quantrs2_ml/
diffusion.rs

1//! Quantum Diffusion Models
2//!
3//! This module implements quantum diffusion models for generative modeling,
4//! adapting the denoising diffusion probabilistic model (DDPM) framework
5//! to quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use ndarray::{s, Array1, Array2, Array3, ArrayView1};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14    single::{RotationX, RotationY, RotationZ},
15    GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21/// Noise schedule types for diffusion process
22#[derive(Debug, Clone, Copy)]
23pub enum NoiseSchedule {
24    /// Linear schedule: β_t increases linearly
25    Linear { beta_start: f64, beta_end: f64 },
26
27    /// Cosine schedule: smoother noise addition
28    Cosine { s: f64 },
29
30    /// Quadratic schedule
31    Quadratic { beta_start: f64, beta_end: f64 },
32
33    /// Sigmoid schedule
34    Sigmoid { beta_start: f64, beta_end: f64 },
35}
36
37/// Quantum diffusion model
38pub struct QuantumDiffusionModel {
39    /// Denoising network
40    denoiser: QuantumNeuralNetwork,
41
42    /// Number of diffusion timesteps
43    num_timesteps: usize,
44
45    /// Noise schedule
46    noise_schedule: NoiseSchedule,
47
48    /// Beta values for each timestep
49    betas: Array1<f64>,
50
51    /// Alpha values (1 - beta)
52    alphas: Array1<f64>,
53
54    /// Cumulative product of alphas
55    alphas_cumprod: Array1<f64>,
56
57    /// Data dimension
58    data_dim: usize,
59
60    /// Number of qubits
61    num_qubits: usize,
62}
63
64impl QuantumDiffusionModel {
65    /// Create a new quantum diffusion model
66    pub fn new(
67        data_dim: usize,
68        num_qubits: usize,
69        num_timesteps: usize,
70        noise_schedule: NoiseSchedule,
71    ) -> Result<Self> {
72        // Create denoising quantum neural network
73        let layers = vec![
74            QNNLayerType::EncodingLayer {
75                num_features: data_dim + 1,
76            }, // +1 for timestep
77            QNNLayerType::VariationalLayer {
78                num_params: num_qubits * 3,
79            },
80            QNNLayerType::EntanglementLayer {
81                connectivity: "circular".to_string(),
82            },
83            QNNLayerType::VariationalLayer {
84                num_params: num_qubits * 3,
85            },
86            QNNLayerType::EntanglementLayer {
87                connectivity: "circular".to_string(),
88            },
89            QNNLayerType::VariationalLayer {
90                num_params: num_qubits * 3,
91            },
92            QNNLayerType::MeasurementLayer {
93                measurement_basis: "Pauli-Z".to_string(),
94            },
95        ];
96
97        let denoiser = QuantumNeuralNetwork::new(
98            layers,
99            num_qubits,
100            data_dim + 1, // Input includes timestep
101            data_dim,     // Output is denoised data
102        )?;
103
104        // Compute noise schedule
105        let (betas, alphas, alphas_cumprod) =
106            Self::compute_schedule(num_timesteps, &noise_schedule);
107
108        Ok(Self {
109            denoiser,
110            num_timesteps,
111            noise_schedule,
112            betas,
113            alphas,
114            alphas_cumprod,
115            data_dim,
116            num_qubits,
117        })
118    }
119
120    /// Compute noise schedule values
121    fn compute_schedule(
122        num_timesteps: usize,
123        schedule: &NoiseSchedule,
124    ) -> (Array1<f64>, Array1<f64>, Array1<f64>) {
125        let mut betas = Array1::zeros(num_timesteps);
126
127        match schedule {
128            NoiseSchedule::Linear {
129                beta_start,
130                beta_end,
131            } => {
132                for t in 0..num_timesteps {
133                    betas[t] = beta_start
134                        + (beta_end - beta_start) * t as f64 / (num_timesteps - 1) as f64;
135                }
136            }
137            NoiseSchedule::Cosine { s } => {
138                for t in 0..num_timesteps {
139                    let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
140                        .cos()
141                        .powi(2);
142                    let f_t_prev = if t == 0 {
143                        1.0
144                    } else {
145                        (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
146                            .cos()
147                            .powi(2)
148                    };
149                    betas[t] = 1.0 - f_t / f_t_prev;
150                }
151            }
152            NoiseSchedule::Quadratic {
153                beta_start,
154                beta_end,
155            } => {
156                for t in 0..num_timesteps {
157                    let ratio = t as f64 / (num_timesteps - 1) as f64;
158                    betas[t] = beta_start + (beta_end - beta_start) * ratio * ratio;
159                }
160            }
161            NoiseSchedule::Sigmoid {
162                beta_start,
163                beta_end,
164            } => {
165                for t in 0..num_timesteps {
166                    let x = 10.0 * (t as f64 / (num_timesteps - 1) as f64 - 0.5);
167                    let sigmoid = 1.0 / (1.0 + (-x).exp());
168                    betas[t] = beta_start + (beta_end - beta_start) * sigmoid;
169                }
170            }
171        }
172
173        // Compute alphas and cumulative products
174        let alphas = 1.0 - &betas;
175        let mut alphas_cumprod = Array1::zeros(num_timesteps);
176        alphas_cumprod[0] = alphas[0];
177
178        for t in 1..num_timesteps {
179            alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
180        }
181
182        (betas, alphas, alphas_cumprod)
183    }
184
185    /// Forward diffusion process: add noise to data
186    pub fn forward_diffusion(
187        &self,
188        x0: &Array1<f64>,
189        t: usize,
190    ) -> Result<(Array1<f64>, Array1<f64>)> {
191        if t >= self.num_timesteps {
192            return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
193        }
194
195        // Sample noise
196        let noise = Array1::from_shape_fn(self.data_dim, |_| {
197            // Box-Muller transform for Gaussian noise
198            let u1 = rand::random::<f64>();
199            let u2 = rand::random::<f64>();
200            (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
201        });
202
203        // Add noise according to schedule
204        let sqrt_alpha_cumprod = self.alphas_cumprod[t].sqrt();
205        let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
206
207        let xt = sqrt_alpha_cumprod * x0 + sqrt_one_minus_alpha_cumprod * &noise;
208
209        Ok((xt, noise))
210    }
211
212    /// Predict noise from noisy data using quantum circuit
213    pub fn predict_noise(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
214        // Prepare input with timestep encoding
215        let mut input = Array1::zeros(self.data_dim + 1);
216        for i in 0..self.data_dim {
217            input[i] = xt[i];
218        }
219        input[self.data_dim] = t as f64 / self.num_timesteps as f64; // Normalized timestep
220
221        // Placeholder - would use quantum circuit to predict noise
222        let predicted_noise = self.extract_noise_prediction_placeholder()?;
223
224        Ok(predicted_noise)
225    }
226
227    /// Extract noise prediction from quantum state (placeholder)
228    fn extract_noise_prediction_placeholder(&self) -> Result<Array1<f64>> {
229        // Placeholder - would measure expectation values
230        let noise = Array1::from_shape_fn(self.data_dim, |_| 2.0 * rand::random::<f64>() - 1.0);
231        Ok(noise)
232    }
233
234    /// Reverse diffusion process: denoise step by step
235    pub fn reverse_diffusion_step(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
236        if t == 0 {
237            return Ok(xt.clone());
238        }
239
240        // Predict noise
241        let predicted_noise = self.predict_noise(xt, t)?;
242
243        // Compute denoising step
244        let beta_t = self.betas[t];
245        let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
246        let sqrt_recip_alpha = 1.0 / self.alphas[t].sqrt();
247
248        // Mean of reverse process
249        let mean =
250            sqrt_recip_alpha * (xt - beta_t / sqrt_one_minus_alpha_cumprod * &predicted_noise);
251
252        // Add noise for t > 1
253        let xt_prev = if t > 1 {
254            let noise_scale = beta_t.sqrt();
255            let noise = Array1::from_shape_fn(self.data_dim, |_| {
256                let u1 = rand::random::<f64>();
257                let u2 = rand::random::<f64>();
258                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
259            });
260            mean + noise_scale * noise
261        } else {
262            mean
263        };
264
265        Ok(xt_prev)
266    }
267
268    /// Generate new samples
269    pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
270        let mut samples = Array2::zeros((num_samples, self.data_dim));
271
272        for sample_idx in 0..num_samples {
273            // Start from pure noise
274            let mut xt = Array1::from_shape_fn(self.data_dim, |_| {
275                let u1 = rand::random::<f64>();
276                let u2 = rand::random::<f64>();
277                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
278            });
279
280            // Reverse diffusion
281            for t in (0..self.num_timesteps).rev() {
282                xt = self.reverse_diffusion_step(&xt, t)?;
283            }
284
285            // Store generated sample
286            samples.row_mut(sample_idx).assign(&xt);
287        }
288
289        Ok(samples)
290    }
291
292    /// Train the diffusion model
293    pub fn train(
294        &mut self,
295        data: &Array2<f64>,
296        optimizer: &mut dyn Optimizer,
297        epochs: usize,
298        batch_size: usize,
299    ) -> Result<Vec<f64>> {
300        let mut losses = Vec::new();
301        let num_samples = data.nrows();
302
303        for epoch in 0..epochs {
304            let mut epoch_loss = 0.0;
305            let mut num_batches = 0;
306
307            // Mini-batch training
308            for batch_start in (0..num_samples).step_by(batch_size) {
309                let batch_end = (batch_start + batch_size).min(num_samples);
310                let batch_data = data.slice(s![batch_start..batch_end, ..]);
311
312                let mut batch_loss = 0.0;
313
314                // Train on each sample in batch
315                for sample_idx in 0..batch_data.nrows() {
316                    let x0 = batch_data.row(sample_idx).to_owned();
317
318                    // Random timestep
319                    let t = fastrand::usize(0..self.num_timesteps);
320
321                    // Forward diffusion
322                    let (xt, true_noise) = self.forward_diffusion(&x0, t)?;
323
324                    // Predict noise
325                    let predicted_noise = self.predict_noise(&xt, t)?;
326
327                    // Compute loss (MSE between true and predicted noise)
328                    let noise_diff = &predicted_noise - &true_noise;
329                    let loss = noise_diff.mapv(|x| x * x).sum() / self.data_dim as f64;
330                    batch_loss += loss;
331                }
332
333                batch_loss /= batch_data.nrows() as f64;
334                epoch_loss += batch_loss;
335                num_batches += 1;
336
337                // Update parameters (placeholder)
338                self.update_parameters(optimizer, batch_loss)?;
339            }
340
341            epoch_loss /= num_batches as f64;
342            losses.push(epoch_loss);
343
344            if epoch % 10 == 0 {
345                println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
346            }
347        }
348
349        Ok(losses)
350    }
351
352    /// Update model parameters
353    fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
354        // Placeholder - would compute quantum gradients
355        Ok(())
356    }
357
358    /// Conditional generation given a condition
359    pub fn conditional_generate(
360        &self,
361        condition: &Array1<f64>,
362        num_samples: usize,
363    ) -> Result<Array2<f64>> {
364        // Placeholder for conditional generation
365        // Would modify the reverse process based on condition
366        self.generate(num_samples)
367    }
368
369    /// Get beta values
370    pub fn betas(&self) -> &Array1<f64> {
371        &self.betas
372    }
373
374    /// Get alpha cumulative product values
375    pub fn alphas_cumprod(&self) -> &Array1<f64> {
376        &self.alphas_cumprod
377    }
378}
379
380/// Quantum Score-Based Diffusion
381pub struct QuantumScoreDiffusion {
382    /// Score network (estimates gradient of log probability)
383    score_net: QuantumNeuralNetwork,
384
385    /// Noise levels for score matching
386    noise_levels: Array1<f64>,
387
388    /// Data dimension
389    data_dim: usize,
390}
391
392impl QuantumScoreDiffusion {
393    /// Create new score-based diffusion model
394    pub fn new(data_dim: usize, num_qubits: usize, num_noise_levels: usize) -> Result<Self> {
395        let layers = vec![
396            QNNLayerType::EncodingLayer {
397                num_features: data_dim + 1,
398            }, // +1 for noise level
399            QNNLayerType::VariationalLayer {
400                num_params: num_qubits * 4,
401            },
402            QNNLayerType::EntanglementLayer {
403                connectivity: "full".to_string(),
404            },
405            QNNLayerType::VariationalLayer {
406                num_params: num_qubits * 4,
407            },
408            QNNLayerType::MeasurementLayer {
409                measurement_basis: "Pauli-XYZ".to_string(),
410            },
411        ];
412
413        let score_net = QuantumNeuralNetwork::new(
414            layers,
415            num_qubits,
416            data_dim + 1,
417            data_dim, // Output is score (gradient)
418        )?;
419
420        // Geometric sequence of noise levels
421        let noise_levels = Array1::from_shape_fn(num_noise_levels, |i| {
422            0.01 * (10.0_f64).powf(i as f64 / (num_noise_levels - 1) as f64)
423        });
424
425        Ok(Self {
426            score_net,
427            noise_levels,
428            data_dim,
429        })
430    }
431
432    /// Estimate score (gradient of log density)
433    pub fn estimate_score(&self, x: &Array1<f64>, noise_level: f64) -> Result<Array1<f64>> {
434        // Prepare input with noise level
435        let mut input = Array1::zeros(self.data_dim + 1);
436        for i in 0..self.data_dim {
437            input[i] = x[i];
438        }
439        input[self.data_dim] = noise_level;
440
441        // Placeholder - would use quantum circuit to estimate score
442
443        // Placeholder - would extract gradient estimate
444        let score = Array1::from_shape_fn(self.data_dim, |_| 2.0 * rand::random::<f64>() - 1.0);
445
446        Ok(score)
447    }
448
449    /// Langevin dynamics sampling
450    pub fn langevin_sample(
451        &self,
452        init: Array1<f64>,
453        noise_level: f64,
454        num_steps: usize,
455        step_size: f64,
456    ) -> Result<Array1<f64>> {
457        let mut x = init;
458
459        for _ in 0..num_steps {
460            // Estimate score
461            let score = self.estimate_score(&x, noise_level)?;
462
463            // Langevin update
464            let noise = Array1::from_shape_fn(self.data_dim, |_| {
465                let u1 = rand::random::<f64>();
466                let u2 = rand::random::<f64>();
467                (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
468            });
469
470            x = &x + step_size * &score + (2.0 * step_size).sqrt() * noise;
471        }
472
473        Ok(x)
474    }
475
476    /// Get noise levels
477    pub fn noise_levels(&self) -> &Array1<f64> {
478        &self.noise_levels
479    }
480}
481
482/// Variational Diffusion Model with quantum components
483pub struct QuantumVariationalDiffusion {
484    /// Encoder network
485    encoder: QuantumNeuralNetwork,
486
487    /// Decoder network
488    decoder: QuantumNeuralNetwork,
489
490    /// Latent dimension
491    latent_dim: usize,
492
493    /// Data dimension
494    data_dim: usize,
495}
496
497impl QuantumVariationalDiffusion {
498    /// Create new variational diffusion model
499    pub fn new(data_dim: usize, latent_dim: usize, num_qubits: usize) -> Result<Self> {
500        // Encoder: data -> latent
501        let encoder_layers = vec![
502            QNNLayerType::EncodingLayer {
503                num_features: data_dim,
504            },
505            QNNLayerType::VariationalLayer {
506                num_params: num_qubits * 3,
507            },
508            QNNLayerType::EntanglementLayer {
509                connectivity: "circular".to_string(),
510            },
511            QNNLayerType::MeasurementLayer {
512                measurement_basis: "computational".to_string(),
513            },
514        ];
515
516        let encoder = QuantumNeuralNetwork::new(
517            encoder_layers,
518            num_qubits,
519            data_dim,
520            latent_dim * 2, // Mean and variance
521        )?;
522
523        // Decoder: latent -> data
524        let decoder_layers = vec![
525            QNNLayerType::EncodingLayer {
526                num_features: latent_dim,
527            },
528            QNNLayerType::VariationalLayer {
529                num_params: num_qubits * 3,
530            },
531            QNNLayerType::EntanglementLayer {
532                connectivity: "circular".to_string(),
533            },
534            QNNLayerType::MeasurementLayer {
535                measurement_basis: "Pauli-Z".to_string(),
536            },
537        ];
538
539        let decoder = QuantumNeuralNetwork::new(decoder_layers, num_qubits, latent_dim, data_dim)?;
540
541        Ok(Self {
542            encoder,
543            decoder,
544            latent_dim,
545            data_dim,
546        })
547    }
548
549    /// Encode data to latent space
550    pub fn encode(&self, x: &Array1<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
551        // Placeholder - would run quantum encoder
552        let mean = Array1::zeros(self.latent_dim);
553        let log_var = Array1::zeros(self.latent_dim);
554        Ok((mean, log_var))
555    }
556
557    /// Decode from latent space
558    pub fn decode(&self, z: &Array1<f64>) -> Result<Array1<f64>> {
559        // Placeholder - would run quantum decoder
560        Ok(Array1::zeros(self.data_dim))
561    }
562}
563
564#[cfg(test)]
565mod tests {
566    use super::*;
567    use crate::autodiff::optimizers::Adam;
568
569    #[test]
570    fn test_noise_schedule() {
571        let num_timesteps = 100;
572        let schedule = NoiseSchedule::Linear {
573            beta_start: 0.0001,
574            beta_end: 0.02,
575        };
576
577        let (betas, alphas, alphas_cumprod) =
578            QuantumDiffusionModel::compute_schedule(num_timesteps, &schedule);
579
580        assert_eq!(betas.len(), num_timesteps);
581        assert!(betas[0] < betas[num_timesteps - 1]);
582        assert!(alphas_cumprod[0] > alphas_cumprod[num_timesteps - 1]);
583    }
584
585    #[test]
586    fn test_forward_diffusion() {
587        let model = QuantumDiffusionModel::new(
588            4,   // data_dim
589            4,   // num_qubits
590            100, // timesteps
591            NoiseSchedule::Linear {
592                beta_start: 0.0001,
593                beta_end: 0.02,
594            },
595        )
596        .unwrap();
597
598        let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
599        let (xt, noise) = model.forward_diffusion(&x0, 50).unwrap();
600
601        assert_eq!(xt.len(), 4);
602        assert_eq!(noise.len(), 4);
603    }
604
605    #[test]
606    fn test_generation() {
607        let model = QuantumDiffusionModel::new(
608            2,  // data_dim
609            4,  // num_qubits
610            50, // timesteps
611            NoiseSchedule::Cosine { s: 0.008 },
612        )
613        .unwrap();
614
615        let samples = model.generate(5).unwrap();
616        assert_eq!(samples.shape(), &[5, 2]);
617    }
618
619    #[test]
620    fn test_score_diffusion() {
621        let model = QuantumScoreDiffusion::new(
622            3,  // data_dim
623            4,  // num_qubits
624            10, // noise levels
625        )
626        .unwrap();
627
628        let x = Array1::from_vec(vec![0.1, 0.2, 0.3]);
629        let score = model.estimate_score(&x, 0.1).unwrap();
630
631        assert_eq!(score.len(), 3);
632    }
633}