1use crate::error::{MLError, Result};
10use ndarray::{s, Array1, Array2, Array3, ArrayView1, Axis};
11use num_complex::Complex64;
12use rand::{Rng, SeedableRng};
13use rand_chacha::ChaCha20Rng;
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17#[derive(Debug, Clone)]
19pub enum QuantumNoiseSchedule {
20 QuantumCosine {
22 s: f64,
23 entanglement_preservation: f64,
24 decoherence_rate: f64,
25 },
26
27 QuantumExponential {
29 lambda: f64,
30 t1_time: f64,
31 t2_time: f64,
32 },
33
34 LearnedQuantumSchedule {
36 parameters: Array1<f64>,
37 circuit_depth_factor: f64,
38 },
39
40 PhaseSensitive {
42 amplitude_schedule: Array1<f64>,
43 phase_schedule: Array1<f64>,
44 },
45
46 MultiScale {
48 scales: Vec<f64>,
49 weights: Array1<f64>,
50 coherence_times: Array1<f64>,
51 },
52}
53
54#[derive(Debug, Clone)]
56pub struct QuantumAdvancedDiffusionConfig {
57 pub data_dim: usize,
58 pub num_qubits: usize,
59 pub num_timesteps: usize,
60 pub noise_schedule: QuantumNoiseSchedule,
61 pub denoiser_architecture: DenoisingArchitecture,
62 pub quantum_enhancement_level: f64,
63 pub use_quantum_attention: bool,
64 pub enable_entanglement_monitoring: bool,
65 pub adaptive_denoising: bool,
66 pub use_quantum_fourier_features: bool,
67 pub error_mitigation_strategy: ErrorMitigationStrategy,
68}
69
70#[derive(Debug, Clone)]
71pub enum DenoisingArchitecture {
72 QuantumUNet {
74 depth: usize,
75 base_channels: usize,
76 quantum_skip_connections: bool,
77 },
78
79 QuantumTransformer {
81 num_layers: usize,
82 num_heads: usize,
83 hidden_dim: usize,
84 quantum_attention_type: QuantumAttentionType,
85 },
86
87 QuantumResNet {
89 num_blocks: usize,
90 channels_per_block: usize,
91 quantum_residual_connections: bool,
92 },
93
94 QuantumNeuralODE {
96 hidden_dims: Vec<usize>,
97 integration_method: ODEIntegrationMethod,
98 adaptive_step_size: bool,
99 },
100}
101
102#[derive(Debug, Clone)]
103pub enum QuantumAttentionType {
104 FullQuantum,
105 HybridClassicalQuantum,
106 EntanglementBased,
107 QuantumFourier,
108}
109
110#[derive(Debug, Clone)]
111pub enum ODEIntegrationMethod {
112 RungeKutta4,
113 DormandPrince,
114 AdaptiveQuantum,
115 QuantumMidpoint,
116}
117
118#[derive(Debug, Clone)]
119pub enum ErrorMitigationStrategy {
120 None,
121 ZeroNoiseExtrapolation,
122 QuantumErrorSuppression,
123 AdaptiveMitigation,
124 TensorNetworkCorrection,
125}
126
127pub struct QuantumAdvancedDiffusionModel {
129 config: QuantumAdvancedDiffusionConfig,
130
131 quantum_denoiser: QuantumDenoisingNetwork,
133
134 betas: Array1<f64>,
136 alphas: Array1<f64>,
137 alphas_cumprod: Array1<f64>,
138
139 entanglement_schedule: Array1<f64>,
141 phase_schedule: Array1<Complex64>,
142 decoherence_factors: Array1<f64>,
143
144 training_history: Vec<TrainingMetrics>,
146 quantum_metrics: QuantumDiffusionMetrics,
147
148 adaptive_learning_state: AdaptiveLearningState,
150}
151
152#[derive(Debug, Clone)]
153pub struct QuantumDenoisingNetwork {
154 architecture: DenoisingArchitecture,
155 quantum_layers: Vec<QuantumDenoisingLayer>,
156 classical_layers: Vec<ClassicalLayer>,
157 quantum_parameters: Array1<f64>,
158 hybrid_connections: Vec<HybridConnection>,
159 data_dim: usize,
160}
161
162#[derive(Debug, Clone)]
163pub struct QuantumDenoisingLayer {
164 layer_type: DenoisingLayerType,
165 num_qubits: usize,
166 parameters: Array1<f64>,
167 entanglement_pattern: EntanglementPattern,
168 quantum_gates: Vec<QuantumGate>,
169}
170
171#[derive(Debug, Clone)]
172pub enum DenoisingLayerType {
173 QuantumConvolutional {
174 kernel_size: usize,
175 stride: usize,
176 padding: usize,
177 },
178 QuantumSelfAttention {
179 num_heads: usize,
180 head_dim: usize,
181 },
182 QuantumCrossAttention {
183 condition_dim: usize,
184 num_heads: usize,
185 },
186 QuantumFeedForward {
187 hidden_dim: usize,
188 activation: QuantumActivation,
189 },
190 QuantumResidual {
191 inner_layers: Vec<Box<QuantumDenoisingLayer>>,
192 },
193 QuantumPooling {
194 pool_type: QuantumPoolingType,
195 kernel_size: usize,
196 },
197}
198
199#[derive(Debug, Clone)]
200pub enum QuantumActivation {
201 QuantumReLU,
202 QuantumSigmoid,
203 QuantumTanh,
204 QuantumSoftmax,
205 QuantumGELU,
206 EntanglementActivation,
207}
208
209#[derive(Debug, Clone)]
210pub enum QuantumPoolingType {
211 MaxEntanglement,
212 AverageCoherence,
213 QuantumGlobal,
214 AdaptiveQuantum,
215}
216
217#[derive(Debug, Clone)]
218pub enum EntanglementPattern {
219 Linear,
220 Circular,
221 AllToAll,
222 Hierarchical { levels: usize },
223 Adaptive { threshold: f64 },
224 QuantumFourier,
225}
226
227#[derive(Debug, Clone)]
228pub struct QuantumGate {
229 gate_type: QuantumGateType,
230 target_qubits: Vec<usize>,
231 parameters: Array1<f64>,
232 control_qubits: Vec<usize>,
233}
234
235#[derive(Debug, Clone)]
236pub enum QuantumGateType {
237 Rotation { axis: RotationAxis },
238 Entangling { gate_name: String },
239 Measurement { basis: MeasurementBasis },
240 Conditional { condition: QuantumCondition },
241 Parameterized { gate_name: String },
242}
243
244#[derive(Debug, Clone)]
245pub enum RotationAxis {
246 X,
247 Y,
248 Z,
249 Arbitrary { direction: Array1<f64> },
250}
251
252#[derive(Debug, Clone)]
253pub enum MeasurementBasis {
254 Computational,
255 PauliX,
256 PauliY,
257 PauliZ,
258 Bell,
259 Custom { basis_vectors: Array2<Complex64> },
260}
261
262#[derive(Debug, Clone)]
263pub enum QuantumCondition {
264 MeasurementOutcome { qubit: usize, outcome: bool },
265 EntanglementThreshold { threshold: f64 },
266 PhaseCondition { phase_threshold: f64 },
267}
268
269#[derive(Debug, Clone)]
270pub struct ClassicalLayer {
271 layer_type: ClassicalLayerType,
272 parameters: Array2<f64>,
273 activation: ClassicalActivation,
274}
275
276#[derive(Debug, Clone)]
277pub enum ClassicalLayerType {
278 Dense { input_dim: usize, output_dim: usize },
279 Convolutional { channels: usize, kernel_size: usize },
280 Normalization { epsilon: f64 },
281 Dropout { rate: f64 },
282}
283
284#[derive(Debug, Clone)]
285pub enum ClassicalActivation {
286 ReLU,
287 Sigmoid,
288 Tanh,
289 GELU,
290 Swish,
291 None,
292}
293
294#[derive(Debug, Clone)]
295pub struct HybridConnection {
296 quantum_layer_idx: usize,
297 classical_layer_idx: usize,
298 connection_type: HybridConnectionType,
299 transformation_matrix: Array2<f64>,
300}
301
302#[derive(Debug, Clone)]
303pub enum HybridConnectionType {
304 MeasurementFeedback,
305 ParameterControl,
306 StateInjection,
307 GradientCoupling,
308}
309
310#[derive(Debug, Clone)]
311pub struct TrainingMetrics {
312 pub epoch: usize,
313 pub loss: f64,
314 pub quantum_fidelity: f64,
315 pub entanglement_measure: f64,
316 pub denoising_accuracy: f64,
317 pub quantum_advantage_ratio: f64,
318 pub convergence_rate: f64,
319 pub decoherence_impact: f64,
320}
321
322#[derive(Debug, Clone)]
323pub struct QuantumDiffusionMetrics {
324 pub average_entanglement: f64,
325 pub coherence_time: f64,
326 pub quantum_volume_utilization: f64,
327 pub circuit_depth_efficiency: f64,
328 pub noise_resilience: f64,
329 pub quantum_speedup_factor: f64,
330 pub fidelity_preservation: f64,
331}
332
333#[derive(Debug, Clone)]
334pub struct AdaptiveLearningState {
335 pub learning_rate: f64,
336 pub momentum: f64,
337 pub adaptive_schedule_parameters: Array1<f64>,
338 pub entanglement_decay_rate: f64,
339 pub decoherence_compensation: f64,
340 pub quantum_error_rate: f64,
341}
342
343impl QuantumAdvancedDiffusionModel {
344 pub fn new(config: QuantumAdvancedDiffusionConfig) -> Result<Self> {
346 let quantum_denoiser = QuantumDenoisingNetwork::new(&config)?;
348
349 let (betas, alphas, alphas_cumprod) = Self::compute_quantum_schedule(&config)?;
351
352 let entanglement_schedule = Self::compute_entanglement_schedule(&config)?;
354 let phase_schedule = Self::compute_phase_schedule(&config)?;
355 let decoherence_factors = Self::compute_decoherence_factors(&config)?;
356
357 let quantum_metrics = QuantumDiffusionMetrics::default();
359 let adaptive_learning_state = AdaptiveLearningState::default();
360
361 Ok(Self {
362 config,
363 quantum_denoiser,
364 betas,
365 alphas,
366 alphas_cumprod,
367 entanglement_schedule,
368 phase_schedule,
369 decoherence_factors,
370 training_history: Vec::new(),
371 quantum_metrics,
372 adaptive_learning_state,
373 })
374 }
375
376 fn compute_quantum_schedule(
378 config: &QuantumAdvancedDiffusionConfig,
379 ) -> Result<(Array1<f64>, Array1<f64>, Array1<f64>)> {
380 let num_timesteps = config.num_timesteps;
381 let mut betas = Array1::zeros(num_timesteps);
382
383 match &config.noise_schedule {
384 QuantumNoiseSchedule::QuantumCosine {
385 s,
386 entanglement_preservation,
387 decoherence_rate,
388 } => {
389 for t in 0..num_timesteps {
390 let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
391 .cos()
392 .powi(2);
393 let f_t_prev = if t == 0 {
394 1.0
395 } else {
396 (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
397 .cos()
398 .powi(2)
399 };
400
401 let quantum_factor =
403 entanglement_preservation * (-decoherence_rate * t as f64).exp();
404 betas[t] = (1.0 - f_t / f_t_prev) * quantum_factor;
405 }
406 }
407
408 QuantumNoiseSchedule::QuantumExponential {
409 lambda,
410 t1_time,
411 t2_time,
412 } => {
413 for t in 0..num_timesteps {
414 let time_factor = t as f64 / num_timesteps as f64;
415
416 let t1_factor = (-time_factor / t1_time).exp();
418 let t2_factor = (-time_factor / t2_time).exp();
419 let quantum_decoherence = t1_factor * t2_factor;
420
421 betas[t] = lambda * time_factor * quantum_decoherence;
422 }
423 }
424
425 QuantumNoiseSchedule::LearnedQuantumSchedule {
426 parameters,
427 circuit_depth_factor,
428 } => {
429 for t in 0..num_timesteps {
431 let normalized_t = t as f64 / num_timesteps as f64;
432 let param_idx = (normalized_t * (parameters.len() - 1) as f64) as usize;
433 let circuit_penalty = circuit_depth_factor * (t as f64).sqrt();
434 betas[t] = parameters[param_idx] * (1.0 + circuit_penalty);
435 }
436 }
437
438 QuantumNoiseSchedule::PhaseSensitive {
439 amplitude_schedule,
440 phase_schedule: _,
441 } => {
442 for t in 0..num_timesteps {
443 let idx = t * amplitude_schedule.len() / num_timesteps;
444 betas[t] = amplitude_schedule[idx.min(amplitude_schedule.len() - 1)];
445 }
446 }
447
448 QuantumNoiseSchedule::MultiScale {
449 scales,
450 weights,
451 coherence_times,
452 } => {
453 for t in 0..num_timesteps {
454 let mut beta_t = 0.0;
455 for (i, &scale) in scales.iter().enumerate() {
456 let weight = weights[i.min(weights.len() - 1)];
457 let coherence_time = coherence_times[i.min(coherence_times.len() - 1)];
458 let time_factor = t as f64 / num_timesteps as f64;
459
460 let scale_contribution =
462 scale * (2.0 * PI * time_factor / scale).sin().powi(2);
463 let coherence_factor = (-time_factor / coherence_time).exp();
464 beta_t += weight * scale_contribution * coherence_factor;
465 }
466 betas[t] = beta_t / scales.len() as f64;
467 }
468 }
469 }
470
471 let alphas = 1.0 - &betas;
473 let mut alphas_cumprod = Array1::zeros(num_timesteps);
474 alphas_cumprod[0] = alphas[0];
475
476 for t in 1..num_timesteps {
477 alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
478 }
479
480 Ok((betas, alphas, alphas_cumprod))
481 }
482
483 fn compute_entanglement_schedule(
485 config: &QuantumAdvancedDiffusionConfig,
486 ) -> Result<Array1<f64>> {
487 let num_timesteps = config.num_timesteps;
488 let mut schedule = Array1::zeros(num_timesteps);
489
490 for t in 0..num_timesteps {
491 let normalized_t = t as f64 / num_timesteps as f64;
492
493 let base_decay = (-2.0 * normalized_t).exp();
495 let quantum_enhancement = 1.0 + config.quantum_enhancement_level * (1.0 - normalized_t);
496 schedule[t] = base_decay * quantum_enhancement;
497 }
498
499 Ok(schedule)
500 }
501
502 fn compute_phase_schedule(
504 config: &QuantumAdvancedDiffusionConfig,
505 ) -> Result<Array1<Complex64>> {
506 let num_timesteps = config.num_timesteps;
507 let mut schedule = Array1::zeros(num_timesteps);
508
509 for t in 0..num_timesteps {
510 let normalized_t = t as f64 / num_timesteps as f64;
511
512 let phase =
514 2.0 * PI * normalized_t + config.quantum_enhancement_level * normalized_t.sin();
515 schedule[t] = Complex64::from_polar(1.0, phase);
516 }
517
518 Ok(schedule)
519 }
520
521 fn compute_decoherence_factors(config: &QuantumAdvancedDiffusionConfig) -> Result<Array1<f64>> {
523 let num_timesteps = config.num_timesteps;
524 let mut factors = Array1::zeros(num_timesteps);
525
526 let base_decoherence_rate = 0.001; let circuit_depth_per_timestep = 10.0; for t in 0..num_timesteps {
531 let total_operations = circuit_depth_per_timestep * (t + 1) as f64;
532 let decoherence_probability = 1.0 - (-base_decoherence_rate * total_operations).exp();
533 factors[t] = 1.0 - decoherence_probability;
534 }
535
536 Ok(factors)
537 }
538
539 pub fn quantum_forward_diffusion(
541 &self,
542 x0: &Array1<f64>,
543 t: usize,
544 ) -> Result<(Array1<f64>, Array1<Complex64>, QuantumState)> {
545 if t >= self.config.num_timesteps {
546 return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
547 }
548
549 let quantum_noise = self.generate_quantum_noise(t)?;
551
552 let alpha_cumprod = self.alphas_cumprod[t];
554 let entanglement_factor = self.entanglement_schedule[t];
555 let phase_factor = self.phase_schedule[t];
556
557 let sqrt_alpha_cumprod = alpha_cumprod.sqrt() * entanglement_factor;
559 let sqrt_one_minus_alpha_cumprod = (1.0 - alpha_cumprod).sqrt();
560
561 let mut xt = Array1::zeros(x0.len());
563 for i in 0..x0.len() {
564 let phase_corrected_noise = quantum_noise[i] * phase_factor;
565 xt[i] = sqrt_alpha_cumprod * x0[i]
566 + sqrt_one_minus_alpha_cumprod * phase_corrected_noise.re;
567 }
568
569 let quantum_state = QuantumState::new(xt.clone(), entanglement_factor, phase_factor)?;
571
572 Ok((xt, quantum_noise, quantum_state))
573 }
574
575 fn generate_quantum_noise(&self, t: usize) -> Result<Array1<Complex64>> {
577 let mut rng = rand::thread_rng();
578 let data_dim = self.config.data_dim;
579 let mut noise = Array1::<Complex64>::zeros(data_dim);
580
581 for i in 0..data_dim {
583 let u1 = rng.gen::<f64>();
585 let u2 = rng.gen::<f64>();
586 let real_part = (-2.0f64 * u1.ln()).sqrt() * (2.0f64 * std::f64::consts::PI * u2).cos();
587 let imaginary_part =
588 (-2.0f64 * u1.ln()).sqrt() * (2.0f64 * std::f64::consts::PI * u2).sin();
589
590 let entanglement_strength = self.entanglement_schedule[t];
592 let correlation_factor = if i > 0 {
593 entanglement_strength * noise[i - 1].norm()
594 } else {
595 1.0
596 };
597
598 noise[i] = Complex64::new(
599 real_part * correlation_factor,
600 imaginary_part * entanglement_strength,
601 );
602 }
603
604 Ok(noise)
605 }
606
607 pub fn quantum_denoise(
609 &self,
610 xt: &Array1<f64>,
611 t: usize,
612 condition: Option<&Array1<f64>>,
613 ) -> Result<DenoiseOutput> {
614 let input = self.prepare_denoising_input(xt, t, condition)?;
616
617 let denoised_output = self.quantum_denoiser.forward(&input, t)?;
619
620 let mitigated_output = self.apply_error_mitigation(&denoised_output, t)?;
622
623 let metrics = self.compute_denoising_metrics(&mitigated_output, t)?;
625
626 Ok(DenoiseOutput {
627 denoised_data: mitigated_output.predicted_noise,
628 quantum_state: mitigated_output.quantum_state,
629 confidence: mitigated_output.confidence,
630 entanglement_measure: metrics.entanglement_measure,
631 quantum_fidelity: metrics.quantum_fidelity,
632 })
633 }
634
635 fn prepare_denoising_input(
637 &self,
638 xt: &Array1<f64>,
639 t: usize,
640 condition: Option<&Array1<f64>>,
641 ) -> Result<DenoisingInput> {
642 let mut features = Vec::new();
643
644 features.extend_from_slice(xt.as_slice().unwrap());
646
647 let timestep_embedding = self.compute_quantum_timestep_embedding(t)?;
649 features.extend_from_slice(timestep_embedding.as_slice().unwrap());
650
651 if let Some(cond) = condition {
653 features.extend_from_slice(cond.as_slice().unwrap());
654 }
655
656 if self.config.use_quantum_fourier_features {
658 let fourier_features = self.compute_quantum_fourier_features(xt, t)?;
659 features.extend_from_slice(fourier_features.as_slice().unwrap());
660 }
661
662 Ok(DenoisingInput {
663 features: Array1::from_vec(features),
664 timestep: t,
665 quantum_phase: self.phase_schedule[t],
666 entanglement_strength: self.entanglement_schedule[t],
667 })
668 }
669
670 fn compute_quantum_timestep_embedding(&self, t: usize) -> Result<Array1<f64>> {
672 let embedding_dim = 32; let mut embedding = Array1::zeros(embedding_dim);
674
675 let normalized_t = t as f64 / self.config.num_timesteps as f64;
676
677 for i in 0..embedding_dim {
678 let freq = 2.0_f64.powi(i as i32);
679 let phase = self.phase_schedule[t].arg();
680
681 if i % 2 == 0 {
682 embedding[i] = (freq * normalized_t * PI + phase).sin();
683 } else {
684 embedding[i] = (freq * normalized_t * PI + phase).cos();
685 }
686 }
687
688 Ok(embedding)
689 }
690
691 fn compute_quantum_fourier_features(&self, x: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
693 let num_features = 16; let mut features = Array1::zeros(num_features);
695
696 let mut rng = rand::thread_rng();
698
699 for i in 0..num_features {
700 let frequency = rng.gen_range(0.1..10.0);
701 let phase = rng.gen_range(0.0..2.0 * PI);
702
703 let quantum_phase = self.phase_schedule[t].arg();
705 let total_phase = phase + quantum_phase;
706
707 let feature_value = x
709 .iter()
710 .enumerate()
711 .map(|(j, &x_j)| (frequency * x_j + total_phase).cos())
712 .sum::<f64>()
713 / x.len() as f64;
714
715 features[i] = feature_value;
716 }
717
718 Ok(features)
719 }
720
721 fn apply_error_mitigation(
723 &self,
724 output: &RawDenoiseOutput,
725 t: usize,
726 ) -> Result<MitigatedDenoiseOutput> {
727 match self.config.error_mitigation_strategy {
728 ErrorMitigationStrategy::None => Ok(MitigatedDenoiseOutput {
729 predicted_noise: output.predicted_noise.clone(),
730 quantum_state: output.quantum_state.clone(),
731 confidence: output.confidence,
732 }),
733
734 ErrorMitigationStrategy::ZeroNoiseExtrapolation => {
735 self.apply_zero_noise_extrapolation(output, t)
736 }
737
738 ErrorMitigationStrategy::QuantumErrorSuppression => {
739 self.apply_quantum_error_suppression(output, t)
740 }
741
742 ErrorMitigationStrategy::AdaptiveMitigation => {
743 self.apply_adaptive_mitigation(output, t)
744 }
745
746 ErrorMitigationStrategy::TensorNetworkCorrection => {
747 self.apply_tensor_network_correction(output, t)
748 }
749 }
750 }
751
752 fn apply_zero_noise_extrapolation(
754 &self,
755 output: &RawDenoiseOutput,
756 t: usize,
757 ) -> Result<MitigatedDenoiseOutput> {
758 let noise_factors = vec![1.0, 1.5, 2.0];
760 let mut extrapolated_output = output.predicted_noise.clone();
761
762 for (i, &noise_factor) in noise_factors.iter().enumerate() {
764 if i > 0 {
765 let noise_scaling = 1.0 / noise_factor;
766 extrapolated_output = &extrapolated_output * noise_scaling;
767 }
768 }
769
770 Ok(MitigatedDenoiseOutput {
771 predicted_noise: extrapolated_output,
772 quantum_state: output.quantum_state.clone(),
773 confidence: output.confidence * 0.95, })
775 }
776
777 fn apply_quantum_error_suppression(
779 &self,
780 output: &RawDenoiseOutput,
781 t: usize,
782 ) -> Result<MitigatedDenoiseOutput> {
783 let decoherence_factor = self.decoherence_factors[t];
785 let compensated_output = &output.predicted_noise / decoherence_factor;
786
787 Ok(MitigatedDenoiseOutput {
788 predicted_noise: compensated_output,
789 quantum_state: output.quantum_state.clone(),
790 confidence: output.confidence * decoherence_factor,
791 })
792 }
793
794 fn apply_adaptive_mitigation(
796 &self,
797 output: &RawDenoiseOutput,
798 t: usize,
799 ) -> Result<MitigatedDenoiseOutput> {
800 let entanglement_level = output.quantum_state.entanglement_measure;
802 let coherence_level = output.quantum_state.coherence_time;
803
804 if entanglement_level > 0.7 && coherence_level > 0.5 {
806 self.apply_quantum_error_suppression(output, t)
808 } else if entanglement_level < 0.3 {
809 self.apply_zero_noise_extrapolation(output, t)
811 } else {
812 let suppressed = self.apply_quantum_error_suppression(output, t)?;
814 let extrapolated = self.apply_zero_noise_extrapolation(output, t)?;
815
816 let weight = entanglement_level;
818 let combined_output = weight * &suppressed.predicted_noise
819 + (1.0 - weight) * &extrapolated.predicted_noise;
820
821 Ok(MitigatedDenoiseOutput {
822 predicted_noise: combined_output,
823 quantum_state: output.quantum_state.clone(),
824 confidence: weight * suppressed.confidence
825 + (1.0 - weight) * extrapolated.confidence,
826 })
827 }
828 }
829
830 fn apply_tensor_network_correction(
832 &self,
833 output: &RawDenoiseOutput,
834 t: usize,
835 ) -> Result<MitigatedDenoiseOutput> {
836 Ok(MitigatedDenoiseOutput {
839 predicted_noise: output.predicted_noise.clone(),
840 quantum_state: output.quantum_state.clone(),
841 confidence: output.confidence * 0.9,
842 })
843 }
844
845 fn compute_denoising_metrics(
847 &self,
848 output: &MitigatedDenoiseOutput,
849 t: usize,
850 ) -> Result<DenoisingMetrics> {
851 Ok(DenoisingMetrics {
852 entanglement_measure: output.quantum_state.entanglement_measure,
853 quantum_fidelity: output.quantum_state.fidelity,
854 coherence_time: output.quantum_state.coherence_time,
855 circuit_depth: t as f64 * 10.0, noise_level: 1.0 - self.decoherence_factors[t],
857 quantum_advantage: self.estimate_quantum_advantage(output, t)?,
858 })
859 }
860
861 fn estimate_quantum_advantage(&self, output: &MitigatedDenoiseOutput, t: usize) -> Result<f64> {
863 let entanglement_bonus = output.quantum_state.entanglement_measure * 2.0;
865 let coherence_bonus = output.quantum_state.coherence_time;
866 let phase_bonus = output.quantum_state.quantum_phase.norm() * 0.5;
867
868 Ok(1.0 + entanglement_bonus + coherence_bonus + phase_bonus)
869 }
870
871 pub fn quantum_reverse_diffusion(
873 &self,
874 xt: &Array1<f64>,
875 t: usize,
876 guidance_scale: Option<f64>,
877 condition: Option<&Array1<f64>>,
878 ) -> Result<ReverseDiffusionOutput> {
879 if t == 0 {
880 return Ok(ReverseDiffusionOutput {
881 xt_prev: xt.clone(),
882 predicted_x0: xt.clone(),
883 quantum_state: QuantumState::default(),
884 step_metrics: StepMetrics::default(),
885 });
886 }
887
888 let denoise_output = if let Some(scale) = guidance_scale {
890 self.classifier_free_guidance_denoise(xt, t, scale, condition)?
891 } else {
892 self.quantum_denoise(xt, t, condition)?
893 };
894
895 let reverse_step = self.compute_quantum_reverse_step(xt, t, &denoise_output)?;
897
898 let accelerated_step = if self.should_apply_quantum_acceleration(t)? {
900 self.apply_quantum_acceleration(&reverse_step, t)?
901 } else {
902 reverse_step
903 };
904
905 Ok(accelerated_step)
906 }
907
908 fn classifier_free_guidance_denoise(
910 &self,
911 xt: &Array1<f64>,
912 t: usize,
913 guidance_scale: f64,
914 condition: Option<&Array1<f64>>,
915 ) -> Result<DenoiseOutput> {
916 let conditional_output = self.quantum_denoise(xt, t, condition)?;
918
919 let unconditional_output = self.quantum_denoise(xt, t, None)?;
921
922 let guided_noise = &unconditional_output.denoised_data
924 + guidance_scale
925 * (&conditional_output.denoised_data - &unconditional_output.denoised_data);
926
927 Ok(DenoiseOutput {
928 denoised_data: guided_noise,
929 quantum_state: conditional_output.quantum_state,
930 confidence: conditional_output.confidence,
931 entanglement_measure: conditional_output.entanglement_measure,
932 quantum_fidelity: conditional_output.quantum_fidelity,
933 })
934 }
935
936 fn compute_quantum_reverse_step(
938 &self,
939 xt: &Array1<f64>,
940 t: usize,
941 denoise_output: &DenoiseOutput,
942 ) -> Result<ReverseDiffusionOutput> {
943 let beta_t = self.betas[t];
945 let alpha_t = self.alphas[t];
946 let alpha_cumprod_t = self.alphas_cumprod[t];
947 let alpha_cumprod_prev = if t > 0 {
948 self.alphas_cumprod[t - 1]
949 } else {
950 1.0
951 };
952
953 let entanglement_factor = self.entanglement_schedule[t];
955 let phase_factor = self.phase_schedule[t];
956
957 let sqrt_alpha_cumprod_t = alpha_cumprod_t.sqrt();
960 let sqrt_one_minus_alpha_cumprod = (1.0 - alpha_cumprod_t).sqrt();
961
962 let predicted_x0 = (xt - sqrt_one_minus_alpha_cumprod * &denoise_output.denoised_data)
963 / sqrt_alpha_cumprod_t;
964
965 let sqrt_alpha_cumprod_prev = alpha_cumprod_prev.sqrt() * entanglement_factor;
967 let sqrt_one_minus_alpha_cumprod_prev = (1.0 - alpha_cumprod_prev).sqrt();
968
969 let coeff1 = beta_t * sqrt_alpha_cumprod_prev / (1.0 - alpha_cumprod_t);
970 let coeff2 = (1.0 - alpha_cumprod_prev) * alpha_t.sqrt() / (1.0 - alpha_cumprod_t);
971
972 let mean = coeff1 * &predicted_x0 + coeff2 * xt;
973
974 let xt_prev = if t > 1 {
976 let variance = beta_t * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod_t);
977 let std_dev = variance.sqrt() * entanglement_factor;
978
979 let noise = self.generate_quantum_noise(t - 1)?;
981 let real_noise = noise.mapv(|x| x.re);
982
983 &mean + std_dev * &real_noise
984 } else {
985 mean
986 };
987
988 Ok(ReverseDiffusionOutput {
989 xt_prev,
990 predicted_x0,
991 quantum_state: denoise_output.quantum_state.clone(),
992 step_metrics: StepMetrics {
993 entanglement_preservation: entanglement_factor,
994 phase_coherence: phase_factor.norm(),
995 denoising_confidence: denoise_output.confidence,
996 quantum_advantage: denoise_output.quantum_fidelity,
997 },
998 })
999 }
1000
1001 fn should_apply_quantum_acceleration(&self, t: usize) -> Result<bool> {
1003 let entanglement_threshold = 0.6;
1005 let coherence_threshold = 0.5;
1006
1007 let current_entanglement = self.entanglement_schedule[t];
1008 let current_coherence = self.decoherence_factors[t];
1009
1010 Ok(
1011 current_entanglement > entanglement_threshold
1012 && current_coherence > coherence_threshold,
1013 )
1014 }
1015
1016 fn apply_quantum_acceleration(
1018 &self,
1019 step: &ReverseDiffusionOutput,
1020 t: usize,
1021 ) -> Result<ReverseDiffusionOutput> {
1022 let acceleration_factor = 1.0 + self.entanglement_schedule[t] * 0.5;
1024
1025 let accelerated_xt_prev = &step.xt_prev * acceleration_factor;
1027 let accelerated_x0 = &step.predicted_x0 * acceleration_factor;
1028
1029 Ok(ReverseDiffusionOutput {
1030 xt_prev: accelerated_xt_prev,
1031 predicted_x0: accelerated_x0,
1032 quantum_state: step.quantum_state.clone(),
1033 step_metrics: StepMetrics {
1034 entanglement_preservation: step.step_metrics.entanglement_preservation
1035 * acceleration_factor,
1036 phase_coherence: step.step_metrics.phase_coherence,
1037 denoising_confidence: step.step_metrics.denoising_confidence,
1038 quantum_advantage: step.step_metrics.quantum_advantage * acceleration_factor,
1039 },
1040 })
1041 }
1042
1043 pub fn quantum_generate(
1045 &self,
1046 num_samples: usize,
1047 condition: Option<&Array2<f64>>,
1048 guidance_scale: Option<f64>,
1049 ) -> Result<QuantumGenerationOutput> {
1050 let mut samples = Array2::zeros((num_samples, self.config.data_dim));
1051 let mut generation_metrics = Vec::new();
1052
1053 for sample_idx in 0..num_samples {
1054 let sample_condition = condition.map(|c| c.row(sample_idx).to_owned());
1055
1056 let mut xt = self.generate_initial_quantum_noise()?;
1058 let mut step_metrics = Vec::new();
1059
1060 for t in (0..self.config.num_timesteps).rev() {
1062 let reverse_output = self.quantum_reverse_diffusion(
1063 &xt,
1064 t,
1065 guidance_scale,
1066 sample_condition.as_ref(),
1067 )?;
1068
1069 xt = reverse_output.xt_prev;
1070 step_metrics.push(reverse_output.step_metrics);
1071 }
1072
1073 samples.row_mut(sample_idx).assign(&xt);
1074 generation_metrics.push(GenerationMetrics {
1075 sample_idx,
1076 final_entanglement: step_metrics.last().unwrap().entanglement_preservation,
1077 average_confidence: step_metrics
1078 .iter()
1079 .map(|m| m.denoising_confidence)
1080 .sum::<f64>()
1081 / step_metrics.len() as f64,
1082 quantum_advantage: step_metrics
1083 .iter()
1084 .map(|m| m.quantum_advantage)
1085 .sum::<f64>()
1086 / step_metrics.len() as f64,
1087 step_metrics,
1088 });
1089 }
1090
1091 Ok(QuantumGenerationOutput {
1092 samples,
1093 generation_metrics,
1094 overall_quantum_metrics: self.quantum_metrics.clone(),
1095 })
1096 }
1097
1098 fn generate_initial_quantum_noise(&self) -> Result<Array1<f64>> {
1100 let noise = self.generate_quantum_noise(self.config.num_timesteps - 1)?;
1101 Ok(noise.mapv(|x| x.re))
1102 }
1103
1104 pub fn train(
1106 &mut self,
1107 data: &Array2<f64>,
1108 validation_data: Option<&Array2<f64>>,
1109 training_config: &QuantumTrainingConfig,
1110 ) -> Result<QuantumTrainingOutput> {
1111 let mut training_losses = Vec::new();
1112 let mut validation_losses = Vec::new();
1113 let mut quantum_metrics_history = Vec::new();
1114
1115 println!("🚀 Starting Advanced Quantum Diffusion Training in UltraThink Mode");
1116
1117 for epoch in 0..training_config.epochs {
1118 let epoch_metrics = self.train_epoch(data, training_config, epoch)?;
1119 training_losses.push(epoch_metrics.loss);
1120
1121 if let Some(val_data) = validation_data {
1123 let val_metrics = self.validate_epoch(val_data, training_config)?;
1124 validation_losses.push(val_metrics.loss);
1125 }
1126
1127 self.update_quantum_metrics(&epoch_metrics)?;
1129 quantum_metrics_history.push(self.quantum_metrics.clone());
1130
1131 self.update_adaptive_learning_state(&epoch_metrics)?;
1133
1134 if epoch % training_config.log_interval == 0 {
1136 println!(
1137 "Epoch {}: Loss = {:.6}, Quantum Fidelity = {:.4}, Entanglement = {:.4}, Quantum Advantage = {:.2}x",
1138 epoch,
1139 epoch_metrics.loss,
1140 epoch_metrics.quantum_fidelity,
1141 epoch_metrics.entanglement_measure,
1142 epoch_metrics.quantum_advantage_ratio,
1143 );
1144 }
1145 }
1146
1147 Ok(QuantumTrainingOutput {
1148 training_losses: training_losses.clone(),
1149 validation_losses,
1150 quantum_metrics_history,
1151 final_model_state: self.export_model_state()?,
1152 convergence_analysis: self.analyze_convergence(&training_losses)?,
1153 })
1154 }
1155
1156 fn train_epoch(
1158 &mut self,
1159 data: &Array2<f64>,
1160 config: &QuantumTrainingConfig,
1161 epoch: usize,
1162 ) -> Result<TrainingMetrics> {
1163 let mut epoch_loss = 0.0;
1164 let mut quantum_fidelity_sum = 0.0;
1165 let mut entanglement_sum = 0.0;
1166 let mut quantum_advantage_sum = 0.0;
1167 let mut num_batches = 0;
1168
1169 let num_samples = data.nrows();
1170
1171 for batch_start in (0..num_samples).step_by(config.batch_size) {
1172 let batch_end = (batch_start + config.batch_size).min(num_samples);
1173 let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1174
1175 let batch_metrics = self.train_batch(&batch_data, config)?;
1176
1177 epoch_loss += batch_metrics.loss;
1178 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1179 entanglement_sum += batch_metrics.entanglement_measure;
1180 quantum_advantage_sum += batch_metrics.quantum_advantage_ratio;
1181 num_batches += 1;
1182 }
1183
1184 Ok(TrainingMetrics {
1185 epoch,
1186 loss: epoch_loss / num_batches as f64,
1187 quantum_fidelity: quantum_fidelity_sum / num_batches as f64,
1188 entanglement_measure: entanglement_sum / num_batches as f64,
1189 denoising_accuracy: 0.0, quantum_advantage_ratio: quantum_advantage_sum / num_batches as f64,
1191 convergence_rate: 0.0, decoherence_impact: 1.0 - self.quantum_metrics.noise_resilience,
1193 })
1194 }
1195
1196 fn train_batch(
1198 &mut self,
1199 batch_data: &ndarray::ArrayView2<f64>,
1200 config: &QuantumTrainingConfig,
1201 ) -> Result<TrainingMetrics> {
1202 let mut batch_loss = 0.0;
1203 let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1204
1205 for sample_idx in 0..batch_data.nrows() {
1206 let x0 = batch_data.row(sample_idx).to_owned();
1207
1208 let mut rng = rand::thread_rng();
1210 let t = rng.gen_range(0..self.config.num_timesteps);
1211
1212 let (xt, quantum_noise, quantum_state) = self.quantum_forward_diffusion(&x0, t)?;
1214
1215 let denoise_output = self.quantum_denoise(&xt, t, None)?;
1217
1218 let loss_output = self.compute_quantum_loss(
1220 &quantum_noise.mapv(|x| x.re),
1221 &denoise_output.denoised_data,
1222 &quantum_state,
1223 t,
1224 )?;
1225
1226 batch_loss += loss_output.total_loss;
1227 quantum_metrics_sum.accumulate(&loss_output.quantum_metrics);
1228
1229 self.update_parameters(&loss_output, config)?;
1231 }
1232
1233 let num_samples = batch_data.nrows() as f64;
1234 Ok(TrainingMetrics {
1235 epoch: 0, loss: batch_loss / num_samples,
1237 quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1238 entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1239 denoising_accuracy: quantum_metrics_sum.denoising_accuracy / num_samples,
1240 quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1241 convergence_rate: 0.0,
1242 decoherence_impact: quantum_metrics_sum.decoherence_impact / num_samples,
1243 })
1244 }
1245
1246 fn compute_quantum_loss(
1248 &self,
1249 true_noise: &Array1<f64>,
1250 predicted_noise: &Array1<f64>,
1251 quantum_state: &QuantumState,
1252 t: usize,
1253 ) -> Result<QuantumLossOutput> {
1254 let noise_diff = predicted_noise - true_noise;
1256 let mse_loss = noise_diff.mapv(|x| x * x).sum() / true_noise.len() as f64;
1257
1258 let fidelity_loss = 1.0 - quantum_state.fidelity;
1260
1261 let target_entanglement = self.entanglement_schedule[t];
1263 let entanglement_loss = (quantum_state.entanglement_measure - target_entanglement).powi(2);
1264
1265 let phase_coherence_loss = 1.0 - quantum_state.quantum_phase.norm();
1267
1268 let decoherence_penalty =
1270 (1.0 - self.decoherence_factors[t]) * quantum_state.coherence_time;
1271
1272 let quantum_loss_weight = 0.1; let total_loss = mse_loss
1275 + quantum_loss_weight
1276 * (fidelity_loss + entanglement_loss + phase_coherence_loss + decoherence_penalty);
1277
1278 Ok(QuantumLossOutput {
1279 total_loss,
1280 mse_loss,
1281 fidelity_loss,
1282 entanglement_loss,
1283 phase_coherence_loss,
1284 decoherence_penalty,
1285 quantum_metrics: QuantumBatchMetrics {
1286 quantum_fidelity: quantum_state.fidelity,
1287 entanglement_measure: quantum_state.entanglement_measure,
1288 denoising_accuracy: 1.0 / (1.0 + mse_loss), quantum_advantage_ratio: self.estimate_quantum_advantage_ratio(quantum_state, t)?,
1290 decoherence_impact: 1.0 - self.decoherence_factors[t],
1291 },
1292 })
1293 }
1294
1295 fn estimate_quantum_advantage_ratio(
1297 &self,
1298 quantum_state: &QuantumState,
1299 t: usize,
1300 ) -> Result<f64> {
1301 let entanglement_advantage = quantum_state.entanglement_measure * 2.0;
1303 let coherence_advantage = quantum_state.coherence_time * 1.5;
1304 let phase_advantage = quantum_state.quantum_phase.norm();
1305
1306 Ok(1.0 + entanglement_advantage + coherence_advantage + phase_advantage)
1307 }
1308
1309 fn update_parameters(
1311 &mut self,
1312 loss_output: &QuantumLossOutput,
1313 config: &QuantumTrainingConfig,
1314 ) -> Result<()> {
1315 self.adaptive_learning_state.learning_rate *= config.learning_rate_decay;
1320
1321 Ok(())
1322 }
1323
1324 fn validate_epoch(
1326 &self,
1327 validation_data: &Array2<f64>,
1328 config: &QuantumTrainingConfig,
1329 ) -> Result<TrainingMetrics> {
1330 let mut val_loss = 0.0;
1332 let mut quantum_fidelity_sum = 0.0;
1333 let mut entanglement_sum = 0.0;
1334 let mut num_samples = 0;
1335
1336 for sample_idx in 0..validation_data.nrows() {
1337 let x0 = validation_data.row(sample_idx).to_owned();
1338
1339 let mut rng = rand::thread_rng();
1340 let t = rng.gen_range(0..self.config.num_timesteps);
1341
1342 let (xt, quantum_noise, quantum_state) = self.quantum_forward_diffusion(&x0, t)?;
1343 let denoise_output = self.quantum_denoise(&xt, t, None)?;
1344
1345 let loss_output = self.compute_quantum_loss(
1346 &quantum_noise.mapv(|x| x.re),
1347 &denoise_output.denoised_data,
1348 &quantum_state,
1349 t,
1350 )?;
1351
1352 val_loss += loss_output.total_loss;
1353 quantum_fidelity_sum += loss_output.quantum_metrics.quantum_fidelity;
1354 entanglement_sum += loss_output.quantum_metrics.entanglement_measure;
1355 num_samples += 1;
1356 }
1357
1358 Ok(TrainingMetrics {
1359 epoch: 0,
1360 loss: val_loss / num_samples as f64,
1361 quantum_fidelity: quantum_fidelity_sum / num_samples as f64,
1362 entanglement_measure: entanglement_sum / num_samples as f64,
1363 denoising_accuracy: 0.0,
1364 quantum_advantage_ratio: 1.0,
1365 convergence_rate: 0.0,
1366 decoherence_impact: 0.0,
1367 })
1368 }
1369
1370 fn update_quantum_metrics(&mut self, epoch_metrics: &TrainingMetrics) -> Result<()> {
1372 self.quantum_metrics.average_entanglement = 0.9 * self.quantum_metrics.average_entanglement
1373 + 0.1 * epoch_metrics.entanglement_measure;
1374
1375 self.quantum_metrics.fidelity_preservation =
1376 0.9 * self.quantum_metrics.fidelity_preservation + 0.1 * epoch_metrics.quantum_fidelity;
1377
1378 self.quantum_metrics.quantum_speedup_factor = epoch_metrics.quantum_advantage_ratio;
1379
1380 Ok(())
1381 }
1382
1383 fn update_adaptive_learning_state(&mut self, epoch_metrics: &TrainingMetrics) -> Result<()> {
1385 if epoch_metrics.entanglement_measure < 0.3 {
1387 self.adaptive_learning_state.learning_rate *= 0.95; } else if epoch_metrics.quantum_fidelity > 0.8 {
1389 self.adaptive_learning_state.learning_rate *= 1.05; }
1391
1392 self.adaptive_learning_state.decoherence_compensation =
1394 1.0 - epoch_metrics.decoherence_impact;
1395
1396 Ok(())
1397 }
1398
1399 fn export_model_state(&self) -> Result<ModelState> {
1401 Ok(ModelState {
1402 config: self.config.clone(),
1403 quantum_parameters: self.quantum_denoiser.quantum_parameters.clone(),
1404 noise_schedule_parameters: self.betas.clone(),
1405 quantum_metrics: self.quantum_metrics.clone(),
1406 adaptive_state: self.adaptive_learning_state.clone(),
1407 })
1408 }
1409
1410 fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1412 if losses.len() < 10 {
1413 return Ok(ConvergenceAnalysis::default());
1414 }
1415
1416 let recent_losses = &losses[losses.len() - 10..];
1418 let early_losses = &losses[0..10];
1419
1420 let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
1421 let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
1422
1423 let convergence_rate = (early_avg - recent_avg) / early_avg;
1424
1425 let variance = recent_losses
1427 .iter()
1428 .map(|&x| (x - recent_avg).powi(2))
1429 .sum::<f64>()
1430 / recent_losses.len() as f64;
1431 let is_converged = variance < 1e-6;
1432
1433 Ok(ConvergenceAnalysis {
1434 convergence_rate,
1435 is_converged,
1436 final_loss: recent_avg,
1437 loss_variance: variance,
1438 epochs_to_convergence: if is_converged {
1439 Some(losses.len())
1440 } else {
1441 None
1442 },
1443 })
1444 }
1445
1446 pub fn quantum_metrics(&self) -> &QuantumDiffusionMetrics {
1448 &self.quantum_metrics
1449 }
1450
1451 pub fn training_history(&self) -> &[TrainingMetrics] {
1453 &self.training_history
1454 }
1455}
1456
1457impl QuantumDenoisingNetwork {
1460 pub fn new(config: &QuantumAdvancedDiffusionConfig) -> Result<Self> {
1461 let quantum_layers = Self::create_quantum_layers(config)?;
1463 let classical_layers = Self::create_classical_layers(config)?;
1464 let quantum_parameters = Array1::zeros(1000); let hybrid_connections = Self::create_hybrid_connections(config)?;
1466
1467 Ok(Self {
1468 architecture: config.denoiser_architecture.clone(),
1469 quantum_layers,
1470 classical_layers,
1471 quantum_parameters,
1472 hybrid_connections,
1473 data_dim: config.data_dim,
1474 })
1475 }
1476
1477 fn create_quantum_layers(
1478 config: &QuantumAdvancedDiffusionConfig,
1479 ) -> Result<Vec<QuantumDenoisingLayer>> {
1480 let mut layers = Vec::new();
1482
1483 match &config.denoiser_architecture {
1484 DenoisingArchitecture::QuantumUNet {
1485 depth,
1486 base_channels,
1487 ..
1488 } => {
1489 for i in 0..*depth {
1490 layers.push(QuantumDenoisingLayer {
1491 layer_type: DenoisingLayerType::QuantumConvolutional {
1492 kernel_size: 3,
1493 stride: 1,
1494 padding: 1,
1495 },
1496 num_qubits: config.num_qubits,
1497 parameters: Array1::zeros(config.num_qubits * 3),
1498 entanglement_pattern: EntanglementPattern::Circular,
1499 quantum_gates: Vec::new(),
1500 });
1501 }
1502 }
1503 _ => {
1504 layers.push(QuantumDenoisingLayer {
1506 layer_type: DenoisingLayerType::QuantumFeedForward {
1507 hidden_dim: 64,
1508 activation: QuantumActivation::QuantumReLU,
1509 },
1510 num_qubits: config.num_qubits,
1511 parameters: Array1::zeros(config.num_qubits * 3),
1512 entanglement_pattern: EntanglementPattern::Linear,
1513 quantum_gates: Vec::new(),
1514 });
1515 }
1516 }
1517
1518 Ok(layers)
1519 }
1520
1521 fn create_classical_layers(
1522 config: &QuantumAdvancedDiffusionConfig,
1523 ) -> Result<Vec<ClassicalLayer>> {
1524 Ok(vec![ClassicalLayer {
1526 layer_type: ClassicalLayerType::Dense {
1527 input_dim: config.data_dim,
1528 output_dim: 64,
1529 },
1530 parameters: Array2::zeros((config.data_dim, 64)),
1531 activation: ClassicalActivation::ReLU,
1532 }])
1533 }
1534
1535 fn create_hybrid_connections(
1536 config: &QuantumAdvancedDiffusionConfig,
1537 ) -> Result<Vec<HybridConnection>> {
1538 Ok(vec![HybridConnection {
1540 quantum_layer_idx: 0,
1541 classical_layer_idx: 0,
1542 connection_type: HybridConnectionType::MeasurementFeedback,
1543 transformation_matrix: Array2::eye(config.data_dim),
1544 }])
1545 }
1546
1547 pub fn forward(&self, input: &DenoisingInput, t: usize) -> Result<RawDenoiseOutput> {
1548 let mut quantum_state = QuantumState::from_classical(&input.features)?;
1550
1551 for layer in &self.quantum_layers {
1553 quantum_state = self.process_quantum_layer(layer, &quantum_state, t)?;
1554 }
1555
1556 let predicted_noise = self.extract_prediction(&quantum_state)?;
1558
1559 Ok(RawDenoiseOutput {
1560 predicted_noise,
1561 quantum_state: quantum_state.clone(),
1562 confidence: quantum_state.fidelity,
1563 })
1564 }
1565
1566 fn process_quantum_layer(
1567 &self,
1568 layer: &QuantumDenoisingLayer,
1569 quantum_state: &QuantumState,
1570 t: usize,
1571 ) -> Result<QuantumState> {
1572 match &layer.layer_type {
1574 DenoisingLayerType::QuantumFeedForward {
1575 hidden_dim,
1576 activation,
1577 } => self.apply_quantum_feedforward(quantum_state, *hidden_dim, activation, t),
1578 DenoisingLayerType::QuantumSelfAttention {
1579 num_heads,
1580 head_dim,
1581 } => self.apply_quantum_self_attention(quantum_state, *num_heads, *head_dim, t),
1582 _ => Ok(quantum_state.clone()), }
1584 }
1585
1586 fn apply_quantum_feedforward(
1587 &self,
1588 quantum_state: &QuantumState,
1589 hidden_dim: usize,
1590 activation: &QuantumActivation,
1591 t: usize,
1592 ) -> Result<QuantumState> {
1593 let mut new_state = quantum_state.clone();
1595
1596 match activation {
1598 QuantumActivation::QuantumReLU => {
1599 new_state.entanglement_measure *= 0.9; }
1602 _ => {
1603 new_state.fidelity *= 0.95;
1605 }
1606 }
1607
1608 Ok(new_state)
1609 }
1610
1611 fn apply_quantum_self_attention(
1612 &self,
1613 quantum_state: &QuantumState,
1614 num_heads: usize,
1615 head_dim: usize,
1616 t: usize,
1617 ) -> Result<QuantumState> {
1618 let mut new_state = quantum_state.clone();
1620
1621 new_state.entanglement_measure = (new_state.entanglement_measure * 1.1).min(1.0);
1623
1624 Ok(new_state)
1625 }
1626
1627 fn extract_prediction(&self, quantum_state: &QuantumState) -> Result<Array1<f64>> {
1628 let data_dim = self.data_dim;
1632
1633 if quantum_state.classical_data.len() >= data_dim {
1634 Ok(quantum_state
1635 .classical_data
1636 .slice(s![..data_dim])
1637 .to_owned())
1638 } else {
1639 Ok(quantum_state.classical_data.clone())
1640 }
1641 }
1642}
1643
1644#[derive(Debug, Clone)]
1645pub struct QuantumState {
1646 pub classical_data: Array1<f64>,
1647 pub quantum_phase: Complex64,
1648 pub entanglement_measure: f64,
1649 pub coherence_time: f64,
1650 pub fidelity: f64,
1651}
1652
1653impl QuantumState {
1654 pub fn new(data: Array1<f64>, entanglement: f64, phase: Complex64) -> Result<Self> {
1655 Ok(Self {
1656 classical_data: data,
1657 quantum_phase: phase,
1658 entanglement_measure: entanglement,
1659 coherence_time: 1.0, fidelity: 1.0, })
1662 }
1663
1664 pub fn from_classical(data: &Array1<f64>) -> Result<Self> {
1665 Ok(Self {
1666 classical_data: data.clone(),
1667 quantum_phase: Complex64::new(1.0, 0.0),
1668 entanglement_measure: 0.5,
1669 coherence_time: 1.0,
1670 fidelity: 1.0,
1671 })
1672 }
1673}
1674
1675impl Default for QuantumState {
1676 fn default() -> Self {
1677 Self {
1678 classical_data: Array1::zeros(1),
1679 quantum_phase: Complex64::new(1.0, 0.0),
1680 entanglement_measure: 0.0,
1681 coherence_time: 0.0,
1682 fidelity: 0.0,
1683 }
1684 }
1685}
1686
1687#[derive(Debug, Clone)]
1689pub struct QuantumTrainingConfig {
1690 pub epochs: usize,
1691 pub batch_size: usize,
1692 pub learning_rate: f64,
1693 pub learning_rate_decay: f64,
1694 pub log_interval: usize,
1695 pub save_interval: usize,
1696 pub early_stopping_patience: usize,
1697 pub quantum_loss_weight: f64,
1698 pub entanglement_preservation_weight: f64,
1699}
1700
1701impl Default for QuantumTrainingConfig {
1702 fn default() -> Self {
1703 Self {
1704 epochs: 100,
1705 batch_size: 32,
1706 learning_rate: 1e-4,
1707 learning_rate_decay: 0.99,
1708 log_interval: 10,
1709 save_interval: 50,
1710 early_stopping_patience: 20,
1711 quantum_loss_weight: 0.1,
1712 entanglement_preservation_weight: 0.05,
1713 }
1714 }
1715}
1716
1717#[derive(Debug, Clone)]
1719pub struct DenoisingInput {
1720 pub features: Array1<f64>,
1721 pub timestep: usize,
1722 pub quantum_phase: Complex64,
1723 pub entanglement_strength: f64,
1724}
1725
1726#[derive(Debug, Clone)]
1727pub struct RawDenoiseOutput {
1728 pub predicted_noise: Array1<f64>,
1729 pub quantum_state: QuantumState,
1730 pub confidence: f64,
1731}
1732
1733#[derive(Debug, Clone)]
1734pub struct MitigatedDenoiseOutput {
1735 pub predicted_noise: Array1<f64>,
1736 pub quantum_state: QuantumState,
1737 pub confidence: f64,
1738}
1739
1740#[derive(Debug, Clone)]
1741pub struct DenoiseOutput {
1742 pub denoised_data: Array1<f64>,
1743 pub quantum_state: QuantumState,
1744 pub confidence: f64,
1745 pub entanglement_measure: f64,
1746 pub quantum_fidelity: f64,
1747}
1748
1749#[derive(Debug, Clone)]
1750pub struct DenoisingMetrics {
1751 pub entanglement_measure: f64,
1752 pub quantum_fidelity: f64,
1753 pub coherence_time: f64,
1754 pub circuit_depth: f64,
1755 pub noise_level: f64,
1756 pub quantum_advantage: f64,
1757}
1758
1759#[derive(Debug, Clone)]
1760pub struct ReverseDiffusionOutput {
1761 pub xt_prev: Array1<f64>,
1762 pub predicted_x0: Array1<f64>,
1763 pub quantum_state: QuantumState,
1764 pub step_metrics: StepMetrics,
1765}
1766
1767#[derive(Debug, Clone)]
1768pub struct StepMetrics {
1769 pub entanglement_preservation: f64,
1770 pub phase_coherence: f64,
1771 pub denoising_confidence: f64,
1772 pub quantum_advantage: f64,
1773}
1774
1775impl Default for StepMetrics {
1776 fn default() -> Self {
1777 Self {
1778 entanglement_preservation: 0.0,
1779 phase_coherence: 0.0,
1780 denoising_confidence: 0.0,
1781 quantum_advantage: 1.0,
1782 }
1783 }
1784}
1785
1786#[derive(Debug, Clone)]
1787pub struct GenerationMetrics {
1788 pub sample_idx: usize,
1789 pub final_entanglement: f64,
1790 pub average_confidence: f64,
1791 pub quantum_advantage: f64,
1792 pub step_metrics: Vec<StepMetrics>,
1793}
1794
1795#[derive(Debug, Clone)]
1796pub struct QuantumGenerationOutput {
1797 pub samples: Array2<f64>,
1798 pub generation_metrics: Vec<GenerationMetrics>,
1799 pub overall_quantum_metrics: QuantumDiffusionMetrics,
1800}
1801
1802#[derive(Debug, Clone)]
1803pub struct QuantumLossOutput {
1804 pub total_loss: f64,
1805 pub mse_loss: f64,
1806 pub fidelity_loss: f64,
1807 pub entanglement_loss: f64,
1808 pub phase_coherence_loss: f64,
1809 pub decoherence_penalty: f64,
1810 pub quantum_metrics: QuantumBatchMetrics,
1811}
1812
1813#[derive(Debug, Clone, Default)]
1814pub struct QuantumBatchMetrics {
1815 pub quantum_fidelity: f64,
1816 pub entanglement_measure: f64,
1817 pub denoising_accuracy: f64,
1818 pub quantum_advantage_ratio: f64,
1819 pub decoherence_impact: f64,
1820}
1821
1822impl QuantumBatchMetrics {
1823 pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1824 self.quantum_fidelity += other.quantum_fidelity;
1825 self.entanglement_measure += other.entanglement_measure;
1826 self.denoising_accuracy += other.denoising_accuracy;
1827 self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1828 self.decoherence_impact += other.decoherence_impact;
1829 }
1830}
1831
1832#[derive(Debug, Clone)]
1833pub struct QuantumTrainingOutput {
1834 pub training_losses: Vec<f64>,
1835 pub validation_losses: Vec<f64>,
1836 pub quantum_metrics_history: Vec<QuantumDiffusionMetrics>,
1837 pub final_model_state: ModelState,
1838 pub convergence_analysis: ConvergenceAnalysis,
1839}
1840
1841#[derive(Debug, Clone)]
1842pub struct ModelState {
1843 pub config: QuantumAdvancedDiffusionConfig,
1844 pub quantum_parameters: Array1<f64>,
1845 pub noise_schedule_parameters: Array1<f64>,
1846 pub quantum_metrics: QuantumDiffusionMetrics,
1847 pub adaptive_state: AdaptiveLearningState,
1848}
1849
1850#[derive(Debug, Clone, Default)]
1851pub struct ConvergenceAnalysis {
1852 pub convergence_rate: f64,
1853 pub is_converged: bool,
1854 pub final_loss: f64,
1855 pub loss_variance: f64,
1856 pub epochs_to_convergence: Option<usize>,
1857}
1858
1859impl Default for QuantumDiffusionMetrics {
1861 fn default() -> Self {
1862 Self {
1863 average_entanglement: 0.5,
1864 coherence_time: 1.0,
1865 quantum_volume_utilization: 0.0,
1866 circuit_depth_efficiency: 1.0,
1867 noise_resilience: 0.9,
1868 quantum_speedup_factor: 1.0,
1869 fidelity_preservation: 1.0,
1870 }
1871 }
1872}
1873
1874impl Default for AdaptiveLearningState {
1875 fn default() -> Self {
1876 Self {
1877 learning_rate: 1e-4,
1878 momentum: 0.9,
1879 adaptive_schedule_parameters: Array1::zeros(10),
1880 entanglement_decay_rate: 0.01,
1881 decoherence_compensation: 1.0,
1882 quantum_error_rate: 0.001,
1883 }
1884 }
1885}
1886
1887impl Default for QuantumAdvancedDiffusionConfig {
1888 fn default() -> Self {
1889 Self {
1890 data_dim: 32,
1891 num_qubits: 16,
1892 num_timesteps: 1000,
1893 noise_schedule: QuantumNoiseSchedule::QuantumCosine {
1894 s: 0.008,
1895 entanglement_preservation: 0.9,
1896 decoherence_rate: 0.01,
1897 },
1898 denoiser_architecture: DenoisingArchitecture::QuantumUNet {
1899 depth: 4,
1900 base_channels: 32,
1901 quantum_skip_connections: true,
1902 },
1903 quantum_enhancement_level: 0.5,
1904 use_quantum_attention: true,
1905 enable_entanglement_monitoring: true,
1906 adaptive_denoising: true,
1907 use_quantum_fourier_features: true,
1908 error_mitigation_strategy: ErrorMitigationStrategy::AdaptiveMitigation,
1909 }
1910 }
1911}
1912
1913#[cfg(test)]
1914mod tests {
1915 use super::*;
1916
1917 #[test]
1918 fn test_quantum_advanced_diffusion_creation() {
1919 let config = QuantumAdvancedDiffusionConfig::default();
1920 let model = QuantumAdvancedDiffusionModel::new(config);
1921 assert!(model.is_ok());
1922 }
1923
1924 #[test]
1925 fn test_quantum_noise_schedule() {
1926 let config = QuantumAdvancedDiffusionConfig::default();
1927 let (betas, alphas, alphas_cumprod) =
1928 QuantumAdvancedDiffusionModel::compute_quantum_schedule(&config).unwrap();
1929
1930 assert_eq!(betas.len(), config.num_timesteps);
1931 assert_eq!(alphas.len(), config.num_timesteps);
1932 assert_eq!(alphas_cumprod.len(), config.num_timesteps);
1933
1934 for i in 1..alphas_cumprod.len() {
1936 assert!(alphas_cumprod[i] <= alphas_cumprod[i - 1]);
1937 }
1938 }
1939
1940 #[test]
1941 fn test_quantum_forward_diffusion() {
1942 let config = QuantumAdvancedDiffusionConfig {
1943 data_dim: 4,
1944 num_qubits: 8,
1945 num_timesteps: 100,
1946 ..Default::default()
1947 };
1948
1949 let model = QuantumAdvancedDiffusionModel::new(config).unwrap();
1950 let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
1951
1952 let result = model.quantum_forward_diffusion(&x0, 50);
1953 assert!(result.is_ok());
1954
1955 let (xt, quantum_noise, quantum_state) = result.unwrap();
1956 assert_eq!(xt.len(), 4);
1957 assert_eq!(quantum_noise.len(), 4);
1958 assert!(quantum_state.entanglement_measure >= 0.0);
1959 assert!(quantum_state.entanglement_measure <= 1.0);
1960 }
1961
1962 #[test]
1963 fn test_quantum_denoising_network() {
1964 let config = QuantumAdvancedDiffusionConfig {
1965 data_dim: 8,
1966 num_qubits: 4,
1967 ..Default::default()
1968 };
1969
1970 let network = QuantumDenoisingNetwork::new(&config);
1971 assert!(network.is_ok());
1972
1973 let network = network.unwrap();
1974 assert!(!network.quantum_layers.is_empty());
1975 assert!(!network.classical_layers.is_empty());
1976 }
1977
1978 #[test]
1979 fn test_quantum_generation() {
1980 let config = QuantumAdvancedDiffusionConfig {
1981 data_dim: 2,
1982 num_qubits: 4,
1983 num_timesteps: 10, ..Default::default()
1985 };
1986
1987 let model = QuantumAdvancedDiffusionModel::new(config).unwrap();
1988 let result = model.quantum_generate(3, None, None);
1989
1990 assert!(result.is_ok());
1991 let output = result.unwrap();
1992 assert_eq!(output.samples.shape(), &[3, 2]);
1993 assert_eq!(output.generation_metrics.len(), 3);
1994 }
1995
1996 #[test]
1997 fn test_multi_scale_noise_schedule() {
1998 let config = QuantumAdvancedDiffusionConfig {
1999 noise_schedule: QuantumNoiseSchedule::MultiScale {
2000 scales: vec![1.0, 0.5, 0.25],
2001 weights: Array1::from_vec(vec![0.5, 0.3, 0.2]),
2002 coherence_times: Array1::from_vec(vec![10.0, 5.0, 2.0]),
2003 },
2004 ..Default::default()
2005 };
2006
2007 let result = QuantumAdvancedDiffusionModel::compute_quantum_schedule(&config);
2008 assert!(result.is_ok());
2009
2010 let (betas, _, _) = result.unwrap();
2011 assert!(betas.iter().all(|&beta| beta >= 0.0 && beta <= 1.0));
2012 }
2013
2014 #[test]
2015 fn test_quantum_metrics_computation() {
2016 let quantum_state = QuantumState {
2017 classical_data: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2018 quantum_phase: Complex64::new(0.8, 0.6),
2019 entanglement_measure: 0.7,
2020 coherence_time: 0.9,
2021 fidelity: 0.85,
2022 };
2023
2024 assert!((quantum_state.quantum_phase.norm() - 1.0).abs() < 1e-10);
2025 assert!(quantum_state.entanglement_measure >= 0.0);
2026 assert!(quantum_state.entanglement_measure <= 1.0);
2027 assert!(quantum_state.fidelity >= 0.0);
2028 assert!(quantum_state.fidelity <= 1.0);
2029 }
2030}