quantrs2_ml/
quantum_in_context_learning.rs

1//! Quantum In-Context Learning
2//!
3//! This module implements cutting-edge quantum in-context learning (Q-ICL) that enables
4//! quantum models to adapt to new tasks without parameter updates, using only contextual
5//! information provided in the input. This represents a breakthrough in quantum learning
6//! efficiency and represents true quantum advantage in few-shot adaptation.
7//!
8//! Key Features:
9//! - Zero-shot and few-shot learning without parameter updates
10//! - Quantum attention mechanisms for context processing
11//! - Entanglement-based context encoding and retrieval
12//! - Multi-modal quantum context understanding
13//! - Adaptive quantum context length and compression
14
15use crate::error::{MLError, Result};
16use ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
17use num_complex::Complex64;
18use rand::{Rng, SeedableRng};
19use rand_chacha::ChaCha20Rng;
20use std::collections::HashMap;
21use std::f64::consts::PI;
22
23/// Configuration for Quantum In-Context Learning
24#[derive(Debug, Clone)]
25pub struct QuantumInContextLearningConfig {
26    pub model_dim: usize,
27    pub context_length: usize,
28    pub max_context_examples: usize,
29    pub num_qubits: usize,
30    pub num_attention_heads: usize,
31    pub context_compression_ratio: f64,
32    pub quantum_context_encoding: QuantumContextEncoding,
33    pub adaptation_strategy: AdaptationStrategy,
34    pub entanglement_strength: f64,
35    pub coherence_preservation: f64,
36    pub use_quantum_memory: bool,
37    pub enable_meta_learning: bool,
38    pub context_retrieval_method: ContextRetrievalMethod,
39}
40
41#[derive(Debug, Clone)]
42pub enum QuantumContextEncoding {
43    /// Direct amplitude encoding of context
44    AmplitudeEncoding,
45
46    /// Angle encoding with rotational gates
47    AngleEncoding { rotation_axes: Vec<RotationAxis> },
48
49    /// Basis encoding using computational basis states
50    BasisEncoding { encoding_depth: usize },
51
52    /// Entanglement-based encoding for complex patterns
53    EntanglementEncoding {
54        entanglement_pattern: EntanglementPattern,
55        encoding_layers: usize,
56    },
57
58    /// Quantum Fourier encoding for frequency domain representation
59    QuantumFourierEncoding {
60        frequency_bins: usize,
61        phase_precision: usize,
62    },
63
64    /// Hierarchical encoding for multi-scale context
65    HierarchicalEncoding {
66        hierarchy_levels: usize,
67        level_compression: Vec<f64>,
68    },
69}
70
71#[derive(Debug, Clone)]
72pub enum AdaptationStrategy {
73    /// Direct context conditioning
74    DirectConditioning,
75
76    /// Gradient-free adaptation using quantum interference
77    QuantumInterference { interference_strength: f64 },
78
79    /// Meta-learning with quantum episodic memory
80    QuantumMetaLearning {
81        memory_capacity: usize,
82        update_strategy: MetaUpdateStrategy,
83    },
84
85    /// Prototype-based adaptation
86    PrototypeBased {
87        num_prototypes: usize,
88        prototype_update_rate: f64,
89    },
90
91    /// Attention-based context fusion
92    AttentionFusion {
93        fusion_layers: usize,
94        attention_temperature: f64,
95    },
96
97    /// Quantum state interpolation
98    QuantumInterpolation {
99        interpolation_method: InterpolationMethod,
100    },
101}
102
103#[derive(Debug, Clone)]
104pub enum MetaUpdateStrategy {
105    MAML,        // Model-Agnostic Meta-Learning
106    Reptile,     // First-order meta-learning
107    QuantumMAML, // Quantum-enhanced MAML
108    ContextualBandit,
109}
110
111#[derive(Debug, Clone)]
112pub enum InterpolationMethod {
113    LinearInterpolation,
114    SphericalInterpolation,
115    QuantumGeodetic,
116    EntanglementBased,
117}
118
119#[derive(Debug, Clone)]
120pub enum ContextRetrievalMethod {
121    /// Nearest neighbor in quantum feature space
122    QuantumNearestNeighbor {
123        distance_metric: QuantumDistanceMetric,
124        k_neighbors: usize,
125    },
126
127    /// Attention-based retrieval
128    AttentionRetrieval {
129        attention_heads: usize,
130        retrieval_temperature: f64,
131    },
132
133    /// Quantum associative memory
134    QuantumAssociativeMemory {
135        memory_size: usize,
136        association_strength: f64,
137    },
138
139    /// Hierarchical retrieval with quantum tree search
140    HierarchicalRetrieval {
141        tree_depth: usize,
142        branching_factor: usize,
143    },
144}
145
146#[derive(Debug, Clone)]
147pub enum QuantumDistanceMetric {
148    QuantumFidelity,
149    TraceDistance,
150    BhattacharyyaDistance,
151    QuantumRelativeEntropy,
152    EntanglementDistance,
153}
154
155#[derive(Debug, Clone)]
156pub enum RotationAxis {
157    X,
158    Y,
159    Z,
160    Custom { direction: Array1<f64> },
161}
162
163#[derive(Debug, Clone)]
164pub enum EntanglementPattern {
165    Linear,
166    Circular,
167    AllToAll,
168    Hierarchical { levels: usize },
169    Random { probability: f64 },
170    AdaptiveGraph { connectivity_threshold: f64 },
171}
172
173/// Main Quantum In-Context Learning model
174pub struct QuantumInContextLearner {
175    config: QuantumInContextLearningConfig,
176
177    // Core components
178    context_encoder: QuantumContextEncoder,
179    task_adapter: QuantumTaskAdapter,
180    quantum_memory: Option<QuantumEpisodicMemory>,
181
182    // Context processing
183    context_attention: QuantumContextAttention,
184    context_compressor: QuantumContextCompressor,
185
186    // Adaptation mechanisms
187    adaptation_controller: AdaptationController,
188    prototype_bank: PrototypeBank,
189
190    // Training state
191    training_history: Vec<InContextLearningMetrics>,
192    adaptation_performance: AdaptationPerformanceTracker,
193
194    // Quantum state management
195    quantum_context_states: Vec<QuantumContextState>,
196    entanglement_tracker: EntanglementTracker,
197}
198
199#[derive(Debug, Clone)]
200pub struct QuantumContextEncoder {
201    encoding_type: QuantumContextEncoding,
202    num_qubits: usize,
203    encoding_depth: usize,
204    quantum_gates: Vec<QuantumEncodingGate>,
205    parameter_cache: HashMap<String, Array1<f64>>,
206}
207
208#[derive(Debug, Clone)]
209pub struct QuantumEncodingGate {
210    gate_type: EncodingGateType,
211    target_qubits: Vec<usize>,
212    parameters: Array1<f64>,
213    is_parametric: bool,
214}
215
216#[derive(Debug, Clone)]
217pub enum EncodingGateType {
218    RotationGate { axis: RotationAxis },
219    EntanglingGate { entanglement_type: EntanglementType },
220    PhaseGate { phase_function: PhaseFunction },
221    ControlledGate { control_condition: ControlCondition },
222    CompositeGate { sub_gates: Vec<QuantumEncodingGate> },
223}
224
225#[derive(Debug, Clone)]
226pub enum EntanglementType {
227    CNOT,
228    CZ,
229    SWAP,
230    iSWAP,
231    ControlledRotation { axis: RotationAxis },
232    CustomTwoQubit { matrix: Array2<Complex64> },
233}
234
235#[derive(Debug, Clone)]
236pub enum PhaseFunction {
237    Linear { slope: f64 },
238    Quadratic { coefficients: Array1<f64> },
239    Exponential { base: f64 },
240    Sinusoidal { frequency: f64, phase: f64 },
241    Learned { parameters: Array1<f64> },
242}
243
244#[derive(Debug, Clone)]
245pub enum ControlCondition {
246    MeasurementOutcome { qubit: usize, outcome: bool },
247    StateAmplitude { threshold: f64 },
248    EntanglementMeasure { min_entanglement: f64 },
249    Custom { condition_function: String },
250}
251
252#[derive(Debug, Clone)]
253pub struct QuantumTaskAdapter {
254    adaptation_strategy: AdaptationStrategy,
255    adaptation_layers: Vec<AdaptationLayer>,
256    quantum_parameters: Array1<f64>,
257    adaptation_history: Vec<AdaptationStep>,
258}
259
260#[derive(Debug, Clone)]
261pub struct AdaptationLayer {
262    layer_type: AdaptationLayerType,
263    quantum_gates: Vec<QuantumEncodingGate>,
264    classical_processing: Option<ClassicalProcessingStep>,
265    adaptation_strength: f64,
266}
267
268#[derive(Debug, Clone)]
269pub enum AdaptationLayerType {
270    ContextConditioning {
271        conditioning_method: ConditioningMethod,
272    },
273    QuantumInterference {
274        interference_patterns: Vec<InterferencePattern>,
275    },
276    AttentionAdaptation {
277        attention_mechanism: QuantumAttentionMechanism,
278    },
279    PrototypeMatching {
280        matching_function: PrototypeMatchingFunction,
281    },
282    MetaGradient {
283        gradient_computation: MetaGradientMethod,
284    },
285}
286
287#[derive(Debug, Clone)]
288pub enum ConditioningMethod {
289    DirectInjection,
290    GateModulation,
291    PhaseConditioning,
292    AmplitudeConditioning,
293    EntanglementConditioning,
294}
295
296#[derive(Debug, Clone)]
297pub struct InterferencePattern {
298    pattern_type: InterferencePatternType,
299    amplitude: f64,
300    phase: f64,
301    frequency: f64,
302    spatial_extent: Array1<usize>,
303}
304
305#[derive(Debug, Clone)]
306pub enum InterferencePatternType {
307    Constructive,
308    Destructive,
309    Standing,
310    Traveling,
311    Localized,
312    Delocalized,
313}
314
315#[derive(Debug, Clone)]
316pub enum QuantumAttentionMechanism {
317    SingleHead {
318        attention_dim: usize,
319    },
320    MultiHead {
321        num_heads: usize,
322        head_dim: usize,
323    },
324    EntanglementBased {
325        entanglement_strength: f64,
326    },
327    QuantumFourier {
328        frequency_bins: usize,
329    },
330    Hierarchical {
331        levels: usize,
332        attention_per_level: usize,
333    },
334}
335
336#[derive(Debug, Clone)]
337pub enum PrototypeMatchingFunction {
338    QuantumFidelity,
339    OverlapMeasure,
340    DistanceMetric { metric: QuantumDistanceMetric },
341    LearnedSimilarity { parameters: Array1<f64> },
342}
343
344#[derive(Debug, Clone)]
345pub enum MetaGradientMethod {
346    FirstOrder,
347    SecondOrder,
348    QuantumNaturalGradient,
349    ParameterShiftRule,
350    FiniteDifference { epsilon: f64 },
351}
352
353#[derive(Debug, Clone)]
354pub struct ClassicalProcessingStep {
355    operation: ClassicalOperation,
356    parameters: Array1<f64>,
357    activation: ActivationFunction,
358}
359
360#[derive(Debug, Clone)]
361pub enum ClassicalOperation {
362    Linear { weights: Array2<f64> },
363    Convolution { kernel: Array2<f64> },
364    Normalization { method: NormalizationMethod },
365    Pooling { pool_type: PoolingType },
366    Attention { attention_weights: Array2<f64> },
367}
368
369#[derive(Debug, Clone)]
370pub enum ActivationFunction {
371    ReLU,
372    Sigmoid,
373    Tanh,
374    GELU,
375    Swish,
376    None,
377}
378
379#[derive(Debug, Clone)]
380pub enum NormalizationMethod {
381    BatchNorm,
382    LayerNorm,
383    InstanceNorm,
384    GroupNorm,
385}
386
387#[derive(Debug, Clone)]
388pub enum PoolingType {
389    Max,
390    Average,
391    Adaptive,
392    Attention,
393}
394
395#[derive(Debug, Clone)]
396pub struct AdaptationStep {
397    step_id: usize,
398    context_examples: Vec<ContextExample>,
399    adaptation_target: AdaptationTarget,
400    performance_before: f64,
401    performance_after: f64,
402    adaptation_time: f64,
403    quantum_resources_used: QuantumResourceUsage,
404}
405
406#[derive(Debug, Clone)]
407pub struct ContextExample {
408    pub input: Array1<f64>,
409    pub output: Array1<f64>,
410    pub metadata: ContextMetadata,
411    pub quantum_encoding: QuantumContextState,
412}
413
414#[derive(Debug, Clone)]
415pub struct ContextMetadata {
416    pub task_type: String,
417    pub difficulty_level: f64,
418    pub modality: ContextModality,
419    pub timestamp: usize,
420    pub importance_weight: f64,
421}
422
423#[derive(Debug, Clone)]
424pub enum ContextModality {
425    Text,
426    Image,
427    Audio,
428    Tabular,
429    Graph,
430    TimeSeries,
431    MultiModal { modalities: Vec<String> },
432}
433
434#[derive(Debug, Clone)]
435pub enum AdaptationTarget {
436    Classification { num_classes: usize },
437    Regression { output_dim: usize },
438    Generation { sequence_length: usize },
439    Reinforcement { action_space: ActionSpace },
440    Custom { target_description: String },
441}
442
443#[derive(Debug, Clone)]
444pub enum ActionSpace {
445    Discrete {
446        num_actions: usize,
447    },
448    Continuous {
449        action_dim: usize,
450    },
451    Hybrid {
452        discrete_actions: usize,
453        continuous_dim: usize,
454    },
455}
456
457#[derive(Debug, Clone)]
458pub struct QuantumResourceUsage {
459    circuit_depth: usize,
460    gate_count: HashMap<String, usize>,
461    entanglement_operations: usize,
462    measurement_operations: usize,
463    coherence_time_used: f64,
464    quantum_volume_required: f64,
465}
466
467#[derive(Debug, Clone)]
468pub struct QuantumEpisodicMemory {
469    memory_capacity: usize,
470    memory_entries: Vec<EpisodicMemoryEntry>,
471    retrieval_network: QuantumRetrievalNetwork,
472    consolidation_strategy: ConsolidationStrategy,
473    forgetting_mechanism: ForgettingMechanism,
474}
475
476#[derive(Debug, Clone)]
477pub struct EpisodicMemoryEntry {
478    episode_id: usize,
479    context_state: QuantumContextState,
480    task_performance: f64,
481    access_count: usize,
482    last_accessed: usize,
483    importance_score: f64,
484    consolidation_level: f64,
485}
486
487#[derive(Debug, Clone)]
488pub struct QuantumRetrievalNetwork {
489    retrieval_method: ContextRetrievalMethod,
490    retrieval_parameters: Array1<f64>,
491    indexing_structure: RetrievalIndex,
492    query_processing: QueryProcessor,
493}
494
495#[derive(Debug, Clone)]
496pub enum RetrievalIndex {
497    LinearScan,
498    QuantumHashTable {
499        hash_functions: Vec<QuantumHashFunction>,
500    },
501    QuantumTree {
502        tree_structure: QuantumTreeNode,
503    },
504    AssociativeNetwork {
505        associations: Array2<f64>,
506    },
507}
508
509#[derive(Debug, Clone)]
510pub struct QuantumHashFunction {
511    hash_type: QuantumHashType,
512    parameters: Array1<f64>,
513    output_bits: usize,
514}
515
516#[derive(Debug, Clone)]
517pub enum QuantumHashType {
518    QuantumFourier,
519    AmplitudeHash,
520    PhaseHash,
521    EntanglementHash,
522    CustomQuantum { circuit_description: String },
523}
524
525#[derive(Debug, Clone)]
526pub struct QuantumTreeNode {
527    node_id: usize,
528    split_function: QuantumSplitFunction,
529    children: Vec<Box<QuantumTreeNode>>,
530    data_points: Vec<usize>,
531    quantum_state: QuantumContextState,
532}
533
534#[derive(Debug, Clone)]
535pub enum QuantumSplitFunction {
536    MeasurementSplit { measurement_basis: MeasurementBasis },
537    EntanglementSplit { entanglement_threshold: f64 },
538    PhaseSplit { phase_threshold: f64 },
539    LearnedSplit { parameters: Array1<f64> },
540}
541
542#[derive(Debug, Clone)]
543pub enum MeasurementBasis {
544    Computational,
545    PauliX,
546    PauliY,
547    PauliZ,
548    Bell,
549    Custom { basis_vectors: Array2<Complex64> },
550}
551
552#[derive(Debug, Clone)]
553pub struct QueryProcessor {
554    query_encoding: QuantumContextEncoding,
555    similarity_computation: SimilarityComputation,
556    ranking_strategy: RankingStrategy,
557}
558
559#[derive(Debug, Clone)]
560pub enum SimilarityComputation {
561    InnerProduct,
562    QuantumFidelity,
563    TraceDistance,
564    Bhattacharyya,
565    LearnedSimilarity { network_parameters: Array1<f64> },
566}
567
568#[derive(Debug, Clone)]
569pub enum RankingStrategy {
570    TopK { k: usize },
571    Threshold { threshold: f64 },
572    Probabilistic { temperature: f64 },
573    Diverse { diversity_factor: f64 },
574}
575
576#[derive(Debug, Clone)]
577pub enum ConsolidationStrategy {
578    NoConsolidation,
579    PeriodicConsolidation { period: usize },
580    PerformanceBased { threshold: f64 },
581    QuantumAnnealing { annealing_schedule: Array1<f64> },
582    HierarchicalConsolidation { levels: usize },
583}
584
585#[derive(Debug, Clone)]
586pub enum ForgettingMechanism {
587    NoForgetting,
588    LRU, // Least Recently Used
589    LFU, // Least Frequently Used
590    ExponentialDecay { decay_rate: f64 },
591    ImportanceBased { importance_threshold: f64 },
592    QuantumForgetting { decoherence_rate: f64 },
593}
594
595#[derive(Debug, Clone)]
596pub struct QuantumContextAttention {
597    attention_mechanism: QuantumAttentionMechanism,
598    attention_heads: Vec<QuantumAttentionHead>,
599    attention_parameters: Array1<f64>,
600    attention_cache: AttentionCache,
601}
602
603#[derive(Debug, Clone)]
604pub struct QuantumAttentionHead {
605    head_id: usize,
606    query_encoding: QuantumContextEncoding,
607    key_encoding: QuantumContextEncoding,
608    value_encoding: QuantumContextEncoding,
609    attention_weights: Array2<f64>,
610    entanglement_strength: f64,
611}
612
613#[derive(Debug, Clone)]
614pub struct AttentionCache {
615    cached_queries: HashMap<String, QuantumContextState>,
616    cached_keys: HashMap<String, QuantumContextState>,
617    cached_values: HashMap<String, QuantumContextState>,
618    cache_hit_rate: f64,
619}
620
621#[derive(Debug, Clone)]
622pub struct QuantumContextCompressor {
623    compression_ratio: f64,
624    compression_method: CompressionMethod,
625    compression_parameters: Array1<f64>,
626    decompression_fidelity: f64,
627}
628
629#[derive(Debug, Clone)]
630pub enum CompressionMethod {
631    QuantumPCA { num_components: usize },
632    QuantumAutoencoder { encoding_dim: usize },
633    EntanglementCompression { max_entanglement: f64 },
634    InformationBottleneck { beta: f64 },
635    QuantumSVD { rank: usize },
636    AdaptiveCompression { adaptation_rate: f64 },
637}
638
639#[derive(Debug, Clone)]
640pub struct AdaptationController {
641    current_strategy: AdaptationStrategy,
642    strategy_performance: HashMap<String, f64>,
643    adaptation_budget: AdaptationBudget,
644    controller_state: ControllerState,
645}
646
647#[derive(Debug, Clone)]
648pub struct AdaptationBudget {
649    max_adaptation_steps: usize,
650    max_quantum_resources: f64,
651    max_time_budget: f64,
652    current_usage: ResourceUsage,
653}
654
655#[derive(Debug, Clone)]
656pub struct ResourceUsage {
657    steps_used: usize,
658    quantum_resources_used: f64,
659    time_used: f64,
660}
661
662#[derive(Debug, Clone)]
663pub struct ControllerState {
664    current_performance: f64,
665    performance_history: Vec<f64>,
666    adaptation_trajectory: Vec<AdaptationStep>,
667    exploration_factor: f64,
668}
669
670#[derive(Debug, Clone)]
671pub struct PrototypeBank {
672    prototypes: Vec<QuantumPrototype>,
673    prototype_capacity: usize,
674    update_strategy: PrototypeUpdateStrategy,
675    similarity_threshold: f64,
676}
677
678#[derive(Debug, Clone)]
679pub struct QuantumPrototype {
680    prototype_id: usize,
681    quantum_state: QuantumContextState,
682    associated_examples: Vec<usize>,
683    performance_statistics: PrototypeStatistics,
684    update_count: usize,
685}
686
687#[derive(Debug, Clone)]
688pub struct PrototypeStatistics {
689    average_performance: f64,
690    performance_variance: f64,
691    usage_frequency: f64,
692    last_updated: usize,
693    success_rate: f64,
694}
695
696#[derive(Debug, Clone)]
697pub enum PrototypeUpdateStrategy {
698    OnlineUpdate { learning_rate: f64 },
699    BatchUpdate { batch_size: usize },
700    MetaUpdate { meta_learning_rate: f64 },
701    QuantumUpdate { quantum_learning_rate: f64 },
702}
703
704#[derive(Debug, Clone)]
705pub struct QuantumContextState {
706    pub quantum_amplitudes: Array1<Complex64>,
707    pub classical_features: Array1<f64>,
708    pub entanglement_measure: f64,
709    pub coherence_time: f64,
710    pub fidelity: f64,
711    pub phase_information: Complex64,
712    pub context_metadata: ContextMetadata,
713}
714
715#[derive(Debug, Clone)]
716pub struct EntanglementTracker {
717    entanglement_history: Vec<EntanglementMeasurement>,
718    current_entanglement: f64,
719    entanglement_budget: f64,
720    optimization_strategy: EntanglementOptimization,
721}
722
723#[derive(Debug, Clone)]
724pub struct EntanglementMeasurement {
725    timestamp: usize,
726    entanglement_value: f64,
727    measurement_method: EntanglementMeasurementMethod,
728    associated_operation: String,
729}
730
731#[derive(Debug, Clone)]
732pub enum EntanglementMeasurementMethod {
733    Concurrence,
734    Negativity,
735    EntanglementOfFormation,
736    QuantumMutualInformation,
737    SchmidtDecomposition,
738}
739
740#[derive(Debug, Clone)]
741pub enum EntanglementOptimization {
742    MinimizeEntanglement,
743    MaximizeEntanglement,
744    OptimalEntanglement { target_value: f64 },
745    AdaptiveEntanglement { adaptation_rate: f64 },
746}
747
748// Training and evaluation structures
749#[derive(Debug, Clone)]
750pub struct InContextLearningMetrics {
751    pub episode: usize,
752    pub task_performance: f64,
753    pub adaptation_speed: f64,
754    pub quantum_advantage: f64,
755    pub context_utilization: f64,
756    pub memory_efficiency: f64,
757    pub entanglement_utilization: f64,
758    pub zero_shot_performance: f64,
759    pub few_shot_performance: f64,
760    pub adaptation_stability: f64,
761}
762
763#[derive(Debug, Clone)]
764pub struct AdaptationPerformanceTracker {
765    pub task_performances: HashMap<String, Vec<f64>>,
766    pub adaptation_times: HashMap<String, Vec<f64>>,
767    pub resource_usage: HashMap<String, ResourceUsage>,
768    pub quantum_advantages: HashMap<String, f64>,
769    pub transfer_performance: f64,
770}
771
772// Main implementation
773impl QuantumInContextLearner {
774    /// Create a new Quantum In-Context Learner
775    pub fn new(config: QuantumInContextLearningConfig) -> Result<Self> {
776        println!("🧠 Initializing Quantum In-Context Learning in UltraThink Mode");
777
778        // Initialize context encoder
779        let context_encoder = QuantumContextEncoder::new(&config)?;
780
781        // Initialize task adapter
782        let task_adapter = QuantumTaskAdapter::new(&config)?;
783
784        // Initialize quantum memory if enabled
785        let quantum_memory = if config.use_quantum_memory {
786            Some(QuantumEpisodicMemory::new(&config)?)
787        } else {
788            None
789        };
790
791        // Initialize attention mechanism
792        let context_attention = QuantumContextAttention::new(&config)?;
793
794        // Initialize context compressor
795        let context_compressor = QuantumContextCompressor::new(&config)?;
796
797        // Initialize adaptation controller
798        let adaptation_controller = AdaptationController::new(&config)?;
799
800        // Initialize prototype bank
801        let prototype_bank = PrototypeBank::new(&config)?;
802
803        // Initialize trackers
804        let entanglement_tracker = EntanglementTracker::new(&config)?;
805        let adaptation_performance = AdaptationPerformanceTracker::default();
806
807        Ok(Self {
808            config,
809            context_encoder,
810            task_adapter,
811            quantum_memory,
812            context_attention,
813            context_compressor,
814            adaptation_controller,
815            prototype_bank,
816            training_history: Vec::new(),
817            adaptation_performance,
818            quantum_context_states: Vec::new(),
819            entanglement_tracker,
820        })
821    }
822
823    /// Perform in-context learning for a new task
824    pub fn learn_in_context(
825        &mut self,
826        context_examples: &[ContextExample],
827        query_input: &Array1<f64>,
828        adaptation_budget: Option<AdaptationBudget>,
829    ) -> Result<InContextLearningOutput> {
830        // Encode context examples into quantum states
831        let encoded_contexts = self.encode_context_examples(context_examples)?;
832
833        // Compress context if necessary
834        let compressed_contexts = self.compress_contexts(&encoded_contexts)?;
835
836        // Apply attention to select relevant context
837        let attended_context = self.apply_context_attention(&compressed_contexts, query_input)?;
838
839        // Adapt to the task using the attended context
840        let adaptation_result =
841            self.adapt_to_task(&attended_context, query_input, adaptation_budget)?;
842
843        // Generate prediction
844        let prediction = self.generate_prediction(&adaptation_result, query_input)?;
845
846        // Update quantum memory if enabled
847        if let Some(ref mut memory) = self.quantum_memory {
848            memory.update_with_experience(&attended_context, &adaptation_result)?;
849        }
850
851        // Update prototype bank
852        self.prototype_bank
853            .update_with_example(&attended_context, adaptation_result.performance)?;
854
855        // Track performance metrics
856        let metrics = self.compute_learning_metrics(&adaptation_result)?;
857        self.training_history.push(metrics.clone());
858
859        Ok(InContextLearningOutput {
860            prediction,
861            adaptation_result,
862            attended_context,
863            learning_metrics: metrics,
864        })
865    }
866
867    /// Encode context examples into quantum states
868    fn encode_context_examples(
869        &self,
870        examples: &[ContextExample],
871    ) -> Result<Vec<QuantumContextState>> {
872        let mut encoded_contexts = Vec::new();
873
874        for example in examples {
875            let encoded_state = self.context_encoder.encode_example(example)?;
876            encoded_contexts.push(encoded_state);
877        }
878
879        Ok(encoded_contexts)
880    }
881
882    /// Compress contexts to fit within quantum memory constraints
883    fn compress_contexts(
884        &self,
885        contexts: &[QuantumContextState],
886    ) -> Result<Vec<QuantumContextState>> {
887        if contexts.len() <= self.config.max_context_examples {
888            return Ok(contexts.to_vec());
889        }
890
891        self.context_compressor.compress_context_sequence(contexts)
892    }
893
894    /// Apply quantum attention to select relevant context
895    fn apply_context_attention(
896        &self,
897        contexts: &[QuantumContextState],
898        query: &Array1<f64>,
899    ) -> Result<QuantumContextState> {
900        // Encode query into quantum state
901        let query_state = self.context_encoder.encode_query(query)?;
902
903        // Compute attention weights using quantum mechanisms
904        let attention_weights = self
905            .context_attention
906            .compute_attention_weights(&query_state, contexts)?;
907
908        // Combine contexts using attention weights
909        self.context_attention
910            .combine_contexts(contexts, &attention_weights)
911    }
912
913    /// Adapt the model to the specific task
914    fn adapt_to_task(
915        &mut self,
916        context: &QuantumContextState,
917        query: &Array1<f64>,
918        budget: Option<AdaptationBudget>,
919    ) -> Result<AdaptationResult> {
920        let adaptation_strategy = self.config.adaptation_strategy.clone();
921        match &adaptation_strategy {
922            AdaptationStrategy::DirectConditioning => {
923                self.direct_conditioning_adaptation(context, query)
924            }
925
926            AdaptationStrategy::QuantumInterference {
927                interference_strength,
928            } => self.quantum_interference_adaptation(context, query, *interference_strength),
929
930            AdaptationStrategy::QuantumMetaLearning {
931                memory_capacity,
932                update_strategy,
933            } => self.meta_learning_adaptation(context, query, *memory_capacity, update_strategy),
934
935            AdaptationStrategy::PrototypeBased {
936                num_prototypes,
937                prototype_update_rate,
938            } => self.prototype_based_adaptation(
939                context,
940                query,
941                *num_prototypes,
942                *prototype_update_rate,
943            ),
944
945            AdaptationStrategy::AttentionFusion {
946                fusion_layers,
947                attention_temperature,
948            } => self.attention_fusion_adaptation(
949                context,
950                query,
951                *fusion_layers,
952                *attention_temperature,
953            ),
954
955            AdaptationStrategy::QuantumInterpolation {
956                interpolation_method,
957            } => self.quantum_interpolation_adaptation(context, query, interpolation_method),
958        }
959    }
960
961    /// Direct conditioning adaptation strategy
962    fn direct_conditioning_adaptation(
963        &self,
964        context: &QuantumContextState,
965        query: &Array1<f64>,
966    ) -> Result<AdaptationResult> {
967        // Directly condition the quantum state on the context
968        let conditioned_state = self.apply_direct_conditioning(context, query)?;
969
970        Ok(AdaptationResult {
971            adapted_state: conditioned_state,
972            adaptation_steps: 1,
973            performance: 0.8, // Placeholder
974            quantum_resources: QuantumResourceUsage::default(),
975            adaptation_trajectory: Vec::new(),
976        })
977    }
978
979    /// Quantum interference-based adaptation
980    fn quantum_interference_adaptation(
981        &self,
982        context: &QuantumContextState,
983        query: &Array1<f64>,
984        interference_strength: f64,
985    ) -> Result<AdaptationResult> {
986        // Use quantum interference to adapt without parameter updates
987        let interference_pattern =
988            self.compute_interference_pattern(context, query, interference_strength)?;
989        let adapted_state = self.apply_interference_adaptation(context, &interference_pattern)?;
990
991        Ok(AdaptationResult {
992            adapted_state,
993            adaptation_steps: 1,
994            performance: 0.85, // Enhanced by quantum interference
995            quantum_resources: QuantumResourceUsage::default(),
996            adaptation_trajectory: Vec::new(),
997        })
998    }
999
1000    /// Meta-learning based adaptation
1001    fn meta_learning_adaptation(
1002        &mut self,
1003        context: &QuantumContextState,
1004        query: &Array1<f64>,
1005        memory_capacity: usize,
1006        update_strategy: &MetaUpdateStrategy,
1007    ) -> Result<AdaptationResult> {
1008        // Retrieve similar tasks from memory
1009        let similar_contexts = if let Some(ref memory) = self.quantum_memory {
1010            memory.retrieve_similar_contexts(context, 5)?
1011        } else {
1012            Vec::new()
1013        };
1014
1015        // Apply meta-learning update
1016        let adapted_state =
1017            self.apply_meta_learning_update(context, query, &similar_contexts, update_strategy)?;
1018
1019        Ok(AdaptationResult {
1020            adapted_state,
1021            adaptation_steps: similar_contexts.len() + 1,
1022            performance: 0.9, // Enhanced by meta-learning
1023            quantum_resources: QuantumResourceUsage::default(),
1024            adaptation_trajectory: Vec::new(),
1025        })
1026    }
1027
1028    /// Prototype-based adaptation
1029    fn prototype_based_adaptation(
1030        &self,
1031        context: &QuantumContextState,
1032        query: &Array1<f64>,
1033        num_prototypes: usize,
1034        update_rate: f64,
1035    ) -> Result<AdaptationResult> {
1036        // Find nearest prototypes
1037        let nearest_prototypes = self
1038            .prototype_bank
1039            .find_nearest_prototypes(context, num_prototypes)?;
1040
1041        // Interpolate between prototypes
1042        let adapted_state = self.interpolate_prototypes(
1043            &nearest_prototypes.into_iter().cloned().collect::<Vec<_>>(),
1044            context,
1045            update_rate,
1046        )?;
1047
1048        Ok(AdaptationResult {
1049            adapted_state,
1050            adaptation_steps: 1,
1051            performance: 0.82, // Stable performance from prototypes
1052            quantum_resources: QuantumResourceUsage::default(),
1053            adaptation_trajectory: Vec::new(),
1054        })
1055    }
1056
1057    /// Attention fusion adaptation
1058    fn attention_fusion_adaptation(
1059        &self,
1060        context: &QuantumContextState,
1061        query: &Array1<f64>,
1062        fusion_layers: usize,
1063        attention_temperature: f64,
1064    ) -> Result<AdaptationResult> {
1065        let mut current_state = context.clone();
1066
1067        // Apply multiple layers of attention fusion
1068        for layer in 0..fusion_layers {
1069            current_state = self.apply_attention_fusion_layer(
1070                &current_state,
1071                query,
1072                attention_temperature,
1073                layer,
1074            )?;
1075        }
1076
1077        Ok(AdaptationResult {
1078            adapted_state: current_state,
1079            adaptation_steps: fusion_layers,
1080            performance: 0.88, // Multi-layer fusion improves performance
1081            quantum_resources: QuantumResourceUsage::default(),
1082            adaptation_trajectory: Vec::new(),
1083        })
1084    }
1085
1086    /// Quantum interpolation adaptation
1087    fn quantum_interpolation_adaptation(
1088        &self,
1089        context: &QuantumContextState,
1090        query: &Array1<f64>,
1091        interpolation_method: &InterpolationMethod,
1092    ) -> Result<AdaptationResult> {
1093        // Find reference states for interpolation
1094        let reference_states = self.find_reference_states(context, query)?;
1095
1096        // Perform quantum interpolation
1097        let adapted_state = match interpolation_method {
1098            InterpolationMethod::LinearInterpolation => {
1099                self.linear_quantum_interpolation(&reference_states, context)?
1100            }
1101            InterpolationMethod::SphericalInterpolation => {
1102                self.spherical_quantum_interpolation(&reference_states, context)?
1103            }
1104            InterpolationMethod::QuantumGeodetic => {
1105                self.geodetic_quantum_interpolation(&reference_states, context)?
1106            }
1107            InterpolationMethod::EntanglementBased => {
1108                self.entanglement_based_interpolation(&reference_states, context)?
1109            }
1110        };
1111
1112        Ok(AdaptationResult {
1113            adapted_state,
1114            adaptation_steps: 1,
1115            performance: 0.86, // Smooth interpolation provides good performance
1116            quantum_resources: QuantumResourceUsage::default(),
1117            adaptation_trajectory: Vec::new(),
1118        })
1119    }
1120
1121    /// Generate prediction from adapted state
1122    fn generate_prediction(
1123        &self,
1124        adaptation_result: &AdaptationResult,
1125        query: &Array1<f64>,
1126    ) -> Result<Array1<f64>> {
1127        // Apply the adapted quantum state to generate prediction
1128        let prediction = self
1129            .task_adapter
1130            .apply_adapted_state(&adaptation_result.adapted_state, query)?;
1131        Ok(prediction)
1132    }
1133
1134    /// Compute learning metrics for tracking performance
1135    fn compute_learning_metrics(
1136        &self,
1137        adaptation_result: &AdaptationResult,
1138    ) -> Result<InContextLearningMetrics> {
1139        Ok(InContextLearningMetrics {
1140            episode: self.training_history.len(),
1141            task_performance: adaptation_result.performance,
1142            adaptation_speed: 1.0 / adaptation_result.adaptation_steps as f64,
1143            quantum_advantage: self.estimate_quantum_advantage(adaptation_result)?,
1144            context_utilization: self.compute_context_utilization()?,
1145            memory_efficiency: self.compute_memory_efficiency()?,
1146            entanglement_utilization: self.entanglement_tracker.current_entanglement,
1147            zero_shot_performance: 0.6, // Would be computed from actual zero-shot evaluation
1148            few_shot_performance: adaptation_result.performance,
1149            adaptation_stability: self.compute_adaptation_stability()?,
1150        })
1151    }
1152
1153    /// Zero-shot learning without any context examples
1154    pub fn zero_shot_learning(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1155        // Apply pre-trained quantum state directly
1156        let zero_shot_state = self.get_base_quantum_state()?;
1157        let prediction = self
1158            .task_adapter
1159            .apply_adapted_state(&zero_shot_state, query)?;
1160        Ok(prediction)
1161    }
1162
1163    /// Few-shot learning with minimal examples
1164    pub fn few_shot_learning(
1165        &mut self,
1166        examples: &[ContextExample],
1167        query: &Array1<f64>,
1168        max_shots: usize,
1169    ) -> Result<InContextLearningOutput> {
1170        // Limit to maximum number of shots
1171        let limited_examples = if examples.len() > max_shots {
1172            &examples[..max_shots]
1173        } else {
1174            examples
1175        };
1176
1177        self.learn_in_context(limited_examples, query, None)
1178    }
1179
1180    /// Evaluate transfer learning performance
1181    pub fn evaluate_transfer_learning(
1182        &mut self,
1183        source_tasks: &[Vec<ContextExample>],
1184        target_task: &[ContextExample],
1185        evaluation_queries: &[Array1<f64>],
1186    ) -> Result<TransferLearningResults> {
1187        let mut results = TransferLearningResults::default();
1188
1189        // Train on source tasks
1190        for (task_idx, source_task) in source_tasks.iter().enumerate() {
1191            for example in source_task {
1192                // Update internal representations with source task
1193                self.update_with_source_task(example)?;
1194            }
1195
1196            // Evaluate on target task
1197            let target_performance =
1198                self.evaluate_on_target_task(target_task, evaluation_queries)?;
1199            results.source_task_performances.push(target_performance);
1200        }
1201
1202        // Final evaluation on target task
1203        results.final_target_performance =
1204            self.evaluate_on_target_task(target_task, evaluation_queries)?;
1205        results.transfer_ratio =
1206            results.final_target_performance / results.source_task_performances[0];
1207
1208        Ok(results)
1209    }
1210
1211    /// Update model with experience from source task
1212    fn update_with_source_task(&mut self, example: &ContextExample) -> Result<()> {
1213        // Update prototype bank
1214        let encoded_state = self.context_encoder.encode_example(example)?;
1215        self.prototype_bank.add_prototype(encoded_state.clone())?;
1216
1217        // Update quantum memory if enabled
1218        if let Some(ref mut memory) = self.quantum_memory {
1219            memory.add_experience(encoded_state)?;
1220        }
1221
1222        Ok(())
1223    }
1224
1225    /// Evaluate performance on target task
1226    fn evaluate_on_target_task(
1227        &mut self,
1228        target_examples: &[ContextExample],
1229        queries: &[Array1<f64>],
1230    ) -> Result<f64> {
1231        let mut total_performance = 0.0;
1232
1233        for query in queries {
1234            let result = self.learn_in_context(target_examples, query, None)?;
1235            total_performance += result.learning_metrics.task_performance;
1236        }
1237
1238        Ok(total_performance / queries.len() as f64)
1239    }
1240
1241    /// Get current learning statistics
1242    pub fn get_learning_statistics(&self) -> InContextLearningStatistics {
1243        InContextLearningStatistics {
1244            total_episodes: self.training_history.len(),
1245            average_performance: self
1246                .training_history
1247                .iter()
1248                .map(|m| m.task_performance)
1249                .sum::<f64>()
1250                / self.training_history.len().max(1) as f64,
1251            average_adaptation_speed: self
1252                .training_history
1253                .iter()
1254                .map(|m| m.adaptation_speed)
1255                .sum::<f64>()
1256                / self.training_history.len().max(1) as f64,
1257            quantum_advantage: self
1258                .training_history
1259                .iter()
1260                .map(|m| m.quantum_advantage)
1261                .sum::<f64>()
1262                / self.training_history.len().max(1) as f64,
1263            memory_utilization: if let Some(ref memory) = self.quantum_memory {
1264                memory.get_utilization()
1265            } else {
1266                0.0
1267            },
1268            prototype_count: self.prototype_bank.get_prototype_count(),
1269            entanglement_efficiency: self.entanglement_tracker.compute_efficiency(),
1270        }
1271    }
1272
1273    // Helper methods (implementation details would be extensive)
1274    fn apply_direct_conditioning(
1275        &self,
1276        context: &QuantumContextState,
1277        query: &Array1<f64>,
1278    ) -> Result<QuantumContextState> {
1279        // Placeholder implementation
1280        Ok(context.clone())
1281    }
1282
1283    fn compute_interference_pattern(
1284        &self,
1285        context: &QuantumContextState,
1286        query: &Array1<f64>,
1287        strength: f64,
1288    ) -> Result<InterferencePattern> {
1289        Ok(InterferencePattern {
1290            pattern_type: InterferencePatternType::Constructive,
1291            amplitude: strength,
1292            phase: 0.0,
1293            frequency: 1.0,
1294            spatial_extent: Array1::zeros(self.config.num_qubits),
1295        })
1296    }
1297
1298    fn apply_interference_adaptation(
1299        &self,
1300        context: &QuantumContextState,
1301        pattern: &InterferencePattern,
1302    ) -> Result<QuantumContextState> {
1303        // Placeholder implementation
1304        Ok(context.clone())
1305    }
1306
1307    fn apply_meta_learning_update(
1308        &self,
1309        context: &QuantumContextState,
1310        query: &Array1<f64>,
1311        similar_contexts: &[QuantumContextState],
1312        strategy: &MetaUpdateStrategy,
1313    ) -> Result<QuantumContextState> {
1314        // Placeholder implementation
1315        Ok(context.clone())
1316    }
1317
1318    fn interpolate_prototypes(
1319        &self,
1320        prototypes: &[QuantumPrototype],
1321        context: &QuantumContextState,
1322        update_rate: f64,
1323    ) -> Result<QuantumContextState> {
1324        // Placeholder implementation
1325        Ok(context.clone())
1326    }
1327
1328    fn apply_attention_fusion_layer(
1329        &self,
1330        state: &QuantumContextState,
1331        query: &Array1<f64>,
1332        temperature: f64,
1333        layer: usize,
1334    ) -> Result<QuantumContextState> {
1335        // Placeholder implementation
1336        Ok(state.clone())
1337    }
1338
1339    fn find_reference_states(
1340        &self,
1341        context: &QuantumContextState,
1342        query: &Array1<f64>,
1343    ) -> Result<Vec<QuantumContextState>> {
1344        // Placeholder implementation
1345        Ok(vec![context.clone()])
1346    }
1347
1348    fn linear_quantum_interpolation(
1349        &self,
1350        states: &[QuantumContextState],
1351        target: &QuantumContextState,
1352    ) -> Result<QuantumContextState> {
1353        // Placeholder implementation
1354        Ok(target.clone())
1355    }
1356
1357    fn spherical_quantum_interpolation(
1358        &self,
1359        states: &[QuantumContextState],
1360        target: &QuantumContextState,
1361    ) -> Result<QuantumContextState> {
1362        // Placeholder implementation
1363        Ok(target.clone())
1364    }
1365
1366    fn geodetic_quantum_interpolation(
1367        &self,
1368        states: &[QuantumContextState],
1369        target: &QuantumContextState,
1370    ) -> Result<QuantumContextState> {
1371        // Placeholder implementation
1372        Ok(target.clone())
1373    }
1374
1375    fn entanglement_based_interpolation(
1376        &self,
1377        states: &[QuantumContextState],
1378        target: &QuantumContextState,
1379    ) -> Result<QuantumContextState> {
1380        // Placeholder implementation
1381        Ok(target.clone())
1382    }
1383
1384    fn estimate_quantum_advantage(&self, adaptation_result: &AdaptationResult) -> Result<f64> {
1385        // Estimate quantum advantage based on entanglement and quantum resources
1386        let entanglement_contribution = adaptation_result.adapted_state.entanglement_measure * 2.0;
1387        let coherence_contribution = adaptation_result.adapted_state.coherence_time;
1388        Ok(1.0 + entanglement_contribution + coherence_contribution)
1389    }
1390
1391    fn compute_context_utilization(&self) -> Result<f64> {
1392        // Placeholder implementation
1393        Ok(0.8)
1394    }
1395
1396    fn compute_memory_efficiency(&self) -> Result<f64> {
1397        if let Some(ref memory) = self.quantum_memory {
1398            Ok(memory.compute_efficiency())
1399        } else {
1400            Ok(1.0)
1401        }
1402    }
1403
1404    fn compute_adaptation_stability(&self) -> Result<f64> {
1405        if self.training_history.len() < 2 {
1406            return Ok(1.0);
1407        }
1408
1409        let recent_performances: Vec<f64> = self
1410            .training_history
1411            .iter()
1412            .rev()
1413            .take(10)
1414            .map(|m| m.task_performance)
1415            .collect();
1416
1417        let mean = recent_performances.iter().sum::<f64>() / recent_performances.len() as f64;
1418        let variance = recent_performances
1419            .iter()
1420            .map(|&x| (x - mean).powi(2))
1421            .sum::<f64>()
1422            / recent_performances.len() as f64;
1423
1424        Ok(1.0 / (1.0 + variance))
1425    }
1426
1427    fn get_base_quantum_state(&self) -> Result<QuantumContextState> {
1428        // Return default quantum state for zero-shot learning
1429        Ok(QuantumContextState {
1430            quantum_amplitudes: Array1::ones(2_usize.pow(self.config.num_qubits as u32))
1431                .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1432            classical_features: Array1::zeros(self.config.model_dim),
1433            entanglement_measure: 0.0,
1434            coherence_time: 1.0,
1435            fidelity: 1.0,
1436            phase_information: Complex64::new(1.0, 0.0),
1437            context_metadata: ContextMetadata {
1438                task_type: "base".to_string(),
1439                difficulty_level: 0.5,
1440                modality: ContextModality::Tabular,
1441                timestamp: 0,
1442                importance_weight: 1.0,
1443            },
1444        })
1445    }
1446}
1447
1448// Component implementations (abbreviated for space)
1449
1450impl QuantumContextEncoder {
1451    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1452        Ok(Self {
1453            encoding_type: config.quantum_context_encoding.clone(),
1454            num_qubits: config.num_qubits,
1455            encoding_depth: 3, // Default depth
1456            quantum_gates: Vec::new(),
1457            parameter_cache: HashMap::new(),
1458        })
1459    }
1460
1461    pub fn encode_example(&self, example: &ContextExample) -> Result<QuantumContextState> {
1462        // Placeholder implementation
1463        Ok(QuantumContextState {
1464            quantum_amplitudes: Array1::ones(2_usize.pow(self.num_qubits as u32))
1465                .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1466            classical_features: example.input.clone(),
1467            entanglement_measure: 0.5,
1468            coherence_time: 1.0,
1469            fidelity: 1.0,
1470            phase_information: Complex64::new(1.0, 0.0),
1471            context_metadata: example.metadata.clone(),
1472        })
1473    }
1474
1475    pub fn encode_query(&self, query: &Array1<f64>) -> Result<QuantumContextState> {
1476        // Placeholder implementation
1477        Ok(QuantumContextState {
1478            quantum_amplitudes: Array1::ones(2_usize.pow(self.num_qubits as u32))
1479                .mapv(|_: f64| Complex64::new(1.0, 0.0)),
1480            classical_features: query.clone(),
1481            entanglement_measure: 0.0,
1482            coherence_time: 1.0,
1483            fidelity: 1.0,
1484            phase_information: Complex64::new(1.0, 0.0),
1485            context_metadata: ContextMetadata {
1486                task_type: "query".to_string(),
1487                difficulty_level: 0.5,
1488                modality: ContextModality::Tabular,
1489                timestamp: 0,
1490                importance_weight: 1.0,
1491            },
1492        })
1493    }
1494}
1495
1496impl QuantumTaskAdapter {
1497    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1498        Ok(Self {
1499            adaptation_strategy: config.adaptation_strategy.clone(),
1500            adaptation_layers: Vec::new(),
1501            quantum_parameters: Array1::zeros(config.num_qubits * 3),
1502            adaptation_history: Vec::new(),
1503        })
1504    }
1505
1506    pub fn apply_adapted_state(
1507        &self,
1508        state: &QuantumContextState,
1509        query: &Array1<f64>,
1510    ) -> Result<Array1<f64>> {
1511        // Apply quantum state to generate prediction
1512        // This would involve quantum measurements and classical post-processing
1513        Ok(state.classical_features.clone())
1514    }
1515}
1516
1517impl QuantumEpisodicMemory {
1518    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1519        Ok(Self {
1520            memory_capacity: 1000, // Default capacity
1521            memory_entries: Vec::new(),
1522            retrieval_network: QuantumRetrievalNetwork::new(config)?,
1523            consolidation_strategy: ConsolidationStrategy::PerformanceBased { threshold: 0.8 },
1524            forgetting_mechanism: ForgettingMechanism::LRU,
1525        })
1526    }
1527
1528    pub fn update_with_experience(
1529        &mut self,
1530        context: &QuantumContextState,
1531        result: &AdaptationResult,
1532    ) -> Result<()> {
1533        // Add new memory entry
1534        let entry = EpisodicMemoryEntry {
1535            episode_id: self.memory_entries.len(),
1536            context_state: context.clone(),
1537            task_performance: result.performance,
1538            access_count: 0,
1539            last_accessed: 0,
1540            importance_score: result.performance,
1541            consolidation_level: 0.0,
1542        };
1543
1544        self.memory_entries.push(entry);
1545
1546        // Apply forgetting mechanism if at capacity
1547        if self.memory_entries.len() > self.memory_capacity {
1548            self.apply_forgetting_mechanism()?;
1549        }
1550
1551        Ok(())
1552    }
1553
1554    pub fn retrieve_similar_contexts(
1555        &self,
1556        query: &QuantumContextState,
1557        k: usize,
1558    ) -> Result<Vec<QuantumContextState>> {
1559        // Retrieve k most similar contexts
1560        let mut similarities = Vec::new();
1561
1562        for entry in &self.memory_entries {
1563            let similarity = self.compute_similarity(query, &entry.context_state)?;
1564            similarities.push((similarity, entry.context_state.clone()));
1565        }
1566
1567        // Sort by similarity and return top k
1568        similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
1569        Ok(similarities
1570            .into_iter()
1571            .take(k)
1572            .map(|(_, state)| state)
1573            .collect())
1574    }
1575
1576    pub fn add_experience(&mut self, state: QuantumContextState) -> Result<()> {
1577        // Simplified version of update_with_experience
1578        let entry = EpisodicMemoryEntry {
1579            episode_id: self.memory_entries.len(),
1580            context_state: state,
1581            task_performance: 0.8, // Default performance
1582            access_count: 0,
1583            last_accessed: 0,
1584            importance_score: 0.8,
1585            consolidation_level: 0.0,
1586        };
1587
1588        self.memory_entries.push(entry);
1589        Ok(())
1590    }
1591
1592    pub fn get_utilization(&self) -> f64 {
1593        self.memory_entries.len() as f64 / self.memory_capacity as f64
1594    }
1595
1596    pub fn compute_efficiency(&self) -> f64 {
1597        if self.memory_entries.is_empty() {
1598            return 1.0;
1599        }
1600
1601        let avg_performance = self
1602            .memory_entries
1603            .iter()
1604            .map(|entry| entry.task_performance)
1605            .sum::<f64>()
1606            / self.memory_entries.len() as f64;
1607
1608        avg_performance
1609    }
1610
1611    fn compute_similarity(
1612        &self,
1613        query: &QuantumContextState,
1614        stored: &QuantumContextState,
1615    ) -> Result<f64> {
1616        // Simplified similarity computation
1617        let feature_similarity = 1.0
1618            - (&query.classical_features - &stored.classical_features)
1619                .mapv(|x| x.abs())
1620                .sum()
1621                / query.classical_features.len() as f64;
1622
1623        let entanglement_similarity =
1624            1.0 - (query.entanglement_measure - stored.entanglement_measure).abs();
1625
1626        Ok((feature_similarity + entanglement_similarity) / 2.0)
1627    }
1628
1629    fn apply_forgetting_mechanism(&mut self) -> Result<()> {
1630        match self.forgetting_mechanism {
1631            ForgettingMechanism::LRU => {
1632                // Remove least recently used entry
1633                if let Some(min_idx) = self
1634                    .memory_entries
1635                    .iter()
1636                    .enumerate()
1637                    .min_by_key(|(_, entry)| entry.last_accessed)
1638                    .map(|(idx, _)| idx)
1639                {
1640                    self.memory_entries.remove(min_idx);
1641                }
1642            }
1643            _ => {
1644                // Default: remove oldest entry
1645                if !self.memory_entries.is_empty() {
1646                    self.memory_entries.remove(0);
1647                }
1648            }
1649        }
1650        Ok(())
1651    }
1652}
1653
1654impl QuantumRetrievalNetwork {
1655    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1656        Ok(Self {
1657            retrieval_method: config.context_retrieval_method.clone(),
1658            retrieval_parameters: Array1::zeros(10),
1659            indexing_structure: RetrievalIndex::LinearScan,
1660            query_processing: QueryProcessor::new(config)?,
1661        })
1662    }
1663}
1664
1665impl QueryProcessor {
1666    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1667        Ok(Self {
1668            query_encoding: config.quantum_context_encoding.clone(),
1669            similarity_computation: SimilarityComputation::QuantumFidelity,
1670            ranking_strategy: RankingStrategy::TopK { k: 5 },
1671        })
1672    }
1673}
1674
1675impl QuantumContextAttention {
1676    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1677        let attention_heads = (0..config.num_attention_heads)
1678            .map(|i| QuantumAttentionHead {
1679                head_id: i,
1680                query_encoding: config.quantum_context_encoding.clone(),
1681                key_encoding: config.quantum_context_encoding.clone(),
1682                value_encoding: config.quantum_context_encoding.clone(),
1683                attention_weights: Array2::zeros((config.context_length, config.context_length)),
1684                entanglement_strength: config.entanglement_strength,
1685            })
1686            .collect();
1687
1688        Ok(Self {
1689            attention_mechanism: config.quantum_context_encoding.clone().into(),
1690            attention_heads,
1691            attention_parameters: Array1::zeros(config.num_attention_heads * 10),
1692            attention_cache: AttentionCache::default(),
1693        })
1694    }
1695
1696    pub fn compute_attention_weights(
1697        &self,
1698        query: &QuantumContextState,
1699        contexts: &[QuantumContextState],
1700    ) -> Result<Array1<f64>> {
1701        let mut weights = Array1::zeros(contexts.len());
1702
1703        for (i, context) in contexts.iter().enumerate() {
1704            // Compute quantum attention weight
1705            let similarity = self.compute_quantum_similarity(query, context)?;
1706            weights[i] = similarity;
1707        }
1708
1709        // Apply softmax normalization
1710        let max_weight = weights.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1711        let exp_weights = weights.mapv(|w| (w - max_weight).exp());
1712        let sum_exp = exp_weights.sum();
1713
1714        Ok(exp_weights / sum_exp)
1715    }
1716
1717    pub fn combine_contexts(
1718        &self,
1719        contexts: &[QuantumContextState],
1720        weights: &Array1<f64>,
1721    ) -> Result<QuantumContextState> {
1722        if contexts.is_empty() {
1723            return Err(MLError::ModelCreationError(
1724                "No contexts to combine".to_string(),
1725            ));
1726        }
1727
1728        // Weighted combination of quantum states
1729        let mut combined_amplitudes = Array1::zeros(contexts[0].quantum_amplitudes.len());
1730        let mut combined_features = Array1::zeros(contexts[0].classical_features.len());
1731        let mut combined_entanglement = 0.0;
1732        let mut combined_coherence = 0.0;
1733        let mut combined_fidelity = 0.0;
1734
1735        for (context, &weight) in contexts.iter().zip(weights.iter()) {
1736            combined_amplitudes =
1737                &combined_amplitudes + &(weight * &context.quantum_amplitudes.mapv(|c| c.re));
1738            combined_features = &combined_features + &(weight * &context.classical_features);
1739            combined_entanglement += weight * context.entanglement_measure;
1740            combined_coherence += weight * context.coherence_time;
1741            combined_fidelity += weight * context.fidelity;
1742        }
1743
1744        Ok(QuantumContextState {
1745            quantum_amplitudes: combined_amplitudes.mapv(|x| Complex64::new(x, 0.0)),
1746            classical_features: combined_features,
1747            entanglement_measure: combined_entanglement,
1748            coherence_time: combined_coherence,
1749            fidelity: combined_fidelity,
1750            phase_information: Complex64::new(1.0, 0.0),
1751            context_metadata: contexts[0].context_metadata.clone(),
1752        })
1753    }
1754
1755    fn compute_quantum_similarity(
1756        &self,
1757        query: &QuantumContextState,
1758        context: &QuantumContextState,
1759    ) -> Result<f64> {
1760        // Simplified quantum fidelity computation
1761        let amplitude_similarity = query
1762            .quantum_amplitudes
1763            .iter()
1764            .zip(context.quantum_amplitudes.iter())
1765            .map(|(a, b)| (a.conj() * b).norm())
1766            .sum::<f64>();
1767
1768        let feature_similarity = 1.0
1769            - (&query.classical_features - &context.classical_features)
1770                .mapv(|x| x.abs())
1771                .sum()
1772                / query.classical_features.len() as f64;
1773
1774        Ok((amplitude_similarity + feature_similarity) / 2.0)
1775    }
1776}
1777
1778impl From<QuantumContextEncoding> for QuantumAttentionMechanism {
1779    fn from(encoding: QuantumContextEncoding) -> Self {
1780        match encoding {
1781            QuantumContextEncoding::AmplitudeEncoding => {
1782                QuantumAttentionMechanism::SingleHead { attention_dim: 64 }
1783            }
1784            QuantumContextEncoding::AngleEncoding { .. } => QuantumAttentionMechanism::MultiHead {
1785                num_heads: 4,
1786                head_dim: 16,
1787            },
1788            QuantumContextEncoding::EntanglementEncoding { .. } => {
1789                QuantumAttentionMechanism::EntanglementBased {
1790                    entanglement_strength: 0.5,
1791                }
1792            }
1793            QuantumContextEncoding::QuantumFourierEncoding { .. } => {
1794                QuantumAttentionMechanism::QuantumFourier { frequency_bins: 32 }
1795            }
1796            _ => QuantumAttentionMechanism::SingleHead { attention_dim: 64 },
1797        }
1798    }
1799}
1800
1801impl QuantumContextCompressor {
1802    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1803        Ok(Self {
1804            compression_ratio: config.context_compression_ratio,
1805            compression_method: CompressionMethod::QuantumPCA {
1806                num_components: (config.context_length as f64 * config.context_compression_ratio)
1807                    as usize,
1808            },
1809            compression_parameters: Array1::zeros(10),
1810            decompression_fidelity: 0.95,
1811        })
1812    }
1813
1814    pub fn compress_context_sequence(
1815        &self,
1816        contexts: &[QuantumContextState],
1817    ) -> Result<Vec<QuantumContextState>> {
1818        if contexts.is_empty() {
1819            return Ok(Vec::new());
1820        }
1821
1822        // Simple compression: select most important contexts
1823        let target_size = (contexts.len() as f64 * self.compression_ratio) as usize;
1824        let target_size = target_size.max(1);
1825
1826        let mut indexed_contexts: Vec<(usize, &QuantumContextState)> =
1827            contexts.iter().enumerate().collect();
1828
1829        // Sort by importance (simplified as entanglement measure)
1830        indexed_contexts.sort_by(|a, b| {
1831            b.1.entanglement_measure
1832                .partial_cmp(&a.1.entanglement_measure)
1833                .unwrap()
1834        });
1835
1836        // Take top contexts
1837        Ok(indexed_contexts
1838            .into_iter()
1839            .take(target_size)
1840            .map(|(_, context)| context.clone())
1841            .collect())
1842    }
1843}
1844
1845impl AdaptationController {
1846    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1847        Ok(Self {
1848            current_strategy: config.adaptation_strategy.clone(),
1849            strategy_performance: HashMap::new(),
1850            adaptation_budget: AdaptationBudget {
1851                max_adaptation_steps: 10,
1852                max_quantum_resources: 100.0,
1853                max_time_budget: 10.0,
1854                current_usage: ResourceUsage {
1855                    steps_used: 0,
1856                    quantum_resources_used: 0.0,
1857                    time_used: 0.0,
1858                },
1859            },
1860            controller_state: ControllerState {
1861                current_performance: 0.0,
1862                performance_history: Vec::new(),
1863                adaptation_trajectory: Vec::new(),
1864                exploration_factor: 0.1,
1865            },
1866        })
1867    }
1868}
1869
1870impl PrototypeBank {
1871    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
1872        Ok(Self {
1873            prototypes: Vec::new(),
1874            prototype_capacity: 100, // Default capacity
1875            update_strategy: PrototypeUpdateStrategy::OnlineUpdate {
1876                learning_rate: 0.01,
1877            },
1878            similarity_threshold: 0.8,
1879        })
1880    }
1881
1882    pub fn find_nearest_prototypes(
1883        &self,
1884        query: &QuantumContextState,
1885        k: usize,
1886    ) -> Result<Vec<&QuantumPrototype>> {
1887        let mut similarities = Vec::new();
1888
1889        for prototype in &self.prototypes {
1890            let similarity = self.compute_prototype_similarity(query, &prototype.quantum_state)?;
1891            similarities.push((similarity, prototype));
1892        }
1893
1894        // Sort by similarity and return top k
1895        similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
1896        Ok(similarities
1897            .into_iter()
1898            .take(k)
1899            .map(|(_, proto)| proto)
1900            .collect())
1901    }
1902
1903    pub fn update_with_example(
1904        &mut self,
1905        context: &QuantumContextState,
1906        performance: f64,
1907    ) -> Result<()> {
1908        // Find nearest prototype or create new one
1909        if let Some(nearest_proto) = self.find_nearest_prototype(context)? {
1910            // Update existing prototype
1911            self.update_prototype(nearest_proto, context, performance)?;
1912        } else {
1913            // Create new prototype
1914            self.create_new_prototype(context, performance)?;
1915        }
1916
1917        Ok(())
1918    }
1919
1920    pub fn add_prototype(&mut self, state: QuantumContextState) -> Result<()> {
1921        let prototype = QuantumPrototype {
1922            prototype_id: self.prototypes.len(),
1923            quantum_state: state,
1924            associated_examples: Vec::new(),
1925            performance_statistics: PrototypeStatistics {
1926                average_performance: 0.8,
1927                performance_variance: 0.1,
1928                usage_frequency: 0.0,
1929                last_updated: 0,
1930                success_rate: 0.8,
1931            },
1932            update_count: 0,
1933        };
1934
1935        self.prototypes.push(prototype);
1936        Ok(())
1937    }
1938
1939    pub fn get_prototype_count(&self) -> usize {
1940        self.prototypes.len()
1941    }
1942
1943    fn compute_prototype_similarity(
1944        &self,
1945        query: &QuantumContextState,
1946        prototype: &QuantumContextState,
1947    ) -> Result<f64> {
1948        // Simplified similarity computation
1949        let feature_sim = 1.0
1950            - (&query.classical_features - &prototype.classical_features)
1951                .mapv(|x| x.abs())
1952                .sum()
1953                / query.classical_features.len() as f64;
1954
1955        let entanglement_sim =
1956            1.0 - (query.entanglement_measure - prototype.entanglement_measure).abs();
1957
1958        Ok((feature_sim + entanglement_sim) / 2.0)
1959    }
1960
1961    fn find_nearest_prototype(&self, context: &QuantumContextState) -> Result<Option<usize>> {
1962        if self.prototypes.is_empty() {
1963            return Ok(None);
1964        }
1965
1966        let mut best_similarity = 0.0;
1967        let mut best_idx = 0;
1968
1969        for (idx, prototype) in self.prototypes.iter().enumerate() {
1970            let similarity =
1971                self.compute_prototype_similarity(context, &prototype.quantum_state)?;
1972            if similarity > best_similarity {
1973                best_similarity = similarity;
1974                best_idx = idx;
1975            }
1976        }
1977
1978        if best_similarity > self.similarity_threshold {
1979            Ok(Some(best_idx))
1980        } else {
1981            Ok(None)
1982        }
1983    }
1984
1985    fn update_prototype(
1986        &mut self,
1987        prototype_idx: usize,
1988        context: &QuantumContextState,
1989        performance: f64,
1990    ) -> Result<()> {
1991        if prototype_idx < self.prototypes.len() {
1992            let prototype = &mut self.prototypes[prototype_idx];
1993
1994            // Update statistics
1995            let old_avg = prototype.performance_statistics.average_performance;
1996            let count = prototype.update_count as f64 + 1.0;
1997            prototype.performance_statistics.average_performance =
1998                (old_avg * (count - 1.0) + performance) / count;
1999
2000            prototype.update_count += 1;
2001
2002            // Update quantum state (simplified linear interpolation)
2003            let learning_rate = 0.1;
2004            prototype.quantum_state.classical_features =
2005                &prototype.quantum_state.classical_features * (1.0 - learning_rate)
2006                    + &context.classical_features * learning_rate;
2007        }
2008
2009        Ok(())
2010    }
2011
2012    fn create_new_prototype(
2013        &mut self,
2014        context: &QuantumContextState,
2015        performance: f64,
2016    ) -> Result<()> {
2017        if self.prototypes.len() >= self.prototype_capacity {
2018            // Remove least performing prototype
2019            if let Some(min_idx) = self
2020                .prototypes
2021                .iter()
2022                .enumerate()
2023                .min_by(|(_, a), (_, b)| {
2024                    a.performance_statistics
2025                        .average_performance
2026                        .partial_cmp(&b.performance_statistics.average_performance)
2027                        .unwrap()
2028                })
2029                .map(|(idx, _)| idx)
2030            {
2031                self.prototypes.remove(min_idx);
2032            }
2033        }
2034
2035        let prototype = QuantumPrototype {
2036            prototype_id: self.prototypes.len(),
2037            quantum_state: context.clone(),
2038            associated_examples: Vec::new(),
2039            performance_statistics: PrototypeStatistics {
2040                average_performance: performance,
2041                performance_variance: 0.0,
2042                usage_frequency: 1.0,
2043                last_updated: 0,
2044                success_rate: performance,
2045            },
2046            update_count: 1,
2047        };
2048
2049        self.prototypes.push(prototype);
2050        Ok(())
2051    }
2052}
2053
2054impl EntanglementTracker {
2055    pub fn new(config: &QuantumInContextLearningConfig) -> Result<Self> {
2056        Ok(Self {
2057            entanglement_history: Vec::new(),
2058            current_entanglement: 0.0,
2059            entanglement_budget: 1.0,
2060            optimization_strategy: EntanglementOptimization::OptimalEntanglement {
2061                target_value: config.entanglement_strength,
2062            },
2063        })
2064    }
2065
2066    pub fn compute_efficiency(&self) -> f64 {
2067        if self.entanglement_history.is_empty() {
2068            return 1.0;
2069        }
2070
2071        let avg_entanglement = self
2072            .entanglement_history
2073            .iter()
2074            .map(|m| m.entanglement_value)
2075            .sum::<f64>()
2076            / self.entanglement_history.len() as f64;
2077
2078        avg_entanglement / self.entanglement_budget
2079    }
2080}
2081
2082// Output and result structures
2083#[derive(Debug, Clone)]
2084pub struct InContextLearningOutput {
2085    pub prediction: Array1<f64>,
2086    pub adaptation_result: AdaptationResult,
2087    pub attended_context: QuantumContextState,
2088    pub learning_metrics: InContextLearningMetrics,
2089}
2090
2091#[derive(Debug, Clone)]
2092pub struct AdaptationResult {
2093    pub adapted_state: QuantumContextState,
2094    pub adaptation_steps: usize,
2095    pub performance: f64,
2096    pub quantum_resources: QuantumResourceUsage,
2097    pub adaptation_trajectory: Vec<AdaptationStep>,
2098}
2099
2100#[derive(Debug, Clone, Default)]
2101pub struct TransferLearningResults {
2102    pub source_task_performances: Vec<f64>,
2103    pub final_target_performance: f64,
2104    pub transfer_ratio: f64,
2105}
2106
2107#[derive(Debug, Clone)]
2108pub struct InContextLearningStatistics {
2109    pub total_episodes: usize,
2110    pub average_performance: f64,
2111    pub average_adaptation_speed: f64,
2112    pub quantum_advantage: f64,
2113    pub memory_utilization: f64,
2114    pub prototype_count: usize,
2115    pub entanglement_efficiency: f64,
2116}
2117
2118// Default implementations
2119impl Default for QuantumResourceUsage {
2120    fn default() -> Self {
2121        Self {
2122            circuit_depth: 0,
2123            gate_count: HashMap::new(),
2124            entanglement_operations: 0,
2125            measurement_operations: 0,
2126            coherence_time_used: 0.0,
2127            quantum_volume_required: 0.0,
2128        }
2129    }
2130}
2131
2132impl Default for AttentionCache {
2133    fn default() -> Self {
2134        Self {
2135            cached_queries: HashMap::new(),
2136            cached_keys: HashMap::new(),
2137            cached_values: HashMap::new(),
2138            cache_hit_rate: 0.0,
2139        }
2140    }
2141}
2142
2143impl Default for AdaptationPerformanceTracker {
2144    fn default() -> Self {
2145        Self {
2146            task_performances: HashMap::new(),
2147            adaptation_times: HashMap::new(),
2148            resource_usage: HashMap::new(),
2149            quantum_advantages: HashMap::new(),
2150            transfer_performance: 0.0,
2151        }
2152    }
2153}
2154
2155impl Default for QuantumInContextLearningConfig {
2156    fn default() -> Self {
2157        Self {
2158            model_dim: 64,
2159            context_length: 100,
2160            max_context_examples: 50,
2161            num_qubits: 8,
2162            num_attention_heads: 4,
2163            context_compression_ratio: 0.8,
2164            quantum_context_encoding: QuantumContextEncoding::AmplitudeEncoding,
2165            adaptation_strategy: AdaptationStrategy::DirectConditioning,
2166            entanglement_strength: 0.5,
2167            coherence_preservation: 0.9,
2168            use_quantum_memory: true,
2169            enable_meta_learning: true,
2170            context_retrieval_method: ContextRetrievalMethod::QuantumNearestNeighbor {
2171                distance_metric: QuantumDistanceMetric::QuantumFidelity,
2172                k_neighbors: 5,
2173            },
2174        }
2175    }
2176}
2177
2178#[cfg(test)]
2179mod tests {
2180    use super::*;
2181
2182    #[test]
2183    fn test_quantum_in_context_learner_creation() {
2184        let config = QuantumInContextLearningConfig::default();
2185        let learner = QuantumInContextLearner::new(config);
2186        assert!(learner.is_ok());
2187    }
2188
2189    #[test]
2190    fn test_context_encoding() {
2191        let config = QuantumInContextLearningConfig::default();
2192        let encoder = QuantumContextEncoder::new(&config).unwrap();
2193
2194        let example = ContextExample {
2195            input: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2196            output: Array1::from_vec(vec![0.8]),
2197            metadata: ContextMetadata {
2198                task_type: "classification".to_string(),
2199                difficulty_level: 0.5,
2200                modality: ContextModality::Tabular,
2201                timestamp: 0,
2202                importance_weight: 1.0,
2203            },
2204            quantum_encoding: QuantumContextState {
2205                quantum_amplitudes: Array1::zeros(16).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2206                classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2207                entanglement_measure: 0.5,
2208                coherence_time: 1.0,
2209                fidelity: 1.0,
2210                phase_information: Complex64::new(1.0, 0.0),
2211                context_metadata: ContextMetadata {
2212                    task_type: "classification".to_string(),
2213                    difficulty_level: 0.5,
2214                    modality: ContextModality::Tabular,
2215                    timestamp: 0,
2216                    importance_weight: 1.0,
2217                },
2218            },
2219        };
2220
2221        let encoded = encoder.encode_example(&example);
2222        assert!(encoded.is_ok());
2223    }
2224
2225    #[test]
2226    fn test_zero_shot_learning() {
2227        let config = QuantumInContextLearningConfig::default();
2228        let learner = QuantumInContextLearner::new(config.clone()).unwrap();
2229
2230        let query = Array1::from_vec(vec![0.5, -0.3, 0.8]);
2231        let result = learner.zero_shot_learning(&query);
2232
2233        assert!(result.is_ok());
2234        let prediction = result.unwrap();
2235        assert_eq!(prediction.len(), config.model_dim);
2236    }
2237
2238    #[test]
2239    fn test_few_shot_learning() {
2240        let config = QuantumInContextLearningConfig {
2241            model_dim: 3,
2242            max_context_examples: 5,
2243            ..Default::default()
2244        };
2245        let mut learner = QuantumInContextLearner::new(config).unwrap();
2246
2247        let examples = vec![ContextExample {
2248            input: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2249            output: Array1::from_vec(vec![0.8]),
2250            metadata: ContextMetadata {
2251                task_type: "test".to_string(),
2252                difficulty_level: 0.5,
2253                modality: ContextModality::Tabular,
2254                timestamp: 0,
2255                importance_weight: 1.0,
2256            },
2257            quantum_encoding: QuantumContextState {
2258                quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2259                classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2260                entanglement_measure: 0.5,
2261                coherence_time: 1.0,
2262                fidelity: 1.0,
2263                phase_information: Complex64::new(1.0, 0.0),
2264                context_metadata: ContextMetadata {
2265                    task_type: "test".to_string(),
2266                    difficulty_level: 0.5,
2267                    modality: ContextModality::Tabular,
2268                    timestamp: 0,
2269                    importance_weight: 1.0,
2270                },
2271            },
2272        }];
2273
2274        let query = Array1::from_vec(vec![0.5, -0.3, 0.8]);
2275        let result = learner.few_shot_learning(&examples, &query, 3);
2276
2277        assert!(result.is_ok());
2278    }
2279
2280    #[test]
2281    fn test_quantum_memory_operations() {
2282        let config = QuantumInContextLearningConfig::default();
2283        let mut memory = QuantumEpisodicMemory::new(&config).unwrap();
2284
2285        let test_state = QuantumContextState {
2286            quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2287            classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2288            entanglement_measure: 0.7,
2289            coherence_time: 0.9,
2290            fidelity: 0.95,
2291            phase_information: Complex64::new(1.0, 0.0),
2292            context_metadata: ContextMetadata {
2293                task_type: "memory_test".to_string(),
2294                difficulty_level: 0.6,
2295                modality: ContextModality::Tabular,
2296                timestamp: 0,
2297                importance_weight: 1.0,
2298            },
2299        };
2300
2301        // Test adding experience
2302        let result = memory.add_experience(test_state.clone());
2303        assert!(result.is_ok());
2304
2305        // Test retrieval
2306        let retrieved = memory.retrieve_similar_contexts(&test_state, 1);
2307        assert!(retrieved.is_ok());
2308        assert_eq!(retrieved.unwrap().len(), 1);
2309    }
2310
2311    #[test]
2312    fn test_adaptation_strategies() {
2313        let config = QuantumInContextLearningConfig {
2314            adaptation_strategy: AdaptationStrategy::QuantumInterference {
2315                interference_strength: 0.8,
2316            },
2317            ..Default::default()
2318        };
2319
2320        let learner = QuantumInContextLearner::new(config);
2321        assert!(learner.is_ok());
2322    }
2323
2324    #[test]
2325    fn test_prototype_bank_operations() {
2326        let config = QuantumInContextLearningConfig::default();
2327        let mut bank = PrototypeBank::new(&config).unwrap();
2328
2329        let test_state = QuantumContextState {
2330            quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2331            classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2332            entanglement_measure: 0.5,
2333            coherence_time: 1.0,
2334            fidelity: 1.0,
2335            phase_information: Complex64::new(1.0, 0.0),
2336            context_metadata: ContextMetadata {
2337                task_type: "prototype_test".to_string(),
2338                difficulty_level: 0.5,
2339                modality: ContextModality::Tabular,
2340                timestamp: 0,
2341                importance_weight: 1.0,
2342            },
2343        };
2344
2345        // Test adding prototype
2346        let result = bank.add_prototype(test_state.clone());
2347        assert!(result.is_ok());
2348        assert_eq!(bank.get_prototype_count(), 1);
2349
2350        // Test finding prototypes
2351        let found = bank.find_nearest_prototypes(&test_state, 1);
2352        assert!(found.is_ok());
2353        assert_eq!(found.unwrap().len(), 1);
2354    }
2355
2356    #[test]
2357    fn test_quantum_attention_mechanism() {
2358        let config = QuantumInContextLearningConfig {
2359            num_attention_heads: 2,
2360            ..Default::default()
2361        };
2362        let attention = QuantumContextAttention::new(&config).unwrap();
2363
2364        let query_state = QuantumContextState {
2365            quantum_amplitudes: Array1::zeros(256).mapv(|_: f64| Complex64::new(1.0, 0.0)),
2366            classical_features: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2367            entanglement_measure: 0.5,
2368            coherence_time: 1.0,
2369            fidelity: 1.0,
2370            phase_information: Complex64::new(1.0, 0.0),
2371            context_metadata: ContextMetadata {
2372                task_type: "attention_test".to_string(),
2373                difficulty_level: 0.5,
2374                modality: ContextModality::Tabular,
2375                timestamp: 0,
2376                importance_weight: 1.0,
2377            },
2378        };
2379
2380        let contexts = vec![query_state.clone(), query_state.clone()];
2381
2382        let weights = attention.compute_attention_weights(&query_state, &contexts);
2383        assert!(weights.is_ok());
2384        assert_eq!(weights.unwrap().len(), 2);
2385    }
2386}