quantrs2_device/dynamical_decoupling/
adaptive.rs

1//! Adaptive dynamical decoupling system with real-time optimization
2
3use scirs2_core::random::prelude::*;
4use std::collections::HashMap;
5use std::sync::{Arc, Mutex};
6use std::time::{Duration, Instant};
7
8use scirs2_core::random::Rng;
9
10use scirs2_core::ndarray::{Array1, Array2};
11use quantrs2_circuit::prelude::Circuit;
12use quantrs2_core::qubit::QubitId;
13
14use super::{
15    config::{
16        AdaptationCriteria, AdaptiveDDConfig, ControlAlgorithm, DDPerformanceMetric,
17        DDSequenceType, ExplorationStrategy, FeedbackControlConfig, LearningAlgorithm,
18        LearningConfig, MonitoringConfig, MonitoringMetric,
19    },
20    noise::DDNoiseAnalysis,
21    performance::DDPerformanceAnalysis,
22    sequences::{DDSequence, DDSequenceGenerator},
23    DDCircuitExecutor,
24};
25use crate::{DeviceError, DeviceResult};
26
27/// Adaptive DD system state
28#[derive(Debug, Clone)]
29pub struct AdaptiveDDState {
30    /// Current sequence being used
31    pub current_sequence: DDSequence,
32    /// Performance history
33    pub performance_history: Vec<PerformanceRecord>,
34    /// Noise characteristics history
35    pub noise_history: Vec<NoiseRecord>,
36    /// Adaptation history
37    pub adaptation_history: Vec<AdaptationRecord>,
38    /// Current performance metrics
39    pub current_metrics: PerformanceMetrics,
40    /// System health status
41    pub system_health: SystemHealth,
42}
43
44/// Performance record for historical tracking
45#[derive(Debug, Clone)]
46pub struct PerformanceRecord {
47    /// Timestamp
48    pub timestamp: Instant,
49    /// Coherence time
50    pub coherence_time: f64,
51    /// Process fidelity
52    pub fidelity: f64,
53    /// Gate overhead
54    pub gate_overhead: f64,
55    /// Success rate
56    pub success_rate: f64,
57    /// Resource utilization
58    pub resource_utilization: f64,
59}
60
61/// Noise record for historical tracking
62#[derive(Debug, Clone)]
63pub struct NoiseRecord {
64    /// Timestamp
65    pub timestamp: Instant,
66    /// Noise level by type
67    pub noise_levels: HashMap<String, f64>,
68    /// Dominant noise sources
69    pub dominant_sources: Vec<String>,
70    /// Environmental conditions
71    pub environmental_conditions: EnvironmentalConditions,
72}
73
74/// Environmental conditions
75#[derive(Debug, Clone)]
76pub struct EnvironmentalConditions {
77    /// Temperature
78    pub temperature: f64,
79    /// Magnetic field strength
80    pub magnetic_field: f64,
81    /// Electromagnetic interference level
82    pub emi_level: f64,
83    /// Vibration level
84    pub vibration_level: f64,
85}
86
87/// Adaptation record
88#[derive(Debug, Clone)]
89pub struct AdaptationRecord {
90    /// Timestamp
91    pub timestamp: Instant,
92    /// Previous sequence
93    pub previous_sequence: DDSequenceType,
94    /// New sequence
95    pub new_sequence: DDSequenceType,
96    /// Reason for adaptation
97    pub adaptation_reason: AdaptationReason,
98    /// Expected improvement
99    pub expected_improvement: f64,
100    /// Actual improvement (if measured)
101    pub actual_improvement: Option<f64>,
102}
103
104/// Reasons for adaptation
105#[derive(Debug, Clone, PartialEq)]
106pub enum AdaptationReason {
107    /// Performance degradation
108    PerformanceDegradation,
109    /// Noise change
110    NoiseChange,
111    /// Environmental change
112    EnvironmentalChange,
113    /// Scheduled optimization
114    ScheduledOptimization,
115    /// Learning-based improvement
116    LearningImprovement,
117    /// Emergency intervention
118    Emergency,
119}
120
121/// Current performance metrics
122#[derive(Debug, Clone)]
123pub struct PerformanceMetrics {
124    /// Real-time coherence time
125    pub coherence_time: f64,
126    /// Real-time fidelity
127    pub fidelity: f64,
128    /// Error rates
129    pub error_rates: HashMap<String, f64>,
130    /// Resource usage
131    pub resource_usage: ResourceUsage,
132    /// Throughput
133    pub throughput: f64,
134    /// Latency
135    pub latency: Duration,
136}
137
138/// Resource usage tracking
139#[derive(Debug, Clone)]
140pub struct ResourceUsage {
141    /// CPU utilization
142    pub cpu_utilization: f64,
143    /// Memory usage
144    pub memory_usage: usize,
145    /// Network bandwidth usage
146    pub network_usage: f64,
147    /// Power consumption
148    pub power_consumption: f64,
149}
150
151/// System health status
152#[derive(Debug, Clone)]
153pub struct SystemHealth {
154    /// Overall health score (0.0 to 1.0)
155    pub health_score: f64,
156    /// Component health
157    pub component_health: HashMap<String, f64>,
158    /// Active alerts
159    pub active_alerts: Vec<Alert>,
160    /// Predicted issues
161    pub predicted_issues: Vec<PredictedIssue>,
162}
163
164/// System alert
165#[derive(Debug, Clone)]
166pub struct Alert {
167    /// Alert type
168    pub alert_type: AlertType,
169    /// Severity level
170    pub severity: AlertSeverity,
171    /// Message
172    pub message: String,
173    /// Timestamp
174    pub timestamp: Instant,
175    /// Suggested actions
176    pub suggested_actions: Vec<String>,
177}
178
179/// Alert types
180#[derive(Debug, Clone, PartialEq)]
181pub enum AlertType {
182    PerformanceDegradation,
183    NoiseIncrease,
184    HardwareFailure,
185    TemperatureAnomaly,
186    ResourceExhaustion,
187    CommunicationLoss,
188}
189
190/// Alert severity levels
191#[derive(Debug, Clone, PartialEq)]
192pub enum AlertSeverity {
193    Info,
194    Warning,
195    Error,
196    Critical,
197}
198
199/// Predicted issue
200#[derive(Debug, Clone)]
201pub struct PredictedIssue {
202    /// Issue type
203    pub issue_type: String,
204    /// Probability
205    pub probability: f64,
206    /// Time to occurrence
207    pub time_to_occurrence: Duration,
208    /// Potential impact
209    pub potential_impact: f64,
210    /// Prevention strategies
211    pub prevention_strategies: Vec<String>,
212}
213
214/// Adaptive DD system
215pub struct AdaptiveDDSystem {
216    /// Configuration
217    config: AdaptiveDDConfig,
218    /// Current state
219    state: Arc<Mutex<AdaptiveDDState>>,
220    /// Available sequence types
221    available_sequences: Vec<DDSequenceType>,
222    /// Learning agent
223    learning_agent: Option<LearningAgent>,
224    /// Feedback controller
225    feedback_controller: FeedbackController,
226    /// Real-time monitor
227    monitor: RealTimeMonitor,
228    /// Sequence cache
229    sequence_cache: HashMap<String, DDSequence>,
230}
231
232/// Learning agent for adaptive DD
233struct LearningAgent {
234    /// Q-table for Q-learning (simplified)
235    q_table: HashMap<(String, String), f64>,
236    /// Experience replay buffer
237    replay_buffer: Vec<Experience>,
238    /// Exploration strategy
239    exploration_strategy: ExplorationStrategy,
240    /// Learning statistics
241    learning_stats: LearningStatistics,
242    /// Action count tracking for exploration
243    action_counts: HashMap<String, u32>,
244}
245
246/// Experience for learning
247#[derive(Debug, Clone)]
248struct Experience {
249    /// State representation
250    state: String,
251    /// Action taken
252    action: String,
253    /// Reward received
254    reward: f64,
255    /// Next state
256    next_state: String,
257    /// Done flag
258    done: bool,
259}
260
261/// Learning statistics
262#[derive(Debug, Clone)]
263struct LearningStatistics {
264    /// Total episodes
265    total_episodes: usize,
266    /// Average reward
267    average_reward: f64,
268    /// Exploration rate
269    exploration_rate: f64,
270    /// Learning rate
271    learning_rate: f64,
272}
273
274/// Feedback controller
275struct FeedbackController {
276    /// Control algorithm
277    algorithm: ControlAlgorithm,
278    /// PID state
279    pid_state: PIDState,
280    /// Control history
281    control_history: Vec<ControlAction>,
282}
283
284/// PID controller state
285#[derive(Debug, Clone)]
286struct PIDState {
287    /// Previous error
288    previous_error: f64,
289    /// Integral accumulator
290    integral: f64,
291    /// Last update time
292    last_update: Instant,
293}
294
295/// Control action
296#[derive(Debug, Clone)]
297struct ControlAction {
298    /// Timestamp
299    timestamp: Instant,
300    /// Control output
301    output: f64,
302    /// Target value
303    target: f64,
304    /// Current value
305    current: f64,
306    /// Error
307    error: f64,
308}
309
310/// Real-time monitor
311struct RealTimeMonitor {
312    /// Monitoring thread handle
313    monitoring_enabled: bool,
314    /// Metric collectors
315    metric_collectors: HashMap<MonitoringMetric, MetricCollector>,
316    /// Alert manager
317    alert_manager: AlertManager,
318}
319
320/// Metric collector
321struct MetricCollector {
322    /// Last collected value
323    last_value: f64,
324    /// Collection history
325    history: Vec<(Instant, f64)>,
326    /// Moving average
327    moving_average: f64,
328    /// Threshold values
329    thresholds: (f64, f64), // (warning, critical)
330}
331
332/// Alert manager
333struct AlertManager {
334    /// Active alerts
335    active_alerts: Vec<Alert>,
336    /// Alert history
337    alert_history: Vec<Alert>,
338    /// Alert rules
339    alert_rules: Vec<AlertRule>,
340}
341
342/// Alert rule
343struct AlertRule {
344    /// Metric to monitor
345    metric: MonitoringMetric,
346    /// Condition
347    condition: AlertCondition,
348    /// Threshold value
349    threshold: f64,
350    /// Severity
351    severity: AlertSeverity,
352    /// Message template
353    message_template: String,
354}
355
356/// Alert conditions
357#[derive(Debug, Clone, PartialEq)]
358enum AlertCondition {
359    GreaterThan,
360    LessThan,
361    Equal,
362    RateOfChange,
363    Anomaly,
364}
365
366impl AdaptiveDDSystem {
367    /// Create new adaptive DD system
368    pub fn new(
369        config: AdaptiveDDConfig,
370        initial_sequence: DDSequence,
371        available_sequences: Vec<DDSequenceType>,
372    ) -> Self {
373        let initial_state = AdaptiveDDState {
374            current_sequence: initial_sequence,
375            performance_history: Vec::new(),
376            noise_history: Vec::new(),
377            adaptation_history: Vec::new(),
378            current_metrics: PerformanceMetrics {
379                coherence_time: 0.0,
380                fidelity: 0.0,
381                error_rates: HashMap::new(),
382                resource_usage: ResourceUsage {
383                    cpu_utilization: 0.0,
384                    memory_usage: 0,
385                    network_usage: 0.0,
386                    power_consumption: 0.0,
387                },
388                throughput: 0.0,
389                latency: Duration::from_nanos(0),
390            },
391            system_health: SystemHealth {
392                health_score: 1.0,
393                component_health: HashMap::new(),
394                active_alerts: Vec::new(),
395                predicted_issues: Vec::new(),
396            },
397        };
398
399        let learning_agent =
400            if config.learning_config.learning_algorithm != LearningAlgorithm::QLearning {
401                None
402            } else {
403                Some(LearningAgent {
404                    q_table: HashMap::new(),
405                    replay_buffer: Vec::new(),
406                    exploration_strategy: ExplorationStrategy::EpsilonGreedy(0.1),
407                    learning_stats: LearningStatistics {
408                        total_episodes: 0,
409                        average_reward: 0.0,
410                        exploration_rate: 0.1,
411                        learning_rate: config.learning_config.learning_rate,
412                    },
413                    action_counts: HashMap::new(),
414                })
415            };
416
417        Self {
418            config,
419            state: Arc::new(Mutex::new(initial_state)),
420            available_sequences,
421            learning_agent,
422            feedback_controller: FeedbackController {
423                algorithm: ControlAlgorithm::PID,
424                pid_state: PIDState {
425                    previous_error: 0.0,
426                    integral: 0.0,
427                    last_update: Instant::now(),
428                },
429                control_history: Vec::new(),
430            },
431            monitor: RealTimeMonitor {
432                monitoring_enabled: true,
433                metric_collectors: HashMap::new(),
434                alert_manager: AlertManager {
435                    active_alerts: Vec::new(),
436                    alert_history: Vec::new(),
437                    alert_rules: Vec::new(),
438                },
439            },
440            sequence_cache: HashMap::new(),
441        }
442    }
443
444    /// Start adaptive DD system
445    pub fn start(&mut self, executor: &dyn DDCircuitExecutor) -> DeviceResult<()> {
446        println!("Starting adaptive DD system");
447
448        // Initialize monitoring
449        self.initialize_monitoring()?;
450
451        // Start feedback control loop
452        self.start_control_loop(executor)?;
453
454        Ok(())
455    }
456
457    /// Update system with new performance data
458    pub fn update_performance(
459        &mut self,
460        performance_analysis: &DDPerformanceAnalysis,
461        noise_analysis: &DDNoiseAnalysis,
462    ) -> DeviceResult<()> {
463        let mut state = self.state.lock().unwrap();
464
465        // Record performance
466        let performance_record = PerformanceRecord {
467            timestamp: Instant::now(),
468            coherence_time: performance_analysis
469                .metrics
470                .get(&DDPerformanceMetric::CoherenceTime)
471                .copied()
472                .unwrap_or(0.0),
473            fidelity: performance_analysis
474                .metrics
475                .get(&DDPerformanceMetric::ProcessFidelity)
476                .copied()
477                .unwrap_or(0.95),
478            gate_overhead: performance_analysis
479                .metrics
480                .get(&DDPerformanceMetric::GateOverhead)
481                .copied()
482                .unwrap_or(1.0),
483            success_rate: performance_analysis
484                .metrics
485                .get(&DDPerformanceMetric::RobustnessScore)
486                .copied()
487                .unwrap_or(0.9),
488            resource_utilization: performance_analysis
489                .metrics
490                .get(&DDPerformanceMetric::ResourceEfficiency)
491                .copied()
492                .unwrap_or(0.8),
493        };
494        state.performance_history.push(performance_record);
495
496        // Record noise characteristics
497        let noise_record = NoiseRecord {
498            timestamp: Instant::now(),
499            noise_levels: noise_analysis
500                .noise_characterization
501                .noise_types
502                .iter()
503                .map(|(noise_type, characteristics)| {
504                    (format!("{:?}", noise_type), characteristics.strength)
505                })
506                .collect(),
507            dominant_sources: noise_analysis
508                .noise_characterization
509                .dominant_sources
510                .iter()
511                .map(|source| format!("{:?}", source.source_type))
512                .collect(),
513            environmental_conditions: EnvironmentalConditions {
514                temperature: 20.0, // Would be read from sensors
515                magnetic_field: 0.1,
516                emi_level: 0.05,
517                vibration_level: 0.02,
518            },
519        };
520        state.noise_history.push(noise_record);
521
522        // Update current metrics
523        state.current_metrics.coherence_time = performance_analysis
524            .metrics
525            .get(&DDPerformanceMetric::CoherenceTime)
526            .copied()
527            .unwrap_or(0.0);
528        state.current_metrics.fidelity = performance_analysis
529            .metrics
530            .get(&DDPerformanceMetric::ProcessFidelity)
531            .copied()
532            .unwrap_or(0.95);
533
534        // Check for adaptation triggers
535        if self.should_adapt(&state)? {
536            drop(state); // Release lock before adaptation
537            self.trigger_adaptation()?;
538        }
539
540        Ok(())
541    }
542
543    /// Check if adaptation should be triggered
544    fn should_adapt(&self, state: &AdaptiveDDState) -> DeviceResult<bool> {
545        let criteria = &self.config.adaptation_criteria;
546
547        // Check coherence time degradation
548        if state.current_metrics.coherence_time < criteria.coherence_threshold {
549            return Ok(true);
550        }
551
552        // Check fidelity degradation
553        if state.current_metrics.fidelity < criteria.fidelity_threshold {
554            return Ok(true);
555        }
556
557        // Check noise level increase
558        let average_noise: f64 = state.current_metrics.error_rates.values().sum::<f64>()
559            / state.current_metrics.error_rates.len().max(1) as f64;
560        if average_noise > criteria.noise_threshold {
561            return Ok(true);
562        }
563
564        Ok(false)
565    }
566
567    /// Trigger adaptation process
568    fn trigger_adaptation(&mut self) -> DeviceResult<()> {
569        println!("Triggering DD adaptation");
570
571        // Analyze current performance
572        let current_state = self.analyze_current_state()?;
573
574        // Select new sequence
575        let new_sequence_type = self.select_optimal_sequence(&current_state)?;
576
577        // Generate new sequence
578        let new_sequence = self.generate_sequence(&new_sequence_type)?;
579
580        // Record adaptation
581        let adaptation_record = AdaptationRecord {
582            timestamp: Instant::now(),
583            previous_sequence: self
584                .state
585                .lock()
586                .unwrap()
587                .current_sequence
588                .sequence_type
589                .clone(),
590            new_sequence: new_sequence_type,
591            adaptation_reason: AdaptationReason::PerformanceDegradation,
592            expected_improvement: 0.1, // Estimated improvement
593            actual_improvement: None,
594        };
595
596        // Update state
597        {
598            let mut state = self.state.lock().unwrap();
599            state.current_sequence = new_sequence;
600            state.adaptation_history.push(adaptation_record);
601        }
602
603        println!("DD adaptation completed");
604        Ok(())
605    }
606
607    /// Analyze current system state
608    fn analyze_current_state(&self) -> DeviceResult<String> {
609        let state = self.state.lock().unwrap();
610
611        // Create state representation for learning
612        let coherence_level = if state.current_metrics.coherence_time > 50e-6 {
613            "high"
614        } else if state.current_metrics.coherence_time > 20e-6 {
615            "medium"
616        } else {
617            "low"
618        };
619
620        let fidelity_level = if state.current_metrics.fidelity > 0.99 {
621            "high"
622        } else if state.current_metrics.fidelity > 0.95 {
623            "medium"
624        } else {
625            "low"
626        };
627
628        let noise_level = {
629            let avg_noise: f64 = state.current_metrics.error_rates.values().sum::<f64>()
630                / state.current_metrics.error_rates.len().max(1) as f64;
631            if avg_noise < 0.01 {
632                "low"
633            } else if avg_noise < 0.05 {
634                "medium"
635            } else {
636                "high"
637            }
638        };
639
640        Ok(format!(
641            "coherence_{}_fidelity_{}_noise_{}",
642            coherence_level, fidelity_level, noise_level
643        ))
644    }
645
646    /// Select optimal sequence based on current conditions
647    fn select_optimal_sequence(&mut self, current_state: &str) -> DeviceResult<DDSequenceType> {
648        // Use learning agent if available
649        if let Some(ref mut agent) = self.learning_agent {
650            // Clone the available sequences to avoid borrowing conflicts
651            let available_sequences = self.available_sequences.clone();
652            return Self::select_sequence_with_learning_static(
653                agent,
654                current_state,
655                &available_sequences,
656            );
657        }
658
659        // Fallback to rule-based selection
660        self.select_sequence_rule_based(current_state)
661    }
662
663    /// Select sequence using learning agent (static method)
664    fn select_sequence_with_learning_static(
665        agent: &mut LearningAgent,
666        current_state: &str,
667        available_sequences: &[DDSequenceType],
668    ) -> DeviceResult<DDSequenceType> {
669        // Get Q-values for all available actions
670        let mut best_sequence = DDSequenceType::CPMG { n_pulses: 1 };
671        let mut best_q_value = f64::NEG_INFINITY;
672
673        for sequence_type in available_sequences {
674            let action = format!("{:?}", sequence_type);
675            let q_value = agent
676                .q_table
677                .get(&(current_state.to_string(), action))
678                .copied()
679                .unwrap_or(0.0);
680
681            if q_value > best_q_value {
682                best_q_value = q_value;
683                best_sequence = sequence_type.clone();
684            }
685        }
686
687        // Apply exploration
688        match agent.exploration_strategy {
689            ExplorationStrategy::EpsilonGreedy(epsilon) => {
690                if thread_rng().gen::<f64>() < epsilon {
691                    // Random exploration
692                    let random_idx = thread_rng().gen_range(0..available_sequences.len());
693                    best_sequence = available_sequences[random_idx].clone();
694                }
695            }
696            ExplorationStrategy::UCB(c) => {
697                // Upper Confidence Bound exploration
698                let total_visits = agent.action_counts.values().sum::<u32>() as f64;
699                let mut best_ucb = f64::NEG_INFINITY;
700
701                for sequence_type in available_sequences {
702                    let action = format!("{:?}", sequence_type);
703                    let visits = agent.action_counts.get(&action).copied().unwrap_or(0) as f64;
704                    let q_value = agent
705                        .q_table
706                        .get(&(current_state.to_string(), action.clone()))
707                        .copied()
708                        .unwrap_or(0.0);
709
710                    let ucb_value = if visits > 0.0 {
711                        q_value + c * (total_visits.ln() / visits).sqrt()
712                    } else {
713                        f64::INFINITY // Unvisited actions get highest priority
714                    };
715
716                    if ucb_value > best_ucb {
717                        best_ucb = ucb_value;
718                        best_sequence = sequence_type.clone();
719                    }
720                }
721            }
722            ExplorationStrategy::Boltzmann(temperature) => {
723                // Softmax exploration
724                let mut probabilities = Vec::new();
725                let mut exp_sum = 0.0;
726
727                for sequence_type in available_sequences {
728                    let action = format!("{:?}", sequence_type);
729                    let q_value = agent
730                        .q_table
731                        .get(&(current_state.to_string(), action))
732                        .copied()
733                        .unwrap_or(0.0);
734                    let exp_val = (q_value / temperature).exp();
735                    probabilities.push(exp_val);
736                    exp_sum += exp_val;
737                }
738
739                // Normalize probabilities
740                for prob in &mut probabilities {
741                    *prob /= exp_sum;
742                }
743
744                // Sample from distribution
745                let mut cumsum = 0.0;
746                let rand_val = thread_rng().gen::<f64>();
747                for (i, prob) in probabilities.iter().enumerate() {
748                    cumsum += prob;
749                    if rand_val <= cumsum {
750                        best_sequence = available_sequences[i].clone();
751                        break;
752                    }
753                }
754            }
755            ExplorationStrategy::ThompsonSampling => {
756                // Thompson sampling exploration (simplified implementation)
757                // For now, use epsilon-greedy with a fixed epsilon as fallback
758                if thread_rng().gen::<f64>() < 0.1 {
759                    let random_idx = thread_rng().gen_range(0..available_sequences.len());
760                    best_sequence = available_sequences[random_idx].clone();
761                }
762            }
763        }
764
765        Ok(best_sequence)
766    }
767
768    /// Select sequence using learning agent
769    fn select_sequence_with_learning(
770        &self,
771        agent: &mut LearningAgent,
772        current_state: &str,
773    ) -> DeviceResult<DDSequenceType> {
774        // Get Q-values for all available actions
775        let mut best_sequence = DDSequenceType::CPMG { n_pulses: 1 };
776        let mut best_q_value = f64::NEG_INFINITY;
777
778        for sequence_type in &self.available_sequences {
779            let action = format!("{:?}", sequence_type);
780            let q_value = agent
781                .q_table
782                .get(&(current_state.to_string(), action))
783                .copied()
784                .unwrap_or(0.0);
785
786            if q_value > best_q_value {
787                best_q_value = q_value;
788                best_sequence = sequence_type.clone();
789            }
790        }
791
792        // Apply exploration
793        match agent.exploration_strategy {
794            ExplorationStrategy::EpsilonGreedy(epsilon) => {
795                if thread_rng().gen::<f64>() < epsilon {
796                    // Explore: select random sequence
797                    let random_idx =
798                        thread_rng().gen_range(0..self.available_sequences.len());
799                    best_sequence = self.available_sequences[random_idx].clone();
800                }
801            }
802            _ => {
803                // Use greedy selection
804            }
805        }
806
807        Ok(best_sequence)
808    }
809
810    /// Select sequence using rule-based approach
811    fn select_sequence_rule_based(&self, current_state: &str) -> DeviceResult<DDSequenceType> {
812        // Simple rule-based selection
813        match current_state {
814            s if s.contains("noise_high") => Ok(DDSequenceType::XY8),
815            s if s.contains("coherence_low") => Ok(DDSequenceType::UDD { n_pulses: 3 }),
816            s if s.contains("fidelity_low") => Ok(DDSequenceType::XY4),
817            _ => Ok(DDSequenceType::CPMG { n_pulses: 1 }),
818        }
819    }
820
821    /// Generate sequence of specified type
822    fn generate_sequence(&mut self, sequence_type: &DDSequenceType) -> DeviceResult<DDSequence> {
823        // Check cache first
824        let cache_key = format!("{:?}", sequence_type);
825        if let Some(cached_sequence) = self.sequence_cache.get(&cache_key) {
826            return Ok(cached_sequence.clone());
827        }
828
829        // Generate new sequence
830        let target_qubits = vec![
831            quantrs2_core::qubit::QubitId(0),
832            quantrs2_core::qubit::QubitId(1),
833        ];
834        let duration = 100e-6; // 100 microseconds
835
836        let sequence =
837            DDSequenceGenerator::generate_base_sequence(sequence_type, &target_qubits, duration)?;
838
839        // Cache the sequence
840        self.sequence_cache.insert(cache_key, sequence.clone());
841
842        Ok(sequence)
843    }
844
845    /// Initialize monitoring system
846    fn initialize_monitoring(&mut self) -> DeviceResult<()> {
847        println!("Initializing DD monitoring system");
848
849        // Initialize metric collectors
850        for metric in &self.config.monitoring_config.metrics {
851            let collector = MetricCollector {
852                last_value: 0.0,
853                history: Vec::new(),
854                moving_average: 0.0,
855                thresholds: (0.8, 0.6), // Warning and critical thresholds
856            };
857            self.monitor
858                .metric_collectors
859                .insert(metric.clone(), collector);
860        }
861
862        // Initialize alert rules
863        self.monitor.alert_manager.alert_rules.push(AlertRule {
864            metric: MonitoringMetric::CoherenceTime,
865            condition: AlertCondition::LessThan,
866            threshold: 20e-6, // 20 microseconds
867            severity: AlertSeverity::Warning,
868            message_template: "Coherence time degraded below threshold".to_string(),
869        });
870
871        self.monitor.alert_manager.alert_rules.push(AlertRule {
872            metric: MonitoringMetric::Fidelity,
873            condition: AlertCondition::LessThan,
874            threshold: 0.95,
875            severity: AlertSeverity::Error,
876            message_template: "Process fidelity degraded below threshold".to_string(),
877        });
878
879        Ok(())
880    }
881
882    /// Start control loop
883    fn start_control_loop(&mut self, _executor: &dyn DDCircuitExecutor) -> DeviceResult<()> {
884        println!("Starting DD control loop");
885
886        // In a real implementation, this would start a background thread
887        // for continuous monitoring and control
888
889        Ok(())
890    }
891
892    /// Get current system state
893    pub fn get_current_state(&self) -> AdaptiveDDState {
894        self.state.lock().unwrap().clone()
895    }
896
897    /// Get performance history
898    pub fn get_performance_history(&self) -> Vec<PerformanceRecord> {
899        self.state.lock().unwrap().performance_history.clone()
900    }
901
902    /// Get adaptation statistics
903    pub fn get_adaptation_statistics(&self) -> AdaptationStatistics {
904        let state = self.state.lock().unwrap();
905
906        let total_adaptations = state.adaptation_history.len();
907        let successful_adaptations = state
908            .adaptation_history
909            .iter()
910            .filter(|record| record.actual_improvement.unwrap_or(0.0) > 0.0)
911            .count();
912
913        let success_rate = if total_adaptations > 0 {
914            successful_adaptations as f64 / total_adaptations as f64
915        } else {
916            0.0
917        };
918
919        let average_improvement = state
920            .adaptation_history
921            .iter()
922            .filter_map(|record| record.actual_improvement)
923            .sum::<f64>()
924            / state.adaptation_history.len().max(1) as f64;
925
926        AdaptationStatistics {
927            total_adaptations,
928            successful_adaptations,
929            success_rate,
930            average_improvement,
931            most_used_sequence: self.get_most_used_sequence(&state),
932            adaptation_frequency: self.calculate_adaptation_frequency(&state),
933        }
934    }
935
936    /// Get most used sequence type
937    fn get_most_used_sequence(&self, state: &AdaptiveDDState) -> DDSequenceType {
938        let mut sequence_counts: HashMap<DDSequenceType, usize> = HashMap::new();
939
940        for record in &state.adaptation_history {
941            *sequence_counts
942                .entry(record.new_sequence.clone())
943                .or_insert(0) += 1;
944        }
945
946        sequence_counts
947            .into_iter()
948            .max_by_key(|(_, count)| *count)
949            .map(|(sequence, _)| sequence)
950            .unwrap_or(DDSequenceType::CPMG { n_pulses: 1 })
951    }
952
953    /// Calculate adaptation frequency
954    fn calculate_adaptation_frequency(&self, state: &AdaptiveDDState) -> f64 {
955        if state.adaptation_history.len() < 2 {
956            return 0.0;
957        }
958
959        let first_adaptation = state.adaptation_history.first().unwrap().timestamp;
960        let last_adaptation = state.adaptation_history.last().unwrap().timestamp;
961        let time_span = last_adaptation
962            .duration_since(first_adaptation)
963            .as_secs_f64();
964
965        if time_span > 0.0 {
966            state.adaptation_history.len() as f64 / time_span
967        } else {
968            0.0
969        }
970    }
971}
972
973/// Adaptation statistics
974#[derive(Debug, Clone)]
975pub struct AdaptationStatistics {
976    /// Total number of adaptations
977    pub total_adaptations: usize,
978    /// Number of successful adaptations
979    pub successful_adaptations: usize,
980    /// Success rate
981    pub success_rate: f64,
982    /// Average improvement per adaptation
983    pub average_improvement: f64,
984    /// Most frequently used sequence
985    pub most_used_sequence: DDSequenceType,
986    /// Adaptation frequency (adaptations per second)
987    pub adaptation_frequency: f64,
988}
989
990#[cfg(test)]
991mod tests {
992    use super::*;
993    use crate::dynamical_decoupling::{
994        config::DDSequenceType,
995        sequences::{DDSequence, DDSequenceProperties, ResourceRequirements, SequenceSymmetry},
996    };
997
998    fn create_test_sequence() -> DDSequence {
999        DDSequence {
1000            sequence_type: DDSequenceType::CPMG { n_pulses: 1 },
1001            target_qubits: vec![quantrs2_core::qubit::QubitId(0)],
1002            duration: 100e-6,
1003            circuit: Circuit::<32>::new(),
1004            pulse_timings: vec![50e-6],
1005            pulse_phases: vec![std::f64::consts::PI],
1006            properties: DDSequenceProperties {
1007                pulse_count: 1,
1008                sequence_order: 1,
1009                periodicity: 1,
1010                symmetry: SequenceSymmetry {
1011                    time_reversal: true,
1012                    phase_symmetry: true,
1013                    rotational_symmetry: false,
1014                    inversion_symmetry: true,
1015                },
1016                noise_suppression: std::collections::HashMap::new(),
1017                resource_requirements: ResourceRequirements {
1018                    gate_count: 1,
1019                    circuit_depth: 1,
1020                    required_connectivity: Vec::new(),
1021                    execution_time: 100e-6,
1022                    memory_requirements: 8,
1023                },
1024            },
1025        }
1026    }
1027
1028    #[test]
1029    fn test_adaptive_dd_system_creation() {
1030        let config = AdaptiveDDConfig::default();
1031        let initial_sequence = create_test_sequence();
1032        let available_sequences = vec![
1033            DDSequenceType::CPMG { n_pulses: 1 },
1034            DDSequenceType::XY4,
1035            DDSequenceType::XY8,
1036        ];
1037
1038        let system = AdaptiveDDSystem::new(config, initial_sequence, available_sequences);
1039        let state = system.get_current_state();
1040
1041        assert!(matches!(
1042            state.current_sequence.sequence_type,
1043            DDSequenceType::CPMG { .. }
1044        ));
1045        assert_eq!(state.system_health.health_score, 1.0);
1046    }
1047
1048    #[test]
1049    fn test_rule_based_sequence_selection() {
1050        let config = AdaptiveDDConfig::default();
1051        let initial_sequence = create_test_sequence();
1052        let available_sequences = vec![
1053            DDSequenceType::CPMG { n_pulses: 1 },
1054            DDSequenceType::XY4,
1055            DDSequenceType::XY8,
1056        ];
1057
1058        let system = AdaptiveDDSystem::new(config, initial_sequence, available_sequences);
1059
1060        let high_noise_state = "coherence_medium_fidelity_medium_noise_high";
1061        let low_coherence_state = "coherence_low_fidelity_medium_noise_medium";
1062        let low_fidelity_state = "coherence_medium_fidelity_low_noise_medium";
1063
1064        assert_eq!(
1065            system.select_sequence_rule_based(high_noise_state).unwrap(),
1066            DDSequenceType::XY8
1067        );
1068        assert_eq!(
1069            system
1070                .select_sequence_rule_based(low_coherence_state)
1071                .unwrap(),
1072            DDSequenceType::UDD { n_pulses: 3 }
1073        );
1074        assert_eq!(
1075            system
1076                .select_sequence_rule_based(low_fidelity_state)
1077                .unwrap(),
1078            DDSequenceType::XY4
1079        );
1080    }
1081
1082    #[test]
1083    fn test_adaptation_statistics() {
1084        let config = AdaptiveDDConfig::default();
1085        let initial_sequence = create_test_sequence();
1086        let available_sequences = vec![DDSequenceType::CPMG { n_pulses: 1 }, DDSequenceType::XY4];
1087
1088        let system = AdaptiveDDSystem::new(config, initial_sequence, available_sequences);
1089        let stats = system.get_adaptation_statistics();
1090
1091        assert_eq!(stats.total_adaptations, 0);
1092        assert_eq!(stats.success_rate, 0.0);
1093        assert!(matches!(
1094            stats.most_used_sequence,
1095            DDSequenceType::CPMG { .. }
1096        ));
1097    }
1098}