1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use ndarray::{s, Array1, Array2, Array3, ArrayView1};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14 single::{RotationX, RotationY, RotationZ},
15 GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21#[derive(Debug, Clone, Copy)]
23pub enum NoiseSchedule {
24 Linear { beta_start: f64, beta_end: f64 },
26
27 Cosine { s: f64 },
29
30 Quadratic { beta_start: f64, beta_end: f64 },
32
33 Sigmoid { beta_start: f64, beta_end: f64 },
35}
36
37pub struct QuantumDiffusionModel {
39 denoiser: QuantumNeuralNetwork,
41
42 num_timesteps: usize,
44
45 noise_schedule: NoiseSchedule,
47
48 betas: Array1<f64>,
50
51 alphas: Array1<f64>,
53
54 alphas_cumprod: Array1<f64>,
56
57 data_dim: usize,
59
60 num_qubits: usize,
62}
63
64impl QuantumDiffusionModel {
65 pub fn new(
67 data_dim: usize,
68 num_qubits: usize,
69 num_timesteps: usize,
70 noise_schedule: NoiseSchedule,
71 ) -> Result<Self> {
72 let layers = vec![
74 QNNLayerType::EncodingLayer {
75 num_features: data_dim + 1,
76 }, QNNLayerType::VariationalLayer {
78 num_params: num_qubits * 3,
79 },
80 QNNLayerType::EntanglementLayer {
81 connectivity: "circular".to_string(),
82 },
83 QNNLayerType::VariationalLayer {
84 num_params: num_qubits * 3,
85 },
86 QNNLayerType::EntanglementLayer {
87 connectivity: "circular".to_string(),
88 },
89 QNNLayerType::VariationalLayer {
90 num_params: num_qubits * 3,
91 },
92 QNNLayerType::MeasurementLayer {
93 measurement_basis: "Pauli-Z".to_string(),
94 },
95 ];
96
97 let denoiser = QuantumNeuralNetwork::new(
98 layers,
99 num_qubits,
100 data_dim + 1, data_dim, )?;
103
104 let (betas, alphas, alphas_cumprod) =
106 Self::compute_schedule(num_timesteps, &noise_schedule);
107
108 Ok(Self {
109 denoiser,
110 num_timesteps,
111 noise_schedule,
112 betas,
113 alphas,
114 alphas_cumprod,
115 data_dim,
116 num_qubits,
117 })
118 }
119
120 fn compute_schedule(
122 num_timesteps: usize,
123 schedule: &NoiseSchedule,
124 ) -> (Array1<f64>, Array1<f64>, Array1<f64>) {
125 let mut betas = Array1::zeros(num_timesteps);
126
127 match schedule {
128 NoiseSchedule::Linear {
129 beta_start,
130 beta_end,
131 } => {
132 for t in 0..num_timesteps {
133 betas[t] = beta_start
134 + (beta_end - beta_start) * t as f64 / (num_timesteps - 1) as f64;
135 }
136 }
137 NoiseSchedule::Cosine { s } => {
138 for t in 0..num_timesteps {
139 let f_t = ((t as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
140 .cos()
141 .powi(2);
142 let f_t_prev = if t == 0 {
143 1.0
144 } else {
145 (((t - 1) as f64 / num_timesteps as f64 + s) / (1.0 + s) * PI / 2.0)
146 .cos()
147 .powi(2)
148 };
149 betas[t] = 1.0 - f_t / f_t_prev;
150 }
151 }
152 NoiseSchedule::Quadratic {
153 beta_start,
154 beta_end,
155 } => {
156 for t in 0..num_timesteps {
157 let ratio = t as f64 / (num_timesteps - 1) as f64;
158 betas[t] = beta_start + (beta_end - beta_start) * ratio * ratio;
159 }
160 }
161 NoiseSchedule::Sigmoid {
162 beta_start,
163 beta_end,
164 } => {
165 for t in 0..num_timesteps {
166 let x = 10.0 * (t as f64 / (num_timesteps - 1) as f64 - 0.5);
167 let sigmoid = 1.0 / (1.0 + (-x).exp());
168 betas[t] = beta_start + (beta_end - beta_start) * sigmoid;
169 }
170 }
171 }
172
173 let alphas = 1.0 - &betas;
175 let mut alphas_cumprod = Array1::zeros(num_timesteps);
176 alphas_cumprod[0] = alphas[0];
177
178 for t in 1..num_timesteps {
179 alphas_cumprod[t] = alphas_cumprod[t - 1] * alphas[t];
180 }
181
182 (betas, alphas, alphas_cumprod)
183 }
184
185 pub fn forward_diffusion(
187 &self,
188 x0: &Array1<f64>,
189 t: usize,
190 ) -> Result<(Array1<f64>, Array1<f64>)> {
191 if t >= self.num_timesteps {
192 return Err(MLError::ModelCreationError("Invalid timestep".to_string()));
193 }
194
195 let noise = Array1::from_shape_fn(self.data_dim, |_| {
197 let u1 = rand::random::<f64>();
199 let u2 = rand::random::<f64>();
200 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
201 });
202
203 let sqrt_alpha_cumprod = self.alphas_cumprod[t].sqrt();
205 let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
206
207 let xt = sqrt_alpha_cumprod * x0 + sqrt_one_minus_alpha_cumprod * &noise;
208
209 Ok((xt, noise))
210 }
211
212 pub fn predict_noise(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
214 let mut input = Array1::zeros(self.data_dim + 1);
216 for i in 0..self.data_dim {
217 input[i] = xt[i];
218 }
219 input[self.data_dim] = t as f64 / self.num_timesteps as f64; let predicted_noise = self.extract_noise_prediction_placeholder()?;
223
224 Ok(predicted_noise)
225 }
226
227 fn extract_noise_prediction_placeholder(&self) -> Result<Array1<f64>> {
229 let noise = Array1::from_shape_fn(self.data_dim, |_| 2.0 * rand::random::<f64>() - 1.0);
231 Ok(noise)
232 }
233
234 pub fn reverse_diffusion_step(&self, xt: &Array1<f64>, t: usize) -> Result<Array1<f64>> {
236 if t == 0 {
237 return Ok(xt.clone());
238 }
239
240 let predicted_noise = self.predict_noise(xt, t)?;
242
243 let beta_t = self.betas[t];
245 let sqrt_one_minus_alpha_cumprod = (1.0 - self.alphas_cumprod[t]).sqrt();
246 let sqrt_recip_alpha = 1.0 / self.alphas[t].sqrt();
247
248 let mean =
250 sqrt_recip_alpha * (xt - beta_t / sqrt_one_minus_alpha_cumprod * &predicted_noise);
251
252 let xt_prev = if t > 1 {
254 let noise_scale = beta_t.sqrt();
255 let noise = Array1::from_shape_fn(self.data_dim, |_| {
256 let u1 = rand::random::<f64>();
257 let u2 = rand::random::<f64>();
258 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
259 });
260 mean + noise_scale * noise
261 } else {
262 mean
263 };
264
265 Ok(xt_prev)
266 }
267
268 pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
270 let mut samples = Array2::zeros((num_samples, self.data_dim));
271
272 for sample_idx in 0..num_samples {
273 let mut xt = Array1::from_shape_fn(self.data_dim, |_| {
275 let u1 = rand::random::<f64>();
276 let u2 = rand::random::<f64>();
277 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
278 });
279
280 for t in (0..self.num_timesteps).rev() {
282 xt = self.reverse_diffusion_step(&xt, t)?;
283 }
284
285 samples.row_mut(sample_idx).assign(&xt);
287 }
288
289 Ok(samples)
290 }
291
292 pub fn train(
294 &mut self,
295 data: &Array2<f64>,
296 optimizer: &mut dyn Optimizer,
297 epochs: usize,
298 batch_size: usize,
299 ) -> Result<Vec<f64>> {
300 let mut losses = Vec::new();
301 let num_samples = data.nrows();
302
303 for epoch in 0..epochs {
304 let mut epoch_loss = 0.0;
305 let mut num_batches = 0;
306
307 for batch_start in (0..num_samples).step_by(batch_size) {
309 let batch_end = (batch_start + batch_size).min(num_samples);
310 let batch_data = data.slice(s![batch_start..batch_end, ..]);
311
312 let mut batch_loss = 0.0;
313
314 for sample_idx in 0..batch_data.nrows() {
316 let x0 = batch_data.row(sample_idx).to_owned();
317
318 let t = fastrand::usize(0..self.num_timesteps);
320
321 let (xt, true_noise) = self.forward_diffusion(&x0, t)?;
323
324 let predicted_noise = self.predict_noise(&xt, t)?;
326
327 let noise_diff = &predicted_noise - &true_noise;
329 let loss = noise_diff.mapv(|x| x * x).sum() / self.data_dim as f64;
330 batch_loss += loss;
331 }
332
333 batch_loss /= batch_data.nrows() as f64;
334 epoch_loss += batch_loss;
335 num_batches += 1;
336
337 self.update_parameters(optimizer, batch_loss)?;
339 }
340
341 epoch_loss /= num_batches as f64;
342 losses.push(epoch_loss);
343
344 if epoch % 10 == 0 {
345 println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
346 }
347 }
348
349 Ok(losses)
350 }
351
352 fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
354 Ok(())
356 }
357
358 pub fn conditional_generate(
360 &self,
361 condition: &Array1<f64>,
362 num_samples: usize,
363 ) -> Result<Array2<f64>> {
364 self.generate(num_samples)
367 }
368
369 pub fn betas(&self) -> &Array1<f64> {
371 &self.betas
372 }
373
374 pub fn alphas_cumprod(&self) -> &Array1<f64> {
376 &self.alphas_cumprod
377 }
378}
379
380pub struct QuantumScoreDiffusion {
382 score_net: QuantumNeuralNetwork,
384
385 noise_levels: Array1<f64>,
387
388 data_dim: usize,
390}
391
392impl QuantumScoreDiffusion {
393 pub fn new(data_dim: usize, num_qubits: usize, num_noise_levels: usize) -> Result<Self> {
395 let layers = vec![
396 QNNLayerType::EncodingLayer {
397 num_features: data_dim + 1,
398 }, QNNLayerType::VariationalLayer {
400 num_params: num_qubits * 4,
401 },
402 QNNLayerType::EntanglementLayer {
403 connectivity: "full".to_string(),
404 },
405 QNNLayerType::VariationalLayer {
406 num_params: num_qubits * 4,
407 },
408 QNNLayerType::MeasurementLayer {
409 measurement_basis: "Pauli-XYZ".to_string(),
410 },
411 ];
412
413 let score_net = QuantumNeuralNetwork::new(
414 layers,
415 num_qubits,
416 data_dim + 1,
417 data_dim, )?;
419
420 let noise_levels = Array1::from_shape_fn(num_noise_levels, |i| {
422 0.01 * (10.0_f64).powf(i as f64 / (num_noise_levels - 1) as f64)
423 });
424
425 Ok(Self {
426 score_net,
427 noise_levels,
428 data_dim,
429 })
430 }
431
432 pub fn estimate_score(&self, x: &Array1<f64>, noise_level: f64) -> Result<Array1<f64>> {
434 let mut input = Array1::zeros(self.data_dim + 1);
436 for i in 0..self.data_dim {
437 input[i] = x[i];
438 }
439 input[self.data_dim] = noise_level;
440
441 let score = Array1::from_shape_fn(self.data_dim, |_| 2.0 * rand::random::<f64>() - 1.0);
445
446 Ok(score)
447 }
448
449 pub fn langevin_sample(
451 &self,
452 init: Array1<f64>,
453 noise_level: f64,
454 num_steps: usize,
455 step_size: f64,
456 ) -> Result<Array1<f64>> {
457 let mut x = init;
458
459 for _ in 0..num_steps {
460 let score = self.estimate_score(&x, noise_level)?;
462
463 let noise = Array1::from_shape_fn(self.data_dim, |_| {
465 let u1 = rand::random::<f64>();
466 let u2 = rand::random::<f64>();
467 (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos()
468 });
469
470 x = &x + step_size * &score + (2.0 * step_size).sqrt() * noise;
471 }
472
473 Ok(x)
474 }
475
476 pub fn noise_levels(&self) -> &Array1<f64> {
478 &self.noise_levels
479 }
480}
481
482pub struct QuantumVariationalDiffusion {
484 encoder: QuantumNeuralNetwork,
486
487 decoder: QuantumNeuralNetwork,
489
490 latent_dim: usize,
492
493 data_dim: usize,
495}
496
497impl QuantumVariationalDiffusion {
498 pub fn new(data_dim: usize, latent_dim: usize, num_qubits: usize) -> Result<Self> {
500 let encoder_layers = vec![
502 QNNLayerType::EncodingLayer {
503 num_features: data_dim,
504 },
505 QNNLayerType::VariationalLayer {
506 num_params: num_qubits * 3,
507 },
508 QNNLayerType::EntanglementLayer {
509 connectivity: "circular".to_string(),
510 },
511 QNNLayerType::MeasurementLayer {
512 measurement_basis: "computational".to_string(),
513 },
514 ];
515
516 let encoder = QuantumNeuralNetwork::new(
517 encoder_layers,
518 num_qubits,
519 data_dim,
520 latent_dim * 2, )?;
522
523 let decoder_layers = vec![
525 QNNLayerType::EncodingLayer {
526 num_features: latent_dim,
527 },
528 QNNLayerType::VariationalLayer {
529 num_params: num_qubits * 3,
530 },
531 QNNLayerType::EntanglementLayer {
532 connectivity: "circular".to_string(),
533 },
534 QNNLayerType::MeasurementLayer {
535 measurement_basis: "Pauli-Z".to_string(),
536 },
537 ];
538
539 let decoder = QuantumNeuralNetwork::new(decoder_layers, num_qubits, latent_dim, data_dim)?;
540
541 Ok(Self {
542 encoder,
543 decoder,
544 latent_dim,
545 data_dim,
546 })
547 }
548
549 pub fn encode(&self, x: &Array1<f64>) -> Result<(Array1<f64>, Array1<f64>)> {
551 let mean = Array1::zeros(self.latent_dim);
553 let log_var = Array1::zeros(self.latent_dim);
554 Ok((mean, log_var))
555 }
556
557 pub fn decode(&self, z: &Array1<f64>) -> Result<Array1<f64>> {
559 Ok(Array1::zeros(self.data_dim))
561 }
562}
563
564#[cfg(test)]
565mod tests {
566 use super::*;
567 use crate::autodiff::optimizers::Adam;
568
569 #[test]
570 fn test_noise_schedule() {
571 let num_timesteps = 100;
572 let schedule = NoiseSchedule::Linear {
573 beta_start: 0.0001,
574 beta_end: 0.02,
575 };
576
577 let (betas, alphas, alphas_cumprod) =
578 QuantumDiffusionModel::compute_schedule(num_timesteps, &schedule);
579
580 assert_eq!(betas.len(), num_timesteps);
581 assert!(betas[0] < betas[num_timesteps - 1]);
582 assert!(alphas_cumprod[0] > alphas_cumprod[num_timesteps - 1]);
583 }
584
585 #[test]
586 fn test_forward_diffusion() {
587 let model = QuantumDiffusionModel::new(
588 4, 4, 100, NoiseSchedule::Linear {
592 beta_start: 0.0001,
593 beta_end: 0.02,
594 },
595 )
596 .unwrap();
597
598 let x0 = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
599 let (xt, noise) = model.forward_diffusion(&x0, 50).unwrap();
600
601 assert_eq!(xt.len(), 4);
602 assert_eq!(noise.len(), 4);
603 }
604
605 #[test]
606 fn test_generation() {
607 let model = QuantumDiffusionModel::new(
608 2, 4, 50, NoiseSchedule::Cosine { s: 0.008 },
612 )
613 .unwrap();
614
615 let samples = model.generate(5).unwrap();
616 assert_eq!(samples.shape(), &[5, 2]);
617 }
618
619 #[test]
620 fn test_score_diffusion() {
621 let model = QuantumScoreDiffusion::new(
622 3, 4, 10, )
626 .unwrap();
627
628 let x = Array1::from_vec(vec![0.1, 0.2, 0.3]);
629 let score = model.estimate_score(&x, 0.1).unwrap();
630
631 assert_eq!(score.len(), 3);
632 }
633}