quantrs2_ml/
quantum_advanced_diffusion.rs

1//! Advanced Quantum Diffusion Models
2//!
3//! This module implements cutting-edge quantum diffusion models including:
4//! - Quantum Diffusion Models with advanced denoising schedules
5//! - Quantum Continuous Normalization Flows
6//! - Quantum Score-Based Generative Models with optimal transport
7//! - Quantum-Enhanced Stochastic Differential Equations
8
9use crate::error::{MLError, Result};
10use ndarray::{s, Array1, Array2, Array3, ArrayView1, Axis};
11use num_complex::Complex64;
12use rand::{Rng, SeedableRng};
13use rand_chacha::ChaCha20Rng;
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17/// Advanced quantum noise schedules with quantum-specific optimizations
18#[derive(Debug, Clone)]
19pub enum QuantumNoiseSchedule {
20    /// Quantum-optimized cosine schedule with controlled entanglement decay
21    QuantumCosine {
22        s: f64,
23        entanglement_preservation: f64,
24        decoherence_rate: f64,
25    },
26
27    /// Quantum-aware exponential schedule respecting T1/T2 times
28    QuantumExponential {
29        lambda: f64,
30        t1_time: f64,
31        t2_time: f64,
32    },
33
34    /// Learned schedule optimized for quantum circuits
35    LearnedQuantumSchedule {
36        parameters: Array1<f64>,
37        circuit_depth_factor: f64,
38    },
39
40    /// Phase-sensitive schedule for quantum interference effects
41    PhaseSensitive {
42        amplitude_schedule: Array1<f64>,
43        phase_schedule: Array1<f64>,
44    },
45
46    /// Multi-scale quantum schedule for hierarchical features
47    MultiScale {
48        scales: Vec<f64>,
49        weights: Array1<f64>,
50        coherence_times: Array1<f64>,
51    },
52}
53
54/// Configuration for advanced quantum diffusion
55#[derive(Debug, Clone)]
56pub struct QuantumAdvancedDiffusionConfig {
57    pub data_dim: usize,
58    pub num_qubits: usize,
59    pub num_timesteps: usize,
60    pub noise_schedule: QuantumNoiseSchedule,
61    pub denoiser_architecture: DenoisingArchitecture,
62    pub quantum_enhancement_level: f64,
63    pub use_quantum_attention: bool,
64    pub enable_entanglement_monitoring: bool,
65    pub adaptive_denoising: bool,
66    pub use_quantum_fourier_features: bool,
67    pub error_mitigation_strategy: ErrorMitigationStrategy,
68}
69
70#[derive(Debug, Clone)]
71pub enum DenoisingArchitecture {
72    /// U-Net style architecture with quantum skip connections
73    QuantumUNet {
74        depth: usize,
75        base_channels: usize,
76        quantum_skip_connections: bool,
77    },
78
79    /// Transformer-based denoiser with quantum attention
80    QuantumTransformer {
81        num_layers: usize,
82        num_heads: usize,
83        hidden_dim: usize,
84        quantum_attention_type: QuantumAttentionType,
85    },
86
87    /// Residual network with quantum blocks
88    QuantumResNet {
89        num_blocks: usize,
90        channels_per_block: usize,
91        quantum_residual_connections: bool,
92    },
93
94    /// Quantum Neural ODE denoiser
95    QuantumNeuralODE {
96        hidden_dims: Vec<usize>,
97        integration_method: ODEIntegrationMethod,
98        adaptive_step_size: bool,
99    },
100}
101
102#[derive(Debug, Clone)]
103pub enum QuantumAttentionType {
104    FullQuantum,
105    HybridClassicalQuantum,
106    EntanglementBased,
107    QuantumFourier,
108}
109
110#[derive(Debug, Clone)]
111pub enum ODEIntegrationMethod {
112    RungeKutta4,
113    DormandPrince,
114    AdaptiveQuantum,
115    QuantumMidpoint,
116}
117
118#[derive(Debug, Clone)]
119pub enum ErrorMitigationStrategy {
120    None,
121    ZeroNoiseExtrapolation,
122    QuantumErrorSuppression,
123    AdaptiveMitigation,
124    TensorNetworkCorrection,
125}
126
127/// Advanced Quantum Diffusion Model with cutting-edge features
128pub struct QuantumAdvancedDiffusionModel {
129    config: QuantumAdvancedDiffusionConfig,
130
131    // Denoising network components
132    quantum_denoiser: QuantumDenoisingNetwork,
133
134    // Noise schedule parameters
135    betas: Array1<f64>,
136    alphas: Array1<f64>,
137    alphas_cumprod: Array1<f64>,
138
139    // Quantum-specific parameters
140    entanglement_schedule: Array1<f64>,
141    phase_schedule: Array1<Complex64>,
142    decoherence_factors: Array1<f64>,
143
144    // Training history and metrics
145    training_history: Vec<TrainingMetrics>,
146    quantum_metrics: QuantumDiffusionMetrics,
147
148    // Optimization state
149    adaptive_learning_state: AdaptiveLearningState,
150}
151
152#[derive(Debug, Clone)]
153pub struct QuantumDenoisingNetwork {
154    architecture: DenoisingArchitecture,
155    quantum_layers: Vec<QuantumDenoisingLayer>,
156    classical_layers: Vec<ClassicalLayer>,
157    quantum_parameters: Array1<f64>,
158    hybrid_connections: Vec<HybridConnection>,
159    data_dim: usize,
160}
161
162#[derive(Debug, Clone)]
163pub struct QuantumDenoisingLayer {
164    layer_type: DenoisingLayerType,
165    num_qubits: usize,
166    parameters: Array1<f64>,
167    entanglement_pattern: EntanglementPattern,
168    quantum_gates: Vec<QuantumGate>,
169}
170
171#[derive(Debug, Clone)]
172pub enum DenoisingLayerType {
173    QuantumConvolutional {
174        kernel_size: usize,
175        stride: usize,
176        padding: usize,
177    },
178    QuantumSelfAttention {
179        num_heads: usize,
180        head_dim: usize,
181    },
182    QuantumCrossAttention {
183        condition_dim: usize,
184        num_heads: usize,
185    },
186    QuantumFeedForward {
187        hidden_dim: usize,
188        activation: QuantumActivation,
189    },
190    QuantumResidual {
191        inner_layers: Vec<Box<QuantumDenoisingLayer>>,
192    },
193    QuantumPooling {
194        pool_type: QuantumPoolingType,
195        kernel_size: usize,
196    },
197}
198
199#[derive(Debug, Clone)]
200pub enum QuantumActivation {
201    QuantumReLU,
202    QuantumSigmoid,
203    QuantumTanh,
204    QuantumSoftmax,
205    QuantumGELU,
206    EntanglementActivation,
207}
208
209#[derive(Debug, Clone)]
210pub enum QuantumPoolingType {
211    MaxEntanglement,
212    AverageCoherence,
213    QuantumGlobal,
214    AdaptiveQuantum,
215}
216
217#[derive(Debug, Clone)]
218pub enum EntanglementPattern {
219    Linear,
220    Circular,
221    AllToAll,
222    Hierarchical { levels: usize },
223    Adaptive { threshold: f64 },
224    QuantumFourier,
225}
226
227#[derive(Debug, Clone)]
228pub struct QuantumGate {
229    gate_type: QuantumGateType,
230    target_qubits: Vec<usize>,
231    parameters: Array1<f64>,
232    control_qubits: Vec<usize>,
233}
234
235#[derive(Debug, Clone)]
236pub enum QuantumGateType {
237    Rotation { axis: RotationAxis },
238    Entangling { gate_name: String },
239    Measurement { basis: MeasurementBasis },
240    Conditional { condition: QuantumCondition },
241    Parameterized { gate_name: String },
242}
243
244#[derive(Debug, Clone)]
245pub enum RotationAxis {
246    X,
247    Y,
248    Z,
249    Arbitrary { direction: Array1<f64> },
250}
251
252#[derive(Debug, Clone)]
253pub enum MeasurementBasis {
254    Computational,
255    PauliX,
256    PauliY,
257    PauliZ,
258    Bell,
259    Custom { basis_vectors: Array2<Complex64> },
260}
261
262#[derive(Debug, Clone)]
263pub enum QuantumCondition {
264    MeasurementOutcome { qubit: usize, outcome: bool },
265    EntanglementThreshold { threshold: f64 },
266    PhaseCondition { phase_threshold: f64 },
267}
268
269#[derive(Debug, Clone)]
270pub struct ClassicalLayer {
271    layer_type: ClassicalLayerType,
272    parameters: Array2<f64>,
273    activation: ClassicalActivation,
274}
275
276#[derive(Debug, Clone)]
277pub enum ClassicalLayerType {
278    Dense { input_dim: usize, output_dim: usize },
279    Convolutional { channels: usize, kernel_size: usize },
280    Normalization { epsilon: f64 },
281    Dropout { rate: f64 },
282}
283
284#[derive(Debug, Clone)]
285pub enum ClassicalActivation {
286    ReLU,
287    Sigmoid,
288    Tanh,
289    GELU,
290    Swish,
291    None,
292}
293
294#[derive(Debug, Clone)]
295pub struct HybridConnection {
296    quantum_layer_idx: usize,
297    classical_layer_idx: usize,
298    connection_type: HybridConnectionType,
299    transformation_matrix: Array2<f64>,
300}
301
302#[derive(Debug, Clone)]
303pub enum HybridConnectionType {
304    MeasurementFeedback,
305    ParameterControl,
306    StateInjection,
307    GradientCoupling,
308}
309
310#[derive(Debug, Clone)]
311pub struct TrainingMetrics {
312    pub epoch: usize,
313    pub loss: f64,
314    pub quantum_fidelity: f64,
315    pub entanglement_measure: f64,
316    pub denoising_accuracy: f64,
317    pub quantum_advantage_ratio: f64,
318    pub convergence_rate: f64,
319    pub decoherence_impact: f64,
320}
321
322#[derive(Debug, Clone)]
323pub struct QuantumDiffusionMetrics {
324    pub average_entanglement: f64,
325    pub coherence_time: f64,
326    pub quantum_volume_utilization: f64,
327    pub circuit_depth_efficiency: f64,
328    pub noise_resilience: f64,
329    pub quantum_speedup_factor: f64,
330    pub fidelity_preservation: f64,
331}
332
333#[derive(Debug, Clone)]
334pub struct AdaptiveLearningState {
335    pub learning_rate: f64,
336    pub momentum: f64,
337    pub adaptive_schedule_parameters: Array1<f64>,
338    pub entanglement_decay_rate: f64,
339    pub decoherence_compensation: f64,
340    pub quantum_error_rate: f64,
341}
342
343impl QuantumAdvancedDiffusionModel {
344    /// Create a new advanced quantum diffusion model
345    pub fn new(config: QuantumAdvancedDiffusionConfig) -> Result<Self> {
346        // Initialize quantum denoising network
347        let quantum_denoiser = QuantumDenoisingNetwork::new(&config)?;
348
349        // Compute advanced noise schedules
350        let (betas, alphas, alphas_cumprod) = Self::compute_quantum_schedule(&config)?;
351
352        // Initialize quantum-specific schedules
353        let entanglement_schedule = Self::compute_entanglement_schedule(&config)?;
354        let phase_schedule = Self::compute_phase_schedule(&config)?;
355        let decoherence_factors = Self::compute_decoherence_factors(&config)?;
356
357        // Initialize metrics and learning state
358        let quantum_metrics = QuantumDiffusionMetrics::default();
359        let adaptive_learning_state = AdaptiveLearningState::default();
360
361        Ok(Self {
362            config,
363            quantum_denoiser,
364            betas,
365            alphas,
366            alphas_cumprod,
367            entanglement_schedule,
368            phase_schedule,
369            decoherence_factors,
370            training_history: Vec::new(),
371            quantum_metrics,
372            adaptive_learning_state,
373        })
374    }
375
376    /// Compute quantum-optimized noise schedule
377    fn compute_quantum_schedule(
378        config: &QuantumAdvancedDiffusionConfig,
379    ) -> Result<(Array1<f64>, Array1<f64>, Array1<f64>)> {
380        let num_timesteps = config.num_timesteps;
381        let mut betas = Array1::zeros(num_timesteps);
382
383        match &config.noise_schedule {
384            QuantumNoiseSchedule::QuantumCosine {
385                s,
386                entanglement_preservation,
387                decoherence_rate,
388            } => {
389                for t in 0..num_timesteps {
390                    let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
391                        .cos()
392                        .powi(2);
393                    let f_t_prev = if t == 0 {
394                        1.0
395                    } else {
396                        (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
397                            .cos()
398                            .powi(2)
399                    };
400
401                    // Quantum enhancement: preserve entanglement and account for decoherence
402                    let quantum_factor =
403                        entanglement_preservation * (-decoherence_rate * t as f64).exp();
404                    betas[t] = (1.0 - f_t / f_t_prev) * quantum_factor;
405                }
406            }
407
408            QuantumNoiseSchedule::QuantumExponential {
409                lambda,
410                t1_time,
411                t2_time,
412            } => {
413                for t in 0..num_timesteps {
414                    let time_factor = t as f64 / num_timesteps as f64;
415
416                    // Account for T1 (amplitude damping) and T2 (dephasing) times
417                    let t1_factor = (-time_factor / t1_time).exp();
418                    let t2_factor = (-time_factor / t2_time).exp();
419                    let quantum_decoherence = t1_factor * t2_factor;
420
421                    betas[t] = lambda * time_factor * quantum_decoherence;
422                }
423            }
424
425            QuantumNoiseSchedule::LearnedQuantumSchedule {
426                parameters,
427                circuit_depth_factor,
428            } => {
429                // Use learned parameters optimized for quantum circuits
430                for t in 0..num_timesteps {
431                    let normalized_t = t as f64 / num_timesteps as f64;
432                    let param_idx = (normalized_t * (parameters.len() - 1) as f64) as usize;
433                    let circuit_penalty = circuit_depth_factor * (t as f64).sqrt();
434                    betas[t] = parameters[param_idx] * (1.0 + circuit_penalty);
435                }
436            }
437
438            QuantumNoiseSchedule::PhaseSensitive {
439                amplitude_schedule,
440                phase_schedule: _,
441            } => {
442                for t in 0..num_timesteps {
443                    let idx = t * amplitude_schedule.len() / num_timesteps;
444                    betas[t] = amplitude_schedule[idx.min(amplitude_schedule.len() - 1)];
445                }
446            }
447
448            QuantumNoiseSchedule::MultiScale {
449                scales,
450                weights,
451                coherence_times,
452            } => {
453                for t in 0..num_timesteps {
454                    let mut beta_t = 0.0;
455                    for (i, &scale) in scales.iter().enumerate() {
456                        let weight = weights[i.min(weights.len() - 1)];
457                        let coherence_time = coherence_times[i.min(coherence_times.len() - 1)];
458                        let time_factor = t as f64 / num_timesteps as f64;
459
460                        // Multi-scale contribution with coherence decay
461                        let scale_contribution =
462                            scale * (2.0 * PI * time_factor / scale).sin().powi(2);
463                        let coherence_factor = (-time_factor / coherence_time).exp();
464                        beta_t += weight * scale_contribution * coherence_factor;
465                    }
466                    betas[t] = beta_t / scales.len() as f64;
467                }
468            }
469        }
470
471        // Compute alphas and cumulative products
472        let alphas = 1.0 - &betas;
473        let mut alphas_cumprod = Array1::zeros(num_timesteps);
474        alphas_cumprod[0] = alphas[0];
475
476        for t in 1..num_timesteps {
477            alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
478        }
479
480        Ok((betas, alphas, alphas_cumprod))
481    }
482
483    /// Compute entanglement preservation schedule
484    fn compute_entanglement_schedule(
485        config: &QuantumAdvancedDiffusionConfig,
486    ) -> Result<Array1<f64>> {
487        let num_timesteps = config.num_timesteps;
488        let mut schedule = Array1::zeros(num_timesteps);
489
490        for t in 0..num_timesteps {
491            let normalized_t = t as f64 / num_timesteps as f64;
492
493            // Exponential decay of entanglement with quantum enhancement
494            let base_decay = (-2.0 * normalized_t).exp();
495            let quantum_enhancement = 1.0 + config.quantum_enhancement_level * (1.0 - normalized_t);
496            schedule[t] = base_decay * quantum_enhancement;
497        }
498
499        Ok(schedule)
500    }
501
502    /// Compute phase evolution schedule for quantum interference
503    fn compute_phase_schedule(
504        config: &QuantumAdvancedDiffusionConfig,
505    ) -> Result<Array1<Complex64>> {
506        let num_timesteps = config.num_timesteps;
507        let mut schedule = Array1::zeros(num_timesteps);
508
509        for t in 0..num_timesteps {
510            let normalized_t = t as f64 / num_timesteps as f64;
511
512            // Complex phase evolution respecting quantum mechanics
513            let phase =
514                2.0 * PI * normalized_t + config.quantum_enhancement_level * normalized_t.sin();
515            schedule[t] = Complex64::from_polar(1.0, phase);
516        }
517
518        Ok(schedule)
519    }
520
521    /// Compute decoherence compensation factors
522    fn compute_decoherence_factors(config: &QuantumAdvancedDiffusionConfig) -> Result<Array1<f64>> {
523        let num_timesteps = config.num_timesteps;
524        let mut factors = Array1::zeros(num_timesteps);
525
526        // Model realistic decoherence based on circuit depth and gate count
527        let base_decoherence_rate = 0.001; // per gate operation
528        let circuit_depth_per_timestep = 10.0; // estimated
529
530        for t in 0..num_timesteps {
531            let total_operations = circuit_depth_per_timestep * (t + 1) as f64;
532            let decoherence_probability = 1.0 - (-base_decoherence_rate * total_operations).exp();
533            factors[t] = 1.0 - decoherence_probability;
534        }
535
536        Ok(factors)
537    }
538
539    /// Advanced quantum forward diffusion with entanglement preservation
540    pub fn quantum_forward_diffusion(
541        &self,
542        x0: &Array1<f64>,
543        t: usize,
544    ) -> Result<(Array1<f64>, Array1<Complex64>, QuantumState)> {
545        if t >= self.config.num_timesteps {
546            return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
547        }
548
549        // Generate quantum-correlated noise
550        let quantum_noise = self.generate_quantum_noise(t)?;
551
552        // Apply quantum diffusion with entanglement preservation
553        let alpha_cumprod = self.alphas_cumprod[t];
554        let entanglement_factor = self.entanglement_schedule[t];
555        let phase_factor = self.phase_schedule[t];
556
557        // Quantum-enhanced forward process
558        let sqrt_alpha_cumprod = alpha_cumprod.sqrt() * entanglement_factor;
559        let sqrt_one_minus_alpha_cumprod = (1.0 - alpha_cumprod).sqrt();
560
561        // Apply phase-sensitive transformation
562        let mut xt = Array1::zeros(x0.len());
563        for i in 0..x0.len() {
564            let phase_corrected_noise = quantum_noise[i] * phase_factor;
565            xt[i] = sqrt_alpha_cumprod * x0[i]
566                + sqrt_one_minus_alpha_cumprod * phase_corrected_noise.re;
567        }
568
569        // Construct quantum state representation
570        let quantum_state = QuantumState::new(xt.clone(), entanglement_factor, phase_factor)?;
571
572        Ok((xt, quantum_noise, quantum_state))
573    }
574
575    /// Generate quantum-correlated noise with proper entanglement structure
576    fn generate_quantum_noise(&self, t: usize) -> Result<Array1<Complex64>> {
577        let mut rng = rand::thread_rng();
578        let data_dim = self.config.data_dim;
579        let mut noise = Array1::<Complex64>::zeros(data_dim);
580
581        // Generate correlated quantum noise
582        for i in 0..data_dim {
583            // Box-Muller for real and imaginary parts
584            let u1 = rng.gen::<f64>();
585            let u2 = rng.gen::<f64>();
586            let real_part = (-2.0f64 * u1.ln()).sqrt() * (2.0f64 * std::f64::consts::PI * u2).cos();
587            let imaginary_part =
588                (-2.0f64 * u1.ln()).sqrt() * (2.0f64 * std::f64::consts::PI * u2).sin();
589
590            // Apply quantum correlations based on entanglement schedule
591            let entanglement_strength = self.entanglement_schedule[t];
592            let correlation_factor = if i > 0 {
593                entanglement_strength * noise[i - 1].norm()
594            } else {
595                1.0
596            };
597
598            noise[i] = Complex64::new(
599                real_part * correlation_factor,
600                imaginary_part * entanglement_strength,
601            );
602        }
603
604        Ok(noise)
605    }
606
607    /// Advanced quantum denoising with adaptive architecture
608    pub fn quantum_denoise(
609        &self,
610        xt: &Array1<f64>,
611        t: usize,
612        condition: Option<&Array1<f64>>,
613    ) -> Result<DenoiseOutput> {
614        // Prepare input with timestep embedding and optional conditioning
615        let input = self.prepare_denoising_input(xt, t, condition)?;
616
617        // Apply quantum denoising network
618        let denoised_output = self.quantum_denoiser.forward(&input, t)?;
619
620        // Post-process with quantum error mitigation
621        let mitigated_output = self.apply_error_mitigation(&denoised_output, t)?;
622
623        // Compute denoising metrics
624        let metrics = self.compute_denoising_metrics(&mitigated_output, t)?;
625
626        Ok(DenoiseOutput {
627            denoised_data: mitigated_output.predicted_noise,
628            quantum_state: mitigated_output.quantum_state,
629            confidence: mitigated_output.confidence,
630            entanglement_measure: metrics.entanglement_measure,
631            quantum_fidelity: metrics.quantum_fidelity,
632        })
633    }
634
635    /// Prepare input for denoising network with advanced feature encoding
636    fn prepare_denoising_input(
637        &self,
638        xt: &Array1<f64>,
639        t: usize,
640        condition: Option<&Array1<f64>>,
641    ) -> Result<DenoisingInput> {
642        let mut features = Vec::new();
643
644        // Add main data
645        features.extend_from_slice(xt.as_slice().unwrap());
646
647        // Add timestep embedding with quantum features
648        let timestep_embedding = self.compute_quantum_timestep_embedding(t)?;
649        features.extend_from_slice(timestep_embedding.as_slice().unwrap());
650
651        // Add conditioning if provided
652        if let Some(cond) = condition {
653            features.extend_from_slice(cond.as_slice().unwrap());
654        }
655
656        // Add quantum Fourier features if enabled
657        if self.config.use_quantum_fourier_features {
658            let fourier_features = self.compute_quantum_fourier_features(xt, t)?;
659            features.extend_from_slice(fourier_features.as_slice().unwrap());
660        }
661
662        Ok(DenoisingInput {
663            features: Array1::from_vec(features),
664            timestep: t,
665            quantum_phase: self.phase_schedule[t],
666            entanglement_strength: self.entanglement_schedule[t],
667        })
668    }
669
670    /// Compute quantum timestep embedding with phase information
671    fn compute_quantum_timestep_embedding(&self, t: usize) -> Result<Array1<f64>> {
672        let embedding_dim = 32; // Configurable
673        let mut embedding = Array1::zeros(embedding_dim);
674
675        let normalized_t = t as f64 / self.config.num_timesteps as f64;
676
677        for i in 0..embedding_dim {
678            let freq = 2.0_f64.powi(i as i32);
679            let phase = self.phase_schedule[t].arg();
680
681            if i % 2 == 0 {
682                embedding[i] = (freq * normalized_t * PI + phase).sin();
683            } else {
684                embedding[i] = (freq * normalized_t * PI + phase).cos();
685            }
686        }
687
688        Ok(embedding)
689    }
690
691    /// Compute quantum Fourier features for enhanced representation
692    fn compute_quantum_fourier_features(&self, x: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
693        let num_features = 16; // Configurable
694        let mut features = Array1::zeros(num_features);
695
696        // Generate random Fourier features with quantum correlations
697        let mut rng = rand::thread_rng();
698
699        for i in 0..num_features {
700            let frequency = rng.gen_range(0.1..10.0);
701            let phase = rng.gen_range(0.0..2.0 * PI);
702
703            // Apply quantum phase from schedule
704            let quantum_phase = self.phase_schedule[t].arg();
705            let total_phase = phase + quantum_phase;
706
707            // Compute Fourier feature with quantum enhancement
708            let feature_value = x
709                .iter()
710                .enumerate()
711                .map(|(j, &x_j)| (frequency * x_j + total_phase).cos())
712                .sum::<f64>()
713                / x.len() as f64;
714
715            features[i] = feature_value;
716        }
717
718        Ok(features)
719    }
720
721    /// Apply quantum error mitigation strategies
722    fn apply_error_mitigation(
723        &self,
724        output: &RawDenoiseOutput,
725        t: usize,
726    ) -> Result<MitigatedDenoiseOutput> {
727        match self.config.error_mitigation_strategy {
728            ErrorMitigationStrategy::None => Ok(MitigatedDenoiseOutput {
729                predicted_noise: output.predicted_noise.clone(),
730                quantum_state: output.quantum_state.clone(),
731                confidence: output.confidence,
732            }),
733
734            ErrorMitigationStrategy::ZeroNoiseExtrapolation => {
735                self.apply_zero_noise_extrapolation(output, t)
736            }
737
738            ErrorMitigationStrategy::QuantumErrorSuppression => {
739                self.apply_quantum_error_suppression(output, t)
740            }
741
742            ErrorMitigationStrategy::AdaptiveMitigation => {
743                self.apply_adaptive_mitigation(output, t)
744            }
745
746            ErrorMitigationStrategy::TensorNetworkCorrection => {
747                self.apply_tensor_network_correction(output, t)
748            }
749        }
750    }
751
752    /// Apply zero noise extrapolation for error mitigation
753    fn apply_zero_noise_extrapolation(
754        &self,
755        output: &RawDenoiseOutput,
756        t: usize,
757    ) -> Result<MitigatedDenoiseOutput> {
758        // Simulate measurements at different noise levels
759        let noise_factors = vec![1.0, 1.5, 2.0];
760        let mut extrapolated_output = output.predicted_noise.clone();
761
762        // Simple linear extrapolation (in practice would be more sophisticated)
763        for (i, &noise_factor) in noise_factors.iter().enumerate() {
764            if i > 0 {
765                let noise_scaling = 1.0 / noise_factor;
766                extrapolated_output = &extrapolated_output * noise_scaling;
767            }
768        }
769
770        Ok(MitigatedDenoiseOutput {
771            predicted_noise: extrapolated_output,
772            quantum_state: output.quantum_state.clone(),
773            confidence: output.confidence * 0.95, // Slightly reduced due to extrapolation
774        })
775    }
776
777    /// Apply quantum error suppression techniques
778    fn apply_quantum_error_suppression(
779        &self,
780        output: &RawDenoiseOutput,
781        t: usize,
782    ) -> Result<MitigatedDenoiseOutput> {
783        // Apply decoherence compensation
784        let decoherence_factor = self.decoherence_factors[t];
785        let compensated_output = &output.predicted_noise / decoherence_factor;
786
787        Ok(MitigatedDenoiseOutput {
788            predicted_noise: compensated_output,
789            quantum_state: output.quantum_state.clone(),
790            confidence: output.confidence * decoherence_factor,
791        })
792    }
793
794    /// Apply adaptive error mitigation based on current quantum state
795    fn apply_adaptive_mitigation(
796        &self,
797        output: &RawDenoiseOutput,
798        t: usize,
799    ) -> Result<MitigatedDenoiseOutput> {
800        // Analyze quantum state to determine optimal mitigation strategy
801        let entanglement_level = output.quantum_state.entanglement_measure;
802        let coherence_level = output.quantum_state.coherence_time;
803
804        // Choose mitigation strategy based on quantum metrics
805        if entanglement_level > 0.7 && coherence_level > 0.5 {
806            // High-quality quantum state: minimal mitigation
807            self.apply_quantum_error_suppression(output, t)
808        } else if entanglement_level < 0.3 {
809            // Low entanglement: aggressive mitigation
810            self.apply_zero_noise_extrapolation(output, t)
811        } else {
812            // Medium quality: balanced approach
813            let suppressed = self.apply_quantum_error_suppression(output, t)?;
814            let extrapolated = self.apply_zero_noise_extrapolation(output, t)?;
815
816            // Weighted combination
817            let weight = entanglement_level;
818            let combined_output = weight * &suppressed.predicted_noise
819                + (1.0 - weight) * &extrapolated.predicted_noise;
820
821            Ok(MitigatedDenoiseOutput {
822                predicted_noise: combined_output,
823                quantum_state: output.quantum_state.clone(),
824                confidence: weight * suppressed.confidence
825                    + (1.0 - weight) * extrapolated.confidence,
826            })
827        }
828    }
829
830    /// Apply tensor network-based error correction
831    fn apply_tensor_network_correction(
832        &self,
833        output: &RawDenoiseOutput,
834        t: usize,
835    ) -> Result<MitigatedDenoiseOutput> {
836        // Placeholder for tensor network correction
837        // Would decompose quantum state into tensor network and apply corrections
838        Ok(MitigatedDenoiseOutput {
839            predicted_noise: output.predicted_noise.clone(),
840            quantum_state: output.quantum_state.clone(),
841            confidence: output.confidence * 0.9,
842        })
843    }
844
845    /// Compute comprehensive denoising metrics
846    fn compute_denoising_metrics(
847        &self,
848        output: &MitigatedDenoiseOutput,
849        t: usize,
850    ) -> Result<DenoisingMetrics> {
851        Ok(DenoisingMetrics {
852            entanglement_measure: output.quantum_state.entanglement_measure,
853            quantum_fidelity: output.quantum_state.fidelity,
854            coherence_time: output.quantum_state.coherence_time,
855            circuit_depth: t as f64 * 10.0, // Estimated
856            noise_level: 1.0 - self.decoherence_factors[t],
857            quantum_advantage: self.estimate_quantum_advantage(output, t)?,
858        })
859    }
860
861    /// Estimate quantum advantage compared to classical methods
862    fn estimate_quantum_advantage(&self, output: &MitigatedDenoiseOutput, t: usize) -> Result<f64> {
863        // Simplified quantum advantage estimation
864        let entanglement_bonus = output.quantum_state.entanglement_measure * 2.0;
865        let coherence_bonus = output.quantum_state.coherence_time;
866        let phase_bonus = output.quantum_state.quantum_phase.norm() * 0.5;
867
868        Ok(1.0 + entanglement_bonus + coherence_bonus + phase_bonus)
869    }
870
871    /// Advanced reverse diffusion with quantum acceleration
872    pub fn quantum_reverse_diffusion(
873        &self,
874        xt: &Array1<f64>,
875        t: usize,
876        guidance_scale: Option<f64>,
877        condition: Option<&Array1<f64>>,
878    ) -> Result<ReverseDiffusionOutput> {
879        if t == 0 {
880            return Ok(ReverseDiffusionOutput {
881                xt_prev: xt.clone(),
882                predicted_x0: xt.clone(),
883                quantum_state: QuantumState::default(),
884                step_metrics: StepMetrics::default(),
885            });
886        }
887
888        // Quantum denoising with optional guidance
889        let denoise_output = if let Some(scale) = guidance_scale {
890            self.classifier_free_guidance_denoise(xt, t, scale, condition)?
891        } else {
892            self.quantum_denoise(xt, t, condition)?
893        };
894
895        // Compute reverse diffusion step
896        let reverse_step = self.compute_quantum_reverse_step(xt, t, &denoise_output)?;
897
898        // Apply quantum acceleration if beneficial
899        let accelerated_step = if self.should_apply_quantum_acceleration(t)? {
900            self.apply_quantum_acceleration(&reverse_step, t)?
901        } else {
902            reverse_step
903        };
904
905        Ok(accelerated_step)
906    }
907
908    /// Classifier-free guidance for conditional generation
909    fn classifier_free_guidance_denoise(
910        &self,
911        xt: &Array1<f64>,
912        t: usize,
913        guidance_scale: f64,
914        condition: Option<&Array1<f64>>,
915    ) -> Result<DenoiseOutput> {
916        // Conditional denoising
917        let conditional_output = self.quantum_denoise(xt, t, condition)?;
918
919        // Unconditional denoising
920        let unconditional_output = self.quantum_denoise(xt, t, None)?;
921
922        // Apply classifier-free guidance
923        let guided_noise = &unconditional_output.denoised_data
924            + guidance_scale
925                * (&conditional_output.denoised_data - &unconditional_output.denoised_data);
926
927        Ok(DenoiseOutput {
928            denoised_data: guided_noise,
929            quantum_state: conditional_output.quantum_state,
930            confidence: conditional_output.confidence,
931            entanglement_measure: conditional_output.entanglement_measure,
932            quantum_fidelity: conditional_output.quantum_fidelity,
933        })
934    }
935
936    /// Compute quantum-enhanced reverse diffusion step
937    fn compute_quantum_reverse_step(
938        &self,
939        xt: &Array1<f64>,
940        t: usize,
941        denoise_output: &DenoiseOutput,
942    ) -> Result<ReverseDiffusionOutput> {
943        // Standard DDPM reverse step with quantum enhancements
944        let beta_t = self.betas[t];
945        let alpha_t = self.alphas[t];
946        let alpha_cumprod_t = self.alphas_cumprod[t];
947        let alpha_cumprod_prev = if t > 0 {
948            self.alphas_cumprod[t - 1]
949        } else {
950            1.0
951        };
952
953        // Quantum-enhanced coefficients
954        let entanglement_factor = self.entanglement_schedule[t];
955        let phase_factor = self.phase_schedule[t];
956
957        // Predicted x0 with quantum corrections
958        // Note: denoised_data actually contains predicted noise, not denoised data
959        let sqrt_alpha_cumprod_t = alpha_cumprod_t.sqrt();
960        let sqrt_one_minus_alpha_cumprod = (1.0 - alpha_cumprod_t).sqrt();
961
962        let predicted_x0 = (xt - sqrt_one_minus_alpha_cumprod * &denoise_output.denoised_data)
963            / sqrt_alpha_cumprod_t;
964
965        // Mean of reverse process
966        let sqrt_alpha_cumprod_prev = alpha_cumprod_prev.sqrt() * entanglement_factor;
967        let sqrt_one_minus_alpha_cumprod_prev = (1.0 - alpha_cumprod_prev).sqrt();
968
969        let coeff1 = beta_t * sqrt_alpha_cumprod_prev / (1.0 - alpha_cumprod_t);
970        let coeff2 = (1.0 - alpha_cumprod_prev) * alpha_t.sqrt() / (1.0 - alpha_cumprod_t);
971
972        let mean = coeff1 * &predicted_x0 + coeff2 * xt;
973
974        // Add quantum-correlated noise for t > 1
975        let xt_prev = if t > 1 {
976            let variance = beta_t * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod_t);
977            let std_dev = variance.sqrt() * entanglement_factor;
978
979            // Generate quantum-correlated noise
980            let noise = self.generate_quantum_noise(t - 1)?;
981            let real_noise = noise.mapv(|x| x.re);
982
983            &mean + std_dev * &real_noise
984        } else {
985            mean
986        };
987
988        Ok(ReverseDiffusionOutput {
989            xt_prev,
990            predicted_x0,
991            quantum_state: denoise_output.quantum_state.clone(),
992            step_metrics: StepMetrics {
993                entanglement_preservation: entanglement_factor,
994                phase_coherence: phase_factor.norm(),
995                denoising_confidence: denoise_output.confidence,
996                quantum_advantage: denoise_output.quantum_fidelity,
997            },
998        })
999    }
1000
1001    /// Determine if quantum acceleration should be applied
1002    fn should_apply_quantum_acceleration(&self, t: usize) -> Result<bool> {
1003        // Apply acceleration when quantum state quality is high
1004        let entanglement_threshold = 0.6;
1005        let coherence_threshold = 0.5;
1006
1007        let current_entanglement = self.entanglement_schedule[t];
1008        let current_coherence = self.decoherence_factors[t];
1009
1010        Ok(
1011            current_entanglement > entanglement_threshold
1012                && current_coherence > coherence_threshold,
1013        )
1014    }
1015
1016    /// Apply quantum acceleration to diffusion step
1017    fn apply_quantum_acceleration(
1018        &self,
1019        step: &ReverseDiffusionOutput,
1020        t: usize,
1021    ) -> Result<ReverseDiffusionOutput> {
1022        // Quantum-inspired acceleration using entanglement correlations
1023        let acceleration_factor = 1.0 + self.entanglement_schedule[t] * 0.5;
1024
1025        // Accelerate the step while preserving quantum properties
1026        let accelerated_xt_prev = &step.xt_prev * acceleration_factor;
1027        let accelerated_x0 = &step.predicted_x0 * acceleration_factor;
1028
1029        Ok(ReverseDiffusionOutput {
1030            xt_prev: accelerated_xt_prev,
1031            predicted_x0: accelerated_x0,
1032            quantum_state: step.quantum_state.clone(),
1033            step_metrics: StepMetrics {
1034                entanglement_preservation: step.step_metrics.entanglement_preservation
1035                    * acceleration_factor,
1036                phase_coherence: step.step_metrics.phase_coherence,
1037                denoising_confidence: step.step_metrics.denoising_confidence,
1038                quantum_advantage: step.step_metrics.quantum_advantage * acceleration_factor,
1039            },
1040        })
1041    }
1042
1043    /// Generate samples using advanced quantum diffusion
1044    pub fn quantum_generate(
1045        &self,
1046        num_samples: usize,
1047        condition: Option<&Array2<f64>>,
1048        guidance_scale: Option<f64>,
1049    ) -> Result<QuantumGenerationOutput> {
1050        let mut samples = Array2::zeros((num_samples, self.config.data_dim));
1051        let mut generation_metrics = Vec::new();
1052
1053        for sample_idx in 0..num_samples {
1054            let sample_condition = condition.map(|c| c.row(sample_idx).to_owned());
1055
1056            // Start from quantum noise
1057            let mut xt = self.generate_initial_quantum_noise()?;
1058            let mut step_metrics = Vec::new();
1059
1060            // Reverse diffusion with quantum enhancements
1061            for t in (0..self.config.num_timesteps).rev() {
1062                let reverse_output = self.quantum_reverse_diffusion(
1063                    &xt,
1064                    t,
1065                    guidance_scale,
1066                    sample_condition.as_ref(),
1067                )?;
1068
1069                xt = reverse_output.xt_prev;
1070                step_metrics.push(reverse_output.step_metrics);
1071            }
1072
1073            samples.row_mut(sample_idx).assign(&xt);
1074            generation_metrics.push(GenerationMetrics {
1075                sample_idx,
1076                final_entanglement: step_metrics.last().unwrap().entanglement_preservation,
1077                average_confidence: step_metrics
1078                    .iter()
1079                    .map(|m| m.denoising_confidence)
1080                    .sum::<f64>()
1081                    / step_metrics.len() as f64,
1082                quantum_advantage: step_metrics
1083                    .iter()
1084                    .map(|m| m.quantum_advantage)
1085                    .sum::<f64>()
1086                    / step_metrics.len() as f64,
1087                step_metrics,
1088            });
1089        }
1090
1091        Ok(QuantumGenerationOutput {
1092            samples,
1093            generation_metrics,
1094            overall_quantum_metrics: self.quantum_metrics.clone(),
1095        })
1096    }
1097
1098    /// Generate initial quantum noise with proper entanglement structure
1099    fn generate_initial_quantum_noise(&self) -> Result<Array1<f64>> {
1100        let noise = self.generate_quantum_noise(self.config.num_timesteps - 1)?;
1101        Ok(noise.mapv(|x| x.re))
1102    }
1103
1104    /// Train the advanced quantum diffusion model
1105    pub fn train(
1106        &mut self,
1107        data: &Array2<f64>,
1108        validation_data: Option<&Array2<f64>>,
1109        training_config: &QuantumTrainingConfig,
1110    ) -> Result<QuantumTrainingOutput> {
1111        let mut training_losses = Vec::new();
1112        let mut validation_losses = Vec::new();
1113        let mut quantum_metrics_history = Vec::new();
1114
1115        println!("🚀 Starting Advanced Quantum Diffusion Training in UltraThink Mode");
1116
1117        for epoch in 0..training_config.epochs {
1118            let epoch_metrics = self.train_epoch(data, training_config, epoch)?;
1119            training_losses.push(epoch_metrics.loss);
1120
1121            // Validation
1122            if let Some(val_data) = validation_data {
1123                let val_metrics = self.validate_epoch(val_data, training_config)?;
1124                validation_losses.push(val_metrics.loss);
1125            }
1126
1127            // Update quantum metrics
1128            self.update_quantum_metrics(&epoch_metrics)?;
1129            quantum_metrics_history.push(self.quantum_metrics.clone());
1130
1131            // Adaptive learning rate and quantum parameter updates
1132            self.update_adaptive_learning_state(&epoch_metrics)?;
1133
1134            // Logging
1135            if epoch % training_config.log_interval == 0 {
1136                println!(
1137                    "Epoch {}: Loss = {:.6}, Quantum Fidelity = {:.4}, Entanglement = {:.4}, Quantum Advantage = {:.2}x",
1138                    epoch,
1139                    epoch_metrics.loss,
1140                    epoch_metrics.quantum_fidelity,
1141                    epoch_metrics.entanglement_measure,
1142                    epoch_metrics.quantum_advantage_ratio,
1143                );
1144            }
1145        }
1146
1147        Ok(QuantumTrainingOutput {
1148            training_losses: training_losses.clone(),
1149            validation_losses,
1150            quantum_metrics_history,
1151            final_model_state: self.export_model_state()?,
1152            convergence_analysis: self.analyze_convergence(&training_losses)?,
1153        })
1154    }
1155
1156    /// Train single epoch with quantum enhancements
1157    fn train_epoch(
1158        &mut self,
1159        data: &Array2<f64>,
1160        config: &QuantumTrainingConfig,
1161        epoch: usize,
1162    ) -> Result<TrainingMetrics> {
1163        let mut epoch_loss = 0.0;
1164        let mut quantum_fidelity_sum = 0.0;
1165        let mut entanglement_sum = 0.0;
1166        let mut quantum_advantage_sum = 0.0;
1167        let mut num_batches = 0;
1168
1169        let num_samples = data.nrows();
1170
1171        for batch_start in (0..num_samples).step_by(config.batch_size) {
1172            let batch_end = (batch_start + config.batch_size).min(num_samples);
1173            let batch_data = data.slice(ndarray::s![batch_start..batch_end, ..]);
1174
1175            let batch_metrics = self.train_batch(&batch_data, config)?;
1176
1177            epoch_loss += batch_metrics.loss;
1178            quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1179            entanglement_sum += batch_metrics.entanglement_measure;
1180            quantum_advantage_sum += batch_metrics.quantum_advantage_ratio;
1181            num_batches += 1;
1182        }
1183
1184        Ok(TrainingMetrics {
1185            epoch,
1186            loss: epoch_loss / num_batches as f64,
1187            quantum_fidelity: quantum_fidelity_sum / num_batches as f64,
1188            entanglement_measure: entanglement_sum / num_batches as f64,
1189            denoising_accuracy: 0.0, // Will be computed separately
1190            quantum_advantage_ratio: quantum_advantage_sum / num_batches as f64,
1191            convergence_rate: 0.0, // Will be computed from loss history
1192            decoherence_impact: 1.0 - self.quantum_metrics.noise_resilience,
1193        })
1194    }
1195
1196    /// Train single batch with quantum loss computation
1197    fn train_batch(
1198        &mut self,
1199        batch_data: &ndarray::ArrayView2<f64>,
1200        config: &QuantumTrainingConfig,
1201    ) -> Result<TrainingMetrics> {
1202        let mut batch_loss = 0.0;
1203        let mut quantum_metrics_sum = QuantumBatchMetrics::default();
1204
1205        for sample_idx in 0..batch_data.nrows() {
1206            let x0 = batch_data.row(sample_idx).to_owned();
1207
1208            // Random timestep
1209            let mut rng = rand::thread_rng();
1210            let t = rng.gen_range(0..self.config.num_timesteps);
1211
1212            // Forward diffusion with quantum noise
1213            let (xt, quantum_noise, quantum_state) = self.quantum_forward_diffusion(&x0, t)?;
1214
1215            // Predict noise using quantum denoising
1216            let denoise_output = self.quantum_denoise(&xt, t, None)?;
1217
1218            // Compute quantum loss
1219            let loss_output = self.compute_quantum_loss(
1220                &quantum_noise.mapv(|x| x.re),
1221                &denoise_output.denoised_data,
1222                &quantum_state,
1223                t,
1224            )?;
1225
1226            batch_loss += loss_output.total_loss;
1227            quantum_metrics_sum.accumulate(&loss_output.quantum_metrics);
1228
1229            // Backward pass and parameter update (placeholder)
1230            self.update_parameters(&loss_output, config)?;
1231        }
1232
1233        let num_samples = batch_data.nrows() as f64;
1234        Ok(TrainingMetrics {
1235            epoch: 0, // Will be set by caller
1236            loss: batch_loss / num_samples,
1237            quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1238            entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1239            denoising_accuracy: quantum_metrics_sum.denoising_accuracy / num_samples,
1240            quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1241            convergence_rate: 0.0,
1242            decoherence_impact: quantum_metrics_sum.decoherence_impact / num_samples,
1243        })
1244    }
1245
1246    /// Compute quantum-enhanced loss function
1247    fn compute_quantum_loss(
1248        &self,
1249        true_noise: &Array1<f64>,
1250        predicted_noise: &Array1<f64>,
1251        quantum_state: &QuantumState,
1252        t: usize,
1253    ) -> Result<QuantumLossOutput> {
1254        // Base denoising loss (MSE)
1255        let noise_diff = predicted_noise - true_noise;
1256        let mse_loss = noise_diff.mapv(|x| x * x).sum() / true_noise.len() as f64;
1257
1258        // Quantum fidelity loss
1259        let fidelity_loss = 1.0 - quantum_state.fidelity;
1260
1261        // Entanglement preservation loss
1262        let target_entanglement = self.entanglement_schedule[t];
1263        let entanglement_loss = (quantum_state.entanglement_measure - target_entanglement).powi(2);
1264
1265        // Phase coherence loss
1266        let phase_coherence_loss = 1.0 - quantum_state.quantum_phase.norm();
1267
1268        // Decoherence penalty
1269        let decoherence_penalty =
1270            (1.0 - self.decoherence_factors[t]) * quantum_state.coherence_time;
1271
1272        // Combined quantum loss
1273        let quantum_loss_weight = 0.1; // Configurable
1274        let total_loss = mse_loss
1275            + quantum_loss_weight
1276                * (fidelity_loss + entanglement_loss + phase_coherence_loss + decoherence_penalty);
1277
1278        Ok(QuantumLossOutput {
1279            total_loss,
1280            mse_loss,
1281            fidelity_loss,
1282            entanglement_loss,
1283            phase_coherence_loss,
1284            decoherence_penalty,
1285            quantum_metrics: QuantumBatchMetrics {
1286                quantum_fidelity: quantum_state.fidelity,
1287                entanglement_measure: quantum_state.entanglement_measure,
1288                denoising_accuracy: 1.0 / (1.0 + mse_loss), // Approximate accuracy
1289                quantum_advantage_ratio: self.estimate_quantum_advantage_ratio(quantum_state, t)?,
1290                decoherence_impact: 1.0 - self.decoherence_factors[t],
1291            },
1292        })
1293    }
1294
1295    /// Estimate quantum advantage ratio for current state
1296    fn estimate_quantum_advantage_ratio(
1297        &self,
1298        quantum_state: &QuantumState,
1299        t: usize,
1300    ) -> Result<f64> {
1301        // Simplified quantum advantage estimation
1302        let entanglement_advantage = quantum_state.entanglement_measure * 2.0;
1303        let coherence_advantage = quantum_state.coherence_time * 1.5;
1304        let phase_advantage = quantum_state.quantum_phase.norm();
1305
1306        Ok(1.0 + entanglement_advantage + coherence_advantage + phase_advantage)
1307    }
1308
1309    /// Update model parameters using quantum gradients
1310    fn update_parameters(
1311        &mut self,
1312        loss_output: &QuantumLossOutput,
1313        config: &QuantumTrainingConfig,
1314    ) -> Result<()> {
1315        // Placeholder for quantum parameter update
1316        // In practice, would compute quantum gradients and apply optimization
1317
1318        // Update adaptive learning state
1319        self.adaptive_learning_state.learning_rate *= config.learning_rate_decay;
1320
1321        Ok(())
1322    }
1323
1324    /// Validate model on validation data
1325    fn validate_epoch(
1326        &self,
1327        validation_data: &Array2<f64>,
1328        config: &QuantumTrainingConfig,
1329    ) -> Result<TrainingMetrics> {
1330        // Similar to train_epoch but without parameter updates
1331        let mut val_loss = 0.0;
1332        let mut quantum_fidelity_sum = 0.0;
1333        let mut entanglement_sum = 0.0;
1334        let mut num_samples = 0;
1335
1336        for sample_idx in 0..validation_data.nrows() {
1337            let x0 = validation_data.row(sample_idx).to_owned();
1338
1339            let mut rng = rand::thread_rng();
1340            let t = rng.gen_range(0..self.config.num_timesteps);
1341
1342            let (xt, quantum_noise, quantum_state) = self.quantum_forward_diffusion(&x0, t)?;
1343            let denoise_output = self.quantum_denoise(&xt, t, None)?;
1344
1345            let loss_output = self.compute_quantum_loss(
1346                &quantum_noise.mapv(|x| x.re),
1347                &denoise_output.denoised_data,
1348                &quantum_state,
1349                t,
1350            )?;
1351
1352            val_loss += loss_output.total_loss;
1353            quantum_fidelity_sum += loss_output.quantum_metrics.quantum_fidelity;
1354            entanglement_sum += loss_output.quantum_metrics.entanglement_measure;
1355            num_samples += 1;
1356        }
1357
1358        Ok(TrainingMetrics {
1359            epoch: 0,
1360            loss: val_loss / num_samples as f64,
1361            quantum_fidelity: quantum_fidelity_sum / num_samples as f64,
1362            entanglement_measure: entanglement_sum / num_samples as f64,
1363            denoising_accuracy: 0.0,
1364            quantum_advantage_ratio: 1.0,
1365            convergence_rate: 0.0,
1366            decoherence_impact: 0.0,
1367        })
1368    }
1369
1370    /// Update quantum metrics tracking
1371    fn update_quantum_metrics(&mut self, epoch_metrics: &TrainingMetrics) -> Result<()> {
1372        self.quantum_metrics.average_entanglement = 0.9 * self.quantum_metrics.average_entanglement
1373            + 0.1 * epoch_metrics.entanglement_measure;
1374
1375        self.quantum_metrics.fidelity_preservation =
1376            0.9 * self.quantum_metrics.fidelity_preservation + 0.1 * epoch_metrics.quantum_fidelity;
1377
1378        self.quantum_metrics.quantum_speedup_factor = epoch_metrics.quantum_advantage_ratio;
1379
1380        Ok(())
1381    }
1382
1383    /// Update adaptive learning state based on quantum metrics
1384    fn update_adaptive_learning_state(&mut self, epoch_metrics: &TrainingMetrics) -> Result<()> {
1385        // Adapt learning rate based on quantum state quality
1386        if epoch_metrics.entanglement_measure < 0.3 {
1387            self.adaptive_learning_state.learning_rate *= 0.95; // Slow down if losing entanglement
1388        } else if epoch_metrics.quantum_fidelity > 0.8 {
1389            self.adaptive_learning_state.learning_rate *= 1.05; // Speed up if high fidelity
1390        }
1391
1392        // Update decoherence compensation
1393        self.adaptive_learning_state.decoherence_compensation =
1394            1.0 - epoch_metrics.decoherence_impact;
1395
1396        Ok(())
1397    }
1398
1399    /// Export model state for checkpointing
1400    fn export_model_state(&self) -> Result<ModelState> {
1401        Ok(ModelState {
1402            config: self.config.clone(),
1403            quantum_parameters: self.quantum_denoiser.quantum_parameters.clone(),
1404            noise_schedule_parameters: self.betas.clone(),
1405            quantum_metrics: self.quantum_metrics.clone(),
1406            adaptive_state: self.adaptive_learning_state.clone(),
1407        })
1408    }
1409
1410    /// Analyze convergence behavior
1411    fn analyze_convergence(&self, losses: &[f64]) -> Result<ConvergenceAnalysis> {
1412        if losses.len() < 10 {
1413            return Ok(ConvergenceAnalysis::default());
1414        }
1415
1416        // Compute convergence rate
1417        let recent_losses = &losses[losses.len() - 10..];
1418        let early_losses = &losses[0..10];
1419
1420        let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
1421        let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
1422
1423        let convergence_rate = (early_avg - recent_avg) / early_avg;
1424
1425        // Detect if converged
1426        let variance = recent_losses
1427            .iter()
1428            .map(|&x| (x - recent_avg).powi(2))
1429            .sum::<f64>()
1430            / recent_losses.len() as f64;
1431        let is_converged = variance < 1e-6;
1432
1433        Ok(ConvergenceAnalysis {
1434            convergence_rate,
1435            is_converged,
1436            final_loss: recent_avg,
1437            loss_variance: variance,
1438            epochs_to_convergence: if is_converged {
1439                Some(losses.len())
1440            } else {
1441                None
1442            },
1443        })
1444    }
1445
1446    /// Get current quantum metrics
1447    pub fn quantum_metrics(&self) -> &QuantumDiffusionMetrics {
1448        &self.quantum_metrics
1449    }
1450
1451    /// Get training history
1452    pub fn training_history(&self) -> &[TrainingMetrics] {
1453        &self.training_history
1454    }
1455}
1456
1457// Supporting structures and implementations
1458
1459impl QuantumDenoisingNetwork {
1460    pub fn new(config: &QuantumAdvancedDiffusionConfig) -> Result<Self> {
1461        // Initialize based on architecture
1462        let quantum_layers = Self::create_quantum_layers(config)?;
1463        let classical_layers = Self::create_classical_layers(config)?;
1464        let quantum_parameters = Array1::zeros(1000); // Placeholder size
1465        let hybrid_connections = Self::create_hybrid_connections(config)?;
1466
1467        Ok(Self {
1468            architecture: config.denoiser_architecture.clone(),
1469            quantum_layers,
1470            classical_layers,
1471            quantum_parameters,
1472            hybrid_connections,
1473            data_dim: config.data_dim,
1474        })
1475    }
1476
1477    fn create_quantum_layers(
1478        config: &QuantumAdvancedDiffusionConfig,
1479    ) -> Result<Vec<QuantumDenoisingLayer>> {
1480        // Create layers based on architecture
1481        let mut layers = Vec::new();
1482
1483        match &config.denoiser_architecture {
1484            DenoisingArchitecture::QuantumUNet {
1485                depth,
1486                base_channels,
1487                ..
1488            } => {
1489                for i in 0..*depth {
1490                    layers.push(QuantumDenoisingLayer {
1491                        layer_type: DenoisingLayerType::QuantumConvolutional {
1492                            kernel_size: 3,
1493                            stride: 1,
1494                            padding: 1,
1495                        },
1496                        num_qubits: config.num_qubits,
1497                        parameters: Array1::zeros(config.num_qubits * 3),
1498                        entanglement_pattern: EntanglementPattern::Circular,
1499                        quantum_gates: Vec::new(),
1500                    });
1501                }
1502            }
1503            _ => {
1504                // Default layer
1505                layers.push(QuantumDenoisingLayer {
1506                    layer_type: DenoisingLayerType::QuantumFeedForward {
1507                        hidden_dim: 64,
1508                        activation: QuantumActivation::QuantumReLU,
1509                    },
1510                    num_qubits: config.num_qubits,
1511                    parameters: Array1::zeros(config.num_qubits * 3),
1512                    entanglement_pattern: EntanglementPattern::Linear,
1513                    quantum_gates: Vec::new(),
1514                });
1515            }
1516        }
1517
1518        Ok(layers)
1519    }
1520
1521    fn create_classical_layers(
1522        config: &QuantumAdvancedDiffusionConfig,
1523    ) -> Result<Vec<ClassicalLayer>> {
1524        // Create classical layers for hybrid processing
1525        Ok(vec![ClassicalLayer {
1526            layer_type: ClassicalLayerType::Dense {
1527                input_dim: config.data_dim,
1528                output_dim: 64,
1529            },
1530            parameters: Array2::zeros((config.data_dim, 64)),
1531            activation: ClassicalActivation::ReLU,
1532        }])
1533    }
1534
1535    fn create_hybrid_connections(
1536        config: &QuantumAdvancedDiffusionConfig,
1537    ) -> Result<Vec<HybridConnection>> {
1538        // Create connections between quantum and classical layers
1539        Ok(vec![HybridConnection {
1540            quantum_layer_idx: 0,
1541            classical_layer_idx: 0,
1542            connection_type: HybridConnectionType::MeasurementFeedback,
1543            transformation_matrix: Array2::eye(config.data_dim),
1544        }])
1545    }
1546
1547    pub fn forward(&self, input: &DenoisingInput, t: usize) -> Result<RawDenoiseOutput> {
1548        // Forward pass through quantum denoising network
1549        let mut quantum_state = QuantumState::from_classical(&input.features)?;
1550
1551        // Process through quantum layers
1552        for layer in &self.quantum_layers {
1553            quantum_state = self.process_quantum_layer(layer, &quantum_state, t)?;
1554        }
1555
1556        // Extract prediction from quantum state
1557        let predicted_noise = self.extract_prediction(&quantum_state)?;
1558
1559        Ok(RawDenoiseOutput {
1560            predicted_noise,
1561            quantum_state: quantum_state.clone(),
1562            confidence: quantum_state.fidelity,
1563        })
1564    }
1565
1566    fn process_quantum_layer(
1567        &self,
1568        layer: &QuantumDenoisingLayer,
1569        quantum_state: &QuantumState,
1570        t: usize,
1571    ) -> Result<QuantumState> {
1572        // Process quantum state through layer
1573        match &layer.layer_type {
1574            DenoisingLayerType::QuantumFeedForward {
1575                hidden_dim,
1576                activation,
1577            } => self.apply_quantum_feedforward(quantum_state, *hidden_dim, activation, t),
1578            DenoisingLayerType::QuantumSelfAttention {
1579                num_heads,
1580                head_dim,
1581            } => self.apply_quantum_self_attention(quantum_state, *num_heads, *head_dim, t),
1582            _ => Ok(quantum_state.clone()), // Placeholder for other layer types
1583        }
1584    }
1585
1586    fn apply_quantum_feedforward(
1587        &self,
1588        quantum_state: &QuantumState,
1589        hidden_dim: usize,
1590        activation: &QuantumActivation,
1591        t: usize,
1592    ) -> Result<QuantumState> {
1593        // Apply quantum feedforward transformation
1594        let mut new_state = quantum_state.clone();
1595
1596        // Apply quantum gates (simplified)
1597        match activation {
1598            QuantumActivation::QuantumReLU => {
1599                // Apply ReLU-like quantum operation
1600                new_state.entanglement_measure *= 0.9; // Slightly reduce entanglement
1601            }
1602            _ => {
1603                // Default processing
1604                new_state.fidelity *= 0.95;
1605            }
1606        }
1607
1608        Ok(new_state)
1609    }
1610
1611    fn apply_quantum_self_attention(
1612        &self,
1613        quantum_state: &QuantumState,
1614        num_heads: usize,
1615        head_dim: usize,
1616        t: usize,
1617    ) -> Result<QuantumState> {
1618        // Apply quantum self-attention
1619        let mut new_state = quantum_state.clone();
1620
1621        // Enhance entanglement through attention mechanism
1622        new_state.entanglement_measure = (new_state.entanglement_measure * 1.1).min(1.0);
1623
1624        Ok(new_state)
1625    }
1626
1627    fn extract_prediction(&self, quantum_state: &QuantumState) -> Result<Array1<f64>> {
1628        // Extract noise prediction from quantum state
1629        // This would involve quantum measurements in practice
1630        // Return only the first portion corresponding to original data dimension
1631        let data_dim = self.data_dim;
1632
1633        if quantum_state.classical_data.len() >= data_dim {
1634            Ok(quantum_state
1635                .classical_data
1636                .slice(s![..data_dim])
1637                .to_owned())
1638        } else {
1639            Ok(quantum_state.classical_data.clone())
1640        }
1641    }
1642}
1643
1644#[derive(Debug, Clone)]
1645pub struct QuantumState {
1646    pub classical_data: Array1<f64>,
1647    pub quantum_phase: Complex64,
1648    pub entanglement_measure: f64,
1649    pub coherence_time: f64,
1650    pub fidelity: f64,
1651}
1652
1653impl QuantumState {
1654    pub fn new(data: Array1<f64>, entanglement: f64, phase: Complex64) -> Result<Self> {
1655        Ok(Self {
1656            classical_data: data,
1657            quantum_phase: phase,
1658            entanglement_measure: entanglement,
1659            coherence_time: 1.0, // Default value
1660            fidelity: 1.0,       // Default value
1661        })
1662    }
1663
1664    pub fn from_classical(data: &Array1<f64>) -> Result<Self> {
1665        Ok(Self {
1666            classical_data: data.clone(),
1667            quantum_phase: Complex64::new(1.0, 0.0),
1668            entanglement_measure: 0.5,
1669            coherence_time: 1.0,
1670            fidelity: 1.0,
1671        })
1672    }
1673}
1674
1675impl Default for QuantumState {
1676    fn default() -> Self {
1677        Self {
1678            classical_data: Array1::zeros(1),
1679            quantum_phase: Complex64::new(1.0, 0.0),
1680            entanglement_measure: 0.0,
1681            coherence_time: 0.0,
1682            fidelity: 0.0,
1683        }
1684    }
1685}
1686
1687// Training configuration and output structures
1688#[derive(Debug, Clone)]
1689pub struct QuantumTrainingConfig {
1690    pub epochs: usize,
1691    pub batch_size: usize,
1692    pub learning_rate: f64,
1693    pub learning_rate_decay: f64,
1694    pub log_interval: usize,
1695    pub save_interval: usize,
1696    pub early_stopping_patience: usize,
1697    pub quantum_loss_weight: f64,
1698    pub entanglement_preservation_weight: f64,
1699}
1700
1701impl Default for QuantumTrainingConfig {
1702    fn default() -> Self {
1703        Self {
1704            epochs: 100,
1705            batch_size: 32,
1706            learning_rate: 1e-4,
1707            learning_rate_decay: 0.99,
1708            log_interval: 10,
1709            save_interval: 50,
1710            early_stopping_patience: 20,
1711            quantum_loss_weight: 0.1,
1712            entanglement_preservation_weight: 0.05,
1713        }
1714    }
1715}
1716
1717// Additional supporting structures (implementations would be similar)
1718#[derive(Debug, Clone)]
1719pub struct DenoisingInput {
1720    pub features: Array1<f64>,
1721    pub timestep: usize,
1722    pub quantum_phase: Complex64,
1723    pub entanglement_strength: f64,
1724}
1725
1726#[derive(Debug, Clone)]
1727pub struct RawDenoiseOutput {
1728    pub predicted_noise: Array1<f64>,
1729    pub quantum_state: QuantumState,
1730    pub confidence: f64,
1731}
1732
1733#[derive(Debug, Clone)]
1734pub struct MitigatedDenoiseOutput {
1735    pub predicted_noise: Array1<f64>,
1736    pub quantum_state: QuantumState,
1737    pub confidence: f64,
1738}
1739
1740#[derive(Debug, Clone)]
1741pub struct DenoiseOutput {
1742    pub denoised_data: Array1<f64>,
1743    pub quantum_state: QuantumState,
1744    pub confidence: f64,
1745    pub entanglement_measure: f64,
1746    pub quantum_fidelity: f64,
1747}
1748
1749#[derive(Debug, Clone)]
1750pub struct DenoisingMetrics {
1751    pub entanglement_measure: f64,
1752    pub quantum_fidelity: f64,
1753    pub coherence_time: f64,
1754    pub circuit_depth: f64,
1755    pub noise_level: f64,
1756    pub quantum_advantage: f64,
1757}
1758
1759#[derive(Debug, Clone)]
1760pub struct ReverseDiffusionOutput {
1761    pub xt_prev: Array1<f64>,
1762    pub predicted_x0: Array1<f64>,
1763    pub quantum_state: QuantumState,
1764    pub step_metrics: StepMetrics,
1765}
1766
1767#[derive(Debug, Clone)]
1768pub struct StepMetrics {
1769    pub entanglement_preservation: f64,
1770    pub phase_coherence: f64,
1771    pub denoising_confidence: f64,
1772    pub quantum_advantage: f64,
1773}
1774
1775impl Default for StepMetrics {
1776    fn default() -> Self {
1777        Self {
1778            entanglement_preservation: 0.0,
1779            phase_coherence: 0.0,
1780            denoising_confidence: 0.0,
1781            quantum_advantage: 1.0,
1782        }
1783    }
1784}
1785
1786#[derive(Debug, Clone)]
1787pub struct GenerationMetrics {
1788    pub sample_idx: usize,
1789    pub final_entanglement: f64,
1790    pub average_confidence: f64,
1791    pub quantum_advantage: f64,
1792    pub step_metrics: Vec<StepMetrics>,
1793}
1794
1795#[derive(Debug, Clone)]
1796pub struct QuantumGenerationOutput {
1797    pub samples: Array2<f64>,
1798    pub generation_metrics: Vec<GenerationMetrics>,
1799    pub overall_quantum_metrics: QuantumDiffusionMetrics,
1800}
1801
1802#[derive(Debug, Clone)]
1803pub struct QuantumLossOutput {
1804    pub total_loss: f64,
1805    pub mse_loss: f64,
1806    pub fidelity_loss: f64,
1807    pub entanglement_loss: f64,
1808    pub phase_coherence_loss: f64,
1809    pub decoherence_penalty: f64,
1810    pub quantum_metrics: QuantumBatchMetrics,
1811}
1812
1813#[derive(Debug, Clone, Default)]
1814pub struct QuantumBatchMetrics {
1815    pub quantum_fidelity: f64,
1816    pub entanglement_measure: f64,
1817    pub denoising_accuracy: f64,
1818    pub quantum_advantage_ratio: f64,
1819    pub decoherence_impact: f64,
1820}
1821
1822impl QuantumBatchMetrics {
1823    pub fn accumulate(&mut self, other: &QuantumBatchMetrics) {
1824        self.quantum_fidelity += other.quantum_fidelity;
1825        self.entanglement_measure += other.entanglement_measure;
1826        self.denoising_accuracy += other.denoising_accuracy;
1827        self.quantum_advantage_ratio += other.quantum_advantage_ratio;
1828        self.decoherence_impact += other.decoherence_impact;
1829    }
1830}
1831
1832#[derive(Debug, Clone)]
1833pub struct QuantumTrainingOutput {
1834    pub training_losses: Vec<f64>,
1835    pub validation_losses: Vec<f64>,
1836    pub quantum_metrics_history: Vec<QuantumDiffusionMetrics>,
1837    pub final_model_state: ModelState,
1838    pub convergence_analysis: ConvergenceAnalysis,
1839}
1840
1841#[derive(Debug, Clone)]
1842pub struct ModelState {
1843    pub config: QuantumAdvancedDiffusionConfig,
1844    pub quantum_parameters: Array1<f64>,
1845    pub noise_schedule_parameters: Array1<f64>,
1846    pub quantum_metrics: QuantumDiffusionMetrics,
1847    pub adaptive_state: AdaptiveLearningState,
1848}
1849
1850#[derive(Debug, Clone, Default)]
1851pub struct ConvergenceAnalysis {
1852    pub convergence_rate: f64,
1853    pub is_converged: bool,
1854    pub final_loss: f64,
1855    pub loss_variance: f64,
1856    pub epochs_to_convergence: Option<usize>,
1857}
1858
1859// Default implementations
1860impl Default for QuantumDiffusionMetrics {
1861    fn default() -> Self {
1862        Self {
1863            average_entanglement: 0.5,
1864            coherence_time: 1.0,
1865            quantum_volume_utilization: 0.0,
1866            circuit_depth_efficiency: 1.0,
1867            noise_resilience: 0.9,
1868            quantum_speedup_factor: 1.0,
1869            fidelity_preservation: 1.0,
1870        }
1871    }
1872}
1873
1874impl Default for AdaptiveLearningState {
1875    fn default() -> Self {
1876        Self {
1877            learning_rate: 1e-4,
1878            momentum: 0.9,
1879            adaptive_schedule_parameters: Array1::zeros(10),
1880            entanglement_decay_rate: 0.01,
1881            decoherence_compensation: 1.0,
1882            quantum_error_rate: 0.001,
1883        }
1884    }
1885}
1886
1887impl Default for QuantumAdvancedDiffusionConfig {
1888    fn default() -> Self {
1889        Self {
1890            data_dim: 32,
1891            num_qubits: 16,
1892            num_timesteps: 1000,
1893            noise_schedule: QuantumNoiseSchedule::QuantumCosine {
1894                s: 0.008,
1895                entanglement_preservation: 0.9,
1896                decoherence_rate: 0.01,
1897            },
1898            denoiser_architecture: DenoisingArchitecture::QuantumUNet {
1899                depth: 4,
1900                base_channels: 32,
1901                quantum_skip_connections: true,
1902            },
1903            quantum_enhancement_level: 0.5,
1904            use_quantum_attention: true,
1905            enable_entanglement_monitoring: true,
1906            adaptive_denoising: true,
1907            use_quantum_fourier_features: true,
1908            error_mitigation_strategy: ErrorMitigationStrategy::AdaptiveMitigation,
1909        }
1910    }
1911}
1912
1913#[cfg(test)]
1914mod tests {
1915    use super::*;
1916
1917    #[test]
1918    fn test_quantum_advanced_diffusion_creation() {
1919        let config = QuantumAdvancedDiffusionConfig::default();
1920        let model = QuantumAdvancedDiffusionModel::new(config);
1921        assert!(model.is_ok());
1922    }
1923
1924    #[test]
1925    fn test_quantum_noise_schedule() {
1926        let config = QuantumAdvancedDiffusionConfig::default();
1927        let (betas, alphas, alphas_cumprod) =
1928            QuantumAdvancedDiffusionModel::compute_quantum_schedule(&config).unwrap();
1929
1930        assert_eq!(betas.len(), config.num_timesteps);
1931        assert_eq!(alphas.len(), config.num_timesteps);
1932        assert_eq!(alphas_cumprod.len(), config.num_timesteps);
1933
1934        // Check that alphas_cumprod is decreasing
1935        for i in 1..alphas_cumprod.len() {
1936            assert!(alphas_cumprod[i] <= alphas_cumprod[i - 1]);
1937        }
1938    }
1939
1940    #[test]
1941    fn test_quantum_forward_diffusion() {
1942        let config = QuantumAdvancedDiffusionConfig {
1943            data_dim: 4,
1944            num_qubits: 8,
1945            num_timesteps: 100,
1946            ..Default::default()
1947        };
1948
1949        let model = QuantumAdvancedDiffusionModel::new(config).unwrap();
1950        let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
1951
1952        let result = model.quantum_forward_diffusion(&x0, 50);
1953        assert!(result.is_ok());
1954
1955        let (xt, quantum_noise, quantum_state) = result.unwrap();
1956        assert_eq!(xt.len(), 4);
1957        assert_eq!(quantum_noise.len(), 4);
1958        assert!(quantum_state.entanglement_measure >= 0.0);
1959        assert!(quantum_state.entanglement_measure <= 1.0);
1960    }
1961
1962    #[test]
1963    fn test_quantum_denoising_network() {
1964        let config = QuantumAdvancedDiffusionConfig {
1965            data_dim: 8,
1966            num_qubits: 4,
1967            ..Default::default()
1968        };
1969
1970        let network = QuantumDenoisingNetwork::new(&config);
1971        assert!(network.is_ok());
1972
1973        let network = network.unwrap();
1974        assert!(!network.quantum_layers.is_empty());
1975        assert!(!network.classical_layers.is_empty());
1976    }
1977
1978    #[test]
1979    fn test_quantum_generation() {
1980        let config = QuantumAdvancedDiffusionConfig {
1981            data_dim: 2,
1982            num_qubits: 4,
1983            num_timesteps: 10, // Small for testing
1984            ..Default::default()
1985        };
1986
1987        let model = QuantumAdvancedDiffusionModel::new(config).unwrap();
1988        let result = model.quantum_generate(3, None, None);
1989
1990        assert!(result.is_ok());
1991        let output = result.unwrap();
1992        assert_eq!(output.samples.shape(), &[3, 2]);
1993        assert_eq!(output.generation_metrics.len(), 3);
1994    }
1995
1996    #[test]
1997    fn test_multi_scale_noise_schedule() {
1998        let config = QuantumAdvancedDiffusionConfig {
1999            noise_schedule: QuantumNoiseSchedule::MultiScale {
2000                scales: vec![1.0, 0.5, 0.25],
2001                weights: Array1::from_vec(vec![0.5, 0.3, 0.2]),
2002                coherence_times: Array1::from_vec(vec![10.0, 5.0, 2.0]),
2003            },
2004            ..Default::default()
2005        };
2006
2007        let result = QuantumAdvancedDiffusionModel::compute_quantum_schedule(&config);
2008        assert!(result.is_ok());
2009
2010        let (betas, _, _) = result.unwrap();
2011        assert!(betas.iter().all(|&beta| beta >= 0.0 && beta <= 1.0));
2012    }
2013
2014    #[test]
2015    fn test_quantum_metrics_computation() {
2016        let quantum_state = QuantumState {
2017            classical_data: Array1::from_vec(vec![0.1, 0.2, 0.3]),
2018            quantum_phase: Complex64::new(0.8, 0.6),
2019            entanglement_measure: 0.7,
2020            coherence_time: 0.9,
2021            fidelity: 0.85,
2022        };
2023
2024        assert!((quantum_state.quantum_phase.norm() - 1.0).abs() < 1e-10);
2025        assert!(quantum_state.entanglement_measure >= 0.0);
2026        assert!(quantum_state.entanglement_measure <= 1.0);
2027        assert!(quantum_state.fidelity >= 0.0);
2028        assert!(quantum_state.fidelity <= 1.0);
2029    }
2030}