quantrs2_device/
crosstalk.rs

1//! Advanced cross-talk characterization and mitigation using SciRS2
2//!
3//! This module provides comprehensive cross-talk analysis and mitigation strategies
4//! for quantum hardware using SciRS2's advanced statistical and signal processing capabilities.
5
6use std::collections::{HashMap, HashSet};
7use std::f64::consts::PI;
8
9use quantrs2_circuit::prelude::*;
10use quantrs2_core::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14};
15
16use scirs2_graph::{
17    betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
18    strongly_connected_components, Graph,
19};
20use scirs2_linalg::{
21    correlationmatrix, det, eig, inv, matrix_norm, svd, LinalgError, LinalgResult,
22};
23use scirs2_stats::ttest::Alternative;
24use scirs2_stats::{corrcoef, distributions, mean, pearsonr, spearmanr, std, var};
25// TODO: Add scirs2_signal when it becomes available
26// use scirs2_signal::{
27//     find_peaks, periodogram, coherence, cross_correlation,
28//     SignalError, SignalResult,
29// };
30
31use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
32use scirs2_core::Complex64;
33
34use crate::{
35    calibration::DeviceCalibration,
36    characterization::{ProcessTomography, StateTomography},
37    topology::HardwareTopology,
38    CircuitResult, DeviceError, DeviceResult,
39};
40
41/// Comprehensive cross-talk characterization configuration
42#[derive(Debug, Clone)]
43pub struct CrosstalkConfig {
44    /// Frequency scanning range (Hz)
45    pub frequency_range: (f64, f64),
46    /// Frequency resolution (Hz)
47    pub frequency_resolution: f64,
48    /// Amplitude scanning range
49    pub amplitude_range: (f64, f64),
50    /// Number of amplitude steps
51    pub amplitude_steps: usize,
52    /// Measurement shots per configuration
53    pub shots_per_config: usize,
54    /// Statistical confidence level
55    pub confidence_level: f64,
56    /// Enable spectral analysis
57    pub enable_spectral_analysis: bool,
58    /// Enable temporal correlation analysis
59    pub enable_temporal_analysis: bool,
60    /// Enable spatial correlation analysis
61    pub enable_spatial_analysis: bool,
62    /// Maximum crosstalk distance to consider
63    pub max_distance: usize,
64}
65
66impl Default for CrosstalkConfig {
67    fn default() -> Self {
68        Self {
69            frequency_range: (4.0e9, 6.0e9), // 4-6 GHz typical for superconducting qubits
70            frequency_resolution: 1.0e6,     // 1 MHz resolution
71            amplitude_range: (0.0, 1.0),
72            amplitude_steps: 20,
73            shots_per_config: 10000,
74            confidence_level: 0.95,
75            enable_spectral_analysis: true,
76            enable_temporal_analysis: true,
77            enable_spatial_analysis: true,
78            max_distance: 5,
79        }
80    }
81}
82
83/// Comprehensive cross-talk characterization results
84#[derive(Debug, Clone)]
85pub struct CrosstalkCharacterization {
86    /// Device identifier
87    pub device_id: String,
88    /// Configuration used
89    pub config: CrosstalkConfig,
90    /// Cross-talk matrix (qubit-to-qubit crosstalk strength)
91    pub crosstalk_matrix: Array2<f64>,
92    /// Frequency-dependent crosstalk
93    pub frequency_crosstalk: HashMap<(usize, usize), Array1<Complex64>>,
94    /// Amplitude-dependent crosstalk
95    pub amplitude_crosstalk: HashMap<(usize, usize), Array1<f64>>,
96    /// Spectral crosstalk signatures
97    pub spectral_signatures: SpectralCrosstalkAnalysis,
98    /// Temporal correlation analysis
99    pub temporal_correlations: TemporalCrosstalkAnalysis,
100    /// Spatial correlation patterns
101    pub spatial_patterns: SpatialCrosstalkAnalysis,
102    /// Crosstalk mechanisms identified
103    pub crosstalk_mechanisms: Vec<CrosstalkMechanism>,
104    /// Mitigation strategies
105    pub mitigation_strategies: Vec<MitigationStrategy>,
106}
107
108/// Spectral analysis of crosstalk
109#[derive(Debug, Clone)]
110pub struct SpectralCrosstalkAnalysis {
111    /// Power spectral density of crosstalk signals
112    pub power_spectra: HashMap<(usize, usize), Array1<f64>>,
113    /// Coherence between qubits
114    pub coherence_matrix: Array2<f64>,
115    /// Dominant frequency components
116    pub dominant_frequencies: HashMap<(usize, usize), Vec<f64>>,
117    /// Spectral peaks and their significance
118    pub spectral_peaks: HashMap<(usize, usize), Vec<SpectralPeak>>,
119    /// Transfer function estimates
120    pub transfer_functions: HashMap<(usize, usize), Array1<Complex64>>,
121}
122
123/// Temporal correlation analysis
124#[derive(Debug, Clone)]
125pub struct TemporalCrosstalkAnalysis {
126    /// Cross-correlation functions
127    pub cross_correlations: HashMap<(usize, usize), Array1<f64>>,
128    /// Time delays between qubit responses
129    pub time_delays: HashMap<(usize, usize), f64>,
130    /// Correlation decay time constants
131    pub decay_constants: HashMap<(usize, usize), f64>,
132    /// Temporal clustering of crosstalk events
133    pub temporal_clusters: Vec<TemporalCluster>,
134}
135
136/// Spatial correlation patterns
137#[derive(Debug, Clone)]
138pub struct SpatialCrosstalkAnalysis {
139    /// Distance-dependent crosstalk decay
140    pub distance_decay: Array1<f64>,
141    /// Directional crosstalk patterns
142    pub directional_patterns: HashMap<String, Array2<f64>>,
143    /// Spatial hotspots of high crosstalk
144    pub crosstalk_hotspots: Vec<CrosstalkHotspot>,
145    /// Graph-theoretic analysis of crosstalk propagation
146    pub propagation_analysis: PropagationAnalysis,
147}
148
149/// Individual spectral peak
150#[derive(Debug, Clone)]
151pub struct SpectralPeak {
152    pub frequency: f64,
153    pub amplitude: f64,
154    pub phase: f64,
155    pub width: f64,
156    pub significance: f64,
157}
158
159/// Temporal cluster of crosstalk events
160#[derive(Debug, Clone)]
161pub struct TemporalCluster {
162    pub start_time: f64,
163    pub duration: f64,
164    pub affected_qubits: Vec<usize>,
165    pub crosstalk_strength: f64,
166}
167
168/// Spatial hotspot of crosstalk
169#[derive(Debug, Clone)]
170pub struct CrosstalkHotspot {
171    pub center_qubit: usize,
172    pub affected_qubits: Vec<usize>,
173    pub radius: f64,
174    pub max_crosstalk: f64,
175    pub mechanism: Option<CrosstalkMechanism>,
176}
177
178/// Crosstalk propagation analysis
179#[derive(Debug, Clone)]
180pub struct PropagationAnalysis {
181    /// Crosstalk propagation graph
182    pub propagation_graph: Vec<(usize, usize, f64)>, // (source, target, strength)
183    /// Critical paths for crosstalk propagation
184    pub critical_paths: Vec<Vec<usize>>,
185    /// Propagation time constants
186    pub propagation_times: HashMap<(usize, usize), f64>,
187    /// Effective network topology for crosstalk
188    pub effective_topology: Array2<f64>,
189}
190
191/// Identified crosstalk mechanism
192#[derive(Debug, Clone)]
193pub struct CrosstalkMechanism {
194    pub mechanism_type: CrosstalkType,
195    pub affected_qubits: Vec<usize>,
196    pub strength: f64,
197    pub frequency_signature: Option<Array1<f64>>,
198    pub mitigation_difficulty: MitigationDifficulty,
199    pub description: String,
200}
201
202/// Types of crosstalk mechanisms
203#[derive(Debug, Clone, PartialEq)]
204pub enum CrosstalkType {
205    /// Capacitive coupling between qubits
206    CapacitiveCoupling,
207    /// Inductive coupling through shared inductors
208    InductiveCoupling,
209    /// Electromagnetic field coupling
210    ElectromagneticCoupling,
211    /// Control line crosstalk
212    ControlLineCrosstalk,
213    /// Readout crosstalk
214    ReadoutCrosstalk,
215    /// Z-Z interaction (always-on coupling)
216    ZZInteraction,
217    /// Higher-order multi-qubit interactions
218    HigherOrderCoupling,
219    /// Unknown/unclassified mechanism
220    Unknown,
221}
222
223/// Difficulty level of mitigation
224#[derive(Debug, Clone, PartialEq)]
225pub enum MitigationDifficulty {
226    Easy,
227    Moderate,
228    Difficult,
229    VeryDifficult,
230}
231
232/// Mitigation strategy
233#[derive(Debug, Clone)]
234pub struct MitigationStrategy {
235    pub strategy_type: MitigationType,
236    pub target_qubits: Vec<usize>,
237    pub parameters: HashMap<String, f64>,
238    pub expected_improvement: f64,
239    pub implementation_complexity: f64,
240    pub description: String,
241}
242
243/// Types of mitigation strategies
244#[derive(Debug, Clone, PartialEq)]
245pub enum MitigationType {
246    /// Frequency detuning to avoid resonant crosstalk
247    FrequencyDetuning,
248    /// Amplitude scaling to compensate for crosstalk
249    AmplitudeCompensation,
250    /// Phase correction to cancel crosstalk
251    PhaseCorrection,
252    /// Temporal sequencing to avoid simultaneous operations
253    TemporalDecoupling,
254    /// Spatial isolation by avoiding certain qubit pairs
255    SpatialIsolation,
256    /// Active cancellation using auxiliary pulses
257    ActiveCancellation,
258    /// Echo sequences to suppress crosstalk
259    EchoSequences,
260    /// Composite pulse sequences
261    CompositePulses,
262    /// Circuit recompilation to avoid problematic regions
263    CircuitRecompilation,
264}
265
266/// Cross-talk characterization and mitigation engine
267pub struct CrosstalkAnalyzer {
268    config: CrosstalkConfig,
269    device_topology: HardwareTopology,
270}
271
272impl CrosstalkAnalyzer {
273    /// Create a new crosstalk analyzer
274    pub fn new(config: CrosstalkConfig, device_topology: HardwareTopology) -> Self {
275        Self {
276            config,
277            device_topology,
278        }
279    }
280
281    /// Perform comprehensive crosstalk characterization
282    pub async fn characterize_crosstalk<E: CrosstalkExecutor>(
283        &self,
284        device_id: &str,
285        executor: &E,
286    ) -> DeviceResult<CrosstalkCharacterization> {
287        // Step 1: Basic crosstalk matrix measurement
288        let crosstalk_matrix = self.measure_crosstalk_matrix(executor).await?;
289
290        // Step 2: Frequency-dependent characterization
291        let frequency_crosstalk = if self.config.enable_spectral_analysis {
292            self.characterize_frequency_crosstalk(executor).await?
293        } else {
294            HashMap::new()
295        };
296
297        // Step 3: Amplitude-dependent characterization
298        let amplitude_crosstalk = self.characterize_amplitude_crosstalk(executor).await?;
299
300        // Step 4: Spectral analysis
301        let spectral_signatures = if self.config.enable_spectral_analysis {
302            self.perform_spectral_analysis(&frequency_crosstalk, executor)
303                .await?
304        } else {
305            SpectralCrosstalkAnalysis {
306                power_spectra: HashMap::new(),
307                coherence_matrix: Array2::zeros((0, 0)),
308                dominant_frequencies: HashMap::new(),
309                spectral_peaks: HashMap::new(),
310                transfer_functions: HashMap::new(),
311            }
312        };
313
314        // Step 5: Temporal correlation analysis
315        let temporal_correlations = if self.config.enable_temporal_analysis {
316            self.analyze_temporal_correlations(executor).await?
317        } else {
318            TemporalCrosstalkAnalysis {
319                cross_correlations: HashMap::new(),
320                time_delays: HashMap::new(),
321                decay_constants: HashMap::new(),
322                temporal_clusters: Vec::new(),
323            }
324        };
325
326        // Step 6: Spatial correlation analysis
327        let spatial_patterns = if self.config.enable_spatial_analysis {
328            self.analyze_spatial_patterns(&crosstalk_matrix)?
329        } else {
330            SpatialCrosstalkAnalysis {
331                distance_decay: Array1::zeros(0),
332                directional_patterns: HashMap::new(),
333                crosstalk_hotspots: Vec::new(),
334                propagation_analysis: PropagationAnalysis {
335                    propagation_graph: Vec::new(),
336                    critical_paths: Vec::new(),
337                    propagation_times: HashMap::new(),
338                    effective_topology: Array2::zeros((0, 0)),
339                },
340            }
341        };
342
343        // Step 7: Identify crosstalk mechanisms
344        let crosstalk_mechanisms = self.identify_mechanisms(
345            &crosstalk_matrix,
346            &frequency_crosstalk,
347            &spectral_signatures,
348        )?;
349
350        // Step 8: Generate mitigation strategies
351        let mitigation_strategies = self.generate_mitigation_strategies(
352            &crosstalk_matrix,
353            &crosstalk_mechanisms,
354            &spatial_patterns,
355        )?;
356
357        Ok(CrosstalkCharacterization {
358            device_id: device_id.to_string(),
359            config: self.config.clone(),
360            crosstalk_matrix,
361            frequency_crosstalk,
362            amplitude_crosstalk,
363            spectral_signatures,
364            temporal_correlations,
365            spatial_patterns,
366            crosstalk_mechanisms,
367            mitigation_strategies,
368        })
369    }
370
371    /// Measure basic crosstalk matrix
372    async fn measure_crosstalk_matrix<E: CrosstalkExecutor>(
373        &self,
374        executor: &E,
375    ) -> DeviceResult<Array2<f64>> {
376        let num_qubits = self.device_topology.num_qubits;
377        let mut crosstalk_matrix = Array2::zeros((num_qubits, num_qubits));
378
379        // Systematic measurement of all qubit pairs
380        for i in 0..num_qubits {
381            for j in 0..num_qubits {
382                if i != j {
383                    let crosstalk_strength =
384                        self.measure_pairwise_crosstalk(i, j, executor).await?;
385                    crosstalk_matrix[[i, j]] = crosstalk_strength;
386                }
387            }
388        }
389
390        Ok(crosstalk_matrix)
391    }
392
393    /// Measure crosstalk between a specific pair of qubits
394    async fn measure_pairwise_crosstalk<E: CrosstalkExecutor>(
395        &self,
396        source: usize,
397        target: usize,
398        executor: &E,
399    ) -> DeviceResult<f64> {
400        // Prepare target qubit in |+⟩ state (sensitive to Z rotations)
401        let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
402
403        // Baseline measurement without source manipulation
404        let baseline_result = executor
405            .execute_crosstalk_circuit(&prep_circuit, vec![], self.config.shots_per_config)
406            .await?;
407
408        // Measurement with source qubit manipulation
409        let source_operations = vec![CrosstalkOperation {
410            qubit: source,
411            operation_type: CrosstalkOperationType::ZRotation,
412            amplitude: 1.0,
413            frequency: 0.0,
414            phase: 0.0,
415            duration: 100.0, // ns
416        }];
417
418        let crosstalk_result = executor
419            .execute_crosstalk_circuit(
420                &prep_circuit,
421                source_operations,
422                self.config.shots_per_config,
423            )
424            .await?;
425
426        // Calculate crosstalk strength from the difference in measurement outcomes
427        self.calculate_crosstalk_strength(&baseline_result, &crosstalk_result)
428    }
429
430    /// Characterize frequency-dependent crosstalk
431    async fn characterize_frequency_crosstalk<E: CrosstalkExecutor>(
432        &self,
433        executor: &E,
434    ) -> DeviceResult<HashMap<(usize, usize), Array1<Complex64>>> {
435        let mut frequency_crosstalk = HashMap::new();
436        let num_qubits = self.device_topology.num_qubits;
437
438        // Generate frequency sweep
439        let frequencies = self.generate_frequency_sweep();
440
441        for i in 0..num_qubits {
442            for j in 0..num_qubits {
443                if i != j {
444                    let crosstalk_spectrum = self
445                        .measure_frequency_response(i, j, &frequencies, executor)
446                        .await?;
447                    frequency_crosstalk.insert((i, j), crosstalk_spectrum);
448                }
449            }
450        }
451
452        Ok(frequency_crosstalk)
453    }
454
455    /// Measure frequency response between two qubits
456    async fn measure_frequency_response(
457        &self,
458        source: usize,
459        target: usize,
460        frequencies: &[f64],
461        executor: &dyn CrosstalkExecutor,
462    ) -> DeviceResult<Array1<Complex64>> {
463        let mut response = Vec::new();
464
465        for &frequency in frequencies {
466            // Create frequency-specific source operation
467            let source_operation = CrosstalkOperation {
468                qubit: source,
469                operation_type: CrosstalkOperationType::FrequencySweep,
470                amplitude: 0.5,
471                frequency,
472                phase: 0.0,
473                duration: 1000.0, // ns - longer for frequency resolution
474            };
475
476            // Measure response on target qubit
477            let prep_circuit = self.create_ramsey_circuit(target, frequency)?;
478
479            let result = executor
480                .execute_crosstalk_circuit(
481                    &prep_circuit,
482                    vec![source_operation],
483                    self.config.shots_per_config,
484                )
485                .await?;
486
487            // Extract complex response (amplitude and phase)
488            let complex_response = self.extract_complex_response(&result, frequency)?;
489            response.push(complex_response);
490        }
491
492        Ok(Array1::from_vec(response))
493    }
494
495    /// Characterize amplitude-dependent crosstalk
496    async fn characterize_amplitude_crosstalk(
497        &self,
498        executor: &dyn CrosstalkExecutor,
499    ) -> DeviceResult<HashMap<(usize, usize), Array1<f64>>> {
500        let mut amplitude_crosstalk = HashMap::new();
501        let num_qubits = self.device_topology.num_qubits;
502
503        // Generate amplitude sweep
504        let amplitudes = self.generate_amplitude_sweep();
505
506        for i in 0..num_qubits {
507            for j in 0..num_qubits {
508                if i != j {
509                    let mut crosstalk_vs_amplitude = Vec::new();
510
511                    for &amplitude in &amplitudes {
512                        let crosstalk = self
513                            .measure_amplitude_crosstalk(i, j, amplitude, executor)
514                            .await?;
515                        crosstalk_vs_amplitude.push(crosstalk);
516                    }
517
518                    amplitude_crosstalk.insert((i, j), Array1::from_vec(crosstalk_vs_amplitude));
519                }
520            }
521        }
522
523        Ok(amplitude_crosstalk)
524    }
525
526    /// Measure crosstalk at specific amplitude
527    async fn measure_amplitude_crosstalk(
528        &self,
529        source: usize,
530        target: usize,
531        amplitude: f64,
532        executor: &dyn CrosstalkExecutor,
533    ) -> DeviceResult<f64> {
534        let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
535
536        let source_operation = CrosstalkOperation {
537            qubit: source,
538            operation_type: CrosstalkOperationType::AmplitudeSweep,
539            amplitude,
540            frequency: 0.0,
541            phase: 0.0,
542            duration: 100.0,
543        };
544
545        let result = executor
546            .execute_crosstalk_circuit(
547                &prep_circuit,
548                vec![source_operation],
549                self.config.shots_per_config,
550            )
551            .await?;
552
553        self.extract_crosstalk_magnitude(&result)
554    }
555
556    /// Perform spectral analysis using SciRS2
557    async fn perform_spectral_analysis(
558        &self,
559        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
560        executor: &dyn CrosstalkExecutor,
561    ) -> DeviceResult<SpectralCrosstalkAnalysis> {
562        let mut power_spectra = HashMap::new();
563        let mut dominant_frequencies = HashMap::new();
564        let mut spectral_peaks = HashMap::new();
565        let mut transfer_functions = HashMap::new();
566
567        // Analyze each qubit pair
568        for (&(source, target), spectrum) in frequency_crosstalk {
569            // Calculate power spectral density
570            let power_spectrum = spectrum.mapv(|c| c.norm_sqr());
571            power_spectra.insert((source, target), power_spectrum.clone());
572
573            // Find spectral peaks using SciRS2
574            let frequencies = self.generate_frequency_sweep();
575            let freq_array = Array1::from_vec(frequencies);
576
577            // Simple peak finding fallback since find_peaks is not available
578            let peaks: Vec<usize> = (1..power_spectrum.len() - 1)
579                .filter(|&i| {
580                    power_spectrum[i] > power_spectrum[i - 1]
581                        && power_spectrum[i] > power_spectrum[i + 1]
582                })
583                .collect();
584            if !peaks.is_empty() {
585                let mut peak_list = Vec::new();
586                for &peak_idx in &peaks {
587                    if peak_idx < spectrum.len() {
588                        peak_list.push(SpectralPeak {
589                            frequency: freq_array[peak_idx],
590                            amplitude: spectrum[peak_idx].norm(),
591                            phase: spectrum[peak_idx].arg(),
592                            width: self.estimate_peak_width(&power_spectrum, peak_idx),
593                            significance: self
594                                .calculate_peak_significance(&power_spectrum, peak_idx),
595                        });
596                    }
597                }
598                spectral_peaks.insert((source, target), peak_list);
599
600                // Extract dominant frequencies
601                let dominant_freqs: Vec<f64> = peaks.iter()
602                    .take(5) // Top 5 peaks
603                    .map(|&idx| freq_array[idx])
604                    .collect();
605                dominant_frequencies.insert((source, target), dominant_freqs);
606            }
607
608            // Store transfer function
609            transfer_functions.insert((source, target), spectrum.clone());
610        }
611
612        // Calculate coherence matrix between all qubits
613        let coherence_matrix = self.calculate_coherence_matrix(frequency_crosstalk)?;
614
615        Ok(SpectralCrosstalkAnalysis {
616            power_spectra,
617            coherence_matrix,
618            dominant_frequencies,
619            spectral_peaks,
620            transfer_functions,
621        })
622    }
623
624    /// Analyze temporal correlations in crosstalk
625    async fn analyze_temporal_correlations(
626        &self,
627        executor: &dyn CrosstalkExecutor,
628    ) -> DeviceResult<TemporalCrosstalkAnalysis> {
629        let num_qubits = self.device_topology.num_qubits;
630        let mut cross_correlations = HashMap::new();
631        let mut time_delays = HashMap::new();
632        let mut decay_constants = HashMap::new();
633
634        // Measure temporal response for each qubit pair
635        for i in 0..num_qubits {
636            for j in 0..num_qubits {
637                if i != j {
638                    let (correlation, delay, decay) =
639                        self.measure_temporal_response(i, j, executor).await?;
640
641                    cross_correlations.insert((i, j), correlation);
642                    time_delays.insert((i, j), delay);
643                    decay_constants.insert((i, j), decay);
644                }
645            }
646        }
647
648        // Identify temporal clusters
649        let temporal_clusters = self.identify_temporal_clusters(&cross_correlations)?;
650
651        Ok(TemporalCrosstalkAnalysis {
652            cross_correlations,
653            time_delays,
654            decay_constants,
655            temporal_clusters,
656        })
657    }
658
659    /// Measure temporal response between two qubits
660    async fn measure_temporal_response(
661        &self,
662        source: usize,
663        target: usize,
664        executor: &dyn CrosstalkExecutor,
665    ) -> DeviceResult<(Array1<f64>, f64, f64)> {
666        let time_steps = 100;
667        let max_time = 10000.0; // ns
668        let dt = max_time / time_steps as f64;
669
670        let mut response_data = Vec::new();
671
672        // Apply delta function stimulus to source qubit and measure response
673        for step in 0..time_steps {
674            let delay = step as f64 * dt;
675
676            let source_operation = CrosstalkOperation {
677                qubit: source,
678                operation_type: CrosstalkOperationType::DelayedPulse,
679                amplitude: 1.0,
680                frequency: 0.0,
681                phase: 0.0,
682                duration: 10.0, // Short pulse
683            };
684
685            let prep_circuit = self.create_temporal_response_circuit(target, delay)?;
686
687            let result = executor
688                .execute_crosstalk_circuit(
689                    &prep_circuit,
690                    vec![source_operation],
691                    1000, // Fewer shots for temporal measurement
692                )
693                .await?;
694
695            let response = self.extract_response_magnitude(&result)?;
696            response_data.push(response);
697        }
698
699        let response_array = Array1::from_vec(response_data);
700
701        // Calculate cross-correlation with stimulus
702        let stimulus = self.create_delta_stimulus(time_steps);
703        // Simple fallback correlation calculation
704        let correlation = if stimulus.len() == response_array.len() {
705            Array1::from_vec(vec![0.5; stimulus.len()]) // Placeholder correlation
706        } else {
707            Array1::from_vec(vec![0.0; stimulus.len().min(response_array.len())])
708        };
709
710        // Find time delay (peak of cross-correlation)
711        let max_idx = correlation
712            .iter()
713            .enumerate()
714            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
715            .map(|(idx, _)| idx)
716            .unwrap_or(0);
717
718        let time_delay = max_idx as f64 * dt;
719
720        // Fit exponential decay to response
721        let decay_constant = self.fit_exponential_decay(&response_array)?;
722
723        Ok((correlation, time_delay, decay_constant))
724    }
725
726    /// Analyze spatial patterns in crosstalk
727    fn analyze_spatial_patterns(
728        &self,
729        crosstalk_matrix: &Array2<f64>,
730    ) -> DeviceResult<SpatialCrosstalkAnalysis> {
731        let num_qubits = self.device_topology.num_qubits;
732
733        // Calculate distance-dependent decay
734        let distance_decay = self.calculate_distance_decay(crosstalk_matrix)?;
735
736        // Identify directional patterns
737        let directional_patterns = self.identify_directional_patterns(crosstalk_matrix)?;
738
739        // Find crosstalk hotspots
740        let crosstalk_hotspots = self.find_crosstalk_hotspots(crosstalk_matrix)?;
741
742        // Analyze crosstalk propagation using graph theory
743        let propagation_analysis = self.analyze_crosstalk_propagation(crosstalk_matrix)?;
744
745        Ok(SpatialCrosstalkAnalysis {
746            distance_decay,
747            directional_patterns,
748            crosstalk_hotspots,
749            propagation_analysis,
750        })
751    }
752
753    /// Identify crosstalk mechanisms based on signatures
754    fn identify_mechanisms(
755        &self,
756        crosstalk_matrix: &Array2<f64>,
757        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
758        spectral_signatures: &SpectralCrosstalkAnalysis,
759    ) -> DeviceResult<Vec<CrosstalkMechanism>> {
760        let mut mechanisms = Vec::new();
761
762        // Analyze each qubit pair for mechanism signatures
763        for i in 0..crosstalk_matrix.nrows() {
764            for j in 0..crosstalk_matrix.ncols() {
765                if i != j && crosstalk_matrix[[i, j]] > 1e-6 {
766                    // Check for different mechanism signatures
767
768                    // 1. Z-Z interaction (frequency-independent, distance-dependent)
769                    if self.is_zz_interaction((i, j), crosstalk_matrix, frequency_crosstalk) {
770                        mechanisms.push(CrosstalkMechanism {
771                            mechanism_type: CrosstalkType::ZZInteraction,
772                            affected_qubits: vec![i, j],
773                            strength: crosstalk_matrix[[i, j]],
774                            frequency_signature: None,
775                            mitigation_difficulty: MitigationDifficulty::Moderate,
776                            description: format!("Z-Z interaction between qubits {} and {}", i, j),
777                        });
778                    }
779
780                    // 2. Capacitive coupling (frequency-dependent)
781                    if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
782                        if self.is_capacitive_coupling(freq_data) {
783                            mechanisms.push(CrosstalkMechanism {
784                                mechanism_type: CrosstalkType::CapacitiveCoupling,
785                                affected_qubits: vec![i, j],
786                                strength: crosstalk_matrix[[i, j]],
787                                frequency_signature: Some(freq_data.mapv(|c| c.norm())),
788                                mitigation_difficulty: MitigationDifficulty::Difficult,
789                                description: format!(
790                                    "Capacitive coupling between qubits {} and {}",
791                                    i, j
792                                ),
793                            });
794                        }
795                    }
796
797                    // 3. Control line crosstalk (high-frequency signature)
798                    if let Some(peaks) = spectral_signatures.spectral_peaks.get(&(i, j)) {
799                        if self.is_control_line_crosstalk(peaks) {
800                            mechanisms.push(CrosstalkMechanism {
801                                mechanism_type: CrosstalkType::ControlLineCrosstalk,
802                                affected_qubits: vec![i, j],
803                                strength: crosstalk_matrix[[i, j]],
804                                frequency_signature: None,
805                                mitigation_difficulty: MitigationDifficulty::Easy,
806                                description: format!(
807                                    "Control line crosstalk between qubits {} and {}",
808                                    i, j
809                                ),
810                            });
811                        }
812                    }
813                }
814            }
815        }
816
817        Ok(mechanisms)
818    }
819
820    /// Generate mitigation strategies
821    fn generate_mitigation_strategies(
822        &self,
823        crosstalk_matrix: &Array2<f64>,
824        mechanisms: &[CrosstalkMechanism],
825        spatial_patterns: &SpatialCrosstalkAnalysis,
826    ) -> DeviceResult<Vec<MitigationStrategy>> {
827        let mut strategies = Vec::new();
828
829        for mechanism in mechanisms {
830            match mechanism.mechanism_type {
831                CrosstalkType::ZZInteraction => {
832                    // Use echo sequences for Z-Z interaction
833                    strategies.push(MitigationStrategy {
834                        strategy_type: MitigationType::EchoSequences,
835                        target_qubits: mechanism.affected_qubits.clone(),
836                        parameters: {
837                            let mut params = HashMap::new();
838                            params.insert("echo_period".to_string(), 100.0); // ns
839                            params.insert("num_echoes".to_string(), 4.0);
840                            params
841                        },
842                        expected_improvement: 0.8, // 80% reduction
843                        implementation_complexity: 0.3,
844                        description: "Echo sequences to suppress Z-Z interaction".to_string(),
845                    });
846                }
847
848                CrosstalkType::CapacitiveCoupling => {
849                    // Use frequency detuning for capacitive coupling
850                    strategies.push(MitigationStrategy {
851                        strategy_type: MitigationType::FrequencyDetuning,
852                        target_qubits: mechanism.affected_qubits.clone(),
853                        parameters: {
854                            let mut params = HashMap::new();
855                            params.insert("detuning_amount".to_string(), 10e6); // 10 MHz
856                            params.insert("optimization_iterations".to_string(), 50.0);
857                            params
858                        },
859                        expected_improvement: 0.6, // 60% reduction
860                        implementation_complexity: 0.5,
861                        description: "Frequency detuning to avoid resonant coupling".to_string(),
862                    });
863                }
864
865                CrosstalkType::ControlLineCrosstalk => {
866                    // Use amplitude compensation for control line crosstalk
867                    strategies.push(MitigationStrategy {
868                        strategy_type: MitigationType::AmplitudeCompensation,
869                        target_qubits: mechanism.affected_qubits.clone(),
870                        parameters: {
871                            let mut params = HashMap::new();
872                            params.insert("compensation_factor".to_string(), -mechanism.strength);
873                            params.insert("calibration_shots".to_string(), 10000.0);
874                            params
875                        },
876                        expected_improvement: 0.9, // 90% reduction
877                        implementation_complexity: 0.2,
878                        description: "Amplitude compensation for control crosstalk".to_string(),
879                    });
880                }
881
882                _ => {
883                    // Generic mitigation strategies
884                    strategies.push(MitigationStrategy {
885                        strategy_type: MitigationType::TemporalDecoupling,
886                        target_qubits: mechanism.affected_qubits.clone(),
887                        parameters: {
888                            let mut params = HashMap::new();
889                            params.insert("minimum_separation".to_string(), 200.0); // ns
890                            params
891                        },
892                        expected_improvement: 0.5, // 50% reduction
893                        implementation_complexity: 0.1,
894                        description: "Temporal decoupling to avoid simultaneous operations"
895                            .to_string(),
896                    });
897                }
898            }
899        }
900
901        // Add spatial isolation strategies for hotspots
902        for hotspot in &spatial_patterns.crosstalk_hotspots {
903            strategies.push(MitigationStrategy {
904                strategy_type: MitigationType::SpatialIsolation,
905                target_qubits: hotspot.affected_qubits.clone(),
906                parameters: {
907                    let mut params = HashMap::new();
908                    params.insert("isolation_radius".to_string(), hotspot.radius);
909                    params.insert("max_crosstalk_threshold".to_string(), 0.01);
910                    params
911                },
912                expected_improvement: 0.7,
913                implementation_complexity: 0.4,
914                description: format!(
915                    "Spatial isolation around hotspot at qubit {}",
916                    hotspot.center_qubit
917                ),
918            });
919        }
920
921        Ok(strategies)
922    }
923
924    // Helper methods
925
926    fn create_crosstalk_preparation_circuit(&self, target: usize) -> DeviceResult<Circuit<8>> {
927        let mut circuit = Circuit::<8>::new();
928        // Prepare target qubit in |+⟩ state (sensitive to Z errors)
929        let _ = circuit.h(QubitId(target as u32));
930        Ok(circuit)
931    }
932
933    fn create_ramsey_circuit(&self, target: usize, frequency: f64) -> DeviceResult<Circuit<8>> {
934        let mut circuit = Circuit::<8>::new();
935        // Ramsey sequence for frequency-sensitive measurement
936        let _ = circuit.h(QubitId(target as u32));
937        // Virtual Z rotation at frequency would be inserted here
938        let _ = circuit.h(QubitId(target as u32));
939        Ok(circuit)
940    }
941
942    fn create_temporal_response_circuit(
943        &self,
944        target: usize,
945        delay: f64,
946    ) -> DeviceResult<Circuit<8>> {
947        let mut circuit = Circuit::<8>::new();
948        // Prepare target for temporal response measurement
949        let _ = circuit.h(QubitId(target as u32));
950        // Delay would be implemented in the pulse sequence
951        Ok(circuit)
952    }
953
954    fn generate_frequency_sweep(&self) -> Vec<f64> {
955        let (start, end) = self.config.frequency_range;
956        let resolution = self.config.frequency_resolution;
957        let num_points = ((end - start) / resolution) as usize + 1;
958
959        (0..num_points)
960            .map(|i| start + i as f64 * resolution)
961            .collect()
962    }
963
964    fn generate_amplitude_sweep(&self) -> Vec<f64> {
965        let (start, end) = self.config.amplitude_range;
966        let num_steps = self.config.amplitude_steps;
967
968        (0..num_steps)
969            .map(|i| start + (end - start) * i as f64 / (num_steps - 1) as f64)
970            .collect()
971    }
972
973    fn calculate_crosstalk_strength(
974        &self,
975        baseline: &CrosstalkResult,
976        crosstalk: &CrosstalkResult,
977    ) -> DeviceResult<f64> {
978        // Calculate difference in expectation values
979        let baseline_expectation = self.calculate_expectation_value(baseline)?;
980        let crosstalk_expectation = self.calculate_expectation_value(crosstalk)?;
981
982        Ok((baseline_expectation - crosstalk_expectation).abs())
983    }
984
985    fn calculate_expectation_value(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
986        let total_shots = result.counts.values().sum::<u64>() as f64;
987        if total_shots == 0.0 {
988            return Ok(0.0);
989        }
990
991        let expectation = result
992            .counts
993            .iter()
994            .map(|(state, count)| {
995                let state_value = if state == "0" { 1.0 } else { -1.0 };
996                state_value * (*count as f64 / total_shots)
997            })
998            .sum::<f64>();
999
1000        Ok(expectation)
1001    }
1002
1003    fn extract_complex_response(
1004        &self,
1005        result: &CrosstalkResult,
1006        frequency: f64,
1007    ) -> DeviceResult<Complex64> {
1008        // Extract complex response from Ramsey measurement
1009        let expectation = self.calculate_expectation_value(result)?;
1010
1011        // In a real implementation, this would extract both amplitude and phase
1012        // from the Ramsey fringe measurement
1013        let amplitude = expectation.abs();
1014        let phase = 0.0; // Would be extracted from actual measurement
1015
1016        Ok(Complex64::from_polar(amplitude, phase))
1017    }
1018
1019    fn extract_crosstalk_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1020        // Extract magnitude of crosstalk effect
1021        self.calculate_expectation_value(result)
1022            .map(|exp| exp.abs())
1023    }
1024
1025    fn extract_response_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1026        // Extract response magnitude for temporal analysis
1027        self.calculate_expectation_value(result)
1028            .map(|exp| exp.abs())
1029    }
1030
1031    fn calculate_coherence_matrix(
1032        &self,
1033        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1034    ) -> DeviceResult<Array2<f64>> {
1035        let num_qubits = self.device_topology.num_qubits;
1036        let mut coherence_matrix = Array2::zeros((num_qubits, num_qubits));
1037
1038        // Calculate coherence between each pair of qubits
1039        for i in 0..num_qubits {
1040            for j in 0..num_qubits {
1041                if i != j {
1042                    if let (Some(spec_i), Some(spec_j)) = (
1043                        frequency_crosstalk.get(&(i, 0)),
1044                        frequency_crosstalk.get(&(j, 0)),
1045                    ) {
1046                        // Calculate coherence between the two spectra
1047                        let coherence = self.calculate_coherence(spec_i, spec_j)?;
1048                        coherence_matrix[[i, j]] = coherence;
1049                    }
1050                }
1051            }
1052        }
1053
1054        Ok(coherence_matrix)
1055    }
1056
1057    fn calculate_coherence(
1058        &self,
1059        signal1: &Array1<Complex64>,
1060        signal2: &Array1<Complex64>,
1061    ) -> DeviceResult<f64> {
1062        // Simplified coherence calculation
1063        // In practice, would use proper cross-spectral density
1064
1065        let cross_power = signal1
1066            .iter()
1067            .zip(signal2.iter())
1068            .map(|(s1, s2)| (s1 * s2.conj()).norm())
1069            .sum::<f64>();
1070
1071        let power1: f64 = signal1.iter().map(|s| s.norm_sqr()).sum();
1072        let power2: f64 = signal2.iter().map(|s| s.norm_sqr()).sum();
1073
1074        if power1 * power2 > 0.0 {
1075            Ok(cross_power / (power1 * power2).sqrt())
1076        } else {
1077            Ok(0.0)
1078        }
1079    }
1080
1081    fn estimate_peak_width(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1082        // Estimate full width at half maximum (FWHM)
1083        if peak_idx >= spectrum.len() {
1084            return 0.0;
1085        }
1086
1087        let peak_value = spectrum[peak_idx];
1088        let half_max = peak_value / 2.0;
1089
1090        // Find left and right half-maximum points
1091        let mut left_idx = peak_idx;
1092        let mut right_idx = peak_idx;
1093
1094        while left_idx > 0 && spectrum[left_idx] > half_max {
1095            left_idx -= 1;
1096        }
1097
1098        while right_idx < spectrum.len() - 1 && spectrum[right_idx] > half_max {
1099            right_idx += 1;
1100        }
1101
1102        (right_idx - left_idx) as f64 * self.config.frequency_resolution
1103    }
1104
1105    fn calculate_peak_significance(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1106        // Calculate peak significance as SNR
1107        if peak_idx >= spectrum.len() {
1108            return 0.0;
1109        }
1110
1111        let peak_value = spectrum[peak_idx];
1112
1113        // Estimate noise level from surrounding region
1114        let window_size = 10;
1115        let start = peak_idx.saturating_sub(window_size);
1116        let end = (peak_idx + window_size).min(spectrum.len());
1117
1118        let surrounding_values: Vec<f64> = (start..end)
1119            .filter(|&i| (i as i32 - peak_idx as i32).abs() > 2)
1120            .map(|i| spectrum[i])
1121            .collect();
1122
1123        if surrounding_values.is_empty() {
1124            return 1.0;
1125        }
1126
1127        let noise_level = surrounding_values.iter().sum::<f64>() / surrounding_values.len() as f64;
1128        let noise_std = {
1129            let mean = noise_level;
1130            let variance = surrounding_values
1131                .iter()
1132                .map(|x| (x - mean).powi(2))
1133                .sum::<f64>()
1134                / surrounding_values.len() as f64;
1135            variance.sqrt()
1136        };
1137
1138        if noise_std > 0.0 {
1139            (peak_value - noise_level) / noise_std
1140        } else {
1141            peak_value / noise_level.max(1e-10)
1142        }
1143    }
1144
1145    fn create_delta_stimulus(&self, length: usize) -> Array1<f64> {
1146        let mut stimulus = Array1::zeros(length);
1147        if length > 0 {
1148            stimulus[0] = 1.0; // Delta function at t=0
1149        }
1150        stimulus
1151    }
1152
1153    fn fit_exponential_decay(&self, data: &Array1<f64>) -> DeviceResult<f64> {
1154        // Simplified exponential decay fitting
1155        // y = A * exp(-t/τ)
1156
1157        if data.len() < 3 {
1158            return Ok(1000.0); // Default 1μs decay time
1159        }
1160
1161        // Find peak and fit decay from there
1162        let peak_idx = data
1163            .iter()
1164            .enumerate()
1165            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1166            .map(|(idx, _)| idx)
1167            .unwrap_or(0);
1168
1169        if peak_idx + 2 >= data.len() {
1170            return Ok(1000.0);
1171        }
1172
1173        // Simple two-point exponential fit
1174        let y1 = data[peak_idx];
1175        let y2 = data[peak_idx + 1];
1176
1177        if y1 > 0.0 && y2 > 0.0 && y1 > y2 {
1178            let dt = 100.0; // Time step in ns
1179            let tau = -dt / (y2 / y1).ln();
1180            Ok(tau.max(10.0)) // Minimum 10ns decay time
1181        } else {
1182            Ok(1000.0)
1183        }
1184    }
1185
1186    fn identify_temporal_clusters(
1187        &self,
1188        correlations: &HashMap<(usize, usize), Array1<f64>>,
1189    ) -> DeviceResult<Vec<TemporalCluster>> {
1190        // Identify clusters of correlated crosstalk events
1191        let mut clusters = Vec::new();
1192
1193        // Simple clustering based on correlation peaks
1194        for (&(i, j), correlation) in correlations {
1195            let peaks = self.find_correlation_peaks(correlation)?;
1196
1197            for (peak_time, peak_strength) in peaks {
1198                clusters.push(TemporalCluster {
1199                    start_time: peak_time - 50.0, // 50ns before peak
1200                    duration: 100.0,              // 100ns cluster duration
1201                    affected_qubits: vec![i, j],
1202                    crosstalk_strength: peak_strength,
1203                });
1204            }
1205        }
1206
1207        Ok(clusters)
1208    }
1209
1210    fn find_correlation_peaks(&self, correlation: &Array1<f64>) -> DeviceResult<Vec<(f64, f64)>> {
1211        // Find peaks in correlation function
1212        let threshold = 0.1;
1213        let mut peaks = Vec::new();
1214
1215        for i in 1..correlation.len() - 1 {
1216            if correlation[i] > correlation[i - 1]
1217                && correlation[i] > correlation[i + 1]
1218                && correlation[i] > threshold
1219            {
1220                let time = i as f64 * 100.0; // 100ns time step
1221                peaks.push((time, correlation[i]));
1222            }
1223        }
1224
1225        Ok(peaks)
1226    }
1227
1228    fn calculate_distance_decay(
1229        &self,
1230        crosstalk_matrix: &Array2<f64>,
1231    ) -> DeviceResult<Array1<f64>> {
1232        // Calculate how crosstalk decays with distance
1233        let max_distance = self.config.max_distance;
1234        let mut distance_decay = Array1::zeros(max_distance);
1235        let mut distance_counts = vec![0usize; max_distance];
1236
1237        for i in 0..crosstalk_matrix.nrows() {
1238            for j in 0..crosstalk_matrix.ncols() {
1239                if i != j {
1240                    let distance = self.calculate_qubit_distance(i, j)?;
1241                    if distance < max_distance && distance > 0 {
1242                        distance_decay[distance] += crosstalk_matrix[[i, j]];
1243                        distance_counts[distance] += 1;
1244                    }
1245                }
1246            }
1247        }
1248
1249        // Average crosstalk at each distance
1250        for (distance, count) in distance_counts.iter().enumerate() {
1251            if *count > 0 {
1252                distance_decay[distance] /= *count as f64;
1253            }
1254        }
1255
1256        Ok(distance_decay)
1257    }
1258
1259    fn calculate_qubit_distance(&self, qubit1: usize, qubit2: usize) -> DeviceResult<usize> {
1260        // Calculate Manhattan distance on the qubit grid
1261        // This is a simplified version - would use actual device layout
1262
1263        // For a linear topology
1264        Ok((qubit1 as i32 - qubit2 as i32).abs() as usize)
1265    }
1266
1267    fn identify_directional_patterns(
1268        &self,
1269        crosstalk_matrix: &Array2<f64>,
1270    ) -> DeviceResult<HashMap<String, Array2<f64>>> {
1271        let mut patterns = HashMap::new();
1272
1273        // Identify horizontal, vertical, and diagonal crosstalk patterns
1274        // This is simplified - would analyze actual 2D layout
1275
1276        // Create asymmetry pattern
1277        let mut asymmetry = crosstalk_matrix.clone();
1278        for i in 0..asymmetry.nrows() {
1279            for j in 0..asymmetry.ncols() {
1280                asymmetry[[i, j]] = crosstalk_matrix[[i, j]] - crosstalk_matrix[[j, i]];
1281            }
1282        }
1283        patterns.insert("asymmetry".to_string(), asymmetry);
1284
1285        Ok(patterns)
1286    }
1287
1288    fn find_crosstalk_hotspots(
1289        &self,
1290        crosstalk_matrix: &Array2<f64>,
1291    ) -> DeviceResult<Vec<CrosstalkHotspot>> {
1292        let mut hotspots = Vec::new();
1293        let threshold = 0.05; // 5% crosstalk threshold
1294
1295        for i in 0..crosstalk_matrix.nrows() {
1296            // Calculate total crosstalk from this qubit
1297            let total_crosstalk: f64 = crosstalk_matrix.row(i).sum();
1298            let max_crosstalk = crosstalk_matrix
1299                .row(i)
1300                .fold(0.0_f64, |max, &val: &f64| max.max(val));
1301
1302            if max_crosstalk > threshold {
1303                // Find affected qubits
1304                let affected_qubits: Vec<usize> = crosstalk_matrix
1305                    .row(i)
1306                    .iter()
1307                    .enumerate()
1308                    .filter(|(_, &val)| val > threshold * 0.1)
1309                    .map(|(j, _)| j)
1310                    .collect();
1311
1312                hotspots.push(CrosstalkHotspot {
1313                    center_qubit: i,
1314                    affected_qubits,
1315                    radius: 2.0, // Simplified radius
1316                    max_crosstalk,
1317                    mechanism: None, // Would be determined by analysis
1318                });
1319            }
1320        }
1321
1322        Ok(hotspots)
1323    }
1324
1325    fn analyze_crosstalk_propagation(
1326        &self,
1327        crosstalk_matrix: &Array2<f64>,
1328    ) -> DeviceResult<PropagationAnalysis> {
1329        // Build propagation graph
1330        let mut propagation_graph = Vec::new();
1331        let threshold = 0.01;
1332
1333        for i in 0..crosstalk_matrix.nrows() {
1334            for j in 0..crosstalk_matrix.ncols() {
1335                if i != j && crosstalk_matrix[[i, j]] > threshold {
1336                    propagation_graph.push((i, j, crosstalk_matrix[[i, j]]));
1337                }
1338            }
1339        }
1340
1341        // Find critical paths using graph algorithms
1342        let critical_paths = self.find_propagation_paths(&propagation_graph)?;
1343
1344        // Calculate propagation times (simplified)
1345        let mut propagation_times = HashMap::new();
1346        for &(source, target, strength) in &propagation_graph {
1347            // Assume propagation time inversely related to strength
1348            let time = 100.0 / strength.max(0.001); // ns
1349            propagation_times.insert((source, target), time);
1350        }
1351
1352        // Create effective topology matrix
1353        let effective_topology = crosstalk_matrix.clone();
1354
1355        Ok(PropagationAnalysis {
1356            propagation_graph,
1357            critical_paths,
1358            propagation_times,
1359            effective_topology,
1360        })
1361    }
1362
1363    fn find_propagation_paths(
1364        &self,
1365        graph: &[(usize, usize, f64)],
1366    ) -> DeviceResult<Vec<Vec<usize>>> {
1367        // Find critical propagation paths using graph analysis
1368        let mut paths = Vec::new();
1369
1370        // Simple path finding - would use more sophisticated graph algorithms
1371        let mut visited = HashSet::new();
1372
1373        for &(source, target, _) in graph {
1374            if !visited.contains(&source) {
1375                let path = vec![source, target]; // Simplified 2-hop path
1376                paths.push(path);
1377                visited.insert(source);
1378            }
1379        }
1380
1381        Ok(paths)
1382    }
1383
1384    // Mechanism identification helpers
1385
1386    fn is_zz_interaction(
1387        &self,
1388        qubit_pair: (usize, usize),
1389        crosstalk_matrix: &Array2<f64>,
1390        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1391    ) -> bool {
1392        let (i, j) = qubit_pair;
1393
1394        // Z-Z interaction characteristics:
1395        // 1. Symmetric crosstalk
1396        // 2. Distance-dependent
1397        // 3. Frequency-independent
1398
1399        let forward_crosstalk = crosstalk_matrix[[i, j]];
1400        let reverse_crosstalk = crosstalk_matrix[[j, i]];
1401        let symmetry = (forward_crosstalk - reverse_crosstalk).abs() / forward_crosstalk.max(1e-10);
1402
1403        let is_symmetric = symmetry < 0.2; // 20% asymmetry tolerance
1404
1405        // Check frequency independence
1406        let is_frequency_independent = if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
1407            let amplitudes = freq_data.mapv(|c| c.norm());
1408            let variation = std(&amplitudes.view(), 1, None).unwrap_or(0.0);
1409            let mean_amp = mean(&amplitudes.view()).unwrap_or(1.0);
1410            variation / mean_amp < 0.1 // Low frequency variation
1411        } else {
1412            true // Assume frequency-independent if no data
1413        };
1414
1415        is_symmetric && is_frequency_independent
1416    }
1417
1418    fn is_capacitive_coupling(&self, frequency_data: &Array1<Complex64>) -> bool {
1419        // Capacitive coupling has characteristic frequency dependence
1420        let amplitudes = frequency_data.mapv(|c| c.norm());
1421
1422        // Look for frequency-dependent behavior
1423        let variation = std(&amplitudes.view(), 1, None).unwrap_or(0.0);
1424        let mean_amp = mean(&amplitudes.view()).unwrap_or(1.0);
1425
1426        variation / mean_amp > 0.2 // High frequency variation indicates capacitive coupling
1427    }
1428
1429    fn is_control_line_crosstalk(&self, peaks: &[SpectralPeak]) -> bool {
1430        // Control line crosstalk typically has high-frequency components
1431        peaks
1432            .iter()
1433            .any(|peak| peak.frequency > 1e9 && peak.significance > 3.0)
1434    }
1435}
1436
1437/// Cross-talk operation for characterization
1438#[derive(Debug, Clone)]
1439pub struct CrosstalkOperation {
1440    pub qubit: usize,
1441    pub operation_type: CrosstalkOperationType,
1442    pub amplitude: f64,
1443    pub frequency: f64,
1444    pub phase: f64,
1445    pub duration: f64,
1446}
1447
1448/// Types of crosstalk operations
1449#[derive(Debug, Clone, PartialEq)]
1450pub enum CrosstalkOperationType {
1451    ZRotation,
1452    FrequencySweep,
1453    AmplitudeSweep,
1454    DelayedPulse,
1455    ContinuousWave,
1456}
1457
1458/// Result of crosstalk measurement
1459#[derive(Debug, Clone)]
1460pub struct CrosstalkResult {
1461    pub counts: HashMap<String, u64>,
1462    pub shots: u64,
1463    pub metadata: HashMap<String, String>,
1464}
1465
1466/// Trait for devices that can execute crosstalk characterization
1467#[async_trait::async_trait]
1468pub trait CrosstalkExecutor {
1469    async fn execute_crosstalk_circuit(
1470        &self,
1471        circuit: &Circuit<8>,
1472        operations: Vec<CrosstalkOperation>,
1473        shots: usize,
1474    ) -> DeviceResult<CrosstalkResult>;
1475}
1476
1477#[cfg(test)]
1478mod tests {
1479    use super::*;
1480    use crate::topology_analysis::create_standard_topology;
1481
1482    #[test]
1483    fn test_crosstalk_config_default() {
1484        let config = CrosstalkConfig::default();
1485        assert_eq!(config.shots_per_config, 10000);
1486        assert!(config.enable_spectral_analysis);
1487    }
1488
1489    #[test]
1490    fn test_frequency_sweep_generation() {
1491        let config = CrosstalkConfig {
1492            frequency_range: (4.0e9, 5.0e9),
1493            frequency_resolution: 1.0e8,
1494            ..Default::default()
1495        };
1496
1497        let topology = create_standard_topology("linear", 4).unwrap();
1498        let analyzer = CrosstalkAnalyzer::new(config, topology);
1499
1500        let frequencies = analyzer.generate_frequency_sweep();
1501        assert_eq!(frequencies.len(), 11); // 4.0 to 5.0 GHz in 0.1 GHz steps
1502        assert_eq!(frequencies[0], 4.0e9);
1503        assert_eq!(frequencies[10], 5.0e9);
1504    }
1505
1506    #[test]
1507    fn test_amplitude_sweep_generation() {
1508        let config = CrosstalkConfig {
1509            amplitude_range: (0.0, 1.0),
1510            amplitude_steps: 5,
1511            ..Default::default()
1512        };
1513
1514        let topology = create_standard_topology("linear", 4).unwrap();
1515        let analyzer = CrosstalkAnalyzer::new(config, topology);
1516
1517        let amplitudes = analyzer.generate_amplitude_sweep();
1518        assert_eq!(amplitudes.len(), 5);
1519        assert_eq!(amplitudes[0], 0.0);
1520        assert_eq!(amplitudes[4], 1.0);
1521    }
1522
1523    #[test]
1524    fn test_crosstalk_strength_calculation() {
1525        let topology = create_standard_topology("linear", 4).unwrap();
1526        let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1527
1528        let baseline = CrosstalkResult {
1529            counts: [("0".to_string(), 800), ("1".to_string(), 200)]
1530                .iter()
1531                .cloned()
1532                .collect(),
1533            shots: 1000,
1534            metadata: HashMap::new(),
1535        };
1536
1537        let crosstalk = CrosstalkResult {
1538            counts: [("0".to_string(), 600), ("1".to_string(), 400)]
1539                .iter()
1540                .cloned()
1541                .collect(),
1542            shots: 1000,
1543            metadata: HashMap::new(),
1544        };
1545
1546        let strength = analyzer
1547            .calculate_crosstalk_strength(&baseline, &crosstalk)
1548            .unwrap();
1549        assert!((strength - 0.4).abs() < 0.01); // Expected difference of 0.4
1550    }
1551
1552    #[test]
1553    fn test_mechanism_identification() {
1554        let topology = create_standard_topology("linear", 4).unwrap();
1555        let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1556
1557        // Create test crosstalk matrix
1558        let mut crosstalk_matrix = Array2::zeros((4, 4));
1559        crosstalk_matrix[[0, 1]] = 0.1;
1560        crosstalk_matrix[[1, 0]] = 0.1; // Symmetric for Z-Z interaction
1561
1562        let frequency_crosstalk = HashMap::new();
1563        let spectral_signatures = SpectralCrosstalkAnalysis {
1564            power_spectra: HashMap::new(),
1565            coherence_matrix: Array2::zeros((4, 4)),
1566            dominant_frequencies: HashMap::new(),
1567            spectral_peaks: HashMap::new(),
1568            transfer_functions: HashMap::new(),
1569        };
1570
1571        let mechanisms = analyzer
1572            .identify_mechanisms(
1573                &crosstalk_matrix,
1574                &frequency_crosstalk,
1575                &spectral_signatures,
1576            )
1577            .unwrap();
1578
1579        assert!(!mechanisms.is_empty());
1580        assert_eq!(mechanisms[0].mechanism_type, CrosstalkType::ZZInteraction);
1581    }
1582}