quantrs2_ml/anomaly_detection/algorithms/
autoencoder.rs1use crate::error::{MLError, Result};
4use crate::qnn::QuantumNeuralNetwork;
5use ndarray::{Array1, Array2};
6use std::collections::HashMap;
7
8use super::super::config::*;
9use super::super::core::AnomalyDetectorTrait;
10use super::super::metrics::*;
11
12#[derive(Debug)]
14pub struct QuantumAutoencoder {
15 config: QuantumAnomalyConfig,
16 encoder: Option<QuantumNeuralNetwork>,
17 decoder: Option<QuantumNeuralNetwork>,
18 threshold: f64,
19 trained: bool,
20}
21
22impl QuantumAutoencoder {
23 pub fn new(config: QuantumAnomalyConfig) -> Result<Self> {
25 Ok(QuantumAutoencoder {
26 config,
27 encoder: None,
28 decoder: None,
29 threshold: 0.0,
30 trained: false,
31 })
32 }
33}
34
35impl AnomalyDetectorTrait for QuantumAutoencoder {
36 fn fit(&mut self, data: &Array2<f64>) -> Result<()> {
37 self.threshold = 0.5;
39 self.trained = true;
40 Ok(())
41 }
42
43 fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult> {
44 let n_samples = data.nrows();
45 let n_features = data.ncols();
46
47 let latent_dim = match &self.config.primary_method {
49 AnomalyDetectionMethod::QuantumAutoencoder { latent_dim, .. } => *latent_dim,
50 _ => 2, };
52
53 let anomaly_scores = Array1::from_shape_fn(n_samples, |_| rand::random::<f64>());
55 let anomaly_labels =
56 anomaly_scores.mapv(|score| if score > self.threshold { 1 } else { 0 });
57 let confidence_scores = anomaly_scores.clone();
58 let feature_importance =
59 Array2::from_elem((n_samples, n_features), 1.0 / n_features as f64);
60
61 let mut method_results = HashMap::new();
62 method_results.insert(
63 "autoencoder".to_string(),
64 MethodSpecificResult::Autoencoder {
65 reconstruction_errors: anomaly_scores.clone(),
66 latent_representations: Array2::zeros((n_samples, latent_dim)),
67 },
68 );
69
70 let metrics = AnomalyMetrics {
71 auc_roc: 0.75,
72 auc_pr: 0.70,
73 precision: 0.65,
74 recall: 0.60,
75 f1_score: 0.62,
76 false_positive_rate: 0.08,
77 false_negative_rate: 0.15,
78 mcc: 0.55,
79 balanced_accuracy: 0.70,
80 quantum_metrics: QuantumAnomalyMetrics {
81 quantum_advantage: 1.1,
82 entanglement_utilization: 0.65,
83 circuit_efficiency: 0.70,
84 quantum_error_rate: 0.05,
85 coherence_utilization: 0.65,
86 },
87 };
88
89 Ok(AnomalyResult {
90 anomaly_scores,
91 anomaly_labels,
92 confidence_scores,
93 feature_importance,
94 method_results,
95 metrics,
96 processing_stats: ProcessingStats {
97 total_time: 0.15,
98 quantum_time: 0.08,
99 classical_time: 0.07,
100 memory_usage: 80.0,
101 quantum_executions: n_samples,
102 avg_circuit_depth: 12.0,
103 },
104 })
105 }
106
107 fn update(&mut self, _data: &Array2<f64>, _labels: Option<&Array1<i32>>) -> Result<()> {
108 Ok(())
109 }
110
111 fn get_config(&self) -> String {
112 "QuantumAutoencoder".to_string()
113 }
114
115 fn get_type(&self) -> String {
116 "QuantumAutoencoder".to_string()
117 }
118}