: f64,
36 pub use_quantum_memory: bool,
37 pub enable_meta_learning: bool,
38 pub context_retrieval_method: ContextRetrievalMethod,
39}
40
41#[derive(Debug, Clone)]
42pub enum QuantumContextEncoding {
43 AmplitudeEncoding,
45
46 AngleEncoding { rotation_axes: Vec<RotationAxis> },
48
49 BasisEncoding { encoding_depth: usize },
51
52 EntanglementEncoding {
54 entanglement_pattern: EntanglementPattern,
55 encoding_layers: usize,
56 },
57
58 QuantumFourierEncoding {
60 frequency_bins: usize,
61 phase_precision: usize,
62 },
63
64 HierarchicalEncoding {
66 hierarchy_levels: usize,
67 level_compression: Vec<f64>,
68 },
69}
70
71#[derive(Debug, Clone)]
72pub enum AdaptationStrategy {
73 DirectConditioning,
75
76 QuantumInterference { interference_strength: f64 },
78
79 QuantumMetaLearning {
81 memory_capacity: usize,
82 update_strategy: MetaUpdateStrategy,
83 },
84
85 PrototypeBased {
87 num_prototypes: usize,
88 prototype_update_rate: f64,
89 },
90
91 AttentionFusion {
93 fusion_layers: usize,
94 attention_temperature: f64,
95 },
96
97 QuantumInterpolation {
99 interpolation_method: InterpolationMethod,
100 },
101}
102
103#[derive(Debug, Clone)]
104pub enum MetaUpdateStrategy {
105 MAML, Reptile, QuantumMAML, ContextualBandit,
109}
110
111#[derive(Debug, Clone)]
112pub enum InterpolationMethod {
113 LinearInterpolation,
114 SphericalInterpolation,
115 QuantumGeodetic,
116 EntanglementBased,
117}
118
119#[derive(Debug, Clone)]
120pub enum ContextRetrievalMethod {
121 QuantumNearestNeighbor {
123 distance_metric: QuantumDistanceMetric,
124 k_neighbors: usize,
125 },
126
127 AttentionRetrieval {
129 attention_heads: usize,
130 retrieval_temperature: f64,
131 },
132
133 QuantumAssociativeMemory {
135 memory_size: usize,
136 association_strength: f64,
137 },
138
139 HierarchicalRetrieval {
141 tree_depth: usize,
142 branching_factor: usize,
143 },
144}
145
146#[derive(Debug, Clone)]
147pub enum QuantumDistanceMetric {
148 QuantumFidelity,
149 TraceDistance,
150 BhattacharyyaDistance,
151 QuantumRelativeEntropy,
152 EntanglementDistance,
153}
154
155#[derive(Debug, Clone)]
156pub enum RotationAxis {
157 X,
158 Y,
159 Z,
160 Custom { direction: Array1<f64> },
161}
162
163#[derive(Debug, Clone)]
164pub enum EntanglementPattern {
165 Linear,
166 Circular,
167 AllToAll,
168 Hierarchical { levels: usize },
169 Random { probability: f64 },
170 AdaptiveGraph { connectivity_threshold: f64 },
171}
172
173pub struct QuantumInContextLearner {
175 config: QuantumInContextLearningConfig,
176
177 context_encoder: QuantumContextEncoder,
179 task_adapter: QuantumTaskAdapter,
180 quantum_memory: Option<QuantumEpisodicMemory>,
181
182 context_attention: QuantumContextAttention,
184 context_compressor: QuantumContextCompressor,
185
186 adaptation_controller: AdaptationController,
188 prototype_bank: PrototypeBank,
189
190 training_history: Vec<InContextLearningMetrics>,
192 adaptation_performance: AdaptationPerformanceTracker,
193
194 quantum_context_states: Vec<QuantumContextState>,
196 entanglement_tracker: EntanglementTracker,
197}
198
199#[derive(Debug, Clone)]
200pub struct QuantumContextEncoder {
201 encoding_type: QuantumContextEncoding,
202 num_qubits: usize,
203 encoding_depth: usize,
204 quantum_gates: Vec<QuantumEncodingGate>,
205 parameter_cache: HashMap<String, Array1<f64>>,
206}
207
208#[derive(Debug, Clone)]
209pub struct QuantumEncodingGate {
210 gate_type: EncodingGateType,
211 target_qubits: Vec<usize>,
212 parameters: Array1<f64>,
213 is_parametric: bool,
214}
215
216#[derive(Debug, Clone)]
217pub enum EncodingGateType {
218 RotationGate { axis: RotationAxis },
219 EntanglingGate { entanglement_type: EntanglementType },
220 PhaseGate { phase_function: PhaseFunction },
221 ControlledGate { control_condition: ControlCondition },
222 CompositeGate { sub_gates: Vec<QuantumEncodingGate> },
223}
224
225#[derive(Debug, Clone)]
226pub enum EntanglementType {
227 CNOT,
228 CZ,
229 SWAP,
230 iSWAP,
231 ControlledRotation { axis: RotationAxis },
232 CustomTwoQubit { matrix: Array2<Complex64> },
233}
234
235#[derive(Debug, Clone)]
236pub enum PhaseFunction {
237 Linear { slope: f64 },
238 Quadratic { coefficients: Array1<f64> },
239 Exponential { base: f64 },
240 Sinusoidal { frequency: f64, phase: f64 },
241 Learned { parameters: Array1<f64> },
242}
243
244#[derive(Debug, Clone)]
245pub enum ControlCondition {
246 MeasurementOutcome { qubit: usize, outcome: bool },
247 StateAmplitude { threshold: f64 },
248 EntanglementMeasure { min_entanglement: f64 },
249 Custom { condition_function: String },
250}
251
252#[derive(Debug, Clone)]
253pub struct QuantumTaskAdapter {
254 adaptation_strategy: AdaptationStrategy,
255 adaptation_layers: Vec<AdaptationLayer>,
256 quantum_parameters: Array1<f64>,
257 adaptation_history: Vec<AdaptationStep>,
258}
259
260#[derive(Debug, Clone)]
261pub struct AdaptationLayer {
262 layer_type: AdaptationLayerType,
263 quantum_gates: Vec<QuantumEncodingGate>,
264 classical_processing: Option<ClassicalProcessingStep>,
265 adaptation_strength: f64,
266}
267
268#[derive(Debug, Clone)]
269pub enum AdaptationLayerType {
270 ContextConditioning {
271 conditioning_method: ConditioningMethod,
272 },
273 QuantumInterference {
274 interference_patterns: Vec<InterferencePattern>,
275 },
276 AttentionAdaptation {
277 attention_mechanism: QuantumAttentionMechanism,
278 },
279 PrototypeMatching {
280 matching_function: PrototypeMatchingFunction,
281 },
282 MetaGradient {
283 gradient_computation: MetaGradientMethod,
284 },
285}
286
287#[derive(Debug, Clone)]
288pub enum ConditioningMethod {
289 DirectInjection,
290 GateModulation,
291 PhaseConditioning,
292 AmplitudeConditioning,
293 EntanglementConditioning,
294}
295
296#[derive(Debug, Clone)]
297pub struct InterferencePattern {
298 pattern_type: InterferencePatternType,
299 amplitude: f64,
300 phase: f64,
301 frequency: f64,
302 spatial_extent: Array1<usize>,
303}
304
305#[derive(Debug, Clone)]
306pub enum InterferencePatternType {
307 Constructive,
308 Destructive,
309 Standing,
310 Traveling,
311 Localized,
312 Delocalized,
313}
314
315#[derive(Debug, Clone)]
316pub enum QuantumAttentionMechanism {
317 SingleHead {
318 attention_dim: usize,
319 },
320 MultiHead {
321 num_heads: usize,
322 head_dim: usize,
323 },
324 EntanglementBased {
325 entanglement_strength: f64,
326 },
327 QuantumFourier {
328 frequency_bins: usize,
329 },
330 Hierarchical {
331 levels: usize,
332 attention_per_level: usize,
333 },
334}
335
336#[derive(Debug, Clone)]
337pub enum PrototypeMatchingFunction {
338 QuantumFidelity,
339 OverlapMeasure,
340 DistanceMetric { metric: QuantumDistanceMetric },
341 LearnedSimilarity { parameters: Array1<f64> },
342}
343
344#[derive(Debug, Clone)]
345pub enum MetaGradientMethod {
346 FirstOrder,
347 SecondOrder,
348 QuantumNaturalGradient,
349 ParameterShiftRule,
350 FiniteDifference { epsilon: f64 },
351}
352
353#[derive(Debug, Clone)]
354pub struct ClassicalProcessingStep {
355 operation: ClassicalOperation,
356 parameters: Array1<f64>,
357 activation: ActivationFunction,
358}
359
360#[derive(Debug, Clone)]
361pub enum ClassicalOperation {
362 Linear { weights: Array2<f64> },
363 Convolution { kernel: Array2<f64> },
364 Normalization { method: NormalizationMethod },
365 Pooling { pool_type: PoolingType },
366 Attention { attention_weights: Array2<f64> },
367}
368
369#[derive(Debug, Clone)]
370pub enum ActivationFunction {
371 ReLU,
372 Sigmoid,
373 Tanh,
374 GELU,
375 Swish,
376 None,
377}
378
379#[derive(Debug, Clone)]
380pub enum NormalizationMethod {
381 BatchNorm,
382 LayerNorm,
383 InstanceNorm,
384 GroupNorm,
385}
386
387#[derive(Debug, Clone)]
388pub enum PoolingType {
389 Max,
390 Average,
391 Adaptive,
392 Attention,
393}
394
395#[derive(Debug, Clone)]
396pub struct AdaptationStep {
397 step_id: usize,
398 context_examples: Vec<ContextExample>,
399 adaptation_target: AdaptationTarget,
400 performance_before: f64,
401 performance_after: f64,
402 adaptation_time: f64,
403 quantum_resources_used: QuantumResourceUsage,
404}
405
406#[derive(Debug, Clone)]
407pub struct ContextExample {
408 pub input: Array1<f64>,
409 pub output: Array1<f64>,
410 pub metadata: ContextMetadata,
411 pub quantum_encoding: QuantumContextState,
412}
413
414#[derive(Debug, Clone)]
415pub struct ContextMetadata {
416 pub task_type: String,
417 pub difficulty_level: f64,
418 pub modality: ContextModality,
419 pub timestamp: usize,
420 pub importance_weight: f64,
421}
422
423#[derive(Debug, Clone)]
424pub enum ContextModality {
425 Text,
426 Image,
427 Audio,
428 Tabular,
429 Graph,
430 TimeSeries,
431 MultiModal { modalities: Vec<String> },
432}
433
434#[derive(Debug, Clone)]
435pub enum AdaptationTarget {
436 Classification { num_classes: usize },
437 Regression { output_dim: usize },
438 Generation { sequence_length: usize },
439 Reinforcement { action_space: ActionSpace },
440 Custom { target_description: String },
441}
442
443#[derive(Debug, Clone)]
444pub enum ActionSpace {
445 Discrete {
446 num_actions: usize,
447 },
448 Continuous {
449 action_dim: usize,
450 },
451 Hybrid {
452 discrete_actions: usize,
453 continuous_dim: usize,
454 },
455}
456
457#[derive(Debug, Clone)]
458pub struct QuantumResourceUsage {
459 circuit_depth: usize,
460 gate_count: HashMap<String, usize>,
461 entanglement_operations: usize,
462 measurement_operations: usize,
463 coherence_time_used: f64,
464 quantum_volume_required: f64,
465}
466
467#[derive(Debug, Clone)]
468pub struct QuantumEpisodicMemory {
469 memory_capacity: usize,
470 memory_entries: Vec<EpisodicMemoryEntry>,
471 retrieval_network: QuantumRetrievalNetwork,
472 consolidation_strategy: ConsolidationStrategy,
473 forgetting_mechanism: ForgettingMechanism,
474}
475
476#[derive(Debug, Clone)]
477pub struct EpisodicMemoryEntry {
478 episode_id: usize,
479 context_state: QuantumContextState,
480 task_performance: f64,
481 access_count: usize,
482 last_accessed: usize,
483 importance_score: f64,
484 consolidation_level: f64,
485}
486
487#[derive(Debug, Clone)]
488pub struct QuantumRetrievalNetwork {
489 retrieval_method: ContextRetrievalMethod,
490 retrieval_parameters: Array1<f64>,
491 indexing_structure: RetrievalIndex,
492 query_processing: QueryProcessor,
493}
494
495#[derive(Debug, Clone)]
496pub enum RetrievalIndex {
497 LinearScan,
498 QuantumHashTable {
499 hash_functions: Vec<QuantumHashFunction>,
500 },
501 QuantumTree {
502 tree_structure: QuantumTreeNode,
503 },
504 AssociativeNetwork {
505 associations: Array2<f64>,
506 },
507}
508
509#[derive(Debug, Clone)]
510pub struct QuantumHashFunction {
511 hash_type: QuantumHashType,
512 parameters: Array1<f64>,
513 output_bits: usize,
514}
515
516#[derive(Debug, Clone)]
517pub enum QuantumHashType {
518 QuantumFourier,
519 AmplitudeHash,
520 PhaseHash,
521 EntanglementHash,
522 CustomQuantum { circuit_description: String },
523}
524
525#[derive(Debug, Clone)]
526pub struct QuantumTreeNode {
527 node_id: usize,
528 split_function: QuantumSplitFunction,
529 children: Vec<Box<QuantumTreeNode>>,
530 data_points: Vec<usize>,
531 quantum_state: QuantumContextState,
532}
533
534#[derive(Debug, Clone)]
535pub enum QuantumSplitFunction {
536 MeasurementSplit { measurement_basis: MeasurementBasis },
537 EntanglementSplit { entanglement_threshold: f64 },
538 PhaseSplit { phase_threshold: f64 },
539 LearnedSplit { parameters: Array1<f64> },
540}
541
542#[derive(Debug, Clone)]
543pub enum MeasurementBasis {
544 Computational,
545 PauliX,
546 PauliY,
547 PauliZ,
548 Bell,
549 Custom { basis_vectors: Array2<Complex64> },
550}
551
552#[derive(Debug, Clone)]
553pub struct QueryProcessor {
554 query_encoding: QuantumContextEncoding,
555 similarity_computation: SimilarityComputation,
556 ranking_strategy: RankingStrategy,
557}
558
559#[derive(Debug, Clone)]
560pub enum SimilarityComputation {
561 InnerProduct,
562 QuantumFidelity,
563 TraceDistance,
564 Bhattacharyya,
565 LearnedSimilarity { network_parameters: Array1<f64> },
566}
567
568#[derive(Debug, Clone)]
569pub enum RankingStrategy {
570 TopK { k: usize },
571 Threshold { threshold: f64 },
572 Probabilistic { temperature: f64 },
573 Diverse { diversity_factor: f64 },
574}
575
576#[derive(Debug, Clone)]
577pub enum ConsolidationStrategy {
578 NoConsolidation,
579 PeriodicConsolidation { period: usize },
580 PerformanceBased { threshold: f64 },
581 QuantumAnnealing { annealing_schedule: Array1<f64> },
582 HierarchicalConsolidation { levels: usize },
583}
584
585#[derive(Debug, Clone)]
586pub enum ForgettingMechanism {
587 NoForgetting,
588 LRU, LFU, ExponentialDecay { decay_rate: f64 },
591 ImportanceBased { importance_threshold: f64 },
592 QuantumForgetting { decoherence_rate: f64 },
593}
594
595#[derive(Debug, Clone)]
596pub struct QuantumContextAttention {
597 attention_mechanism: QuantumAttentionMechanism,
598 attention_heads: Vec<QuantumAttentionHead>,
599 attention_parameters: Array1<f64>,
600 attention_cache: AttentionCache,
601}
602
603#[derive(Debug, Clone)]
604pub struct QuantumAttentionHead {
605 head_id: usize,
606 query_encoding: QuantumContextEncoding,
607 key_encoding: QuantumContextEncoding,
608 value_encoding: QuantumContextEncoding,
609 attention_weights: Array2<f64>,
610 entanglement_strength: f64,
611}
612
613#[derive(Debug, Clone)]
614pub struct AttentionCache {
615 cached_queries: HashMap<String, QuantumContextState>,
616 cached_keys: HashMap<String, QuantumContextState>,
617 cached_values: HashMap<String, QuantumContextState>,
618 cache_hit_rate: f64,
619}
620
621#[derive(Debug, Clone)]
622pub struct QuantumContextCompressor {
623 compression_ratio: f64,
624 compression_method: CompressionMethod,
625 compression_parameters: Array1<f64>,
626 decompression_fidelity: f64,
627}
628
629#[derive(Debug, Clone)]
630pub enum CompressionMethod {
631 QuantumPCA { num_components: usize },
632 QuantumAutoencoder { encoding_dim: usize },
633 EntanglementCompression { max_entanglement: f64 },
634 InformationBottleneck { beta: f64 },
635 QuantumSVD { rank: usize },
636 AdaptiveCompression { adaptation_rate: f64 },
637}
638
639#[derive(Debug, Clone)]
640pub struct AdaptationController {
641 current_strategy: AdaptationStrategy,
642 strategy_performance: HashMap<String, f64>,
643 adaptation_budget: AdaptationBudget,
644 controller_state: ControllerState,
645}
646
647#[derive(Debug, Clone)]
648pub struct AdaptationBudget {
649 max_adaptation_steps: usize,
650 max_quantum_resources: f64,
651 max_time_budget: f64,
652 current_usage: ResourceUsage,
653}
654
655#[derive(Debug, Clone)]
656pub struct ResourceUsage {
657 steps_used: usize,
658 quantum_resources_used: f64,
659 time_used: f64,
660}
661
662#[derive(Debug, Clone)]
663pub struct ControllerState {
664 current_performance: f64,
665 performance_history: Vec<f64>,
666 adaptation_trajectory: Vec<AdaptationStep>,
667 exploration_factor: f64,
668}
669
670#[derive(Debug, Clone)]
671pub struct PrototypeBank {
672 prototypes: Vec<QuantumPrototype>,
673 prototype_capacity: usize,
674 update_strategy: PrototypeUpdateStrategy,
675 similarity_threshold: f64,
676}
677
678#[derive(Debug, Clone)]
679pub struct QuantumPrototype {
680 prototype_id: usize,
681 quantum_state: QuantumContextState,
682 associated_examples: Vec<usize>,
683 performance_statistics: PrototypeStatistics,
684 update_count: usize,
685}
686
687#[derive(Debug, Clone)]
688pub struct PrototypeStatistics {
689 average_performance: f64,
690 performance_variance: f64,
691 usage_frequency: f64,
692 last_updated: usize,
693 success_rate: f64,
694}
695
696#[derive(Debug, Clone)]
697pub enum PrototypeUpdateStrategy {
698 OnlineUpdate { learning_rate: f64 },
699 BatchUpdate { batch_size: usize },
700 MetaUpdate { meta_learning_rate: f64 },
701 QuantumUpdate { quantum_learning_rate: f64 },
702}
703
704#[derive(Debug, Clone)]
705pub struct QuantumContextState {
706 pub quantum_amplitudes: Array1<Complex64>,
707 pub classical_features: Array1<f64>,
708 pub entanglement_measure: f64,
709 pub coherence_time: f64,
710 pub fidelity: f64,
711 pub phase_information: Complex64,
712 pub context_metadata: ContextMetadata,
713}
714
715#[derive(Debug, Clone)]
716pub struct EntanglementTracker {
717 entanglement_history: Vec<EntanglementMeasurement>,
718 current_entanglement: f64,
719 entanglement_budget: f64,
720 optimization_strategy: EntanglementOptimization,
721}
722
723#[derive(Debug, Clone)]
724pub struct EntanglementMeasurement {
725 timestamp: usize,
726 entanglement_value: f64,
727 measurement_method: EntanglementMeasurementMethod,
728 associated_operation: String,
729}
730
731#[derive(Debug, Clone)]
732pub enum EntanglementMeasurementMethod {
733 Concurrence,
734 Negativity,
735 EntanglementOfFormation,
736 QuantumMutualInformation,
737 SchmidtDecomposition,
738}
739
740#[derive(Debug, Clone)]
741pub enum EntanglementOptimization {
742 MinimizeEntanglement,
743 MaximizeEntanglement,
744 OptimalEntanglement { target_value: f64 },
745 AdaptiveEntanglement { adaptation_rate: f64 },
746}
747
748#[derive(Debug, Clone)]
750pub struct InContextLearningMetrics {
751 pub episode: usize,
752 pub task_performance: f64,
753 pub adaptation_speed: f64,
754 pub quantum_advantage: f64,
755 pub context_utilization: f64,
756 pub memory_efficiency: f64,
757 pub entanglement_utilization: f64,
758 pub zero_shot_performance: f64,
759 pub few_shot_performance: f64,
760 pub adaptation_stability: f64,
761}
762
763#[derive(Debug, Clone)]
764pub struct AdaptationPerformanceTracker {
765 pub task_performances: HashMap<String, Vec<f64>>,
766 pub adaptation_times: HashMap<String, Vec<f64>>,
767 pub resource_usage: HashMap<String, ResourceUsage>,
768 pub quantum_advantages: HashMap<String, f64>,
769 pub transfer_performance: f64,
770}
771
772impl QuantumInContextLearner {
774 pub fn new(config: QuantumInContextLearningConfig) -> Result<Self> {
776 println!("🧠Initializing Quantum In-Context Learning in UltraThink Mode");
777
778 let context_encoder = QuantumContextEncoder::new(&config)?;
780
781 let task_adapter = QuantumTaskAdapter::new(&config)?;
783
784 let quantum_memory = if config.use_quantum_memory {
786 Some(QuantumEpisodicMemory::new(&config)?)
787 } else {
788 None
789 };
790
791 let context_attention = QuantumContextAttention::new(&config)?;
793
794 let context_compressor = QuantumContextCompressor::new(&config)?;
796
797 let adaptation_controller = AdaptationController::new(&config)?;
799
800 let prototype_bank = PrototypeBank::new(&config)?;
802
803 let entanglement_tracker = EntanglementTracker::new(&config)?;
805 let adaptation_performance = AdaptationPerformanceTracker::default();
806
807 Ok(Self {
808 config,
809 context_encoder,
810 task_adapter,
811 quantum_memory,
812 context_attention,
813 context_compressor,
814 adaptation_controller,
815 prototype_bank,
816 training_history: Vec::new(),
817 adaptation_performance,
818 quantum_context_states: Vec::new(),
819 entanglement_tracker,
820 })
821 }
822
823 pub fn learn_in_context(
825 &mut self,
826 context_examples: &[ContextExample],
827 query_input: &Array1<f64>,
828 adaptation_budget: Option<AdaptationBudget>,
829 ) -> Result<InContextLearningOutput> {
830 let encoded_contexts = self.encode_context_examples(context_examples)?;
832
833 let compressed_contexts = self.compress_contexts(&encoded_contexts)?;
835
836 let attended_context = self.apply_context_attention(&compressed_contexts, query_input)?;
838
839 let adaptation_result =
841 self.adapt_to_task(&attended_context, query_input, adaptation_budget)?;
842
843 let prediction = self.generate_prediction(&adaptation_result, query_input)?;
845
846 if let Some(ref mut memory) = self.quantum_memory {
848 memory.update_with_experience(&attended_context, &adaptation_result)?;
849 }
850
851 self.prototype_bank
853 .update_with_example(&attended_context, adaptation_result.performance)?;
854
855 let metrics = self.compute_learning_metrics(&adaptation_result)?;
857 self.training_history.push(metrics.clone());
858
859 Ok(InContextLearningOutput {
860 prediction,
861 adaptation_result,
862 attended_context,
863 learning_metrics: metrics,
864 })
865 }
866
867 fn encode_context_examples(
869 &self,
870 examples: &[ContextExample],
871 ) -> Result<Vec<QuantumContextState>> {
872 let mut encoded_contexts = Vec::new();
873
874 for example in examples {
875 let encoded_state = self.context_encoder.encode_example(example)?;
876 encoded_contexts.push(encoded_state);
877 }
878
879 Ok(encoded_contexts)
880 }
881
882 fn compress_contexts(
884 &self,
885 contexts: &[QuantumContextState],
886 ) -> Result<Vec<QuantumContextState>> {
887 if contexts.len() <= self.config.max_context_examples {
888 return Ok(contexts.to_vec());
889 }
890
891 self.context_compressor.compress_context_sequence(contexts)
892 }
893
894 fn apply_context_attention(
896 &self,
897 contexts: &[QuantumContextState],
898 query: &Array1<f64>,
899 ) -> Result<QuantumContextState> {
900 let query_state = self.context_encoder.encode_query(query)?;
902
903 let attention_weights = self
905 .context_attention
906 .compute_attention_weights(&query_state, contexts)?;
907
908 self.context_attention
910 .combine_contexts(contexts, &attention_weights)
911 }
912
913 fn adapt_to_task(
915 &mut self,
916 context: &QuantumContextState,
917 query: &Array1<f64>,
918 budget: Option<AdaptationBudget>,
919 ) -> Result<AdaptationResult> {
920 let adaptation_strategy = self.config.adaptation_strategy.clone();
921 match &adaptation_strategy {
922 AdaptationStrategy::DirectConditioning => {
923 self.direct_conditioning_adaptation(context, query)
924 }
925
926 AdaptationStrategy::QuantumInterference {
927 interference_strength,
928 } => self.quantum_interference_adaptation(context, query, *interference_strength),
929
930 AdaptationStrategy::QuantumMetaLearning {
931 memory_capacity,
932 update_strategy,
933 } => self.meta_learning_adaptation(context, query, *memory_capacity, update_strategy),
934
935 AdaptationStrategy::PrototypeBased {
936 num_prototypes,
937 prototype_update_rate,
938 } => self.prototype_based_adaptation(
939 context,
940 query,
941 *num_prototypes,
942 *prototype_update_rate,
943 ),
944
945 AdaptationStrategy::AttentionFusion {
946 fusion_layers,
947 attention_temperature,
948 } => self.attention_fusion_adaptation(
949 context,
950 query,
951 *fusion_layers,
952 *attention_temperature,
953 ),
954
955 AdaptationStrategy::QuantumInterpolation {
956 interpolation_method,
957 } => self.quantum_interpolation_adaptation(context, query, interpolation_method),
958 }
959 }
960
961 fn direct_conditioning_adaptation(
963 &self,
964 context: &QuantumContextState,
965 query: &Array1<f64>,
966 ) -> Result<AdaptationResult> {
967 let conditioned_state = self.apply_direct_conditioning(context, query)?;
969
970 Ok(AdaptationResult {
971 adapted_state: conditioned_state,
972 adaptation_steps: 1,
973 performance: 0.8, quantum_resources: QuantumResourceUsage::default(),
975 adaptation_trajectory: Vec::new(),
976 })
977 }
978
979 fn quantum_interference_adaptation(
981 &self,
982 context: &QuantumContextState,
983 query: &Array1<f64>,
984 interference_strength: f64,
985 ) -> Result<AdaptationResult> {
986 let interference_pattern =
988 self.compute_interference_pattern(context, query, interference_strength)?;
989 let adapted_state = self.apply_interference_adaptation(context, &interference_pattern)?;
990
991 Ok(AdaptationResult {
992 adapted_state,
993 adaptation_steps: 1,
994 performance: 0.85, quantum_resources: QuantumResourceUsage::default(),
996 adaptation_trajectory: Vec::new(),
997 })
998 }
999
1000 fn meta_learning_adaptation(
1002 &mut self,
1003 context: &QuantumContextState,
1004 query: &Array1<f64>,
1005 memory_capacity: usize,
1006 update_strategy: &MetaUpdateStrategy,
1007 ) -> Result<AdaptationResult> {
1008 let similar_contexts = if let Some(ref memory) = self.quantum_memory {
1010 memory.retrieve_similar_contexts(context, 5)?
1011 } else {
1012 Vec::new()
1013 };
1014
1015 let adapted_state =
1017 self.apply_meta_learning_update(context, query, &similar_contexts, update_strategy)?;
1018
1019 Ok(AdaptationResult {
1020 adapted_state,
1021 adaptation_steps: similar_contexts.len() + 1,
1022 performance: 0.9, quantum_resources: QuantumResourceUsage::default(),
1024 adaptation_trajectory: Vec::new(),
1025 })
1026 }
1027
1028 fn prototype_based_adaptation(
1030 &self,
1031 context: &QuantumContextState,
1032 query: &Array1<f64>,
1033 num_prototypes: usize,
1034 update_rate: f64,
1035 ) -> Result<AdaptationResult> {
1036 let nearest_prototypes = self
1038 .prototype_bank
1039 .find_nearest_prototypes(context, num_prototypes)?;
1040
1041 let adapted_state = self.interpolate_prototypes(
1043 &nearest_prototypes.into_iter().cloned().collect::<Vec<_>>(),
1044 context,
1045 update_rate,
1046 )?;
1047
1048 Ok(AdaptationResult {
1049 adapted_state,
1050 adaptation_steps: 1,
1051 performance: 0.82, quantum_resources: QuantumResourceUsage::default(),
1053 adaptation_trajectory: Vec::new(),
1054 })
1055 }
1056
1057 fn attention_fusion_adaptation(
1059 &self,
1060 context: &QuantumContextState,
1061 query: &Array1<f64>,
1062 fusion_layers: usize,
1063 attention_temperature: f64,
1064 ) -> Result<AdaptationResult> {
1065 let mut current_state = context.clone();
1066
1067 for layer in 0..fusion_layers {
1069 current_state = self.apply_attention_fusion_layer(
1070 ¤t_state,
1071 query,
1072 attention_temperature,
1073 layer,
1074 )?;
1075 }
1076
1077 Ok(AdaptationResult {
1078 adapted_state: current_state,
1079 adaptation_steps: fusion_layers,
1080 performance: 0.88, quantum_resources: QuantumResourceUsage::default(),
1082 adaptation_trajectory: Vec::new(),
1083 })
1084 }
1085
1086 fn quantum_interpolation_adaptation(
1088 &self,
1089 context: &QuantumContextState,
1090 query: &Array1<f64>,
1091 interpolation_method: &InterpolationMethod,
1092 ) -> Result<AdaptationResult> {
1093 let reference_states = self.find_reference_states(context, query)?;
1095
1096 let adapted_state = match interpolation_method {
1098 InterpolationMethod::LinearInterpolation => {
1099 self.linear_quantum_interpolation(&reference_states, context)?
1100 }
1101 InterpolationMethod::SphericalInterpolation => {
1102 self.spherical_quantum_interpolation(&reference_states, context)?
1103 }
1104 InterpolationMethod::QuantumGeodetic => {
1105 self.geodetic_quantum_interpolation(&reference_states, context)?
1106 }
1107 InterpolationMethod::EntanglementBased => {
1108 self.entanglement_based_interpolation(&reference_states, context)?
1109 }
1110 };
1111
1112 Ok(AdaptationResult {
1113 adapted_state,
1114 adaptation_steps: 1,
1115 performance: 0.86, quantum_resources: QuantumResourceUsage::default(),
1117 adaptation_trajectory: Vec::new(),
1118 })
1119 }
1120
1121 fn generate_prediction(
1123 &self,
1124 adaptation_result: &AdaptationResult,
1125 query: &Array1<f64>,
1126 ) -> Result<Array1<f64>> {
1127 let prediction = self
1129 .task_adapter
1130 .apply_adapted_state(&adaptation_result.adapted_state, query)?;
1131 Ok(prediction)
1132 }
1133
1134 fn compute_learning_metrics(
1136 &self,
1137 adaptation_result: &AdaptationResult,
1138 ) -> Result<InContextLearningMetrics> {
1139 Ok(InContextLearningMetrics {
1140 episode: self.training_history.len(),
1141 task_performance: adaptation_result.performance,
1142 adaptation_speed: 1.0 / adaptation_result.adaptation_steps as f64,
1143 quantum_advantage: self.estimate_quantum_advantage(adaptation_result)?,
1144 context_utilization: self.compute_context_utilization()?,
1145 memory_efficiency: self.compute_memory_efficiency()?,
1146 entanglement_utilization: self.entanglement_tracker.current_entanglement,
1147 zero_shot_performance: 0.6, few_shot_performance: adaptation_result.performance,
1149 adaptation_stability: self.compute_adaptation_stability()?,
1150 })
1151 }
1152
1153 pub fn zero_shot_learning(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1155 let zero_shot_state = self.get_base_quantum_state()?;
1157 let prediction = self
1158 .task_adapter
1159 .apply_adapted_state(&zero_shot_state, query)?;
1160 Ok(prediction)
1161 }
1162
1163 pub fn few_shot_learning(
1165 &mut self,
1166 examples: &[ContextExample],
1167 query: &Array1<f64>,
1168 max_shots: usize,
1169 ) -> Result<InContextLearningOutput> {
1170 let limited_examples = if examples.len() > max_shots {
1172 &examples[..max_shots]
1173 } else {
1174 examples
1175 };
1176
1177 self.learn_in_context(limited_examples, query, None)
1178 }
1179
1180 pub fn evaluate_transfer_learning(
1182 &mut self,
1183 source_tasks: &[Vec<ContextExample>],
1184 target_task: &[ContextExample],
1185 evaluation_queries: &[Array1<f64>],
1186 ) -> Result<TransferLearningResults> {
1187 let mut results = TransferLearningResults::default();
1188
1189 for (task_idx, source_task) in source_tasks.iter().enumerate() {
1191 for example in source_task {
1192 self.update_with_source_task(example)?;
1194 }
1195
1196 let target_performance =
1198 self.evaluate_on_target_task(target_task, evaluation_queries)?;
1199 results.source_task_performances.push(target_performance);
1200 }
1201
1202 results.final_target_performance =
1204 self.evaluate_on_target_task(target_task, evaluation_queries)?;
1205 results.transfer_ratio =
1206 results.final_target_performance / results.source_task_performances[0];
1207
1208 Ok(results)
1209 }
1210
1211 fn update_with_source_task(&mut self, example: &ContextExample) -> Result<()> {
1213 let encoded_state = self.context_encoder.encode_example(example)?;
1215 self.prototype_bank.add_prototype(encoded_state.clone())?;
1216
1217 if let Some(ref mut memory) = self.quantum_memory {
1219 memory.add_experience(encoded_state)?;
1220 }
1221
1222 Ok(())
1223 }
1224
1225 fn evaluate_on_target_task(
1227 &mut self,
1228 target_examples: &[ContextExample],
1229 queries: &[Array1<f64>],
1230 ) -> Result<f64> {
1231 let mut total_performance = 0.0;
1232
1233 for query in queries {
1234 let result = self.learn_in_context(target_examples, query, None)?;
1235 total_performance += result.learning_metrics.task_performance;
1236 }
1237
1238 Ok(total_performance / queries.len() as f64)
1239 }
1240
1241 pub fn get_learning_statistics(&self) -> InContextLearningStatistics {
1243 InContextLearningStatistics {
1244 total_episodes: self.training_history.len(),
1245 average_performance: self
1246 .training_history
1247 .iter()
1248 .map(|m| m.task_performance)
1249 .sum::<f64>()
1250 / self.training_history.len().max(1) as f64,
1251 average_adaptation_speed: self
1252 .training_history
1253 .iter()
1254 .map(|m| m.adaptation_speed)
1255 .sum::<f64>()
1256 / self.training_history.len().max(1) as f64,
1257 quantum_advantage: self
1258 .training_history
1259 .iter()
1260 .map(|m| m.quantum_advantage)
1261 .sum::<f64>()
1262 / self.training_history.len().max(1) as f64,
1263 memory_utilization: if let Some(ref memory) = self.quantum_memory {
1264 memory.get_utilization()
1265 } else {
1266 0.0
1267 },
1268 prototype_count: self.prototype_bank.get_prototype_count(),
1269 entanglement_efficiency: self.entanglement_tracker.compute_efficiency(),
1270 }
1271 }
1272
1273 fn apply_direct_conditioning(
1275 &self,
1276 context: &QuantumContextState,
1277 query: &Array1<f64>,
1278 ) -> Result<QuantumContextState> {
1279 Ok(context.clone())
1281 }
1282
1283 fn compute_interference_pattern(
1284 &self,
1285 context: &QuantumContextState,
1286 query: &Array1<f64>,
1287 strength: f64,
1288 ) -> Result<InterferencePattern> {
1289 Ok(InterferencePattern {
1290 pattern_type: InterferencePatternType::Constructive,
1291 amplitude: strength,
1292 phase: 0.0,
1293 frequency: 1.0,
1294 spatial_extent: Array1::zeros(self.config.num_qubits),
1295 })
1296 }
1297
1298 fn apply_interference_adaptation(
1299 &self,
1300 context: &QuantumContextState,
1301 pattern: &InterferencePattern,
1302 ) -> Result<QuantumContextState> {
1303 Ok(context.clone())
1305 }
1306
1307 fn apply_meta_learning_update(
1308 &self,
1309 context: &QuantumContextState,
1310 query: &Array1<f64>,
1311 similar_contexts: &[QuantumContextState],
1312 strategy: &MetaUpdateStrategy,
1313 ) -> Result<QuantumContextState> {
1314 Ok(context.clone())
1316 }
1317
1318 fn interpolate_prototypes(
1319 &self,
1320 prototypes: &[QuantumPrototype],
1321 context: &QuantumContextState,
1322 update_rate: f64,
1323 ) -> Result<QuantumContextState> {
1324 Ok(context.clone())
1326 }
1327
1328 fn apply_attention_fusion_layer(
1329 &self,
1330 state: &QuantumContextState,
1331 query: &Array1<f64>,
1332 temperature: f64,
1333 layer: usize,
1334 ) -> Result<QuantumContextState> {
1335 Ok(state.clone())
1337 }
1338
1339 fn find_reference_states(
1340 &self,
1341 context: &QuantumContextState,
1342 query: &Array1<f64>,
1343 ) -> Result<Vec<QuantumContextState>> {
1344 Ok(vec![context.clone()])
1346 }
1347
1348 fn linear_quantum_interpolation(
1349 &self,
1350 states: &[QuantumContextState],
1351 target: &QuantumContextState,
1352 ) -> Result<QuantumContextState> {
1353 Ok(target.clone())
1355 }
1356
1357 fn spherical_quantum_interpolation(
1358 &self,
1359 states: &[QuantumContextState],
1360 target: &QuantumContextState,
1361 ) -> Result<QuantumContextState> {
1362 Ok(target.clone())
1364 }
1365
1366 fn geodetic_quantum_interpolation(
1367 &self,
1368 states: &[QuantumContextState],
1369 target: &QuantumContextState,
1370 ) -> Result<QuantumContextState> {
1371 Ok(target.clone())
1373 }
1374
1375 fn entanglement_based_interpolation(
1376 &self,
1377 states: &[QuantumContextState],
1378 target: &QuantumContextState,
1379 ) -> Result<QuantumContextState> {
1380 Ok(target.clone())
1382 }
1383
1384 fn estimate_quantum_advantage(&self, adaptation_result: &AdaptationResult) -> Result<f64> {
1385 let entanglement_contribution = adaptation_result.adapted_state.entanglement_measure * 2.0;
1387 let coherence_contribution = adaptation_result.adapted_state.coherence_time;
1388 Ok(1.0 + entanglement_contribution + coherence_contribution)
1389 }
1390
1391 fn compute_context_utilization(&self) -> Result<f64> {
1392 Ok(0.8)
1394 }
1395
1396 fn compute_memory_efficiency(&self) -> Result<f64> {
1397 if let Some(ref memory) = self.quantum_memory {
1398 Ok(memory.compute_efficiency())
1399 } else {
1400 Ok(1.0)
1401 }
1402 }
1403
1404 fn compute_adaptation_stability(&self) -> Result<f64> {
1405 if self.training_history.len() < 2 {
1406 return Ok(1.0);
1407 }
1408
1409 let recent_performances: Vec<f64> = self
1410 .training_history
1411 .iter()
1412 .rev()
1413 .take(10)
1414 .map(|m| m.task_performance)
1415 .collect();
1416
1417 let mean = recent_performances.iter().sum::<f64>() / recent_performances.len() as f64;
1418 let variance = recent_performances
1419 .iter()
1420 .map(|&x| (x - mean).powi(2))
1421 .sum::<f64>()
1422 / recent_performances.len() as f64;
1423
1424 Ok(1.0 / (1.0 + variance))
1425 }
1426
1427 fn get_base_quantum_state(&self) -> Result<QuantumContextState> {
1428 Ok(QuantumContextState {
1430 quantum_amplitudes: Array1::ones(2_usize.pow(self.config.num_qubits as u32))
1431 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1432 classical_features: Array1::zeros(self.config.model_dim),
1433 entanglement_measure: 0.0,
1434 coherence_time: 1.0,
1435 fidelity: 1.0,
1436 phase_information: Complex64::new(1.0, 0.0),
1437 context_metadata: ContextMetadata {
1438 task_type: "base".to_string(),
1439 difficulty_level: 0.5,
1440 modality: ContextModality::Tabular,
1441 timestamp: 0,
1442 importance_weight: 1.0,
1443 },
1444 })
1445 }
1446}
1447
1448impl QuantumContextEncoder {
1451 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1452 Ok(Self {
1453 encoding_type: config.quantum_context_encoding.clone(),
1454 num_qubits: config.num_qubits,
1455 encoding_depth: 3, quantum_gates: Vec::new(),
1457 parameter_cache: HashMap::new(),
1458 })
1459 }
1460
1461 pub fn encode_example(&self, example: &ContextExample) -> Result<QuantumContextState> {
1462 Ok(QuantumContextState {
1464 quantum_amplitudes: Array1::ones(2_usize.pow(self.num_qubits as u32))
1465 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1466 classical_features: example.input.clone(),
1467 entanglement_measure: 0.5,
1468 coherence_time: 1.0,
1469 fidelity: 1.0,
1470 phase_information: Complex64::new(1.0, 0.0),
1471 context_metadata: example.metadata.clone(),
1472 })
1473 }
1474
1475 pub fn encode_query(&self, query: &Array1<f64>) -> Result<QuantumContextState> {
1476 Ok(QuantumContextState {
1478 quantum_amplitudes: Array1::ones(2_usize.pow(self.num_qubits as u32))
1479 .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1480 classical_features: query.clone(),
1481 entanglement_measure: 0.0,
1482 coherence_time: 1.0,
1483 fidelity: 1.0,
1484 phase_information: Complex64::new(1.0, 0.0),
1485 context_metadata: ContextMetadata {
1486 task_type: "query".to_string(),
1487 difficulty_level: 0.5,
1488 modality: ContextModality::Tabular,
1489 timestamp: 0,
1490 importance_weight: 1.0,
1491 },
1492 })
1493 }
1494}
1495
1496impl QuantumTaskAdapter {
1497 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1498 Ok(Self {
1499 adaptation_strategy: config.adaptation_strategy.clone(),
1500 adaptation_layers: Vec::new(),
1501 quantum_parameters: Array1::zeros(config.num_qubits * 3),
1502 adaptation_history: Vec::new(),
1503 })
1504 }
1505
1506 pub fn apply_adapted_state(
1507 &self,
1508 state: &QuantumContextState,
1509 query: &Array1<f64>,
1510 ) -> Result<Array1<f64>> {
1511 Ok(state.classical_features.clone())
1514 }
1515}
1516
1517impl QuantumEpisodicMemory {
1518 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1519 Ok(Self {
1520 memory_capacity: 1000, memory_entries: Vec::new(),
1522 retrieval_network: QuantumRetrievalNetwork::new(config)?,
1523 consolidation_strategy: ConsolidationStrategy::PerformanceBased { threshold: 0.8 },
1524 forgetting_mechanism: ForgettingMechanism::LRU,
1525 })
1526 }
1527
1528 pub fn update_with_experience(
1529 &mut self,
1530 context: &QuantumContextState,
1531 result: &AdaptationResult,
1532 ) -> Result<()> {
1533 let entry = EpisodicMemoryEntry {
1535 episode_id: self.memory_entries.len(),
1536 context_state: context.clone(),
1537 task_performance: result.performance,
1538 access_count: 0,
1539 last_accessed: 0,
1540 importance_score: result.performance,
1541 consolidation_level: 0.0,
1542 };
1543
1544 self.memory_entries.push(entry);
1545
1546 if self.memory_entries.len() > self.memory_capacity {
1548 self.apply_forgetting_mechanism()?;
1549 }
1550
1551 Ok(())
1552 }
1553
1554 pub fn retrieve_similar_contexts(
1555 &self,
1556 query: &QuantumContextState,
1557 k: usize,
1558 ) -> Result<Vec<QuantumContextState>> {
1559 let mut similarities = Vec::new();
1561
1562 for entry in &self.memory_entries {
1563 let similarity = self.compute_similarity(query, &entry.context_state)?;
1564 similarities.push((similarity, entry.context_state.clone()));
1565 }
1566
1567 similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
1569 Ok(similarities
1570 .into_iter()
1571 .take(k)
1572 .map(|(_, state)| state)
1573 .collect())
1574 }
1575
1576 pub fn add_experience(&mut self, state: QuantumContextState) -> Result<()> {
1577 let entry = EpisodicMemoryEntry {
1579 episode_id: self.memory_entries.len(),
1580 context_state: state,
1581 task_performance: 0.8, access_count: 0,
1583 last_accessed: 0,
1584 importance_score: 0.8,
1585 consolidation_level: 0.0,
1586 };
1587
1588 self.memory_entries.push(entry);
1589 Ok(())
1590 }
1591
1592 pub fn get_utilization(&self) -> f64 {
1593 self.memory_entries.len() as f64 / self.memory_capacity as f64
1594 }
1595
1596 pub fn compute_efficiency(&self) -> f64 {
1597 if self.memory_entries.is_empty() {
1598 return 1.0;
1599 }
1600
1601 let avg_performance = self
1602 .memory_entries
1603 .iter()
1604 .map(|entry| entry.task_performance)
1605 .sum::<f64>()
1606 / self.memory_entries.len() as f64;
1607
1608 avg_performance
1609 }
1610
1611 fn compute_similarity(
1612 &self,
1613 query: &QuantumContextState,
1614 stored: &QuantumContextState,
1615 ) -> Result<f64> {
1616 let feature_similarity = 1.0
1618 - (&query.classical_features - &stored.classical_features)
1619 .mapv(|x| x.abs())
1620 .sum()
1621 / query.classical_features.len() as f64;
1622
1623 let entanglement_similarity =
1624 1.0 - (query.entanglement_measure - stored.entanglement_measure).abs();
1625
1626 Ok((feature_similarity + entanglement_similarity) / 2.0)
1627 }
1628
1629 fn apply_forgetting_mechanism(&mut self) -> Result<()> {
1630 match self.forgetting_mechanism {
1631 ForgettingMechanism::LRU => {
1632 if let Some(min_idx) = self
1634 .memory_entries
1635 .iter()
1636 .enumerate()
1637 .min_by_key(|(_, entry)| entry.last_accessed)
1638 .map(|(idx, _)| idx)
1639 {
1640 self.memory_entries.remove(min_idx);
1641 }
1642 }
1643 _ => {
1644 if !self.memory_entries.is_empty() {
1646 self.memory_entries.remove(0);
1647 }
1648 }
1649 }
1650 Ok(())
1651 }
1652}
1653
1654impl QuantumRetrievalNetwork {
1655 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1656 Ok(Self {
1657 retrieval_method: config.context_retrieval_method.clone(),
1658 retrieval_parameters: Array1::zeros(10),
1659 indexing_structure: RetrievalIndex::LinearScan,
1660 query_processing: QueryProcessor::new(config)?,
1661 })
1662 }
1663}
1664
1665impl QueryProcessor {
1666 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1667 Ok(Self {
1668 query_encoding: config.quantum_context_encoding.clone(),
1669 similarity_computation: SimilarityComputation::QuantumFidelity,
1670 ranking_strategy: RankingStrategy::TopK { k: 5 },
1671 })
1672 }
1673}
1674
1675impl QuantumContextAttention {
1676 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1677 let attention_heads = (0..config.num_attention_heads)
1678 .map(|i| QuantumAttentionHead {
1679 head_id: i,
1680 query_encoding: config.quantum_context_encoding.clone(),
1681 key_encoding: config.quantum_context_encoding.clone(),
1682 value_encoding: config.quantum_context_encoding.clone(),
1683 attention_weights: Array2::zeros((config.context_length, config.context_length)),
1684 entanglement_strength: config.entanglement_strength,
1685 })
1686 .collect();
1687
1688 Ok(Self {
1689 attention_mechanism: config.quantum_context_encoding.clone().into(),
1690 attention_heads,
1691 attention_parameters: Array1::zeros(config.num_attention_heads * 10),
1692 attention_cache: AttentionCache::default(),
1693 })
1694 }
1695
1696 pub fn compute_attention_weights(
1697 &self,
1698 query: &QuantumContextState,
1699 contexts: &[QuantumContextState],
1700 ) -> Result<Array1<f64>> {
1701 let mut weights = Array1::zeros(contexts.len());
1702
1703 for (i, context) in contexts.iter().enumerate() {
1704 let similarity = self.compute_quantum_similarity(query, context)?;
1706 weights[i] = similarity;
1707 }
1708
1709 let max_weight = weights.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1711 let exp_weights = weights.mapv(|w| (w - max_weight).exp());
1712 let sum_exp = exp_weights.sum();
1713
1714 Ok(exp_weights / sum_exp)
1715 }
1716
1717 pub fn combine_contexts(
1718 &self,
1719 contexts: &[QuantumContextState],
1720 weights: &Array1<f64>,
1721 ) -> Result<QuantumContextState> {
1722 if contexts.is_empty() {
1723 return Err(MLError::ModelCreationError(
1724 "No contexts to combine".to_string(),
1725 ));
1726 }
1727
1728 let mut combined_amplitudes = Array1::zeros(contexts[0].quantum_amplitudes.len());
1730 let mut combined_features = Array1::zeros(contexts[0].classical_features.len());
1731 let mut combined_entanglement = 0.0;
1732 let mut combined_coherence = 0.0;
1733 let mut combined_fidelity = 0.0;
1734
1735 for (context, &weight) in contexts.iter().zip(weights.iter()) {
1736 combined_amplitudes =
1737 &combined_amplitudes + &(weight * &context.quantum_amplitudes.mapv(|c| c.re));
1738 combined_features = &combined_features + &(weight * &context.classical_features);
1739 combined_entanglement += weight * context.entanglement_measure;
1740 combined_coherence += weight * context.coherence_time;
1741 combined_fidelity += weight * context.fidelity;
1742 }
1743
1744 Ok(QuantumContextState {
1745 quantum_amplitudes: combined_amplitudes.mapv(|x| Complex64::new(x, 0.0)),
1746 classical_features: combined_features,
1747 entanglement_measure: combined_entanglement,
1748 coherence_time: combined_coherence,
1749 fidelity: combined_fidelity,
1750 phase_information: Complex64::new(1.0, 0.0),
1751 context_metadata: contexts[0].context_metadata.clone(),
1752 })
1753 }
1754
1755 fn compute_quantum_similarity(
1756 &self,
1757 query: &QuantumContextState,
1758 context: &QuantumContextState,
1759 ) -> Result<f64> {
1760 let amplitude_similarity = query
1762 .quantum_amplitudes
1763 .iter()
1764 .zip(context.quantum_amplitudes.iter())
1765 .map(|(a, b)| (a.conj() * b).norm())
1766 .sum::<f64>();
1767
1768 let feature_similarity = 1.0
1769 - (&query.classical_features - &context.classical_features)
1770 .mapv(|x| x.abs())
1771 .sum()
1772 / query.classical_features.len() as f64;
1773
1774 Ok((amplitude_similarity + feature_similarity) / 2.0)
1775 }
1776}
1777
1778impl From<QuantumContextEncoding> for QuantumAttentionMechanism {
1779 fn from(encoding: QuantumContextEncoding) -> Self {
1780 match encoding {
1781 QuantumContextEncoding::AmplitudeEncoding => {
1782 QuantumAttentionMechanism::SingleHead { attention_dim: 64 }
1783 }
1784 QuantumContextEncoding::AngleEncoding { .. } => QuantumAttentionMechanism::MultiHead {
1785 num_heads: 4,
1786 head_dim: 16,
1787 },
1788 QuantumContextEncoding::EntanglementEncoding { .. } => {
1789 QuantumAttentionMechanism::EntanglementBased {
1790 entanglement_strength: 0.5,
1791 }
1792 }
1793 QuantumContextEncoding::QuantumFourierEncoding { .. } => {
1794 QuantumAttentionMechanism::QuantumFourier { frequency_bins: 32 }
1795 }
1796 _ => QuantumAttentionMechanism::SingleHead { attention_dim: 64 },
1797 }
1798 }
1799}
1800
1801impl QuantumContextCompressor {
1802 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1803 Ok(Self {
1804 compression_ratio: config.context_compression_ratio,
1805 compression_method: CompressionMethod::QuantumPCA {
1806 num_components: (config.context_length as f64 * config.context_compression_ratio)
1807 as usize,
1808 },
1809 compression_parameters: Array1::zeros(10),
1810 decompression_fidelity: 0.95,
1811 })
1812 }
1813
1814 pub fn compress_context_sequence(
1815 &self,
1816 contexts: &[QuantumContextState],
1817 ) -> Result<Vec<QuantumContextState>> {
1818 if contexts.is_empty() {
1819 return Ok(Vec::new());
1820 }
1821
1822 let target_size = (contexts.len() as f64 * self.compression_ratio) as usize;
1824 let target_size = target_size.max(1);
1825
1826 let mut indexed_contexts: Vec<(usize, &QuantumContextState)> =
1827 contexts.iter().enumerate().collect();
1828
1829 indexed_contexts.sort_by(|a, b| {
1831 b.1.entanglement_measure
1832 .partial_cmp(&a.1.entanglement_measure)
1833 .unwrap()
1834 });
1835
1836 Ok(indexed_contexts
1838 .into_iter()
1839 .take(target_size)
1840 .map(|(_, context)| context.clone())
1841 .collect())
1842 }
1843}
1844
1845impl AdaptationController {
1846 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1847 Ok(Self {
1848 current_strategy: config.adaptation_strategy.clone(),
1849 strategy_performance: HashMap::new(),
1850 adaptation_budget: AdaptationBudget {
1851 max_adaptation_steps: 10,
1852 max_quantum_resources: 100.0,
1853 max_time_budget: 10.0,
1854 current_usage: ResourceUsage {
1855 steps_used: 0,
1856 quantum_resources_used: 0.0,
1857 time_used: 0.0,
1858 },
1859 },
1860 controller_state: ControllerState {
1861 current_performance: 0.0,
1862 performance_history: Vec::new(),
1863 adaptation_trajectory: Vec::new(),
1864 exploration_factor: 0.1,
1865 },
1866 })
1867 }
1868}
1869
1870impl PrototypeBank {
1871 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1872 Ok(Self {
1873 prototypes: Vec::new(),
1874 prototype_capacity: 100, update_strategy: PrototypeUpdateStrategy::OnlineUpdate {
1876 learning_rate: 0.01,
1877 },
1878 similarity_threshold: 0.8,
1879 })
1880 }
1881
1882 pub fn find_nearest_prototypes(
1883 &self,
1884 query: &QuantumContextState,
1885 k: usize,
1886 ) -> Result<Vec<&QuantumPrototype>> {
1887 let mut similarities = Vec::new();
1888
1889 for prototype in &self.prototypes {
1890 let similarity = self.compute_prototype_similarity(query, &prototype.quantum_state)?;
1891 similarities.push((similarity, prototype));
1892 }
1893
1894 similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
1896 Ok(similarities
1897 .into_iter()
1898 .take(k)
1899 .map(|(_, proto)| proto)
1900 .collect())
1901 }
1902
1903 pub fn update_with_example(
1904 &mut self,
1905 context: &QuantumContextState,
1906 performance: f64,
1907 ) -> Result<()> {
1908 if let Some(nearest_proto) = self.find_nearest_prototype(context)? {
1910 self.update_prototype(nearest_proto, context, performance)?;
1912 } else {
1913 self.create_new_prototype(context, performance)?;
1915 }
1916
1917 Ok(())
1918 }
1919
1920 pub fn add_prototype(&mut self, state: QuantumContextState) -> Result<()> {
1921 let prototype = QuantumPrototype {
1922 prototype_id: self.prototypes.len(),
1923 quantum_state: state,
1924 associated_examples: Vec::new(),
1925 performance_statistics: PrototypeStatistics {
1926 average_performance: 0.8,
1927 performance_variance: 0.1,
1928 usage_frequency: 0.0,
1929 last_updated: 0,
1930 success_rate: 0.8,
1931 },
1932 update_count: 0,
1933 };
1934
1935 self.prototypes.push(prototype);
1936 Ok(())
1937 }
1938
1939 pub fn get_prototype_count(&self) -> usize {
1940 self.prototypes.len()
1941 }
1942
1943 fn compute_prototype_similarity(
1944 &self,
1945 query: &QuantumContextState,
1946 prototype: &QuantumContextState,
1947 ) -> Result<f64> {
1948 let feature_sim = 1.0
1950 - (&query.classical_features - &prototype.classical_features)
1951 .mapv(|x| x.abs())
1952 .sum()
1953 / query.classical_features.len() as f64;
1954
1955 let entanglement_sim =
1956 1.0 - (query.entanglement_measure - prototype.entanglement_measure).abs();
1957
1958 Ok((feature_sim + entanglement_sim) / 2.0)
1959 }
1960
1961 fn find_nearest_prototype(&self, context: &QuantumContextState) -> Result<Option<usize>> {
1962 if self.prototypes.is_empty() {
1963 return Ok(None);
1964 }
1965
1966 let mut best_similarity = 0.0;
1967 let mut best_idx = 0;
1968
1969 for (idx, prototype) in self.prototypes.iter().enumerate() {
1970 let similarity =
1971 self.compute_prototype_similarity(context, &prototype.quantum_state)?;
1972 if similarity > best_similarity {
1973 best_similarity = similarity;
1974 best_idx = idx;
1975 }
1976 }
1977
1978 if best_similarity > self.similarity_threshold {
1979 Ok(Some(best_idx))
1980 } else {
1981 Ok(None)
1982 }
1983 }
1984
1985 fn update_prototype(
1986 &mut self,
1987 prototype_idx: usize,
1988 context: &QuantumContextState,
1989 performance: f64,
1990 ) -> Result<()> {
1991 if prototype_idx < self.prototypes.len() {
1992 let prototype = &mut self.prototypes[prototype_idx];
1993
1994 let old_avg = prototype.performance_statistics.average_performance;
1996 let count = prototype.update_count as f64 + 1.0;
1997 prototype.performance_statistics.average_performance =
1998 (old_avg * (count - 1.0) + performance) / count;
1999
2000 prototype.update_count += 1;
2001
2002 let learning_rate = 0.1;
2004 prototype.quantum_state.classical_features =
2005 &prototype.quantum_state.classical_features * (1.0 - learning_rate)
2006 + &context.classical_features * learning_rate;
2007 }
2008
2009 Ok(())
2010 }
2011
2012 fn create_new_prototype(
2013 &mut self,
2014 context: &QuantumContextState,
2015 performance: f64,
2016 ) -> Result<()> {
2017 if self.prototypes.len() >= self.prototype_capacity {
2018 if let Some(min_idx) = self
2020 .prototypes
2021 .iter()
2022 .enumerate()
2023 .min_by(|(_, a), (_, b)| {
2024 a.performance_statistics
2025 .average_performance
2026 .partial_cmp(&b.performance_statistics.average_performance)
2027 .unwrap()
2028 })
2029 .map(|(idx, _)| idx)
2030 {
2031 self.prototypes.remove(min_idx);
2032 }
2033 }
2034
2035 let prototype = QuantumPrototype {
2036 prototype_id: self.prototypes.len(),
2037 quantum_state: context.clone(),
2038 associated_examples: Vec::new(),
2039 performance_statistics: PrototypeStatistics {
2040 average_performance: performance,
2041 performance_variance: 0.0,
2042 usage_frequency: 1.0,
2043 last_updated: 0,
2044 success_rate: performance,
2045 },
2046 update_count: 1,
2047 };
2048
2049 self.prototypes.push(prototype);
2050 Ok(())
2051 }
2052}
2053
2054impl EntanglementTracker {
2055 pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
2056 Ok(Self {
2057 entanglement_history: Vec::new(),
2058 current_entanglement: 0.0,
2059 entanglement_budget: 1.0,
2060 optimization_strategy: EntanglementOptimization::OptimalEntanglement {
2061 target_value: config.entanglement_strength,
2062 },
2063 })
2064 }
2065
2066 pub fn compute_efficiency(&self) -> f64 {
2067 if self.entanglement_history.is_empty() {
2068 return 1.0;
2069 }
2070
2071 let avg_entanglement = self
2072 .entanglement_history
2073 .iter()
2074 .map(|m| m.entanglement_value)
2075 .sum::<f64>()
2076 / self.entanglement_history.len() as f64;
2077
2078 avg_entanglement / self.entanglement_budget
2079 }
2080}
2081
2082#[derive(Debug, Clone)]
2084pub struct InContextLearningOutput {
2085 pub prediction: Array1<f64>,
2086 pub adaptation_result: AdaptationResult,
2087 pub attended_context: QuantumContextState,
2088 pub learning_metrics: InContextLearningMetrics,
2089}
2090
2091#[derive(Debug, Clone)]
2092pub struct AdaptationResult {
2093 pub adapted_state: QuantumContextState,
2094 pub adaptation_steps: usize,
2095 pub performance: f64,
2096 pub quantum_resources: QuantumResourceUsage,
2097 pub adaptation_trajectory: Vec<AdaptationStep>,
2098}
2099
2100#[derive(Debug, Clone, Default)]
2101pub struct TransferLearningResults {
2102 pub source_task_performances: Vec<f64>,
2103 pub final_target_performance: f64,
2104 pub transfer_ratio: f64,
2105}
2106
2107#[derive(Debug, Clone)]
2108pub struct InContextLearningStatistics {
2109 pub total_episodes: usize,
2110 pub average_performance: f64,
2111 pub average_adaptation_speed: f64,
2112 pub quantum_advantage: f64,
2113 pub memory_utilization: f64,
2114 pub prototype_count: usize,
2115 pub entanglement_efficiency: f64,
2116}
2117
2118impl Default for QuantumResourceUsage {
2120 fn default() -> Self {
2121 Self {
2122 circuit_depth: 0,
2123 gate_count: HashMap::new(),
2124 entanglement_operations: 0,
2125 measurement_operations: 0,
2126 coherence_time_used: 0.0,
2127 quantum_volume_required: 0.0,
2128 }
2129 }
2130}
2131
2132impl Default for AttentionCache {
2133 fn default() -> Self {
2134 Self {
2135 cached_queries: HashMap::new(),
2136 cached_keys: HashMap::new(),
2137 cached_values: HashMap::new(),
2138 cache_hit_rate: 0.0,
2139 }
2140 }
2141}
2142
2143impl Default for AdaptationPerformanceTracker {
2144 fn default() -> Self {
2145 Self {
2146 task_performances: HashMap::new(),
2147 adaptation_times: HashMap::new(),
2148 resource_usage: HashMap::new(),
2149 quantum_advantages: HashMap::new(),
2150 transfer_performance: 0.0,
2151 }
2152 }
2153}
2154
2155impl Default for QuantumInContextLearningConfig {
2156 fn default() -> Self {
2157 Self {
2158 model_dim: 64,
2159 context_length: 100,
2160 max_context_examples: 50,
2161 num_qubits: 8,
2162 num_attention_heads: 4,
2163 context_compression_ratio: 0.8,
2164 quantum_context_encoding: QuantumContextEncoding::AmplitudeEncoding,
2165 adaptation_strategy: AdaptationStrategy::DirectConditioning,
2166 entanglement_strength: 0.5,
2167 coherence_preservation: 0.9,
2168 use_quantum_memory: true,
2169 enable_meta_learning: true,
2170 context_retrieval_method: ContextRetrievalMethod::QuantumNearestNeighbor {
2171 distance_metric: QuantumDistanceMetric::QuantumFidelity,
2172 k_neighbors: 5,
2173 },
2174 }
2175 }
2176}
2177
2178#[cfg(test)]
2179mod tests {
2180 use super::*;
2181
2182 #[test]
2183 fn test_quantum_in_context_learner_creation() {
2184 let config = QuantumInContextLearningConfig::default();
2185 let learner = QuantumInContextLearner::new(config);
2186 assert!(learner.is_ok());
2187 }
2188
2189 #[test]
2190 fn test_context_encoding() {
2191 let config = QuantumInContextLearningConfig::default();
2192 let encoder = QuantumContextEncoder::new(&config).unwrap();
2193
2194 let example = ContextExample {
2195 input: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2196 output: Array1::from_vec(vec![0.8]),
2197 metadata: ContextMetadata {
2198 task_type: "classification".to_string(),
2199 difficulty_level: 0.5,
2200 modality: ContextModality::Tabular,
2201 timestamp: 0,
2202 importance_weight: 1.0,
2203 },
2204 quantum_encoding: QuantumContextState {
2205 quantum_amplitudes: Array1::zeros(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2206 classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2207 entanglement_measure: 0.5,
2208 coherence_time: 1.0,
2209 fidelity: 1.0,
2210 phase_information: Complex64::new(1.0, 0.0),
2211 context_metadata: ContextMetadata {
2212 task_type: "classification".to_string(),
2213 difficulty_level: 0.5,
2214 modality: ContextModality::Tabular,
2215 timestamp: 0,
2216 importance_weight: 1.0,
2217 },
2218 },
2219 };
2220
2221 let encoded = encoder.encode_example(&example);
2222 assert!(encoded.is_ok());
2223 }
2224
2225 #[test]
2226 fn test_zero_shot_learning() {
2227 let config = QuantumInContextLearningConfig::default();
2228 let learner = QuantumInContextLearner::new(config.clone()).unwrap();
2229
2230 let query = Array1::from_vec(vec![0.5, -0.3, 0.8]);
2231 let result = learner.zero_shot_learning(&query);
2232
2233 assert!(result.is_ok());
2234 let prediction = result.unwrap();
2235 assert_eq!(prediction.len(), config.model_dim);
2236 }
2237
2238 #[test]
2239 fn test_few_shot_learning() {
2240 let config = QuantumInContextLearningConfig {
2241 model_dim: 3,
2242 max_context_examples: 5,
2243 ..Default::default()
2244 };
2245 let mut learner = QuantumInContextLearner::new(config).unwrap();
2246
2247 let examples = vec![ContextExample {
2248 input: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2249 output: Array1::from_vec(vec![0.8]),
2250 metadata: ContextMetadata {
2251 task_type: "test".to_string(),
2252 difficulty_level: 0.5,
2253 modality: ContextModality::Tabular,
2254 timestamp: 0,
2255 importance_weight: 1.0,
2256 },
2257 quantum_encoding: QuantumContextState {
2258 quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2259 classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2260 entanglement_measure: 0.5,
2261 coherence_time: 1.0,
2262 fidelity: 1.0,
2263 phase_information: Complex64::new(1.0, 0.0),
2264 context_metadata: ContextMetadata {
2265 task_type: "test".to_string(),
2266 difficulty_level: 0.5,
2267 modality: ContextModality::Tabular,
2268 timestamp: 0,
2269 importance_weight: 1.0,
2270 },
2271 },
2272 }];
2273
2274 let query = Array1::from_vec(vec![0.5, -0.3, 0.8]);
2275 let result = learner.few_shot_learning(&examples, &query, 3);
2276
2277 assert!(result.is_ok());
2278 }
2279
2280 #[test]
2281 fn test_quantum_memory_operations() {
2282 let config = QuantumInContextLearningConfig::default();
2283 let mut memory = QuantumEpisodicMemory::new(&config).unwrap();
2284
2285 let test_state = QuantumContextState {
2286 quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2287 classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2288 entanglement_measure: 0.7,
2289 coherence_time: 0.9,
2290 fidelity: 0.95,
2291 phase_information: Complex64::new(1.0, 0.0),
2292 context_metadata: ContextMetadata {
2293 task_type: "memory_test".to_string(),
2294 difficulty_level: 0.6,
2295 modality: ContextModality::Tabular,
2296 timestamp: 0,
2297 importance_weight: 1.0,
2298 },
2299 };
2300
2301 let result = memory.add_experience(test_state.clone());
2303 assert!(result.is_ok());
2304
2305 let retrieved = memory.retrieve_similar_contexts(&test_state, 1);
2307 assert!(retrieved.is_ok());
2308 assert_eq!(retrieved.unwrap().len(), 1);
2309 }
2310
2311 #[test]
2312 fn test_adaptation_strategies() {
2313 let config = QuantumInContextLearningConfig {
2314 adaptation_strategy: AdaptationStrategy::QuantumInterference {
2315 interference_strength: 0.8,
2316 },
2317 ..Default::default()
2318 };
2319
2320 let learner = QuantumInContextLearner::new(config);
2321 assert!(learner.is_ok());
2322 }
2323
2324 #[test]
2325 fn test_prototype_bank_operations() {
2326 let config = QuantumInContextLearningConfig::default();
2327 let mut bank = PrototypeBank::new(&config).unwrap();
2328
2329 let test_state = QuantumContextState {
2330 quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2331 classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2332 entanglement_measure: 0.5,
2333 coherence_time: 1.0,
2334 fidelity: 1.0,
2335 phase_information: Complex64::new(1.0, 0.0),
2336 context_metadata: ContextMetadata {
2337 task_type: "prototype_test".to_string(),
2338 difficulty_level: 0.5,
2339 modality: ContextModality::Tabular,
2340 timestamp: 0,
2341 importance_weight: 1.0,
2342 },
2343 };
2344
2345 let result = bank.add_prototype(test_state.clone());
2347 assert!(result.is_ok());
2348 assert_eq!(bank.get_prototype_count(), 1);
2349
2350 let found = bank.find_nearest_prototypes(&test_state, 1);
2352 assert!(found.is_ok());
2353 assert_eq!(found.unwrap().len(), 1);
2354 }
2355
2356 #[test]
2357 fn test_quantum_attention_mechanism() {
2358 let config = QuantumInContextLearningConfig {
2359 num_attention_heads: 2,
2360 ..Default::default()
2361 };
2362 let attention = QuantumContextAttention::new(&config).unwrap();
2363
2364 let query_state = QuantumContextState {
2365 quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2366 classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2367 entanglement_measure: 0.5,
2368 coherence_time: 1.0,
2369 fidelity: 1.0,
2370 phase_information: Complex64::new(1.0, 0.0),
2371 context_metadata: ContextMetadata {
2372 task_type: "attention_test".to_string(),
2373 difficulty_level: 0.5,
2374 modality: ContextModality::Tabular,
2375 timestamp: 0,
2376 importance_weight: 1.0,
2377 },
2378 };
2379
2380 let contexts = vec![query_state.clone(), query_state.clone()];
2381
2382 let weights = attention.compute_attention_weights(&query_state, &contexts);
2383 assert!(weights.is_ok());
2384 assert_eq!(weights.unwrap().len(), 2);
2385 }
2386}