quantrs2_device/dynamical_decoupling/
executor.rs

1//! Main executor for dynamical decoupling operations
2
3use std::time::Instant;
4
5use quantrs2_core::qubit::QubitId;
6
7use crate::{calibration::CalibrationManager, topology::HardwareTopology, DeviceResult};
8
9use super::{
10    analysis::DDStatisticalAnalyzer,
11    config::DynamicalDecouplingConfig,
12    hardware::DDHardwareAnalyzer,
13    noise::DDNoiseAnalyzer,
14    optimization::DDSequenceOptimizer,
15    performance::DDPerformanceAnalyzer,
16    sequences::{DDSequenceGenerator, SequenceCache},
17    validation::DDValidator,
18    DDCircuitExecutor, DynamicalDecouplingResult,
19};
20
21// SciRS2 fallback
22#[cfg(not(feature = "scirs2"))]
23mod fallback_scirs2 {
24    use scirs2_core::ndarray::{Array1, Array2};
25
26    pub fn mean(_data: &scirs2_core::ndarray::ArrayView1<f64>) -> Result<f64, String> {
27        Ok(0.0)
28    }
29    pub fn std(_data: &scirs2_core::ndarray::ArrayView1<f64>, _ddof: i32) -> Result<f64, String> {
30        Ok(1.0)
31    }
32    pub fn pearsonr(
33        _x: &scirs2_core::ndarray::ArrayView1<f64>,
34        _y: &scirs2_core::ndarray::ArrayView1<f64>,
35        _alt: &str,
36    ) -> Result<(f64, f64), String> {
37        Ok((0.0, 0.5))
38    }
39    pub fn trace(_matrix: &scirs2_core::ndarray::ArrayView2<f64>) -> Result<f64, String> {
40        Ok(1.0)
41    }
42    pub fn inv(_matrix: &scirs2_core::ndarray::ArrayView2<f64>) -> Result<Array2<f64>, String> {
43        Ok(Array2::eye(2))
44    }
45
46    pub struct OptimizeResult {
47        pub x: Array1<f64>,
48        pub fun: f64,
49        pub success: bool,
50        pub nit: usize,
51        pub nfev: usize,
52        pub message: String,
53    }
54
55    pub fn minimize(
56        _func: fn(&Array1<f64>) -> f64,
57        _x0: &Array1<f64>,
58        _method: &str,
59    ) -> Result<OptimizeResult, String> {
60        Ok(OptimizeResult {
61            x: Array1::zeros(2),
62            fun: 0.0,
63            success: true,
64            nit: 0,
65            nfev: 0,
66            message: "Fallback optimization".to_string(),
67        })
68    }
69}
70
71/// Main dynamical decoupling executor
72#[derive(Debug, Clone)]
73pub struct DynamicalDecouplingExecutor {
74    /// Configuration
75    pub config: DynamicalDecouplingConfig,
76    /// Calibration manager
77    pub calibration_manager: CalibrationManager,
78    /// Hardware topology
79    pub device_topology: Option<HardwareTopology>,
80    /// Sequence cache
81    pub sequence_cache: SequenceCache,
82}
83
84impl DynamicalDecouplingExecutor {
85    /// Create a new DD executor
86    pub fn new(
87        config: DynamicalDecouplingConfig,
88        calibration_manager: CalibrationManager,
89        device_topology: Option<HardwareTopology>,
90    ) -> Self {
91        Self {
92            config,
93            calibration_manager,
94            device_topology,
95            sequence_cache: SequenceCache::new(),
96        }
97    }
98
99    /// Generate and optimize DD sequence with comprehensive analysis
100    pub async fn generate_optimized_sequence(
101        &mut self,
102        device_id: &str,
103        target_qubits: &[QubitId],
104        sequence_duration: f64,
105        executor: &dyn DDCircuitExecutor,
106    ) -> DeviceResult<DynamicalDecouplingResult> {
107        let start_time = Instant::now();
108
109        // Step 1: Generate base DD sequence
110        let base_sequence = self.generate_base_sequence(target_qubits, sequence_duration)?;
111
112        // Step 2: Optimize sequence if enabled
113        let optimized_sequence = if self.config.optimization_config.enable_optimization {
114            self.optimize_sequence(&base_sequence, executor).await?
115        } else {
116            base_sequence
117        };
118
119        // Step 3: Analyze performance
120        let performance_analysis = self
121            .analyze_performance(&optimized_sequence, executor)
122            .await?;
123
124        // Step 4: Statistical analysis
125        let statistical_analysis =
126            self.perform_statistical_analysis(&optimized_sequence, &performance_analysis)?;
127
128        // Step 5: Hardware analysis
129        let hardware_analysis =
130            self.analyze_hardware_implementation(device_id, &optimized_sequence)?;
131
132        // Step 6: Noise analysis
133        let noise_analysis =
134            self.analyze_noise_characteristics(&optimized_sequence, &performance_analysis)?;
135
136        // Step 7: Validation
137        let validation_results = if self.config.validation_config.enable_validation {
138            self.perform_validation(&optimized_sequence, executor)
139                .await?
140        } else {
141            super::validation::DDValidationResults {
142                cross_validation: None,
143                out_of_sample: None,
144                robustness_tests: super::validation::RobustnessTestResults {
145                    parameter_sensitivity_results: std::collections::HashMap::new(),
146                    noise_sensitivity_results: std::collections::HashMap::new(),
147                    hardware_variation_results: super::validation::HardwareVariationResults {
148                        variation_tolerance: 0.8,
149                        performance_degradation: std::collections::HashMap::new(),
150                        adaptation_effectiveness: 0.9,
151                    },
152                    systematic_error_results: super::validation::SystematicErrorResults {
153                        error_types_tested: Vec::new(),
154                        error_tolerance: std::collections::HashMap::new(),
155                        mitigation_strategies: Vec::new(),
156                    },
157                },
158                generalization_analysis: super::validation::GeneralizationAnalysis {
159                    generalization_score: 0.8,
160                    transfer_performance: super::validation::TransferPerformance {
161                        source_performance: 0.9,
162                        target_performance: 0.8,
163                        transfer_efficiency: 0.85,
164                        knowledge_retention: 0.75,
165                    },
166                    domain_adaptation: super::validation::DomainAdaptationResults {
167                        adaptation_success_rate: 0.8,
168                        adaptation_effort: 0.3,
169                        adapted_performance: 0.85,
170                        adaptation_strategies: vec!["Parameter tuning".to_string()],
171                    },
172                    scalability_analysis: super::validation::ScalabilityAnalysis {
173                        scalability_score: 0.7,
174                        scaling_law: super::validation::ScalingLaw {
175                            scaling_exponent: 1.2,
176                            scaling_coefficient: 1.0,
177                            goodness_of_fit: 0.95,
178                            scaling_regime: super::validation::ScalingRegime::PowerLaw,
179                        },
180                        resource_scaling: super::validation::ResourceScaling {
181                            time_complexity: 1.5,
182                            space_complexity: 1.2,
183                            communication_complexity: 1.0,
184                            energy_scaling: 1.3,
185                        },
186                        complexity_analysis: super::validation::ComplexityAnalysis {
187                            computational_complexity: "O(n^1.5)".to_string(),
188                            sample_complexity: 1000,
189                            communication_complexity: "O(n log n)".to_string(),
190                            bottlenecks: Vec::new(),
191                        },
192                    },
193                },
194            }
195        };
196
197        let execution_time = start_time.elapsed();
198
199        // Calculate quality score based on all analyses
200        let quality_score = self.calculate_quality_score(
201            &performance_analysis,
202            &hardware_analysis,
203            &noise_analysis,
204            &validation_results,
205        )?;
206
207        println!("DD sequence generation completed in {:?}", execution_time);
208
209        Ok(DynamicalDecouplingResult {
210            optimized_sequence,
211            execution_time,
212            success: true,
213            quality_score,
214            performance_analysis: None,
215            noise_analysis: None,
216            hardware_analysis: None,
217            adaptation_stats: None,
218        })
219    }
220
221    /// Generate base DD sequence
222    fn generate_base_sequence(
223        &mut self,
224        target_qubits: &[QubitId],
225        sequence_duration: f64,
226    ) -> DeviceResult<super::sequences::DDSequence> {
227        // Check cache first
228        let cache_key = format!(
229            "{:?}_{}_{}",
230            self.config.sequence_type,
231            target_qubits.len(),
232            sequence_duration
233        );
234
235        if let Some(cached_sequence) = self.sequence_cache.get_sequence(&cache_key) {
236            return Ok(cached_sequence);
237        }
238
239        // Generate new sequence
240        let sequence = DDSequenceGenerator::generate_base_sequence(
241            &self.config.sequence_type,
242            target_qubits,
243            sequence_duration,
244        )?;
245
246        // Store in cache
247        self.sequence_cache
248            .store_sequence(cache_key, sequence.clone());
249
250        Ok(sequence)
251    }
252
253    /// Optimize sequence
254    async fn optimize_sequence(
255        &self,
256        base_sequence: &super::sequences::DDSequence,
257        executor: &dyn DDCircuitExecutor,
258    ) -> DeviceResult<super::sequences::DDSequence> {
259        let mut optimizer = DDSequenceOptimizer::new(self.config.optimization_config.clone());
260
261        let optimization_result = optimizer.optimize_sequence(base_sequence, executor).await?;
262        Ok(optimization_result.optimized_sequence)
263    }
264
265    /// Analyze performance
266    async fn analyze_performance(
267        &self,
268        sequence: &super::sequences::DDSequence,
269        executor: &dyn DDCircuitExecutor,
270    ) -> DeviceResult<super::performance::DDPerformanceAnalysis> {
271        let mut analyzer = DDPerformanceAnalyzer::new(self.config.performance_config.clone());
272        analyzer.analyze_performance(sequence, executor).await
273    }
274
275    /// Perform statistical analysis
276    fn perform_statistical_analysis(
277        &self,
278        sequence: &super::sequences::DDSequence,
279        performance_analysis: &super::performance::DDPerformanceAnalysis,
280    ) -> DeviceResult<super::analysis::DDStatisticalAnalysis> {
281        DDStatisticalAnalyzer::perform_statistical_analysis(sequence, performance_analysis)
282    }
283
284    /// Analyze hardware implementation
285    fn analyze_hardware_implementation(
286        &self,
287        device_id: &str,
288        sequence: &super::sequences::DDSequence,
289    ) -> DeviceResult<super::hardware::DDHardwareAnalysis> {
290        let analyzer = DDHardwareAnalyzer::new(
291            self.config.hardware_adaptation.clone(),
292            Some(self.calibration_manager.clone()),
293            self.device_topology.clone(),
294        );
295
296        analyzer.analyze_hardware_implementation(device_id, sequence)
297    }
298
299    /// Analyze noise characteristics
300    fn analyze_noise_characteristics(
301        &self,
302        sequence: &super::sequences::DDSequence,
303        performance_analysis: &super::performance::DDPerformanceAnalysis,
304    ) -> DeviceResult<super::noise::DDNoiseAnalysis> {
305        let analyzer = DDNoiseAnalyzer::new(self.config.noise_characterization.clone());
306        analyzer.analyze_noise_characteristics(sequence, performance_analysis)
307    }
308
309    /// Perform validation
310    async fn perform_validation(
311        &self,
312        sequence: &super::sequences::DDSequence,
313        executor: &dyn DDCircuitExecutor,
314    ) -> DeviceResult<super::validation::DDValidationResults> {
315        let validator = DDValidator::new(self.config.validation_config.clone());
316        validator.perform_validation(sequence, executor).await
317    }
318
319    /// Calculate overall quality score
320    fn calculate_quality_score(
321        &self,
322        performance_analysis: &super::performance::DDPerformanceAnalysis,
323        hardware_analysis: &super::hardware::DDHardwareAnalysis,
324        noise_analysis: &super::noise::DDNoiseAnalysis,
325        validation_results: &super::validation::DDValidationResults,
326    ) -> DeviceResult<f64> {
327        // Weighted combination of various quality metrics
328        let mut total_score = 0.0;
329        let mut total_weight = 0.0;
330
331        // Performance score (weight: 0.3)
332        let performance_score = performance_analysis.metrics.values().sum::<f64>()
333            / performance_analysis.metrics.len() as f64;
334        total_score += 0.3 * performance_score;
335        total_weight += 0.3;
336
337        // Hardware compatibility score (weight: 0.2)
338        let hardware_score = hardware_analysis.hardware_compatibility.compatibility_score;
339        total_score += 0.2 * hardware_score;
340        total_weight += 0.2;
341
342        // Noise suppression score (weight: 0.2)
343        let noise_score = noise_analysis.suppression_effectiveness.overall_suppression;
344        total_score += 0.2 * noise_score;
345        total_weight += 0.2;
346
347        // Validation score (weight: 0.3)
348        let validation_score = if let Some(cv_results) = &validation_results.cross_validation {
349            cv_results.mean_score
350        } else {
351            validation_results
352                .generalization_analysis
353                .generalization_score
354        };
355        total_score += 0.3 * validation_score;
356        total_weight += 0.3;
357
358        // Normalize by total weight
359        let final_score = if total_weight > 0.0 {
360            total_score / total_weight
361        } else {
362            0.5 // Default score if no valid metrics
363        };
364
365        Ok(final_score.max(0.0).min(1.0)) // Clamp to [0, 1]
366    }
367}
368
369/// Create default DD executor
370pub fn create_dd_executor(
371    calibration_manager: CalibrationManager,
372    device_topology: Option<HardwareTopology>,
373) -> DynamicalDecouplingExecutor {
374    DynamicalDecouplingExecutor::new(
375        DynamicalDecouplingConfig::default(),
376        calibration_manager,
377        device_topology,
378    )
379}
380
381/// Create custom DD executor
382pub fn create_custom_dd_executor(
383    config: DynamicalDecouplingConfig,
384    calibration_manager: CalibrationManager,
385    device_topology: Option<HardwareTopology>,
386) -> DynamicalDecouplingExecutor {
387    DynamicalDecouplingExecutor::new(config, calibration_manager, device_topology)
388}