1use crate::automl::config::{AlgorithmSearchSpace, MLTaskType};
6use crate::automl::pipeline::QuantumMLPipeline;
7use crate::error::Result;
8use std::collections::HashMap;
9
10#[derive(Debug, Clone)]
12pub struct QuantumModelSelector {
13 model_candidates: Vec<ModelCandidate>,
15
16 selection_strategy: ModelSelectionStrategy,
18
19 performance_estimator: ModelPerformanceEstimator,
21}
22
23#[derive(Debug, Clone)]
25pub struct ModelCandidate {
26 pub model_type: ModelType,
28
29 pub configuration: ModelConfiguration,
31
32 pub estimated_performance: f64,
34
35 pub resource_requirements: ResourceRequirements,
37}
38
39#[derive(Debug, Clone)]
41pub enum ModelType {
42 QuantumNeuralNetwork,
43 QuantumSupportVectorMachine,
44 QuantumClustering,
45 QuantumDimensionalityReduction,
46 QuantumTimeSeries,
47 QuantumAnomalyDetection,
48 EnsembleModel,
49}
50
51#[derive(Debug, Clone)]
53pub struct ModelConfiguration {
54 pub architecture: ArchitectureConfiguration,
56
57 pub hyperparameters: HashMap<String, f64>,
59
60 pub preprocessing: PreprocessorConfig,
62}
63
64#[derive(Debug, Clone)]
66pub struct ArchitectureConfiguration {
67 pub layers: Vec<LayerConfig>,
69
70 pub quantum_config: QuantumCircuitConfig,
72
73 pub hybrid_config: Option<HybridConfiguration>,
75}
76
77#[derive(Debug, Clone)]
79pub struct LayerConfig {
80 pub layer_type: String,
82
83 pub size: usize,
85
86 pub activation: String,
88}
89
90#[derive(Debug, Clone)]
92pub struct QuantumCircuitConfig {
93 pub num_qubits: usize,
95
96 pub depth: usize,
98
99 pub gates: Vec<String>,
101
102 pub entanglement: String,
104}
105
106#[derive(Debug, Clone)]
108pub struct HybridConfiguration {
109 pub quantum_classical_split: f64,
111
112 pub interface_method: String,
114
115 pub synchronization_strategy: String,
117}
118
119#[derive(Debug, Clone)]
121pub struct PreprocessorConfig {
122 pub scaling: String,
124
125 pub feature_selection: Option<String>,
127
128 pub quantum_encoding: String,
130}
131
132#[derive(Debug, Clone)]
134pub struct ResourceRequirements {
135 pub computational_complexity: f64,
137
138 pub memory_requirements: f64,
140
141 pub quantum_requirements: QuantumResourceRequirements,
143
144 pub training_time_estimate: f64,
146}
147
148#[derive(Debug, Clone)]
150pub struct QuantumResourceRequirements {
151 pub required_qubits: usize,
153
154 pub required_circuit_depth: usize,
156
157 pub required_coherence_time: f64,
159
160 pub required_gate_fidelity: f64,
162}
163
164#[derive(Debug, Clone)]
166pub enum ModelSelectionStrategy {
167 BestPerformance,
168 ParetoOptimal,
169 ResourceConstrained,
170 QuantumAdvantage,
171 EnsembleBased,
172 MetaLearning,
173}
174
175#[derive(Debug, Clone)]
177pub struct ModelPerformanceEstimator {
178 method: PerformanceEstimationMethod,
180
181 performance_database: HashMap<String, f64>,
183}
184
185#[derive(Debug, Clone)]
187pub enum PerformanceEstimationMethod {
188 HistoricalData,
189 MetaLearning,
190 TheoreticalAnalysis,
191 QuickValidation,
192}
193
194impl QuantumModelSelector {
195 pub fn new(algorithm_space: &AlgorithmSearchSpace) -> Self {
197 let mut model_candidates = Vec::new();
198
199 if algorithm_space.quantum_neural_networks {
201 model_candidates.push(ModelCandidate {
202 model_type: ModelType::QuantumNeuralNetwork,
203 configuration: ModelConfiguration::default_qnn(),
204 estimated_performance: 0.8,
205 resource_requirements: ResourceRequirements::moderate(),
206 });
207 }
208
209 if algorithm_space.quantum_svm {
211 model_candidates.push(ModelCandidate {
212 model_type: ModelType::QuantumSupportVectorMachine,
213 configuration: ModelConfiguration::default_qsvm(),
214 estimated_performance: 0.75,
215 resource_requirements: ResourceRequirements::low(),
216 });
217 }
218
219 if algorithm_space.quantum_clustering {
221 model_candidates.push(ModelCandidate {
222 model_type: ModelType::QuantumClustering,
223 configuration: ModelConfiguration::default_clustering(),
224 estimated_performance: 0.7,
225 resource_requirements: ResourceRequirements::moderate(),
226 });
227 }
228
229 Self {
230 model_candidates,
231 selection_strategy: ModelSelectionStrategy::BestPerformance,
232 performance_estimator: ModelPerformanceEstimator::new(),
233 }
234 }
235
236 pub fn select_model(&self, task_type: &MLTaskType) -> Result<ModelCandidate> {
238 let suitable_candidates = self.filter_candidates_by_task(task_type);
239
240 if suitable_candidates.is_empty() {
241 return Err(crate::error::MLError::InvalidParameter(
242 "No suitable model candidates found".to_string(),
243 ));
244 }
245
246 match self.selection_strategy {
247 ModelSelectionStrategy::BestPerformance => Ok(suitable_candidates
248 .into_iter()
249 .max_by(|a, b| {
250 a.estimated_performance
251 .partial_cmp(&b.estimated_performance)
252 .unwrap()
253 })
254 .unwrap()
255 .clone()),
256 ModelSelectionStrategy::ResourceConstrained => Ok(suitable_candidates
257 .into_iter()
258 .min_by(|a, b| {
259 a.resource_requirements
260 .computational_complexity
261 .partial_cmp(&b.resource_requirements.computational_complexity)
262 .unwrap()
263 })
264 .unwrap()
265 .clone()),
266 _ => {
267 Ok(suitable_candidates
269 .into_iter()
270 .max_by(|a, b| {
271 a.estimated_performance
272 .partial_cmp(&b.estimated_performance)
273 .unwrap()
274 })
275 .unwrap()
276 .clone())
277 }
278 }
279 }
280
281 pub fn get_candidates(&self) -> &[ModelCandidate] {
283 &self.model_candidates
284 }
285
286 pub fn update_performance_estimates(&mut self, performance_data: HashMap<String, f64>) {
288 self.performance_estimator
289 .performance_database
290 .extend(performance_data);
291 }
292
293 fn filter_candidates_by_task(&self, task_type: &MLTaskType) -> Vec<&ModelCandidate> {
296 self.model_candidates
297 .iter()
298 .filter(|candidate| self.is_suitable_for_task(&candidate.model_type, task_type))
299 .collect()
300 }
301
302 fn is_suitable_for_task(&self, model_type: &ModelType, task_type: &MLTaskType) -> bool {
303 match (model_type, task_type) {
304 (ModelType::QuantumNeuralNetwork, _) => true, (ModelType::QuantumSupportVectorMachine, MLTaskType::BinaryClassification) => true,
306 (ModelType::QuantumSupportVectorMachine, MLTaskType::MultiClassification { .. }) => {
307 true
308 }
309 (ModelType::QuantumClustering, MLTaskType::Clustering { .. }) => true,
310 (
311 ModelType::QuantumDimensionalityReduction,
312 MLTaskType::DimensionalityReduction { .. },
313 ) => true,
314 (ModelType::QuantumTimeSeries, MLTaskType::TimeSeriesForecasting { .. }) => true,
315 (ModelType::QuantumAnomalyDetection, MLTaskType::AnomalyDetection) => true,
316 (ModelType::EnsembleModel, _) => true, _ => false,
318 }
319 }
320}
321
322impl ModelConfiguration {
323 fn default_qnn() -> Self {
324 Self {
325 architecture: ArchitectureConfiguration {
326 layers: vec![
327 LayerConfig {
328 layer_type: "quantum".to_string(),
329 size: 4,
330 activation: "none".to_string(),
331 },
332 LayerConfig {
333 layer_type: "classical".to_string(),
334 size: 10,
335 activation: "relu".to_string(),
336 },
337 ],
338 quantum_config: QuantumCircuitConfig {
339 num_qubits: 4,
340 depth: 3,
341 gates: vec!["RY".to_string(), "CNOT".to_string()],
342 entanglement: "linear".to_string(),
343 },
344 hybrid_config: Some(HybridConfiguration {
345 quantum_classical_split: 0.5,
346 interface_method: "measurement".to_string(),
347 synchronization_strategy: "sequential".to_string(),
348 }),
349 },
350 hyperparameters: {
351 let mut params = HashMap::new();
352 params.insert("learning_rate".to_string(), 0.01);
353 params.insert("batch_size".to_string(), 32.0);
354 params
355 },
356 preprocessing: PreprocessorConfig {
357 scaling: "standard".to_string(),
358 feature_selection: None,
359 quantum_encoding: "angle".to_string(),
360 },
361 }
362 }
363
364 fn default_qsvm() -> Self {
365 Self {
366 architecture: ArchitectureConfiguration {
367 layers: vec![],
368 quantum_config: QuantumCircuitConfig {
369 num_qubits: 8,
370 depth: 2,
371 gates: vec!["H".to_string(), "CNOT".to_string()],
372 entanglement: "full".to_string(),
373 },
374 hybrid_config: None,
375 },
376 hyperparameters: {
377 let mut params = HashMap::new();
378 params.insert("C".to_string(), 1.0);
379 params.insert("gamma".to_string(), 0.1);
380 params
381 },
382 preprocessing: PreprocessorConfig {
383 scaling: "minmax".to_string(),
384 feature_selection: Some("variance".to_string()),
385 quantum_encoding: "amplitude".to_string(),
386 },
387 }
388 }
389
390 fn default_clustering() -> Self {
391 Self {
392 architecture: ArchitectureConfiguration {
393 layers: vec![],
394 quantum_config: QuantumCircuitConfig {
395 num_qubits: 6,
396 depth: 4,
397 gates: vec!["RX".to_string(), "RZ".to_string(), "CNOT".to_string()],
398 entanglement: "circular".to_string(),
399 },
400 hybrid_config: None,
401 },
402 hyperparameters: {
403 let mut params = HashMap::new();
404 params.insert("num_clusters".to_string(), 3.0);
405 params.insert("max_iter".to_string(), 100.0);
406 params
407 },
408 preprocessing: PreprocessorConfig {
409 scaling: "robust".to_string(),
410 feature_selection: None,
411 quantum_encoding: "basis".to_string(),
412 },
413 }
414 }
415}
416
417impl ResourceRequirements {
418 fn low() -> Self {
419 Self {
420 computational_complexity: 1.0,
421 memory_requirements: 100.0, quantum_requirements: QuantumResourceRequirements {
423 required_qubits: 4,
424 required_circuit_depth: 10,
425 required_coherence_time: 50.0,
426 required_gate_fidelity: 0.99,
427 },
428 training_time_estimate: 300.0, }
430 }
431
432 fn moderate() -> Self {
433 Self {
434 computational_complexity: 5.0,
435 memory_requirements: 500.0, quantum_requirements: QuantumResourceRequirements {
437 required_qubits: 8,
438 required_circuit_depth: 20,
439 required_coherence_time: 100.0,
440 required_gate_fidelity: 0.995,
441 },
442 training_time_estimate: 900.0, }
444 }
445
446 fn high() -> Self {
447 Self {
448 computational_complexity: 10.0,
449 memory_requirements: 2000.0, quantum_requirements: QuantumResourceRequirements {
451 required_qubits: 16,
452 required_circuit_depth: 50,
453 required_coherence_time: 200.0,
454 required_gate_fidelity: 0.999,
455 },
456 training_time_estimate: 3600.0, }
458 }
459}
460
461impl ModelPerformanceEstimator {
462 fn new() -> Self {
463 Self {
464 method: PerformanceEstimationMethod::HistoricalData,
465 performance_database: HashMap::new(),
466 }
467 }
468}