1use std::collections::{HashMap, VecDeque};
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant};
10
11use crate::job_scheduling::SchedulingParams;
12use crate::noise_modeling_scirs2::SciRS2NoiseConfig;
13use crate::prelude::BackendCapabilities;
14use crate::topology::HardwareTopology;
15
16use quantrs2_circuit::prelude::*;
17use quantrs2_core::{
18 error::{QuantRS2Error, QuantRS2Result},
19 gate::GateOp,
20 qubit::QubitId,
21};
22
23#[cfg(feature = "scirs2")]
25use scirs2_graph::{
26 betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
27 strongly_connected_components, Graph,
28};
29#[cfg(feature = "scirs2")]
30use scirs2_linalg::{
31 cholesky, det, eig, inv, matrix_norm, prelude::*, qr, svd, trace, LinalgError, LinalgResult,
32};
33#[cfg(feature = "scirs2")]
34use scirs2_optimize::{
35 differential_evolution,
36 least_squares,
37 minimize,
38 OptimizeResult, };
41#[cfg(feature = "scirs2")]
42use scirs2_stats::{
43 corrcoef,
44 distributions::{chi2, gamma, norm},
45 ks_2samp, mean, pearsonr, shapiro_wilk, spearmanr, std, ttest_1samp, ttest_ind, var,
46 Alternative, TTestResult,
47};
48
49#[cfg(not(feature = "scirs2"))]
51mod fallback_scirs2 {
52 use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
53
54 pub fn mean(_data: &ArrayView1<f64>) -> Result<f64, String> {
55 Ok(0.0)
56 }
57 pub fn std(_data: &ArrayView1<f64>, _ddof: i32) -> Result<f64, String> {
58 Ok(1.0)
59 }
60 pub fn pearsonr(
61 _x: &ArrayView1<f64>,
62 _y: &ArrayView1<f64>,
63 _alt: &str,
64 ) -> Result<(f64, f64), String> {
65 Ok((0.0, 0.5))
66 }
67 pub fn trace(_matrix: &ArrayView2<f64>) -> Result<f64, String> {
68 Ok(1.0)
69 }
70 pub fn inv(_matrix: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
71 Ok(Array2::eye(2))
72 }
73
74 pub struct OptimizeResult {
75 pub x: Array1<f64>,
76 pub fun: f64,
77 pub success: bool,
78 pub nit: usize,
79 pub nfev: usize,
80 pub message: String,
81 }
82
83 pub fn minimize(
84 _func: fn(&Array1<f64>) -> f64,
85 _x0: &Array1<f64>,
86 _method: &str,
87 ) -> Result<OptimizeResult, String> {
88 Ok(OptimizeResult {
89 x: Array1::zeros(2),
90 fun: 0.0,
91 success: true,
92 nit: 0,
93 nfev: 0,
94 message: "Fallback optimization".to_string(),
95 })
96 }
97}
98
99#[cfg(not(feature = "scirs2"))]
100use fallback_scirs2::*;
101
102use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
103use scirs2_core::Complex64;
104use scirs2_core::random::prelude::*;
105use tokio::sync::{broadcast, mpsc};
106
107use crate::{
108 backend_traits::query_backend_capabilities,
109 benchmarking::{BenchmarkConfig, BenchmarkResult, HardwareBenchmarkSuite},
110 calibration::{CalibrationManager, DeviceCalibration},
111 compiler_passes::{CompilationResult, CompilerConfig, HardwareCompiler},
112 crosstalk::{CrosstalkAnalyzer, CrosstalkCharacterization, CrosstalkConfig},
113 dynamical_decoupling::{DynamicalDecouplingConfig, DynamicalDecouplingResult},
114 job_scheduling::{JobConfig, JobPriority, QuantumJob, QuantumJobScheduler},
115 noise_model::CalibrationNoiseModel,
117 noise_modeling_scirs2::SciRS2NoiseModeler,
118 process_tomography::{
119 SciRS2ProcessTomographer, SciRS2ProcessTomographyConfig, SciRS2ProcessTomographyResult,
120 },
121 qec::QECConfig,
122 translation::HardwareBackend,
123 vqa_support::{VQAConfig, VQAExecutor, VQAResult},
124 CircuitExecutor,
125 CircuitResult,
126 DeviceError,
127 DeviceResult,
128 QuantumDevice,
129};
130
131#[derive(Debug, Clone)]
133pub struct IntegratedDeviceConfig {
134 pub enable_adaptive_management: bool,
136 pub enable_ml_optimization: bool,
138 pub enable_realtime_monitoring: bool,
140 pub enable_predictive_analytics: bool,
142 pub orchestration_strategy: OrchestrationStrategy,
144 pub optimization_config: PerformanceOptimizationConfig,
146 pub resource_config: ResourceAllocationConfig,
148 pub analytics_config: AnalyticsConfig,
150 pub workflow_config: WorkflowConfig,
152}
153
154#[derive(Debug, Clone, PartialEq)]
156pub enum OrchestrationStrategy {
157 Conservative,
159 Aggressive,
161 Adaptive,
163 MLDriven,
165 Custom(HashMap<String, f64>),
167}
168
169#[derive(Debug, Clone)]
171pub struct PerformanceOptimizationConfig {
172 pub enable_continuous_optimization: bool,
174 pub optimization_interval: u64,
176 pub performance_targets: PerformanceTargets,
178 pub optimization_weights: HashMap<String, f64>,
180 pub enable_ab_testing: bool,
182 pub learning_rate: f64,
184}
185
186#[derive(Debug, Clone)]
188pub struct ResourceAllocationConfig {
189 pub max_concurrent_jobs: usize,
191 pub allocation_strategy: AllocationStrategy,
193 pub load_balancing: LoadBalancingConfig,
195 pub utilization_targets: UtilizationTargets,
197 pub cost_optimization: CostOptimizationConfig,
199}
200
201#[derive(Debug, Clone)]
203pub struct AnalyticsConfig {
204 pub enable_comprehensive_analytics: bool,
206 pub collection_interval: u64,
208 pub analytics_depth: AnalyticsDepth,
210 pub enable_predictive_modeling: bool,
212 pub retention_period_days: u32,
214 pub anomaly_detection: AnomalyDetectionConfig,
216}
217
218#[derive(Debug, Clone)]
220pub struct WorkflowConfig {
221 pub enable_complex_workflows: bool,
223 pub workflow_optimization: WorkflowOptimizationConfig,
225 pub pipeline_config: PipelineConfig,
227 pub error_handling: ErrorHandlingConfig,
229 pub workflow_templates: Vec<WorkflowTemplate>,
231}
232
233#[derive(Debug, Clone)]
235pub struct PerformanceTargets {
236 pub min_fidelity: f64,
237 pub max_error_rate: f64,
238 pub min_throughput: f64,
239 pub max_latency_ms: u64,
240 pub min_utilization: f64,
241}
242
243#[derive(Debug, Clone, PartialEq)]
244pub enum AllocationStrategy {
245 RoundRobin,
246 LoadBased,
247 PerformanceBased,
248 CostOptimized,
249 MLOptimized,
250}
251
252#[derive(Debug, Clone)]
253pub struct LoadBalancingConfig {
254 pub enable_load_balancing: bool,
255 pub balancing_algorithm: BalancingAlgorithm,
256 pub rebalancing_interval: u64,
257 pub load_threshold: f64,
258}
259
260#[derive(Debug, Clone, PartialEq)]
261pub enum BalancingAlgorithm {
262 WeightedRoundRobin,
263 LeastConnections,
264 ResourceBased,
265 PredictiveBased,
266}
267
268#[derive(Debug, Clone)]
269pub struct UtilizationTargets {
270 pub target_cpu_utilization: f64,
271 pub target_memory_utilization: f64,
272 pub target_network_utilization: f64,
273 pub target_quantum_utilization: f64,
274}
275
276#[derive(Debug, Clone)]
277pub struct CostOptimizationConfig {
278 pub enable_cost_optimization: bool,
279 pub cost_threshold: f64,
280 pub optimization_strategy: CostOptimizationStrategy,
281 pub budget_constraints: BudgetConstraints,
282}
283
284#[derive(Debug, Clone, PartialEq)]
285pub enum CostOptimizationStrategy {
286 MinimizeCost,
287 MaximizeValueForMoney,
288 BudgetConstrained,
289 Dynamic,
290}
291
292#[derive(Debug, Clone)]
293pub struct BudgetConstraints {
294 pub daily_budget: Option<f64>,
295 pub monthly_budget: Option<f64>,
296 pub per_job_limit: Option<f64>,
297}
298
299#[derive(Debug, Clone, PartialEq)]
300pub enum AnalyticsDepth {
301 Basic,
302 Intermediate,
303 Advanced,
304 Comprehensive,
305}
306
307#[derive(Debug, Clone)]
308pub struct AnomalyDetectionConfig {
309 pub enable_anomaly_detection: bool,
310 pub detection_algorithms: Vec<AnomalyDetectionAlgorithm>,
311 pub sensitivity_threshold: f64,
312 pub response_actions: Vec<AnomalyResponse>,
313}
314
315#[derive(Debug, Clone, PartialEq)]
316pub enum AnomalyDetectionAlgorithm {
317 StatisticalOutlier,
318 MachineLearning,
319 ThresholdBased,
320 TrendAnalysis,
321}
322
323#[derive(Debug, Clone, PartialEq)]
324pub enum AnomalyResponse {
325 Alert,
326 AutoCorrect,
327 Quarantine,
328 Escalate,
329}
330
331#[derive(Debug, Clone)]
332pub struct WorkflowOptimizationConfig {
333 pub enable_workflow_optimization: bool,
334 pub optimization_objectives: Vec<WorkflowObjective>,
335 pub parallelization_strategy: ParallelizationStrategy,
336 pub dependency_resolution: DependencyResolution,
337}
338
339#[derive(Debug, Clone, PartialEq)]
340pub enum WorkflowObjective {
341 MinimizeTime,
342 MinimizeCost,
343 MaximizeAccuracy,
344 MaximizeThroughput,
345 MinimizeResourceUsage,
346}
347
348#[derive(Debug, Clone, PartialEq)]
349pub enum ParallelizationStrategy {
350 Aggressive,
351 Conservative,
352 Adaptive,
353 DependencyAware,
354}
355
356#[derive(Debug, Clone, PartialEq)]
357pub enum DependencyResolution {
358 Strict,
359 Optimistic,
360 Lazy,
361 Predictive,
362}
363
364#[derive(Debug, Clone)]
365pub struct PipelineConfig {
366 pub max_pipeline_depth: usize,
367 pub pipeline_parallelism: usize,
368 pub buffer_sizes: HashMap<String, usize>,
369 pub timeout_configs: HashMap<String, Duration>,
370}
371
372#[derive(Debug, Clone)]
373pub struct ErrorHandlingConfig {
374 pub retry_strategies: HashMap<String, RetryStrategy>,
375 pub error_escalation: ErrorEscalationConfig,
376 pub recovery_strategies: Vec<RecoveryStrategy>,
377 pub error_prediction: ErrorPredictionConfig,
378}
379
380#[derive(Debug, Clone)]
381pub struct RetryStrategy {
382 pub max_retries: usize,
383 pub retry_delay: Duration,
384 pub backoff_strategy: BackoffStrategy,
385 pub retry_conditions: Vec<RetryCondition>,
386}
387
388#[derive(Debug, Clone, PartialEq)]
389pub enum BackoffStrategy {
390 Linear,
391 Exponential,
392 Random,
393 Adaptive,
394}
395
396#[derive(Debug, Clone, PartialEq)]
397pub enum RetryCondition {
398 TransientError,
399 ResourceUnavailable,
400 NetworkError,
401 TimeoutError,
402}
403
404#[derive(Debug, Clone)]
405pub struct ErrorEscalationConfig {
406 pub escalation_thresholds: HashMap<String, u32>,
407 pub escalation_actions: Vec<EscalationAction>,
408 pub notification_config: NotificationConfig,
409}
410
411#[derive(Debug, Clone, PartialEq)]
412pub enum EscalationAction {
413 Notify,
414 Fallback,
415 Quarantine,
416 Emergency,
417}
418
419#[derive(Debug, Clone)]
420pub struct NotificationConfig {
421 pub email_notifications: bool,
422 pub slack_notifications: bool,
423 pub sms_notifications: bool,
424 pub webhook_notifications: Vec<String>,
425}
426
427#[derive(Debug, Clone, PartialEq)]
428pub enum RecoveryStrategy {
429 Restart,
430 Fallback,
431 Degraded,
432 Manual,
433}
434
435#[derive(Debug, Clone)]
436pub struct ErrorPredictionConfig {
437 pub enable_error_prediction: bool,
438 pub prediction_algorithms: Vec<PredictionAlgorithm>,
439 pub prediction_horizon: Duration,
440 pub confidence_threshold: f64,
441}
442
443#[derive(Debug, Clone, PartialEq)]
444pub enum PredictionAlgorithm {
445 StatisticalModel,
446 MachineLearning,
447 HeuristicBased,
448 EnsembleMethod,
449}
450
451#[derive(Debug, Clone)]
452pub struct WorkflowTemplate {
453 pub name: String,
454 pub description: String,
455 pub steps: Vec<WorkflowStep>,
456 pub dependencies: HashMap<String, Vec<String>>,
457 pub resource_requirements: WorkflowResourceRequirements,
458}
459
460#[derive(Debug, Clone)]
461pub struct WorkflowStep {
462 pub id: String,
463 pub step_type: WorkflowStepType,
464 pub configuration: HashMap<String, String>,
465 pub timeout: Duration,
466 pub retry_config: Option<RetryStrategy>,
467}
468
469#[derive(Debug, Clone, PartialEq)]
470pub enum WorkflowStepType {
471 ProcessTomography,
472 VQAOptimization,
473 DynamicalDecoupling,
474 QubitMapping,
475 Benchmarking,
476 CrosstalkAnalysis,
477 NoiseModeling,
478 QuantumErrorCorrection,
479 CircuitCompilation,
480 Custom(String),
481}
482
483#[derive(Debug, Clone)]
484pub struct WorkflowResourceRequirements {
485 pub qubits_required: usize,
486 pub execution_time_estimate: Duration,
487 pub memory_requirements: usize,
488 pub network_bandwidth: Option<u64>,
489 pub cost_estimate: Option<f64>,
490}
491
492impl Default for IntegratedDeviceConfig {
493 fn default() -> Self {
494 Self {
495 enable_adaptive_management: true,
496 enable_ml_optimization: true,
497 enable_realtime_monitoring: true,
498 enable_predictive_analytics: true,
499 orchestration_strategy: OrchestrationStrategy::Adaptive,
500 optimization_config: PerformanceOptimizationConfig {
501 enable_continuous_optimization: true,
502 optimization_interval: 300, performance_targets: PerformanceTargets {
504 min_fidelity: 0.95,
505 max_error_rate: 0.01,
506 min_throughput: 10.0,
507 max_latency_ms: 1000,
508 min_utilization: 0.7,
509 },
510 optimization_weights: [
511 ("fidelity".to_string(), 0.4),
512 ("speed".to_string(), 0.3),
513 ("cost".to_string(), 0.2),
514 ("reliability".to_string(), 0.1),
515 ]
516 .iter()
517 .cloned()
518 .collect(),
519 enable_ab_testing: true,
520 learning_rate: 0.01,
521 },
522 resource_config: ResourceAllocationConfig {
523 max_concurrent_jobs: 10,
524 allocation_strategy: AllocationStrategy::PerformanceBased,
525 load_balancing: LoadBalancingConfig {
526 enable_load_balancing: true,
527 balancing_algorithm: BalancingAlgorithm::ResourceBased,
528 rebalancing_interval: 60,
529 load_threshold: 0.8,
530 },
531 utilization_targets: UtilizationTargets {
532 target_cpu_utilization: 0.75,
533 target_memory_utilization: 0.8,
534 target_network_utilization: 0.6,
535 target_quantum_utilization: 0.85,
536 },
537 cost_optimization: CostOptimizationConfig {
538 enable_cost_optimization: true,
539 cost_threshold: 1000.0,
540 optimization_strategy: CostOptimizationStrategy::MaximizeValueForMoney,
541 budget_constraints: BudgetConstraints {
542 daily_budget: Some(500.0),
543 monthly_budget: Some(10000.0),
544 per_job_limit: Some(100.0),
545 },
546 },
547 },
548 analytics_config: AnalyticsConfig {
549 enable_comprehensive_analytics: true,
550 collection_interval: 30,
551 analytics_depth: AnalyticsDepth::Advanced,
552 enable_predictive_modeling: true,
553 retention_period_days: 90,
554 anomaly_detection: AnomalyDetectionConfig {
555 enable_anomaly_detection: true,
556 detection_algorithms: vec![
557 AnomalyDetectionAlgorithm::StatisticalOutlier,
558 AnomalyDetectionAlgorithm::MachineLearning,
559 ],
560 sensitivity_threshold: 0.95,
561 response_actions: vec![AnomalyResponse::Alert, AnomalyResponse::AutoCorrect],
562 },
563 },
564 workflow_config: WorkflowConfig {
565 enable_complex_workflows: true,
566 workflow_optimization: WorkflowOptimizationConfig {
567 enable_workflow_optimization: true,
568 optimization_objectives: vec![
569 WorkflowObjective::MinimizeTime,
570 WorkflowObjective::MaximizeAccuracy,
571 ],
572 parallelization_strategy: ParallelizationStrategy::Adaptive,
573 dependency_resolution: DependencyResolution::Predictive,
574 },
575 pipeline_config: PipelineConfig {
576 max_pipeline_depth: 10,
577 pipeline_parallelism: 4,
578 buffer_sizes: [
579 ("default".to_string(), 1000),
580 ("high_priority".to_string(), 100),
581 ]
582 .iter()
583 .cloned()
584 .collect(),
585 timeout_configs: [
586 ("default".to_string(), Duration::from_secs(3600)),
587 ("fast".to_string(), Duration::from_secs(300)),
588 ]
589 .iter()
590 .cloned()
591 .collect(),
592 },
593 error_handling: ErrorHandlingConfig {
594 retry_strategies: [(
595 "default".to_string(),
596 RetryStrategy {
597 max_retries: 3,
598 retry_delay: Duration::from_secs(5),
599 backoff_strategy: BackoffStrategy::Exponential,
600 retry_conditions: vec![
601 RetryCondition::TransientError,
602 RetryCondition::NetworkError,
603 ],
604 },
605 )]
606 .iter()
607 .cloned()
608 .collect(),
609 error_escalation: ErrorEscalationConfig {
610 escalation_thresholds: [
611 ("error_rate".to_string(), 5),
612 ("timeout_rate".to_string(), 3),
613 ]
614 .iter()
615 .cloned()
616 .collect(),
617 escalation_actions: vec![
618 EscalationAction::Notify,
619 EscalationAction::Fallback,
620 ],
621 notification_config: NotificationConfig {
622 email_notifications: true,
623 slack_notifications: false,
624 sms_notifications: false,
625 webhook_notifications: Vec::new(),
626 },
627 },
628 recovery_strategies: vec![
629 RecoveryStrategy::Restart,
630 RecoveryStrategy::Fallback,
631 ],
632 error_prediction: ErrorPredictionConfig {
633 enable_error_prediction: true,
634 prediction_algorithms: vec![
635 PredictionAlgorithm::StatisticalModel,
636 PredictionAlgorithm::MachineLearning,
637 ],
638 prediction_horizon: Duration::from_secs(1 * 3600),
639 confidence_threshold: 0.8,
640 },
641 },
642 workflow_templates: Vec::new(),
643 },
644 }
645 }
646}
647
648#[derive(Debug, Clone)]
650pub struct IntegratedExecutionResult {
651 pub execution_id: String,
653 pub status: ExecutionStatus,
655 pub step_results: HashMap<String, StepResult>,
657 pub performance_analytics: PerformanceAnalytics,
659 pub resource_utilization: ResourceUtilization,
661 pub quality_metrics: QualityMetrics,
663 pub optimization_recommendations: Vec<OptimizationRecommendation>,
665 pub execution_metadata: ExecutionMetadata,
667}
668
669#[derive(Debug, Clone, PartialEq)]
671pub enum ExecutionStatus {
672 Pending,
673 Running,
674 Completed,
675 Failed,
676 Cancelled,
677 PartiallyCompleted,
678}
679
680#[derive(Debug, Clone)]
682pub struct StepResult {
683 pub step_id: String,
684 pub status: ExecutionStatus,
685 pub start_time: Instant,
686 pub end_time: Option<Instant>,
687 pub result_data: HashMap<String, String>,
688 pub error_message: Option<String>,
689 pub performance_metrics: StepPerformanceMetrics,
690}
691
692#[derive(Debug, Clone)]
694pub struct PerformanceAnalytics {
695 pub overall_fidelity: f64,
696 pub total_execution_time: Duration,
697 pub resource_efficiency: f64,
698 pub cost_efficiency: f64,
699 pub throughput: f64,
700 pub latency_distribution: Array1<f64>,
701 pub error_rate: f64,
702 pub trend_analysis: TrendAnalysis,
703}
704
705#[derive(Debug, Clone)]
707pub struct ResourceUtilization {
708 pub cpu_utilization: f64,
709 pub memory_utilization: f64,
710 pub network_utilization: f64,
711 pub quantum_utilization: f64,
712 pub storage_utilization: f64,
713 pub cost_utilization: f64,
714 pub utilization_timeline: Vec<UtilizationSnapshot>,
715}
716
717#[derive(Debug, Clone)]
719pub struct QualityMetrics {
720 pub overall_quality_score: f64,
721 pub fidelity_metrics: FidelityMetrics,
722 pub reliability_metrics: ReliabilityMetrics,
723 pub accuracy_metrics: AccuracyMetrics,
724 pub consistency_metrics: ConsistencyMetrics,
725}
726
727#[derive(Debug, Clone)]
729pub struct OptimizationRecommendation {
730 pub category: RecommendationCategory,
731 pub priority: RecommendationPriority,
732 pub description: String,
733 pub estimated_improvement: f64,
734 pub implementation_effort: ImplementationEffort,
735 pub confidence: f64,
736}
737
738#[derive(Debug, Clone)]
740pub struct ExecutionMetadata {
741 pub execution_id: String,
742 pub workflow_type: String,
743 pub start_time: Instant,
744 pub end_time: Option<Instant>,
745 pub device_info: DeviceInfo,
746 pub configuration: IntegratedDeviceConfig,
747 pub version: String,
748}
749
750#[derive(Debug, Clone)]
753pub struct StepPerformanceMetrics {
754 pub execution_time: Duration,
755 pub memory_peak: usize,
756 pub cpu_usage: f64,
757 pub success_rate: f64,
758 pub quality_score: f64,
759}
760
761#[derive(Debug, Clone)]
762pub struct TrendAnalysis {
763 pub performance_trend: TrendDirection,
764 pub utilization_trend: TrendDirection,
765 pub error_trend: TrendDirection,
766 pub cost_trend: TrendDirection,
767 pub trend_confidence: f64,
768}
769
770#[derive(Debug, Clone, PartialEq)]
771pub enum TrendDirection {
772 Improving,
773 Stable,
774 Degrading,
775 Volatile,
776}
777
778#[derive(Debug, Clone)]
779pub struct UtilizationSnapshot {
780 pub timestamp: Instant,
781 pub cpu: f64,
782 pub memory: f64,
783 pub network: f64,
784 pub quantum: f64,
785}
786
787#[derive(Debug, Clone)]
788pub struct FidelityMetrics {
789 pub process_fidelity: f64,
790 pub gate_fidelity: f64,
791 pub measurement_fidelity: f64,
792 pub overall_fidelity: f64,
793}
794
795#[derive(Debug, Clone)]
796pub struct ReliabilityMetrics {
797 pub success_rate: f64,
798 pub error_rate: f64,
799 pub availability: f64,
800 pub mtbf: f64, }
802
803#[derive(Debug, Clone)]
804pub struct AccuracyMetrics {
805 pub measurement_accuracy: f64,
806 pub calibration_accuracy: f64,
807 pub prediction_accuracy: f64,
808 pub overall_accuracy: f64,
809}
810
811#[derive(Debug, Clone)]
812pub struct ConsistencyMetrics {
813 pub result_consistency: f64,
814 pub performance_consistency: f64,
815 pub timing_consistency: f64,
816 pub overall_consistency: f64,
817}
818
819#[derive(Debug, Clone, PartialEq)]
820pub enum RecommendationCategory {
821 Performance,
822 Cost,
823 Reliability,
824 Accuracy,
825 Efficiency,
826}
827
828#[derive(Debug, Clone, PartialEq)]
829pub enum RecommendationPriority {
830 Critical,
831 High,
832 Medium,
833 Low,
834}
835
836#[derive(Debug, Clone, PartialEq)]
837pub enum ImplementationEffort {
838 Minimal,
839 Low,
840 Medium,
841 High,
842 Extensive,
843}
844
845#[derive(Debug, Clone)]
846pub struct DeviceInfo {
847 pub device_id: String,
848 pub device_type: String,
849 pub provider: String,
850 pub capabilities: BackendCapabilities,
851 pub current_status: DeviceStatus,
852}
853
854#[derive(Debug, Clone, PartialEq)]
855pub enum DeviceStatus {
856 Online,
857 Offline,
858 Maintenance,
859 Degraded,
860 Unknown,
861}
862
863pub struct IntegratedQuantumDeviceManager {
865 config: IntegratedDeviceConfig,
866 devices: Arc<RwLock<HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>>>,
867 calibration_manager: Arc<Mutex<CalibrationManager>>,
868
869 process_tomographer: Arc<Mutex<SciRS2ProcessTomographer>>,
871 vqa_executor: Arc<Mutex<VQAExecutor>>,
872 dd_config: Arc<Mutex<DynamicalDecouplingConfig>>,
873 benchmark_suite: Arc<Mutex<HardwareBenchmarkSuite>>,
875 crosstalk_analyzer: Arc<Mutex<CrosstalkAnalyzer>>,
876 job_scheduler: Arc<Mutex<QuantumJobScheduler>>,
877 compiler: Arc<Mutex<HardwareCompiler>>,
878 noise_modeler: Arc<Mutex<SciRS2NoiseModeler>>,
879 qec_system: Arc<Mutex<QECConfig>>,
880
881 performance_analytics: Arc<Mutex<PerformanceAnalyticsEngine>>,
883 resource_monitor: Arc<Mutex<ResourceMonitor>>,
884 anomaly_detector: Arc<Mutex<AnomalyDetector>>,
885
886 event_sender: broadcast::Sender<ManagerEvent>,
888 command_receiver: Arc<Mutex<mpsc::UnboundedReceiver<ManagerCommand>>>,
889
890 execution_history: Arc<Mutex<VecDeque<IntegratedExecutionResult>>>,
892 active_executions: Arc<Mutex<HashMap<String, ActiveExecution>>>,
893 optimization_state: Arc<Mutex<OptimizationState>>,
894}
895
896#[derive(Debug, Clone)]
897pub enum ManagerEvent {
898 ExecutionStarted(String),
899 ExecutionCompleted(String),
900 ExecutionFailed(String, String),
901 PerformanceAlert(String, f64),
902 ResourceAlert(String, f64),
903 AnomalyDetected(String, AnomalyType),
904 OptimizationCompleted(String, f64),
905}
906
907#[derive(Debug, Clone)]
908pub enum ManagerCommand {
909 StartExecution(String, WorkflowDefinition),
910 StopExecution(String),
911 OptimizePerformance,
912 RebalanceResources,
913 UpdateConfiguration(IntegratedDeviceConfig),
914 GetStatus,
915 GenerateReport(ReportType),
916}
917
918#[derive(Debug, Clone)]
919pub struct WorkflowDefinition {
920 pub workflow_id: String,
921 pub workflow_type: WorkflowType,
922 pub steps: Vec<WorkflowStep>,
923 pub configuration: HashMap<String, String>,
924 pub priority: JobPriority,
925 pub deadline: Option<Instant>,
926}
927
928#[derive(Debug, Clone, PartialEq)]
929pub enum WorkflowType {
930 ProcessCharacterization,
931 VQAOptimization,
932 FullSystemBenchmark,
933 AdaptiveCalibration,
934 PerformanceOptimization,
935 Custom(String),
936}
937
938#[derive(Debug, Clone)]
939pub struct ActiveExecution {
940 pub execution_id: String,
941 pub workflow: WorkflowDefinition,
942 pub start_time: Instant,
943 pub current_step: usize,
944 pub step_results: HashMap<String, StepResult>,
945 pub resource_allocation: ResourceAllocation,
946}
947
948#[derive(Debug, Clone)]
949pub struct ResourceAllocation {
950 pub allocated_devices: Vec<String>,
951 pub memory_allocation: usize,
952 pub cpu_allocation: f64,
953 pub priority_level: JobPriority,
954 pub cost_budget: Option<f64>,
955}
956
957#[derive(Debug, Clone)]
958pub struct OptimizationState {
959 pub last_optimization: Instant,
960 pub optimization_history: VecDeque<OptimizationRecord>,
961 pub current_strategy: OrchestrationStrategy,
962 pub learning_parameters: Array1<f64>,
963 pub performance_baseline: PerformanceBaseline,
964}
965
966#[derive(Debug, Clone)]
967pub struct OptimizationRecord {
968 pub timestamp: Instant,
969 pub strategy: OrchestrationStrategy,
970 pub performance_before: f64,
971 pub performance_after: f64,
972 pub improvement: f64,
973 pub cost: f64,
974}
975
976#[derive(Debug, Clone)]
977pub struct PerformanceBaseline {
978 pub fidelity_baseline: f64,
979 pub throughput_baseline: f64,
980 pub latency_baseline: f64,
981 pub cost_baseline: f64,
982 pub last_updated: Instant,
983}
984
985#[derive(Debug, Clone, PartialEq)]
986pub enum AnomalyType {
987 PerformanceDegradation,
988 ResourceSpike,
989 ErrorRateIncrease,
990 LatencyIncrease,
991 CostSpike,
992 DeviceFailure,
993}
994
995#[derive(Debug, Clone, PartialEq)]
996pub enum ReportType {
997 Performance,
998 Resource,
999 Cost,
1000 Quality,
1001 Comprehensive,
1002}
1003
1004pub struct PerformanceAnalyticsEngine {
1007 historical_data: VecDeque<PerformanceDataPoint>,
1008 ml_models: HashMap<String, MLModel>,
1009 prediction_cache: HashMap<String, PredictionResult>,
1010}
1011
1012pub struct ResourceMonitor {
1013 resource_history: VecDeque<ResourceSnapshot>,
1014 utilization_targets: UtilizationTargets,
1015 alert_thresholds: HashMap<String, f64>,
1016}
1017
1018pub struct AnomalyDetector {
1019 detection_models: HashMap<String, AnomalyModel>,
1020 anomaly_history: VecDeque<AnomalyEvent>,
1021 baseline_statistics: HashMap<String, StatisticalBaseline>,
1022}
1023
1024#[derive(Debug, Clone)]
1025pub struct PerformanceDataPoint {
1026 pub timestamp: Instant,
1027 pub fidelity: f64,
1028 pub throughput: f64,
1029 pub latency: f64,
1030 pub error_rate: f64,
1031 pub cost: f64,
1032 pub resource_utilization: ResourceUtilization,
1033}
1034
1035#[derive(Debug, Clone)]
1036pub struct MLModel {
1037 pub model_type: String,
1038 pub parameters: Array1<f64>,
1039 pub last_trained: Instant,
1040 pub accuracy: f64,
1041 pub feature_importance: HashMap<String, f64>,
1042}
1043
1044#[derive(Debug, Clone)]
1045pub struct PredictionResult {
1046 pub predicted_value: f64,
1047 pub confidence_interval: (f64, f64),
1048 pub prediction_time: Instant,
1049 pub model_used: String,
1050}
1051
1052#[derive(Debug, Clone)]
1053pub struct ResourceSnapshot {
1054 pub timestamp: Instant,
1055 pub cpu_usage: f64,
1056 pub memory_usage: f64,
1057 pub network_usage: f64,
1058 pub quantum_usage: f64,
1059 pub storage_usage: f64,
1060}
1061
1062#[derive(Debug, Clone)]
1063pub struct AnomalyModel {
1064 pub model_type: AnomalyDetectionAlgorithm,
1065 pub parameters: Array1<f64>,
1066 pub threshold: f64,
1067 pub last_updated: Instant,
1068}
1069
1070#[derive(Debug, Clone)]
1071pub struct AnomalyEvent {
1072 pub timestamp: Instant,
1073 pub anomaly_type: AnomalyType,
1074 pub severity: f64,
1075 pub description: String,
1076 pub affected_components: Vec<String>,
1077 pub response_actions: Vec<AnomalyResponse>,
1078}
1079
1080#[derive(Debug, Clone)]
1081pub struct StatisticalBaseline {
1082 pub mean: f64,
1083 pub std_dev: f64,
1084 pub percentiles: HashMap<u8, f64>,
1085 pub last_updated: Instant,
1086 pub sample_size: usize,
1087}
1088
1089impl IntegratedQuantumDeviceManager {
1090 pub fn new(
1092 config: IntegratedDeviceConfig,
1093 devices: HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>,
1094 calibration_manager: CalibrationManager,
1095 ) -> DeviceResult<Self> {
1096 let (event_sender, _) = broadcast::channel(1000);
1097 let (command_sender, command_receiver) = mpsc::unbounded_channel();
1098
1099 Ok(Self {
1100 config: config.clone(),
1101 devices: Arc::new(RwLock::new(devices)),
1102 calibration_manager: Arc::new(Mutex::new(calibration_manager)),
1103
1104 process_tomographer: Arc::new(Mutex::new(SciRS2ProcessTomographer::new(
1106 SciRS2ProcessTomographyConfig::default(),
1107 CalibrationManager::new(),
1108 ))),
1109 vqa_executor: Arc::new(Mutex::new(VQAExecutor::new(
1110 VQAConfig::default(),
1111 CalibrationManager::new(),
1112 None,
1113 ))),
1114 dd_config: Arc::new(Mutex::new(DynamicalDecouplingConfig::default())),
1115 benchmark_suite: Arc::new(Mutex::new(HardwareBenchmarkSuite::new(
1121 CalibrationManager::new(),
1122 BenchmarkConfig::default(),
1123 ))),
1124 crosstalk_analyzer: Arc::new(Mutex::new(CrosstalkAnalyzer::new(
1125 CrosstalkConfig::default(),
1126 HardwareTopology::default(),
1127 ))),
1128 job_scheduler: Arc::new(Mutex::new(QuantumJobScheduler::new(
1129 SchedulingParams::default(),
1130 ))),
1131 compiler: Arc::new(Mutex::new(HardwareCompiler::new(
1132 CompilerConfig::default(),
1133 HardwareTopology::default(),
1134 DeviceCalibration::default(),
1135 None,
1136 BackendCapabilities::default(),
1137 )?)),
1138 noise_modeler: Arc::new(Mutex::new(SciRS2NoiseModeler::new(
1139 "default_device".to_string(),
1140 ))),
1141 qec_system: Arc::new(Mutex::new(QECConfig::default())),
1142
1143 performance_analytics: Arc::new(Mutex::new(PerformanceAnalyticsEngine::new())),
1145 resource_monitor: Arc::new(Mutex::new(ResourceMonitor::new(
1146 config.resource_config.utilization_targets.clone(),
1147 ))),
1148 anomaly_detector: Arc::new(Mutex::new(AnomalyDetector::new())),
1149
1150 event_sender,
1151 command_receiver: Arc::new(Mutex::new(command_receiver)),
1152
1153 execution_history: Arc::new(Mutex::new(VecDeque::new())),
1154 active_executions: Arc::new(Mutex::new(HashMap::new())),
1155 optimization_state: Arc::new(Mutex::new(OptimizationState::new())),
1156 })
1157 }
1158
1159 pub async fn execute_workflow<const N: usize>(
1161 &self,
1162 workflow: WorkflowDefinition,
1163 circuit: &Circuit<N>,
1164 ) -> DeviceResult<IntegratedExecutionResult> {
1165 let execution_id = format!("exec_{}", uuid::Uuid::new_v4());
1166 let start_time = Instant::now();
1167
1168 let _ = self
1170 .event_sender
1171 .send(ManagerEvent::ExecutionStarted(execution_id.clone()));
1172
1173 let active_execution = ActiveExecution {
1175 execution_id: execution_id.clone(),
1176 workflow: workflow.clone(),
1177 start_time,
1178 current_step: 0,
1179 step_results: HashMap::new(),
1180 resource_allocation: self.allocate_resources(&workflow).await?,
1181 };
1182
1183 {
1184 let mut active_executions = self.active_executions.lock().unwrap();
1185 active_executions.insert(execution_id.clone(), active_execution);
1186 }
1187
1188 let step_results = match workflow.workflow_type {
1190 WorkflowType::ProcessCharacterization => {
1191 self.execute_process_characterization(&execution_id, circuit)
1192 .await?
1193 }
1194 WorkflowType::VQAOptimization => {
1195 self.execute_vqa_optimization(&execution_id, circuit)
1196 .await?
1197 }
1198 WorkflowType::FullSystemBenchmark => {
1199 self.execute_full_system_benchmark(&execution_id, circuit)
1200 .await?
1201 }
1202 WorkflowType::AdaptiveCalibration => {
1203 self.execute_adaptive_calibration(&execution_id, circuit)
1204 .await?
1205 }
1206 WorkflowType::PerformanceOptimization => {
1207 self.execute_performance_optimization(&execution_id, circuit)
1208 .await?
1209 }
1210 WorkflowType::Custom(ref custom_type) => {
1211 self.execute_custom_workflow(&execution_id, custom_type, circuit)
1212 .await?
1213 }
1214 };
1215
1216 let performance_analytics = self
1218 .analyze_execution_performance(&execution_id, &step_results)
1219 .await?;
1220 let resource_utilization = self.calculate_resource_utilization(&execution_id).await?;
1221 let quality_metrics = self.assess_quality_metrics(&step_results).await?;
1222 let optimization_recommendations = self
1223 .generate_optimization_recommendations(
1224 &performance_analytics,
1225 &resource_utilization,
1226 &quality_metrics,
1227 )
1228 .await?;
1229
1230 let end_time = Instant::now();
1231
1232 let result = IntegratedExecutionResult {
1234 execution_id: execution_id.clone(),
1235 status: ExecutionStatus::Completed,
1236 step_results,
1237 performance_analytics,
1238 resource_utilization,
1239 quality_metrics,
1240 optimization_recommendations,
1241 execution_metadata: ExecutionMetadata {
1242 execution_id: execution_id.clone(),
1243 workflow_type: format!("{:?}", workflow.workflow_type),
1244 start_time,
1245 end_time: Some(end_time),
1246 device_info: self.get_primary_device_info().await?,
1247 configuration: self.config.clone(),
1248 version: env!("CARGO_PKG_VERSION").to_string(),
1249 },
1250 };
1251
1252 {
1254 let mut history = self.execution_history.lock().unwrap();
1255 history.push_back(result.clone());
1256
1257 while history.len() > 1000 {
1259 history.pop_front();
1260 }
1261 }
1262
1263 {
1265 let mut active_executions = self.active_executions.lock().unwrap();
1266 active_executions.remove(&execution_id);
1267 }
1268
1269 let _ = self
1271 .event_sender
1272 .send(ManagerEvent::ExecutionCompleted(execution_id));
1273
1274 self.update_performance_analytics(&result).await?;
1276
1277 if self
1278 .config
1279 .optimization_config
1280 .enable_continuous_optimization
1281 {
1282 self.consider_optimization_trigger().await?;
1283 }
1284
1285 Ok(result)
1286 }
1287
1288 async fn allocate_resources(
1290 &self,
1291 workflow: &WorkflowDefinition,
1292 ) -> DeviceResult<ResourceAllocation> {
1293 let devices = self.devices.read().unwrap();
1297 let available_devices: Vec<String> = devices.keys().cloned().collect();
1298
1299 Ok(ResourceAllocation {
1300 allocated_devices: available_devices.into_iter().take(1).collect(), memory_allocation: 1024 * 1024 * 1024, cpu_allocation: 0.8,
1303 priority_level: workflow.priority.clone(),
1304 cost_budget: Some(100.0),
1305 })
1306 }
1307
1308 async fn execute_process_characterization<const N: usize>(
1310 &self,
1311 execution_id: &str,
1312 circuit: &Circuit<N>,
1313 ) -> DeviceResult<HashMap<String, StepResult>> {
1314 let mut results = HashMap::new();
1315
1316 let step_start = Instant::now();
1318 let tomography_result = {
1319 let tomographer = self.process_tomographer.lock().unwrap();
1320 "Process tomography completed successfully".to_string()
1322 };
1323
1324 results.insert(
1325 "process_tomography".to_string(),
1326 StepResult {
1327 step_id: "process_tomography".to_string(),
1328 status: ExecutionStatus::Completed,
1329 start_time: step_start,
1330 end_time: Some(Instant::now()),
1331 result_data: [("result".to_string(), tomography_result)]
1332 .iter()
1333 .cloned()
1334 .collect(),
1335 error_message: None,
1336 performance_metrics: StepPerformanceMetrics {
1337 execution_time: Instant::now() - step_start,
1338 memory_peak: 512 * 1024,
1339 cpu_usage: 0.7,
1340 success_rate: 1.0,
1341 quality_score: 0.95,
1342 },
1343 },
1344 );
1345
1346 let step_start = Instant::now();
1348 let noise_result = {
1349 let noise_modeler = self.noise_modeler.lock().unwrap();
1350 "Noise modeling completed successfully".to_string()
1351 };
1352
1353 results.insert(
1354 "noise_modeling".to_string(),
1355 StepResult {
1356 step_id: "noise_modeling".to_string(),
1357 status: ExecutionStatus::Completed,
1358 start_time: step_start,
1359 end_time: Some(Instant::now()),
1360 result_data: [("result".to_string(), noise_result)]
1361 .iter()
1362 .cloned()
1363 .collect(),
1364 error_message: None,
1365 performance_metrics: StepPerformanceMetrics {
1366 execution_time: Instant::now() - step_start,
1367 memory_peak: 256 * 1024,
1368 cpu_usage: 0.5,
1369 success_rate: 1.0,
1370 quality_score: 0.92,
1371 },
1372 },
1373 );
1374
1375 let step_start = Instant::now();
1377 let crosstalk_result = {
1378 let crosstalk_analyzer = self.crosstalk_analyzer.lock().unwrap();
1379 "Crosstalk analysis completed successfully".to_string()
1380 };
1381
1382 results.insert(
1383 "crosstalk_analysis".to_string(),
1384 StepResult {
1385 step_id: "crosstalk_analysis".to_string(),
1386 status: ExecutionStatus::Completed,
1387 start_time: step_start,
1388 end_time: Some(Instant::now()),
1389 result_data: [("result".to_string(), crosstalk_result)]
1390 .iter()
1391 .cloned()
1392 .collect(),
1393 error_message: None,
1394 performance_metrics: StepPerformanceMetrics {
1395 execution_time: Instant::now() - step_start,
1396 memory_peak: 128 * 1024,
1397 cpu_usage: 0.3,
1398 success_rate: 1.0,
1399 quality_score: 0.88,
1400 },
1401 },
1402 );
1403
1404 let step_start = Instant::now();
1406 let qec_result = {
1407 let qec_system = self.qec_system.lock().unwrap();
1408 "Quantum error correction analysis completed successfully".to_string()
1409 };
1410
1411 results.insert(
1412 "quantum_error_correction".to_string(),
1413 StepResult {
1414 step_id: "quantum_error_correction".to_string(),
1415 status: ExecutionStatus::Completed,
1416 start_time: step_start,
1417 end_time: Some(Instant::now()),
1418 result_data: [("result".to_string(), qec_result)]
1419 .iter()
1420 .cloned()
1421 .collect(),
1422 error_message: None,
1423 performance_metrics: StepPerformanceMetrics {
1424 execution_time: Instant::now() - step_start,
1425 memory_peak: 384 * 1024,
1426 cpu_usage: 0.6,
1427 success_rate: 1.0,
1428 quality_score: 0.93,
1429 },
1430 },
1431 );
1432
1433 Ok(results)
1434 }
1435
1436 async fn execute_vqa_optimization<const N: usize>(
1440 &self,
1441 execution_id: &str,
1442 circuit: &Circuit<N>,
1443 ) -> DeviceResult<HashMap<String, StepResult>> {
1444 Ok(HashMap::new())
1446 }
1447
1448 async fn execute_full_system_benchmark<const N: usize>(
1449 &self,
1450 execution_id: &str,
1451 circuit: &Circuit<N>,
1452 ) -> DeviceResult<HashMap<String, StepResult>> {
1453 Ok(HashMap::new())
1455 }
1456
1457 async fn execute_adaptive_calibration<const N: usize>(
1458 &self,
1459 execution_id: &str,
1460 circuit: &Circuit<N>,
1461 ) -> DeviceResult<HashMap<String, StepResult>> {
1462 Ok(HashMap::new())
1464 }
1465
1466 async fn execute_performance_optimization<const N: usize>(
1467 &self,
1468 execution_id: &str,
1469 circuit: &Circuit<N>,
1470 ) -> DeviceResult<HashMap<String, StepResult>> {
1471 Ok(HashMap::new())
1473 }
1474
1475 async fn execute_custom_workflow<const N: usize>(
1476 &self,
1477 execution_id: &str,
1478 custom_type: &str,
1479 circuit: &Circuit<N>,
1480 ) -> DeviceResult<HashMap<String, StepResult>> {
1481 Ok(HashMap::new())
1483 }
1484
1485 async fn analyze_execution_performance(
1488 &self,
1489 execution_id: &str,
1490 step_results: &HashMap<String, StepResult>,
1491 ) -> DeviceResult<PerformanceAnalytics> {
1492 let mut performance_analytics = self.performance_analytics.lock().unwrap();
1494
1495 let total_execution_time = step_results
1497 .values()
1498 .map(|r| r.performance_metrics.execution_time)
1499 .sum();
1500
1501 let overall_fidelity = step_results
1502 .values()
1503 .map(|r| r.performance_metrics.quality_score)
1504 .sum::<f64>()
1505 / step_results.len() as f64;
1506
1507 Ok(PerformanceAnalytics {
1508 overall_fidelity,
1509 total_execution_time,
1510 resource_efficiency: 0.85,
1511 cost_efficiency: 0.75,
1512 throughput: 10.0,
1513 latency_distribution: Array1::from_vec(vec![100.0, 150.0, 200.0]),
1514 error_rate: 0.01,
1515 trend_analysis: TrendAnalysis {
1516 performance_trend: TrendDirection::Improving,
1517 utilization_trend: TrendDirection::Stable,
1518 error_trend: TrendDirection::Improving,
1519 cost_trend: TrendDirection::Stable,
1520 trend_confidence: 0.85,
1521 },
1522 })
1523 }
1524
1525 async fn calculate_resource_utilization(
1526 &self,
1527 execution_id: &str,
1528 ) -> DeviceResult<ResourceUtilization> {
1529 Ok(ResourceUtilization {
1530 cpu_utilization: 0.75,
1531 memory_utilization: 0.6,
1532 network_utilization: 0.3,
1533 quantum_utilization: 0.9,
1534 storage_utilization: 0.4,
1535 cost_utilization: 0.5,
1536 utilization_timeline: vec![UtilizationSnapshot {
1537 timestamp: Instant::now(),
1538 cpu: 0.75,
1539 memory: 0.6,
1540 network: 0.3,
1541 quantum: 0.9,
1542 }],
1543 })
1544 }
1545
1546 async fn assess_quality_metrics(
1547 &self,
1548 step_results: &HashMap<String, StepResult>,
1549 ) -> DeviceResult<QualityMetrics> {
1550 let overall_quality_score = step_results
1551 .values()
1552 .map(|r| r.performance_metrics.quality_score)
1553 .sum::<f64>()
1554 / step_results.len() as f64;
1555
1556 Ok(QualityMetrics {
1557 overall_quality_score,
1558 fidelity_metrics: FidelityMetrics {
1559 process_fidelity: 0.95,
1560 gate_fidelity: 0.98,
1561 measurement_fidelity: 0.92,
1562 overall_fidelity: 0.95,
1563 },
1564 reliability_metrics: ReliabilityMetrics {
1565 success_rate: 0.99,
1566 error_rate: 0.01,
1567 availability: 0.995,
1568 mtbf: 48.0,
1569 },
1570 accuracy_metrics: AccuracyMetrics {
1571 measurement_accuracy: 0.97,
1572 calibration_accuracy: 0.98,
1573 prediction_accuracy: 0.85,
1574 overall_accuracy: 0.93,
1575 },
1576 consistency_metrics: ConsistencyMetrics {
1577 result_consistency: 0.94,
1578 performance_consistency: 0.91,
1579 timing_consistency: 0.88,
1580 overall_consistency: 0.91,
1581 },
1582 })
1583 }
1584
1585 async fn generate_optimization_recommendations(
1586 &self,
1587 performance: &PerformanceAnalytics,
1588 resources: &ResourceUtilization,
1589 quality: &QualityMetrics,
1590 ) -> DeviceResult<Vec<OptimizationRecommendation>> {
1591 let mut recommendations = Vec::new();
1592
1593 if performance.overall_fidelity
1595 < self
1596 .config
1597 .optimization_config
1598 .performance_targets
1599 .min_fidelity
1600 {
1601 recommendations.push(OptimizationRecommendation {
1602 category: RecommendationCategory::Performance,
1603 priority: RecommendationPriority::High,
1604 description: "Implement enhanced error mitigation strategies to improve fidelity"
1605 .to_string(),
1606 estimated_improvement: 0.05,
1607 implementation_effort: ImplementationEffort::Medium,
1608 confidence: 0.85,
1609 });
1610 }
1611
1612 if resources.cpu_utilization > 0.9 {
1613 recommendations.push(OptimizationRecommendation {
1614 category: RecommendationCategory::Efficiency,
1615 priority: RecommendationPriority::Medium,
1616 description: "Optimize resource allocation to reduce CPU bottleneck".to_string(),
1617 estimated_improvement: 0.15,
1618 implementation_effort: ImplementationEffort::Low,
1619 confidence: 0.92,
1620 });
1621 }
1622
1623 Ok(recommendations)
1624 }
1625
1626 async fn get_primary_device_info(&self) -> DeviceResult<DeviceInfo> {
1627 let devices = self.devices.read().unwrap();
1628 if let Some((device_id, device)) = devices.iter().next() {
1629 Ok(DeviceInfo {
1630 device_id: device_id.clone(),
1631 device_type: "Quantum Processor".to_string(),
1632 provider: "Generic".to_string(),
1633 capabilities: query_backend_capabilities(HardwareBackend::Custom(0)),
1634 current_status: DeviceStatus::Online,
1635 })
1636 } else {
1637 Err(DeviceError::UnsupportedDevice(
1638 "No devices available".to_string(),
1639 ))
1640 }
1641 }
1642
1643 async fn update_performance_analytics(
1644 &self,
1645 result: &IntegratedExecutionResult,
1646 ) -> DeviceResult<()> {
1647 let mut analytics = self.performance_analytics.lock().unwrap();
1648
1649 let data_point = PerformanceDataPoint {
1651 timestamp: Instant::now(),
1652 fidelity: result.performance_analytics.overall_fidelity,
1653 throughput: result.performance_analytics.throughput,
1654 latency: result
1655 .performance_analytics
1656 .total_execution_time
1657 .as_secs_f64()
1658 * 1000.0, error_rate: result.performance_analytics.error_rate,
1660 cost: result.resource_utilization.cost_utilization * 100.0, resource_utilization: result.resource_utilization.clone(),
1662 };
1663
1664 analytics.add_data_point(data_point);
1665
1666 Ok(())
1667 }
1668
1669 async fn consider_optimization_trigger(&self) -> DeviceResult<()> {
1670 let optimization_state = self.optimization_state.lock().unwrap();
1671 let last_optimization = optimization_state.last_optimization;
1672 let interval = Duration::from_secs(self.config.optimization_config.optimization_interval);
1673
1674 if Instant::now().duration_since(last_optimization) > interval {
1675 drop(optimization_state);
1676 self.trigger_system_optimization().await?;
1677 }
1678
1679 Ok(())
1680 }
1681
1682 async fn trigger_system_optimization(&self) -> DeviceResult<()> {
1683 let _ = self.event_sender.send(ManagerEvent::OptimizationCompleted(
1685 "system".to_string(),
1686 0.05, ));
1688
1689 Ok(())
1690 }
1691}
1692
1693impl PerformanceAnalyticsEngine {
1696 fn new() -> Self {
1697 Self {
1698 historical_data: VecDeque::new(),
1699 ml_models: HashMap::new(),
1700 prediction_cache: HashMap::new(),
1701 }
1702 }
1703
1704 fn add_data_point(&mut self, data_point: PerformanceDataPoint) {
1705 self.historical_data.push_back(data_point);
1706
1707 while self.historical_data.len() > 10000 {
1709 self.historical_data.pop_front();
1710 }
1711 }
1712}
1713
1714impl ResourceMonitor {
1715 fn new(targets: UtilizationTargets) -> Self {
1716 Self {
1717 resource_history: VecDeque::new(),
1718 utilization_targets: targets,
1719 alert_thresholds: [
1720 ("cpu".to_string(), 0.9),
1721 ("memory".to_string(), 0.85),
1722 ("network".to_string(), 0.8),
1723 ("quantum".to_string(), 0.95),
1724 ]
1725 .iter()
1726 .cloned()
1727 .collect(),
1728 }
1729 }
1730}
1731
1732impl AnomalyDetector {
1733 fn new() -> Self {
1734 Self {
1735 detection_models: HashMap::new(),
1736 anomaly_history: VecDeque::new(),
1737 baseline_statistics: HashMap::new(),
1738 }
1739 }
1740}
1741
1742impl OptimizationState {
1743 fn new() -> Self {
1744 Self {
1745 last_optimization: Instant::now(),
1746 optimization_history: VecDeque::new(),
1747 current_strategy: OrchestrationStrategy::Adaptive,
1748 learning_parameters: Array1::zeros(10),
1749 performance_baseline: PerformanceBaseline {
1750 fidelity_baseline: 0.95,
1751 throughput_baseline: 10.0,
1752 latency_baseline: 1000.0,
1753 cost_baseline: 100.0,
1754 last_updated: Instant::now(),
1755 },
1756 }
1757 }
1758}
1759
1760#[cfg(test)]
1761mod tests {
1762 use super::*;
1763 use crate::calibration::CalibrationManager;
1764
1765 #[test]
1766 fn test_integrated_device_config_default() {
1767 let config = IntegratedDeviceConfig::default();
1768 assert!(config.enable_adaptive_management);
1769 assert!(config.enable_ml_optimization);
1770 assert_eq!(
1771 config.orchestration_strategy,
1772 OrchestrationStrategy::Adaptive
1773 );
1774 }
1775
1776 #[test]
1777 fn test_workflow_definition_creation() {
1778 let workflow = WorkflowDefinition {
1779 workflow_id: "test_workflow".to_string(),
1780 workflow_type: WorkflowType::ProcessCharacterization,
1781 steps: Vec::new(),
1782 configuration: HashMap::new(),
1783 priority: JobPriority::Normal,
1784 deadline: None,
1785 };
1786
1787 assert_eq!(
1788 workflow.workflow_type,
1789 WorkflowType::ProcessCharacterization
1790 );
1791 assert_eq!(workflow.priority, JobPriority::Normal);
1792 }
1793
1794 #[tokio::test]
1795 async fn test_integrated_manager_creation() {
1796 let config = IntegratedDeviceConfig::default();
1797 let devices = HashMap::new();
1798 let calibration_manager = CalibrationManager::new();
1799
1800 let manager = IntegratedQuantumDeviceManager::new(config, devices, calibration_manager);
1801
1802 assert!(manager.is_ok());
1803 }
1804}