1use super::config::{AnalyticsConfig, PredictionConfig};
7use super::data::{
8 AnomalyDetectionResults, PerformancePredictions, RealtimeMetrics, StatisticalAnalysisResults,
9 TrendAnalysisResults, TrendDirection,
10};
11use crate::DeviceResult;
12use scirs2_core::ndarray::{Array1, Array2};
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, VecDeque};
15use std::time::{Duration, SystemTime};
16
17pub struct StatisticalAnalyzer {
19 config: AnalyticsConfig,
20 analysis_cache: HashMap<String, CachedAnalysis>,
21 computation_history: VecDeque<AnalysisRecord>,
22}
23
24pub struct TrendAnalyzer {
26 config: AnalyticsConfig,
27 trend_models: HashMap<String, TrendModel>,
28 forecast_accuracy: HashMap<String, f64>,
29}
30
31pub struct AnomalyDetector {
33 config: AnalyticsConfig,
34 detection_models: HashMap<String, AnomalyDetectionModel>,
35 baseline_statistics: HashMap<String, BaselineStatistics>,
36 anomaly_history: VecDeque<HistoricalAnomaly>,
37}
38
39pub struct PerformancePredictor {
41 config: PredictionConfig,
42 prediction_models: HashMap<String, PredictionModelInstance>,
43 feature_engineering: FeatureEngineeringPipeline,
44 model_registry: ModelRegistry,
45}
46
47#[derive(Debug, Clone)]
49pub struct CachedAnalysis {
50 pub timestamp: SystemTime,
51 pub analysis_type: String,
52 pub results: HashMap<String, f64>,
53 pub validity_period: Duration,
54}
55
56#[derive(Debug, Clone)]
58pub struct AnalysisRecord {
59 pub timestamp: SystemTime,
60 pub analysis_type: String,
61 pub computation_time: Duration,
62 pub data_points: usize,
63 pub success: bool,
64}
65
66#[derive(Debug, Clone)]
68pub struct TrendModel {
69 pub model_type: TrendModelType,
70 pub parameters: Vec<f64>,
71 pub last_update: SystemTime,
72 pub accuracy: f64,
73 pub trend_direction: TrendDirection,
74}
75
76#[derive(Debug, Clone, PartialEq)]
78pub enum TrendModelType {
79 Linear,
80 Exponential,
81 Polynomial { degree: usize },
82 MovingAverage { window: usize },
83 ExponentialSmoothing { alpha: f64 },
84 ARIMA { p: usize, d: usize, q: usize },
85 Custom(String),
86}
87
88#[derive(Debug, Clone)]
90pub struct AnomalyDetectionModel {
91 pub model_type: AnomalyModelType,
92 pub sensitivity: f64,
93 pub baseline: BaselineStatistics,
94 pub detection_threshold: f64,
95 pub last_training: SystemTime,
96}
97
98#[derive(Debug, Clone, PartialEq)]
100pub enum AnomalyModelType {
101 StatisticalOutlier,
102 IsolationForest,
103 LocalOutlierFactor,
104 OneClassSVM,
105 AutoEncoder,
106 LSTM,
107 Custom(String),
108}
109
110#[derive(Debug, Clone)]
112pub struct BaselineStatistics {
113 pub mean: f64,
114 pub std_dev: f64,
115 pub percentiles: HashMap<String, f64>,
116 pub distribution_type: String,
117 pub seasonal_patterns: Vec<f64>,
118}
119
120#[derive(Debug, Clone, Serialize, Deserialize)]
122pub struct HistoricalAnomaly {
123 pub timestamp: SystemTime,
124 pub metric_name: String,
125 pub anomaly_type: AnomalyType,
126 pub severity: AnomalySeverity,
127 pub value: f64,
128 pub expected_value: f64,
129 pub deviation: f64,
130 pub resolution: Option<AnomalyResolution>,
131}
132
133#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
135pub enum AnomalyType {
136 Outlier,
137 Drift,
138 Spike,
139 Drop,
140 PatternChange,
141 SeasonalDeviation,
142 Custom(String),
143}
144
145#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
147pub enum AnomalySeverity {
148 Low,
149 Medium,
150 High,
151 Critical,
152}
153
154#[derive(Debug, Clone, Serialize, Deserialize)]
156pub struct AnomalyResolution {
157 pub resolution_time: SystemTime,
158 pub resolution_method: String,
159 pub root_cause: Option<String>,
160 pub corrective_action: Option<String>,
161}
162
163#[derive(Debug, Clone, Serialize, Deserialize)]
165pub struct Anomaly {
166 pub id: String,
167 pub timestamp: SystemTime,
168 pub metric_name: String,
169 pub anomaly_type: AnomalyType,
170 pub severity: AnomalySeverity,
171 pub current_value: f64,
172 pub expected_value: f64,
173 pub confidence: f64,
174 pub impact_assessment: ImpactAssessment,
175}
176
177#[derive(Debug, Clone, Serialize, Deserialize)]
179pub struct ImpactAssessment {
180 pub affected_systems: Vec<String>,
181 pub impact_severity: String,
182 pub estimated_duration: Option<Duration>,
183 pub business_impact: Option<String>,
184}
185
186#[derive(Debug, Clone)]
188pub struct PredictionModelInstance {
189 pub model_id: String,
190 pub model_type: String,
191 pub model_parameters: HashMap<String, f64>,
192 pub training_data_size: usize,
193 pub last_training: SystemTime,
194 pub prediction_accuracy: f64,
195 pub feature_importance: HashMap<String, f64>,
196}
197
198#[derive(Debug, Clone)]
200pub struct FeatureEngineeringPipeline {
201 pub transformations: Vec<FeatureTransformation>,
202 pub feature_selection: FeatureSelectionMethod,
203 pub preprocessing_steps: Vec<PreprocessingStep>,
204}
205
206#[derive(Debug, Clone)]
208pub enum FeatureTransformation {
209 Normalization,
210 Standardization,
211 LogTransform,
212 PolynomialFeatures { degree: usize },
213 InteractionFeatures,
214 TemporalFeatures,
215 Custom(String),
216}
217
218#[derive(Debug, Clone)]
220pub enum FeatureSelectionMethod {
221 VarianceThreshold { threshold: f64 },
222 UnivariateSelection { k: usize },
223 RecursiveFeatureElimination { n_features: usize },
224 LassoRegularization { alpha: f64 },
225 MutualInformation,
226 Custom(String),
227}
228
229#[derive(Debug, Clone)]
231pub enum PreprocessingStep {
232 MissingValueImputation { method: String },
233 OutlierRemoval { method: String },
234 DataSmoothing { window_size: usize },
235 Detrending,
236 SeasonalDecomposition,
237 Custom(String),
238}
239
240#[derive(Debug, Clone)]
242pub struct ModelRegistry {
243 pub registered_models: HashMap<String, ModelMetadata>,
244 pub active_models: Vec<String>,
245 pub model_performance_history: HashMap<String, Vec<ModelPerformanceRecord>>,
246}
247
248#[derive(Debug, Clone)]
250pub struct ModelMetadata {
251 pub model_id: String,
252 pub model_name: String,
253 pub model_type: String,
254 pub version: String,
255 pub created_at: SystemTime,
256 pub last_updated: SystemTime,
257 pub performance_metrics: HashMap<String, f64>,
258 pub hyperparameters: HashMap<String, f64>,
259}
260
261#[derive(Debug, Clone)]
263pub struct ModelPerformanceRecord {
264 pub timestamp: SystemTime,
265 pub accuracy: f64,
266 pub precision: f64,
267 pub recall: f64,
268 pub f1_score: f64,
269 pub custom_metrics: HashMap<String, f64>,
270}
271
272#[derive(Debug, Clone, Serialize, Deserialize)]
274pub struct AnomalyPatterns {
275 pub recurring_patterns: Vec<RecurringPattern>,
276 pub correlation_patterns: Vec<CorrelationPattern>,
277 pub temporal_patterns: Vec<TemporalPattern>,
278}
279
280#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct RecurringPattern {
283 pub pattern_id: String,
284 pub frequency: String,
285 pub affected_metrics: Vec<String>,
286 pub pattern_strength: f64,
287 pub next_predicted_occurrence: Option<SystemTime>,
288}
289
290#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct CorrelationPattern {
293 pub pattern_id: String,
294 pub primary_metric: String,
295 pub correlated_metrics: Vec<String>,
296 pub correlation_strength: f64,
297 pub time_lag: Option<Duration>,
298}
299
300#[derive(Debug, Clone, Serialize, Deserialize)]
302pub struct TemporalPattern {
303 pub pattern_id: String,
304 pub time_of_day: Option<String>,
305 pub day_of_week: Option<String>,
306 pub seasonal_component: Option<String>,
307 pub pattern_confidence: f64,
308}
309
310#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct RootCauseAnalysis {
313 pub probable_causes: Vec<ProbableCause>,
314 pub causal_chains: Vec<CausalChain>,
315 pub correlation_analysis: CorrelationAnalysisResult,
316 pub recommendation_score: f64,
317}
318
319#[derive(Debug, Clone, Serialize, Deserialize)]
321pub struct ProbableCause {
322 pub cause_id: String,
323 pub cause_description: String,
324 pub confidence: f64,
325 pub supporting_evidence: Vec<String>,
326 pub recommended_actions: Vec<String>,
327}
328
329#[derive(Debug, Clone, Serialize, Deserialize)]
331pub struct CausalChain {
332 pub chain_id: String,
333 pub events: Vec<CausalEvent>,
334 pub chain_probability: f64,
335}
336
337#[derive(Debug, Clone, Serialize, Deserialize)]
339pub struct CausalEvent {
340 pub event_id: String,
341 pub event_description: String,
342 pub timestamp: SystemTime,
343 pub event_impact: f64,
344}
345
346#[derive(Debug, Clone, Serialize, Deserialize)]
348pub struct CorrelationAnalysisResult {
349 pub metric_correlations: HashMap<String, f64>,
350 pub time_lag_correlations: HashMap<String, (Duration, f64)>,
351 pub cross_correlations: HashMap<String, Vec<f64>>,
352}
353
354#[derive(Debug, Clone, Serialize, Deserialize)]
356pub struct SeasonalPatterns {
357 pub daily_patterns: HashMap<String, Vec<f64>>,
358 pub weekly_patterns: HashMap<String, Vec<f64>>,
359 pub monthly_patterns: HashMap<String, Vec<f64>>,
360 pub seasonal_strength: HashMap<String, f64>,
361}
362
363#[derive(Debug, Clone, Serialize, Deserialize)]
365pub struct ChangePointDetection {
366 pub change_points: Vec<ChangePoint>,
367 pub change_point_probabilities: Vec<f64>,
368 pub structural_breaks: Vec<StructuralBreak>,
369}
370
371#[derive(Debug, Clone, Serialize, Deserialize)]
373pub struct ChangePoint {
374 pub timestamp: SystemTime,
375 pub metric_name: String,
376 pub change_magnitude: f64,
377 pub confidence: f64,
378 pub change_type: String,
379}
380
381#[derive(Debug, Clone, Serialize, Deserialize)]
383pub struct StructuralBreak {
384 pub breakpoint_time: SystemTime,
385 pub variable_name: String,
386 pub magnitude: f64,
387 pub confidence_level: f64,
388 pub break_type: String,
389}
390
391#[derive(Debug, Clone, Serialize, Deserialize)]
393pub struct ForecastingResults {
394 pub forecasts: HashMap<String, Forecast>,
395 pub forecast_accuracy: HashMap<String, ForecastAccuracy>,
396 pub uncertainty_bounds: HashMap<String, (Vec<f64>, Vec<f64>)>,
397}
398
399#[derive(Debug, Clone, Serialize, Deserialize)]
401pub struct Forecast {
402 pub predicted_values: Vec<f64>,
403 pub prediction_timestamps: Vec<SystemTime>,
404 pub confidence_intervals: Vec<(f64, f64)>,
405 pub model_used: String,
406}
407
408#[derive(Debug, Clone, Serialize, Deserialize)]
410pub struct ForecastAccuracy {
411 pub mae: f64, pub mse: f64, pub rmse: f64, pub mape: f64, pub smape: f64, }
417
418impl StatisticalAnalyzer {
419 pub fn new(config: AnalyticsConfig) -> Self {
420 Self {
421 config,
422 analysis_cache: HashMap::new(),
423 computation_history: VecDeque::new(),
424 }
425 }
426
427 pub async fn analyze_metrics(
428 &mut self,
429 metrics: &RealtimeMetrics,
430 ) -> DeviceResult<StatisticalAnalysisResults> {
431 if let Some(cached) = self.get_cached_analysis("descriptive_stats") {
433 if self.is_cache_valid(&cached) {
434 return Ok(self.build_results_from_cache(&cached));
435 }
436 }
437
438 let start_time = SystemTime::now();
440 let results = self.perform_statistical_analysis(metrics).await?;
441 let computation_time = start_time.elapsed().unwrap_or(Duration::from_secs(0));
442
443 self.cache_analysis("descriptive_stats", &results, computation_time);
445
446 self.record_analysis("descriptive_stats", computation_time, 1, true);
448
449 Ok(results)
450 }
451
452 async fn perform_statistical_analysis(
453 &self,
454 metrics: &RealtimeMetrics,
455 ) -> DeviceResult<StatisticalAnalysisResults> {
456 Ok(StatisticalAnalysisResults::default())
458 }
459
460 fn get_cached_analysis(&self, analysis_type: &str) -> Option<&CachedAnalysis> {
461 self.analysis_cache.get(analysis_type)
462 }
463
464 fn is_cache_valid(&self, cached: &CachedAnalysis) -> bool {
465 SystemTime::now()
466 .duration_since(cached.timestamp)
467 .unwrap_or(Duration::from_secs(0))
468 < cached.validity_period
469 }
470
471 fn build_results_from_cache(&self, _cached: &CachedAnalysis) -> StatisticalAnalysisResults {
472 StatisticalAnalysisResults::default()
473 }
474
475 fn cache_analysis(
476 &mut self,
477 analysis_type: &str,
478 _results: &StatisticalAnalysisResults,
479 _computation_time: Duration,
480 ) {
481 let cached = CachedAnalysis {
482 timestamp: SystemTime::now(),
483 analysis_type: analysis_type.to_string(),
484 results: HashMap::new(),
485 validity_period: Duration::from_secs(300), };
487 self.analysis_cache
488 .insert(analysis_type.to_string(), cached);
489 }
490
491 fn record_analysis(
492 &mut self,
493 analysis_type: &str,
494 computation_time: Duration,
495 data_points: usize,
496 success: bool,
497 ) {
498 let record = AnalysisRecord {
499 timestamp: SystemTime::now(),
500 analysis_type: analysis_type.to_string(),
501 computation_time,
502 data_points,
503 success,
504 };
505
506 self.computation_history.push_back(record);
507
508 if self.computation_history.len() > 1000 {
510 self.computation_history.pop_front();
511 }
512 }
513}
514
515impl TrendAnalyzer {
516 pub fn new(config: AnalyticsConfig) -> Self {
517 Self {
518 config,
519 trend_models: HashMap::new(),
520 forecast_accuracy: HashMap::new(),
521 }
522 }
523
524 pub async fn analyze_trends(
525 &mut self,
526 historical_data: &HashMap<String, Vec<f64>>,
527 ) -> DeviceResult<TrendAnalysisResults> {
528 let mut trend_directions = HashMap::new();
529 let mut trend_strengths = HashMap::new();
530
531 for (metric_name, values) in historical_data {
532 if values.len() < self.config.trend_window_size {
533 continue;
534 }
535
536 let (direction, strength) = self.calculate_trend(values)?;
537 trend_directions.insert(metric_name.clone(), direction);
538 trend_strengths.insert(metric_name.clone(), strength);
539 }
540
541 Ok(TrendAnalysisResults {
542 trend_directions,
543 trend_strengths,
544 seasonal_patterns:
545 crate::performance_analytics_dashboard::data::SeasonalPatterns::default(),
546 change_points:
547 crate::performance_analytics_dashboard::data::ChangePointDetection::default(),
548 forecasts: crate::performance_analytics_dashboard::data::ForecastingResults::default(),
549 })
550 }
551
552 fn calculate_trend(&self, values: &[f64]) -> DeviceResult<(TrendDirection, f64)> {
553 if values.len() < 2 {
554 return Ok((TrendDirection::Stable, 0.0));
555 }
556
557 let n = values.len() as f64;
559 let x_mean = (n - 1.0) / 2.0;
560 let y_mean = values.iter().sum::<f64>() / n;
561
562 let mut numerator = 0.0;
563 let mut denominator = 0.0;
564
565 for (i, &y) in values.iter().enumerate() {
566 let x = i as f64;
567 numerator += (x - x_mean) * (y - y_mean);
568 denominator += (x - x_mean).powi(2);
569 }
570
571 if denominator == 0.0 {
572 return Ok((TrendDirection::Stable, 0.0));
573 }
574
575 let slope = numerator / denominator;
576 let strength = slope.abs();
577
578 let direction = if slope > 0.01 {
579 TrendDirection::Increasing
580 } else if slope < -0.01 {
581 TrendDirection::Decreasing
582 } else {
583 TrendDirection::Stable
584 };
585
586 Ok((direction, strength))
587 }
588}
589
590impl AnomalyDetector {
591 pub fn new(config: AnalyticsConfig) -> Self {
592 Self {
593 config,
594 detection_models: HashMap::new(),
595 baseline_statistics: HashMap::new(),
596 anomaly_history: VecDeque::new(),
597 }
598 }
599
600 pub async fn detect_anomalies(
601 &mut self,
602 metrics: &RealtimeMetrics,
603 ) -> DeviceResult<AnomalyDetectionResults> {
604 let mut current_anomalies = Vec::new();
605
606 if let Some(anomaly) = self
608 .check_metric_anomaly("fidelity", metrics.device_metrics.fidelity)
609 .await?
610 {
611 current_anomalies.push(anomaly);
612 }
613
614 if let Some(anomaly) = self
615 .check_metric_anomaly("error_rate", metrics.device_metrics.error_rate)
616 .await?
617 {
618 current_anomalies.push(anomaly);
619 }
620
621 Ok(AnomalyDetectionResults {
622 current_anomalies: current_anomalies
623 .into_iter()
624 .map(|a| crate::performance_analytics_dashboard::data::Anomaly {
625 timestamp: a
626 .timestamp
627 .duration_since(std::time::UNIX_EPOCH)
628 .unwrap_or_default()
629 .as_secs(),
630 metric_name: a.metric_name,
631 anomaly_score: a.confidence,
632 anomaly_type: format!("{:?}", a.anomaly_type),
633 description: format!("Anomaly detected with confidence {:.2}", a.confidence),
634 })
635 .collect(),
636 anomaly_history: vec![], anomaly_patterns:
638 crate::performance_analytics_dashboard::data::AnomalyPatterns::default(),
639 root_cause_analysis:
640 crate::performance_analytics_dashboard::data::RootCauseAnalysis::default(),
641 })
642 }
643
644 async fn check_metric_anomaly(
645 &mut self,
646 metric_name: &str,
647 value: f64,
648 ) -> DeviceResult<Option<Anomaly>> {
649 let baseline = if let Some(baseline) = self.baseline_statistics.get(metric_name) {
651 baseline.clone()
652 } else {
653 let new_baseline = self.create_baseline(metric_name);
654 self.baseline_statistics
655 .insert(metric_name.to_string(), new_baseline.clone());
656 new_baseline
657 };
658
659 let z_score = (value - baseline.mean) / baseline.std_dev;
661 let threshold = 3.0; if z_score.abs() > threshold {
664 let anomaly = Anomaly {
665 id: format!(
666 "{}-{}",
667 metric_name,
668 SystemTime::now()
669 .duration_since(std::time::UNIX_EPOCH)
670 .unwrap()
671 .as_secs()
672 ),
673 timestamp: SystemTime::now(),
674 metric_name: metric_name.to_string(),
675 anomaly_type: if z_score > 0.0 {
676 AnomalyType::Spike
677 } else {
678 AnomalyType::Drop
679 },
680 severity: if z_score.abs() > 5.0 {
681 AnomalySeverity::Critical
682 } else {
683 AnomalySeverity::High
684 },
685 current_value: value,
686 expected_value: baseline.mean,
687 confidence: (z_score.abs() - threshold) / threshold,
688 impact_assessment: ImpactAssessment {
689 affected_systems: vec![metric_name.to_string()],
690 impact_severity: "Medium".to_string(),
691 estimated_duration: Some(Duration::from_secs(15 * 60)),
692 business_impact: Some("Performance degradation".to_string()),
693 },
694 };
695
696 Ok(Some(anomaly))
697 } else {
698 Ok(None)
699 }
700 }
701
702 fn create_baseline(&self, metric_name: &str) -> BaselineStatistics {
703 let (mean, std_dev) = match metric_name {
705 "fidelity" => (0.95, 0.02),
706 "error_rate" => (0.01, 0.005),
707 "coherence_time" => (100.0, 10.0),
708 _ => (0.0, 1.0),
709 };
710
711 BaselineStatistics {
712 mean,
713 std_dev,
714 percentiles: HashMap::new(),
715 distribution_type: "normal".to_string(),
716 seasonal_patterns: Vec::new(),
717 }
718 }
719}
720
721impl PerformancePredictor {
722 pub fn new(config: PredictionConfig) -> Self {
723 Self {
724 config,
725 prediction_models: HashMap::new(),
726 feature_engineering: FeatureEngineeringPipeline {
727 transformations: Vec::new(),
728 feature_selection: FeatureSelectionMethod::VarianceThreshold { threshold: 0.01 },
729 preprocessing_steps: Vec::new(),
730 },
731 model_registry: ModelRegistry {
732 registered_models: HashMap::new(),
733 active_models: Vec::new(),
734 model_performance_history: HashMap::new(),
735 },
736 }
737 }
738
739 pub async fn predict_performance(
740 &mut self,
741 historical_data: &HashMap<String, Vec<f64>>,
742 ) -> DeviceResult<PerformancePredictions> {
743 Ok(PerformancePredictions::default())
745 }
746}
747
748impl Default for SeasonalPatterns {
750 fn default() -> Self {
751 Self {
752 daily_patterns: HashMap::new(),
753 weekly_patterns: HashMap::new(),
754 monthly_patterns: HashMap::new(),
755 seasonal_strength: HashMap::new(),
756 }
757 }
758}
759
760impl Default for ChangePointDetection {
761 fn default() -> Self {
762 Self {
763 change_points: Vec::new(),
764 change_point_probabilities: Vec::new(),
765 structural_breaks: Vec::new(),
766 }
767 }
768}
769
770impl Default for ForecastingResults {
771 fn default() -> Self {
772 Self {
773 forecasts: HashMap::new(),
774 forecast_accuracy: HashMap::new(),
775 uncertainty_bounds: HashMap::new(),
776 }
777 }
778}
779
780impl Default for AnomalyPatterns {
781 fn default() -> Self {
782 Self {
783 recurring_patterns: Vec::new(),
784 correlation_patterns: Vec::new(),
785 temporal_patterns: Vec::new(),
786 }
787 }
788}
789
790impl Default for RootCauseAnalysis {
791 fn default() -> Self {
792 Self {
793 probable_causes: Vec::new(),
794 causal_chains: Vec::new(),
795 correlation_analysis: CorrelationAnalysisResult {
796 metric_correlations: HashMap::new(),
797 time_lag_correlations: HashMap::new(),
798 cross_correlations: HashMap::new(),
799 },
800 recommendation_score: 0.0,
801 }
802 }
803}