1use std::collections::{HashMap, HashSet};
7use std::f64::consts::PI;
8
9use quantrs2_circuit::prelude::*;
10use quantrs2_core::{
11 error::{QuantRS2Error, QuantRS2Result},
12 gate::GateOp,
13 qubit::QubitId,
14};
15
16use scirs2_graph::{
17 betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
18 strongly_connected_components, Graph,
19};
20use scirs2_linalg::{
21 correlationmatrix, det, eig, inv, matrix_norm, svd, LinalgError, LinalgResult,
22};
23use scirs2_stats::ttest::Alternative;
24use scirs2_stats::{corrcoef, distributions, mean, pearsonr, spearmanr, std, var};
25use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
32use scirs2_core::Complex64;
33
34use crate::{
35 calibration::DeviceCalibration,
36 characterization::{ProcessTomography, StateTomography},
37 topology::HardwareTopology,
38 CircuitResult, DeviceError, DeviceResult,
39};
40
41#[derive(Debug, Clone)]
43pub struct CrosstalkConfig {
44 pub frequency_range: (f64, f64),
46 pub frequency_resolution: f64,
48 pub amplitude_range: (f64, f64),
50 pub amplitude_steps: usize,
52 pub shots_per_config: usize,
54 pub confidence_level: f64,
56 pub enable_spectral_analysis: bool,
58 pub enable_temporal_analysis: bool,
60 pub enable_spatial_analysis: bool,
62 pub max_distance: usize,
64}
65
66impl Default for CrosstalkConfig {
67 fn default() -> Self {
68 Self {
69 frequency_range: (4.0e9, 6.0e9), frequency_resolution: 1.0e6, amplitude_range: (0.0, 1.0),
72 amplitude_steps: 20,
73 shots_per_config: 10000,
74 confidence_level: 0.95,
75 enable_spectral_analysis: true,
76 enable_temporal_analysis: true,
77 enable_spatial_analysis: true,
78 max_distance: 5,
79 }
80 }
81}
82
83#[derive(Debug, Clone)]
85pub struct CrosstalkCharacterization {
86 pub device_id: String,
88 pub config: CrosstalkConfig,
90 pub crosstalk_matrix: Array2<f64>,
92 pub frequency_crosstalk: HashMap<(usize, usize), Array1<Complex64>>,
94 pub amplitude_crosstalk: HashMap<(usize, usize), Array1<f64>>,
96 pub spectral_signatures: SpectralCrosstalkAnalysis,
98 pub temporal_correlations: TemporalCrosstalkAnalysis,
100 pub spatial_patterns: SpatialCrosstalkAnalysis,
102 pub crosstalk_mechanisms: Vec<CrosstalkMechanism>,
104 pub mitigation_strategies: Vec<MitigationStrategy>,
106}
107
108#[derive(Debug, Clone)]
110pub struct SpectralCrosstalkAnalysis {
111 pub power_spectra: HashMap<(usize, usize), Array1<f64>>,
113 pub coherence_matrix: Array2<f64>,
115 pub dominant_frequencies: HashMap<(usize, usize), Vec<f64>>,
117 pub spectral_peaks: HashMap<(usize, usize), Vec<SpectralPeak>>,
119 pub transfer_functions: HashMap<(usize, usize), Array1<Complex64>>,
121}
122
123#[derive(Debug, Clone)]
125pub struct TemporalCrosstalkAnalysis {
126 pub cross_correlations: HashMap<(usize, usize), Array1<f64>>,
128 pub time_delays: HashMap<(usize, usize), f64>,
130 pub decay_constants: HashMap<(usize, usize), f64>,
132 pub temporal_clusters: Vec<TemporalCluster>,
134}
135
136#[derive(Debug, Clone)]
138pub struct SpatialCrosstalkAnalysis {
139 pub distance_decay: Array1<f64>,
141 pub directional_patterns: HashMap<String, Array2<f64>>,
143 pub crosstalk_hotspots: Vec<CrosstalkHotspot>,
145 pub propagation_analysis: PropagationAnalysis,
147}
148
149#[derive(Debug, Clone)]
151pub struct SpectralPeak {
152 pub frequency: f64,
153 pub amplitude: f64,
154 pub phase: f64,
155 pub width: f64,
156 pub significance: f64,
157}
158
159#[derive(Debug, Clone)]
161pub struct TemporalCluster {
162 pub start_time: f64,
163 pub duration: f64,
164 pub affected_qubits: Vec<usize>,
165 pub crosstalk_strength: f64,
166}
167
168#[derive(Debug, Clone)]
170pub struct CrosstalkHotspot {
171 pub center_qubit: usize,
172 pub affected_qubits: Vec<usize>,
173 pub radius: f64,
174 pub max_crosstalk: f64,
175 pub mechanism: Option<CrosstalkMechanism>,
176}
177
178#[derive(Debug, Clone)]
180pub struct PropagationAnalysis {
181 pub propagation_graph: Vec<(usize, usize, f64)>, pub critical_paths: Vec<Vec<usize>>,
185 pub propagation_times: HashMap<(usize, usize), f64>,
187 pub effective_topology: Array2<f64>,
189}
190
191#[derive(Debug, Clone)]
193pub struct CrosstalkMechanism {
194 pub mechanism_type: CrosstalkType,
195 pub affected_qubits: Vec<usize>,
196 pub strength: f64,
197 pub frequency_signature: Option<Array1<f64>>,
198 pub mitigation_difficulty: MitigationDifficulty,
199 pub description: String,
200}
201
202#[derive(Debug, Clone, PartialEq)]
204pub enum CrosstalkType {
205 CapacitiveCoupling,
207 InductiveCoupling,
209 ElectromagneticCoupling,
211 ControlLineCrosstalk,
213 ReadoutCrosstalk,
215 ZZInteraction,
217 HigherOrderCoupling,
219 Unknown,
221}
222
223#[derive(Debug, Clone, PartialEq)]
225pub enum MitigationDifficulty {
226 Easy,
227 Moderate,
228 Difficult,
229 VeryDifficult,
230}
231
232#[derive(Debug, Clone)]
234pub struct MitigationStrategy {
235 pub strategy_type: MitigationType,
236 pub target_qubits: Vec<usize>,
237 pub parameters: HashMap<String, f64>,
238 pub expected_improvement: f64,
239 pub implementation_complexity: f64,
240 pub description: String,
241}
242
243#[derive(Debug, Clone, PartialEq)]
245pub enum MitigationType {
246 FrequencyDetuning,
248 AmplitudeCompensation,
250 PhaseCorrection,
252 TemporalDecoupling,
254 SpatialIsolation,
256 ActiveCancellation,
258 EchoSequences,
260 CompositePulses,
262 CircuitRecompilation,
264}
265
266pub struct CrosstalkAnalyzer {
268 config: CrosstalkConfig,
269 device_topology: HardwareTopology,
270}
271
272impl CrosstalkAnalyzer {
273 pub fn new(config: CrosstalkConfig, device_topology: HardwareTopology) -> Self {
275 Self {
276 config,
277 device_topology,
278 }
279 }
280
281 pub async fn characterize_crosstalk<E: CrosstalkExecutor>(
283 &self,
284 device_id: &str,
285 executor: &E,
286 ) -> DeviceResult<CrosstalkCharacterization> {
287 let crosstalk_matrix = self.measure_crosstalk_matrix(executor).await?;
289
290 let frequency_crosstalk = if self.config.enable_spectral_analysis {
292 self.characterize_frequency_crosstalk(executor).await?
293 } else {
294 HashMap::new()
295 };
296
297 let amplitude_crosstalk = self.characterize_amplitude_crosstalk(executor).await?;
299
300 let spectral_signatures = if self.config.enable_spectral_analysis {
302 self.perform_spectral_analysis(&frequency_crosstalk, executor)
303 .await?
304 } else {
305 SpectralCrosstalkAnalysis {
306 power_spectra: HashMap::new(),
307 coherence_matrix: Array2::zeros((0, 0)),
308 dominant_frequencies: HashMap::new(),
309 spectral_peaks: HashMap::new(),
310 transfer_functions: HashMap::new(),
311 }
312 };
313
314 let temporal_correlations = if self.config.enable_temporal_analysis {
316 self.analyze_temporal_correlations(executor).await?
317 } else {
318 TemporalCrosstalkAnalysis {
319 cross_correlations: HashMap::new(),
320 time_delays: HashMap::new(),
321 decay_constants: HashMap::new(),
322 temporal_clusters: Vec::new(),
323 }
324 };
325
326 let spatial_patterns = if self.config.enable_spatial_analysis {
328 self.analyze_spatial_patterns(&crosstalk_matrix)?
329 } else {
330 SpatialCrosstalkAnalysis {
331 distance_decay: Array1::zeros(0),
332 directional_patterns: HashMap::new(),
333 crosstalk_hotspots: Vec::new(),
334 propagation_analysis: PropagationAnalysis {
335 propagation_graph: Vec::new(),
336 critical_paths: Vec::new(),
337 propagation_times: HashMap::new(),
338 effective_topology: Array2::zeros((0, 0)),
339 },
340 }
341 };
342
343 let crosstalk_mechanisms = self.identify_mechanisms(
345 &crosstalk_matrix,
346 &frequency_crosstalk,
347 &spectral_signatures,
348 )?;
349
350 let mitigation_strategies = self.generate_mitigation_strategies(
352 &crosstalk_matrix,
353 &crosstalk_mechanisms,
354 &spatial_patterns,
355 )?;
356
357 Ok(CrosstalkCharacterization {
358 device_id: device_id.to_string(),
359 config: self.config.clone(),
360 crosstalk_matrix,
361 frequency_crosstalk,
362 amplitude_crosstalk,
363 spectral_signatures,
364 temporal_correlations,
365 spatial_patterns,
366 crosstalk_mechanisms,
367 mitigation_strategies,
368 })
369 }
370
371 async fn measure_crosstalk_matrix<E: CrosstalkExecutor>(
373 &self,
374 executor: &E,
375 ) -> DeviceResult<Array2<f64>> {
376 let num_qubits = self.device_topology.num_qubits;
377 let mut crosstalk_matrix = Array2::zeros((num_qubits, num_qubits));
378
379 for i in 0..num_qubits {
381 for j in 0..num_qubits {
382 if i != j {
383 let crosstalk_strength =
384 self.measure_pairwise_crosstalk(i, j, executor).await?;
385 crosstalk_matrix[[i, j]] = crosstalk_strength;
386 }
387 }
388 }
389
390 Ok(crosstalk_matrix)
391 }
392
393 async fn measure_pairwise_crosstalk<E: CrosstalkExecutor>(
395 &self,
396 source: usize,
397 target: usize,
398 executor: &E,
399 ) -> DeviceResult<f64> {
400 let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
402
403 let baseline_result = executor
405 .execute_crosstalk_circuit(&prep_circuit, vec![], self.config.shots_per_config)
406 .await?;
407
408 let source_operations = vec![CrosstalkOperation {
410 qubit: source,
411 operation_type: CrosstalkOperationType::ZRotation,
412 amplitude: 1.0,
413 frequency: 0.0,
414 phase: 0.0,
415 duration: 100.0, }];
417
418 let crosstalk_result = executor
419 .execute_crosstalk_circuit(
420 &prep_circuit,
421 source_operations,
422 self.config.shots_per_config,
423 )
424 .await?;
425
426 self.calculate_crosstalk_strength(&baseline_result, &crosstalk_result)
428 }
429
430 async fn characterize_frequency_crosstalk<E: CrosstalkExecutor>(
432 &self,
433 executor: &E,
434 ) -> DeviceResult<HashMap<(usize, usize), Array1<Complex64>>> {
435 let mut frequency_crosstalk = HashMap::new();
436 let num_qubits = self.device_topology.num_qubits;
437
438 let frequencies = self.generate_frequency_sweep();
440
441 for i in 0..num_qubits {
442 for j in 0..num_qubits {
443 if i != j {
444 let crosstalk_spectrum = self
445 .measure_frequency_response(i, j, &frequencies, executor)
446 .await?;
447 frequency_crosstalk.insert((i, j), crosstalk_spectrum);
448 }
449 }
450 }
451
452 Ok(frequency_crosstalk)
453 }
454
455 async fn measure_frequency_response(
457 &self,
458 source: usize,
459 target: usize,
460 frequencies: &[f64],
461 executor: &dyn CrosstalkExecutor,
462 ) -> DeviceResult<Array1<Complex64>> {
463 let mut response = Vec::new();
464
465 for &frequency in frequencies {
466 let source_operation = CrosstalkOperation {
468 qubit: source,
469 operation_type: CrosstalkOperationType::FrequencySweep,
470 amplitude: 0.5,
471 frequency,
472 phase: 0.0,
473 duration: 1000.0, };
475
476 let prep_circuit = self.create_ramsey_circuit(target, frequency)?;
478
479 let result = executor
480 .execute_crosstalk_circuit(
481 &prep_circuit,
482 vec![source_operation],
483 self.config.shots_per_config,
484 )
485 .await?;
486
487 let complex_response = self.extract_complex_response(&result, frequency)?;
489 response.push(complex_response);
490 }
491
492 Ok(Array1::from_vec(response))
493 }
494
495 async fn characterize_amplitude_crosstalk(
497 &self,
498 executor: &dyn CrosstalkExecutor,
499 ) -> DeviceResult<HashMap<(usize, usize), Array1<f64>>> {
500 let mut amplitude_crosstalk = HashMap::new();
501 let num_qubits = self.device_topology.num_qubits;
502
503 let amplitudes = self.generate_amplitude_sweep();
505
506 for i in 0..num_qubits {
507 for j in 0..num_qubits {
508 if i != j {
509 let mut crosstalk_vs_amplitude = Vec::new();
510
511 for &litude in &litudes {
512 let crosstalk = self
513 .measure_amplitude_crosstalk(i, j, amplitude, executor)
514 .await?;
515 crosstalk_vs_amplitude.push(crosstalk);
516 }
517
518 amplitude_crosstalk.insert((i, j), Array1::from_vec(crosstalk_vs_amplitude));
519 }
520 }
521 }
522
523 Ok(amplitude_crosstalk)
524 }
525
526 async fn measure_amplitude_crosstalk(
528 &self,
529 source: usize,
530 target: usize,
531 amplitude: f64,
532 executor: &dyn CrosstalkExecutor,
533 ) -> DeviceResult<f64> {
534 let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
535
536 let source_operation = CrosstalkOperation {
537 qubit: source,
538 operation_type: CrosstalkOperationType::AmplitudeSweep,
539 amplitude,
540 frequency: 0.0,
541 phase: 0.0,
542 duration: 100.0,
543 };
544
545 let result = executor
546 .execute_crosstalk_circuit(
547 &prep_circuit,
548 vec![source_operation],
549 self.config.shots_per_config,
550 )
551 .await?;
552
553 self.extract_crosstalk_magnitude(&result)
554 }
555
556 async fn perform_spectral_analysis(
558 &self,
559 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
560 executor: &dyn CrosstalkExecutor,
561 ) -> DeviceResult<SpectralCrosstalkAnalysis> {
562 let mut power_spectra = HashMap::new();
563 let mut dominant_frequencies = HashMap::new();
564 let mut spectral_peaks = HashMap::new();
565 let mut transfer_functions = HashMap::new();
566
567 for (&(source, target), spectrum) in frequency_crosstalk {
569 let power_spectrum = spectrum.mapv(|c| c.norm_sqr());
571 power_spectra.insert((source, target), power_spectrum.clone());
572
573 let frequencies = self.generate_frequency_sweep();
575 let freq_array = Array1::from_vec(frequencies);
576
577 let peaks: Vec<usize> = (1..power_spectrum.len() - 1)
579 .filter(|&i| {
580 power_spectrum[i] > power_spectrum[i - 1]
581 && power_spectrum[i] > power_spectrum[i + 1]
582 })
583 .collect();
584 if !peaks.is_empty() {
585 let mut peak_list = Vec::new();
586 for &peak_idx in &peaks {
587 if peak_idx < spectrum.len() {
588 peak_list.push(SpectralPeak {
589 frequency: freq_array[peak_idx],
590 amplitude: spectrum[peak_idx].norm(),
591 phase: spectrum[peak_idx].arg(),
592 width: self.estimate_peak_width(&power_spectrum, peak_idx),
593 significance: self
594 .calculate_peak_significance(&power_spectrum, peak_idx),
595 });
596 }
597 }
598 spectral_peaks.insert((source, target), peak_list);
599
600 let dominant_freqs: Vec<f64> = peaks.iter()
602 .take(5) .map(|&idx| freq_array[idx])
604 .collect();
605 dominant_frequencies.insert((source, target), dominant_freqs);
606 }
607
608 transfer_functions.insert((source, target), spectrum.clone());
610 }
611
612 let coherence_matrix = self.calculate_coherence_matrix(frequency_crosstalk)?;
614
615 Ok(SpectralCrosstalkAnalysis {
616 power_spectra,
617 coherence_matrix,
618 dominant_frequencies,
619 spectral_peaks,
620 transfer_functions,
621 })
622 }
623
624 async fn analyze_temporal_correlations(
626 &self,
627 executor: &dyn CrosstalkExecutor,
628 ) -> DeviceResult<TemporalCrosstalkAnalysis> {
629 let num_qubits = self.device_topology.num_qubits;
630 let mut cross_correlations = HashMap::new();
631 let mut time_delays = HashMap::new();
632 let mut decay_constants = HashMap::new();
633
634 for i in 0..num_qubits {
636 for j in 0..num_qubits {
637 if i != j {
638 let (correlation, delay, decay) =
639 self.measure_temporal_response(i, j, executor).await?;
640
641 cross_correlations.insert((i, j), correlation);
642 time_delays.insert((i, j), delay);
643 decay_constants.insert((i, j), decay);
644 }
645 }
646 }
647
648 let temporal_clusters = self.identify_temporal_clusters(&cross_correlations)?;
650
651 Ok(TemporalCrosstalkAnalysis {
652 cross_correlations,
653 time_delays,
654 decay_constants,
655 temporal_clusters,
656 })
657 }
658
659 async fn measure_temporal_response(
661 &self,
662 source: usize,
663 target: usize,
664 executor: &dyn CrosstalkExecutor,
665 ) -> DeviceResult<(Array1<f64>, f64, f64)> {
666 let time_steps = 100;
667 let max_time = 10000.0; let dt = max_time / time_steps as f64;
669
670 let mut response_data = Vec::new();
671
672 for step in 0..time_steps {
674 let delay = step as f64 * dt;
675
676 let source_operation = CrosstalkOperation {
677 qubit: source,
678 operation_type: CrosstalkOperationType::DelayedPulse,
679 amplitude: 1.0,
680 frequency: 0.0,
681 phase: 0.0,
682 duration: 10.0, };
684
685 let prep_circuit = self.create_temporal_response_circuit(target, delay)?;
686
687 let result = executor
688 .execute_crosstalk_circuit(
689 &prep_circuit,
690 vec![source_operation],
691 1000, )
693 .await?;
694
695 let response = self.extract_response_magnitude(&result)?;
696 response_data.push(response);
697 }
698
699 let response_array = Array1::from_vec(response_data);
700
701 let stimulus = self.create_delta_stimulus(time_steps);
703 let correlation = if stimulus.len() == response_array.len() {
705 Array1::from_vec(vec![0.5; stimulus.len()]) } else {
707 Array1::from_vec(vec![0.0; stimulus.len().min(response_array.len())])
708 };
709
710 let max_idx = correlation
712 .iter()
713 .enumerate()
714 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
715 .map(|(idx, _)| idx)
716 .unwrap_or(0);
717
718 let time_delay = max_idx as f64 * dt;
719
720 let decay_constant = self.fit_exponential_decay(&response_array)?;
722
723 Ok((correlation, time_delay, decay_constant))
724 }
725
726 fn analyze_spatial_patterns(
728 &self,
729 crosstalk_matrix: &Array2<f64>,
730 ) -> DeviceResult<SpatialCrosstalkAnalysis> {
731 let num_qubits = self.device_topology.num_qubits;
732
733 let distance_decay = self.calculate_distance_decay(crosstalk_matrix)?;
735
736 let directional_patterns = self.identify_directional_patterns(crosstalk_matrix)?;
738
739 let crosstalk_hotspots = self.find_crosstalk_hotspots(crosstalk_matrix)?;
741
742 let propagation_analysis = self.analyze_crosstalk_propagation(crosstalk_matrix)?;
744
745 Ok(SpatialCrosstalkAnalysis {
746 distance_decay,
747 directional_patterns,
748 crosstalk_hotspots,
749 propagation_analysis,
750 })
751 }
752
753 fn identify_mechanisms(
755 &self,
756 crosstalk_matrix: &Array2<f64>,
757 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
758 spectral_signatures: &SpectralCrosstalkAnalysis,
759 ) -> DeviceResult<Vec<CrosstalkMechanism>> {
760 let mut mechanisms = Vec::new();
761
762 for i in 0..crosstalk_matrix.nrows() {
764 for j in 0..crosstalk_matrix.ncols() {
765 if i != j && crosstalk_matrix[[i, j]] > 1e-6 {
766 if self.is_zz_interaction((i, j), crosstalk_matrix, frequency_crosstalk) {
770 mechanisms.push(CrosstalkMechanism {
771 mechanism_type: CrosstalkType::ZZInteraction,
772 affected_qubits: vec![i, j],
773 strength: crosstalk_matrix[[i, j]],
774 frequency_signature: None,
775 mitigation_difficulty: MitigationDifficulty::Moderate,
776 description: format!("Z-Z interaction between qubits {} and {}", i, j),
777 });
778 }
779
780 if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
782 if self.is_capacitive_coupling(freq_data) {
783 mechanisms.push(CrosstalkMechanism {
784 mechanism_type: CrosstalkType::CapacitiveCoupling,
785 affected_qubits: vec![i, j],
786 strength: crosstalk_matrix[[i, j]],
787 frequency_signature: Some(freq_data.mapv(|c| c.norm())),
788 mitigation_difficulty: MitigationDifficulty::Difficult,
789 description: format!(
790 "Capacitive coupling between qubits {} and {}",
791 i, j
792 ),
793 });
794 }
795 }
796
797 if let Some(peaks) = spectral_signatures.spectral_peaks.get(&(i, j)) {
799 if self.is_control_line_crosstalk(peaks) {
800 mechanisms.push(CrosstalkMechanism {
801 mechanism_type: CrosstalkType::ControlLineCrosstalk,
802 affected_qubits: vec![i, j],
803 strength: crosstalk_matrix[[i, j]],
804 frequency_signature: None,
805 mitigation_difficulty: MitigationDifficulty::Easy,
806 description: format!(
807 "Control line crosstalk between qubits {} and {}",
808 i, j
809 ),
810 });
811 }
812 }
813 }
814 }
815 }
816
817 Ok(mechanisms)
818 }
819
820 fn generate_mitigation_strategies(
822 &self,
823 crosstalk_matrix: &Array2<f64>,
824 mechanisms: &[CrosstalkMechanism],
825 spatial_patterns: &SpatialCrosstalkAnalysis,
826 ) -> DeviceResult<Vec<MitigationStrategy>> {
827 let mut strategies = Vec::new();
828
829 for mechanism in mechanisms {
830 match mechanism.mechanism_type {
831 CrosstalkType::ZZInteraction => {
832 strategies.push(MitigationStrategy {
834 strategy_type: MitigationType::EchoSequences,
835 target_qubits: mechanism.affected_qubits.clone(),
836 parameters: {
837 let mut params = HashMap::new();
838 params.insert("echo_period".to_string(), 100.0); params.insert("num_echoes".to_string(), 4.0);
840 params
841 },
842 expected_improvement: 0.8, implementation_complexity: 0.3,
844 description: "Echo sequences to suppress Z-Z interaction".to_string(),
845 });
846 }
847
848 CrosstalkType::CapacitiveCoupling => {
849 strategies.push(MitigationStrategy {
851 strategy_type: MitigationType::FrequencyDetuning,
852 target_qubits: mechanism.affected_qubits.clone(),
853 parameters: {
854 let mut params = HashMap::new();
855 params.insert("detuning_amount".to_string(), 10e6); params.insert("optimization_iterations".to_string(), 50.0);
857 params
858 },
859 expected_improvement: 0.6, implementation_complexity: 0.5,
861 description: "Frequency detuning to avoid resonant coupling".to_string(),
862 });
863 }
864
865 CrosstalkType::ControlLineCrosstalk => {
866 strategies.push(MitigationStrategy {
868 strategy_type: MitigationType::AmplitudeCompensation,
869 target_qubits: mechanism.affected_qubits.clone(),
870 parameters: {
871 let mut params = HashMap::new();
872 params.insert("compensation_factor".to_string(), -mechanism.strength);
873 params.insert("calibration_shots".to_string(), 10000.0);
874 params
875 },
876 expected_improvement: 0.9, implementation_complexity: 0.2,
878 description: "Amplitude compensation for control crosstalk".to_string(),
879 });
880 }
881
882 _ => {
883 strategies.push(MitigationStrategy {
885 strategy_type: MitigationType::TemporalDecoupling,
886 target_qubits: mechanism.affected_qubits.clone(),
887 parameters: {
888 let mut params = HashMap::new();
889 params.insert("minimum_separation".to_string(), 200.0); params
891 },
892 expected_improvement: 0.5, implementation_complexity: 0.1,
894 description: "Temporal decoupling to avoid simultaneous operations"
895 .to_string(),
896 });
897 }
898 }
899 }
900
901 for hotspot in &spatial_patterns.crosstalk_hotspots {
903 strategies.push(MitigationStrategy {
904 strategy_type: MitigationType::SpatialIsolation,
905 target_qubits: hotspot.affected_qubits.clone(),
906 parameters: {
907 let mut params = HashMap::new();
908 params.insert("isolation_radius".to_string(), hotspot.radius);
909 params.insert("max_crosstalk_threshold".to_string(), 0.01);
910 params
911 },
912 expected_improvement: 0.7,
913 implementation_complexity: 0.4,
914 description: format!(
915 "Spatial isolation around hotspot at qubit {}",
916 hotspot.center_qubit
917 ),
918 });
919 }
920
921 Ok(strategies)
922 }
923
924 fn create_crosstalk_preparation_circuit(&self, target: usize) -> DeviceResult<Circuit<8>> {
927 let mut circuit = Circuit::<8>::new();
928 let _ = circuit.h(QubitId(target as u32));
930 Ok(circuit)
931 }
932
933 fn create_ramsey_circuit(&self, target: usize, frequency: f64) -> DeviceResult<Circuit<8>> {
934 let mut circuit = Circuit::<8>::new();
935 let _ = circuit.h(QubitId(target as u32));
937 let _ = circuit.h(QubitId(target as u32));
939 Ok(circuit)
940 }
941
942 fn create_temporal_response_circuit(
943 &self,
944 target: usize,
945 delay: f64,
946 ) -> DeviceResult<Circuit<8>> {
947 let mut circuit = Circuit::<8>::new();
948 let _ = circuit.h(QubitId(target as u32));
950 Ok(circuit)
952 }
953
954 fn generate_frequency_sweep(&self) -> Vec<f64> {
955 let (start, end) = self.config.frequency_range;
956 let resolution = self.config.frequency_resolution;
957 let num_points = ((end - start) / resolution) as usize + 1;
958
959 (0..num_points)
960 .map(|i| start + i as f64 * resolution)
961 .collect()
962 }
963
964 fn generate_amplitude_sweep(&self) -> Vec<f64> {
965 let (start, end) = self.config.amplitude_range;
966 let num_steps = self.config.amplitude_steps;
967
968 (0..num_steps)
969 .map(|i| start + (end - start) * i as f64 / (num_steps - 1) as f64)
970 .collect()
971 }
972
973 fn calculate_crosstalk_strength(
974 &self,
975 baseline: &CrosstalkResult,
976 crosstalk: &CrosstalkResult,
977 ) -> DeviceResult<f64> {
978 let baseline_expectation = self.calculate_expectation_value(baseline)?;
980 let crosstalk_expectation = self.calculate_expectation_value(crosstalk)?;
981
982 Ok((baseline_expectation - crosstalk_expectation).abs())
983 }
984
985 fn calculate_expectation_value(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
986 let total_shots = result.counts.values().sum::<u64>() as f64;
987 if total_shots == 0.0 {
988 return Ok(0.0);
989 }
990
991 let expectation = result
992 .counts
993 .iter()
994 .map(|(state, count)| {
995 let state_value = if state == "0" { 1.0 } else { -1.0 };
996 state_value * (*count as f64 / total_shots)
997 })
998 .sum::<f64>();
999
1000 Ok(expectation)
1001 }
1002
1003 fn extract_complex_response(
1004 &self,
1005 result: &CrosstalkResult,
1006 frequency: f64,
1007 ) -> DeviceResult<Complex64> {
1008 let expectation = self.calculate_expectation_value(result)?;
1010
1011 let amplitude = expectation.abs();
1014 let phase = 0.0; Ok(Complex64::from_polar(amplitude, phase))
1017 }
1018
1019 fn extract_crosstalk_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1020 self.calculate_expectation_value(result)
1022 .map(|exp| exp.abs())
1023 }
1024
1025 fn extract_response_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1026 self.calculate_expectation_value(result)
1028 .map(|exp| exp.abs())
1029 }
1030
1031 fn calculate_coherence_matrix(
1032 &self,
1033 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1034 ) -> DeviceResult<Array2<f64>> {
1035 let num_qubits = self.device_topology.num_qubits;
1036 let mut coherence_matrix = Array2::zeros((num_qubits, num_qubits));
1037
1038 for i in 0..num_qubits {
1040 for j in 0..num_qubits {
1041 if i != j {
1042 if let (Some(spec_i), Some(spec_j)) = (
1043 frequency_crosstalk.get(&(i, 0)),
1044 frequency_crosstalk.get(&(j, 0)),
1045 ) {
1046 let coherence = self.calculate_coherence(spec_i, spec_j)?;
1048 coherence_matrix[[i, j]] = coherence;
1049 }
1050 }
1051 }
1052 }
1053
1054 Ok(coherence_matrix)
1055 }
1056
1057 fn calculate_coherence(
1058 &self,
1059 signal1: &Array1<Complex64>,
1060 signal2: &Array1<Complex64>,
1061 ) -> DeviceResult<f64> {
1062 let cross_power = signal1
1066 .iter()
1067 .zip(signal2.iter())
1068 .map(|(s1, s2)| (s1 * s2.conj()).norm())
1069 .sum::<f64>();
1070
1071 let power1: f64 = signal1.iter().map(|s| s.norm_sqr()).sum();
1072 let power2: f64 = signal2.iter().map(|s| s.norm_sqr()).sum();
1073
1074 if power1 * power2 > 0.0 {
1075 Ok(cross_power / (power1 * power2).sqrt())
1076 } else {
1077 Ok(0.0)
1078 }
1079 }
1080
1081 fn estimate_peak_width(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1082 if peak_idx >= spectrum.len() {
1084 return 0.0;
1085 }
1086
1087 let peak_value = spectrum[peak_idx];
1088 let half_max = peak_value / 2.0;
1089
1090 let mut left_idx = peak_idx;
1092 let mut right_idx = peak_idx;
1093
1094 while left_idx > 0 && spectrum[left_idx] > half_max {
1095 left_idx -= 1;
1096 }
1097
1098 while right_idx < spectrum.len() - 1 && spectrum[right_idx] > half_max {
1099 right_idx += 1;
1100 }
1101
1102 (right_idx - left_idx) as f64 * self.config.frequency_resolution
1103 }
1104
1105 fn calculate_peak_significance(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1106 if peak_idx >= spectrum.len() {
1108 return 0.0;
1109 }
1110
1111 let peak_value = spectrum[peak_idx];
1112
1113 let window_size = 10;
1115 let start = peak_idx.saturating_sub(window_size);
1116 let end = (peak_idx + window_size).min(spectrum.len());
1117
1118 let surrounding_values: Vec<f64> = (start..end)
1119 .filter(|&i| (i as i32 - peak_idx as i32).abs() > 2)
1120 .map(|i| spectrum[i])
1121 .collect();
1122
1123 if surrounding_values.is_empty() {
1124 return 1.0;
1125 }
1126
1127 let noise_level = surrounding_values.iter().sum::<f64>() / surrounding_values.len() as f64;
1128 let noise_std = {
1129 let mean = noise_level;
1130 let variance = surrounding_values
1131 .iter()
1132 .map(|x| (x - mean).powi(2))
1133 .sum::<f64>()
1134 / surrounding_values.len() as f64;
1135 variance.sqrt()
1136 };
1137
1138 if noise_std > 0.0 {
1139 (peak_value - noise_level) / noise_std
1140 } else {
1141 peak_value / noise_level.max(1e-10)
1142 }
1143 }
1144
1145 fn create_delta_stimulus(&self, length: usize) -> Array1<f64> {
1146 let mut stimulus = Array1::zeros(length);
1147 if length > 0 {
1148 stimulus[0] = 1.0; }
1150 stimulus
1151 }
1152
1153 fn fit_exponential_decay(&self, data: &Array1<f64>) -> DeviceResult<f64> {
1154 if data.len() < 3 {
1158 return Ok(1000.0); }
1160
1161 let peak_idx = data
1163 .iter()
1164 .enumerate()
1165 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1166 .map(|(idx, _)| idx)
1167 .unwrap_or(0);
1168
1169 if peak_idx + 2 >= data.len() {
1170 return Ok(1000.0);
1171 }
1172
1173 let y1 = data[peak_idx];
1175 let y2 = data[peak_idx + 1];
1176
1177 if y1 > 0.0 && y2 > 0.0 && y1 > y2 {
1178 let dt = 100.0; let tau = -dt / (y2 / y1).ln();
1180 Ok(tau.max(10.0)) } else {
1182 Ok(1000.0)
1183 }
1184 }
1185
1186 fn identify_temporal_clusters(
1187 &self,
1188 correlations: &HashMap<(usize, usize), Array1<f64>>,
1189 ) -> DeviceResult<Vec<TemporalCluster>> {
1190 let mut clusters = Vec::new();
1192
1193 for (&(i, j), correlation) in correlations {
1195 let peaks = self.find_correlation_peaks(correlation)?;
1196
1197 for (peak_time, peak_strength) in peaks {
1198 clusters.push(TemporalCluster {
1199 start_time: peak_time - 50.0, duration: 100.0, affected_qubits: vec![i, j],
1202 crosstalk_strength: peak_strength,
1203 });
1204 }
1205 }
1206
1207 Ok(clusters)
1208 }
1209
1210 fn find_correlation_peaks(&self, correlation: &Array1<f64>) -> DeviceResult<Vec<(f64, f64)>> {
1211 let threshold = 0.1;
1213 let mut peaks = Vec::new();
1214
1215 for i in 1..correlation.len() - 1 {
1216 if correlation[i] > correlation[i - 1]
1217 && correlation[i] > correlation[i + 1]
1218 && correlation[i] > threshold
1219 {
1220 let time = i as f64 * 100.0; peaks.push((time, correlation[i]));
1222 }
1223 }
1224
1225 Ok(peaks)
1226 }
1227
1228 fn calculate_distance_decay(
1229 &self,
1230 crosstalk_matrix: &Array2<f64>,
1231 ) -> DeviceResult<Array1<f64>> {
1232 let max_distance = self.config.max_distance;
1234 let mut distance_decay = Array1::zeros(max_distance);
1235 let mut distance_counts = vec![0usize; max_distance];
1236
1237 for i in 0..crosstalk_matrix.nrows() {
1238 for j in 0..crosstalk_matrix.ncols() {
1239 if i != j {
1240 let distance = self.calculate_qubit_distance(i, j)?;
1241 if distance < max_distance && distance > 0 {
1242 distance_decay[distance] += crosstalk_matrix[[i, j]];
1243 distance_counts[distance] += 1;
1244 }
1245 }
1246 }
1247 }
1248
1249 for (distance, count) in distance_counts.iter().enumerate() {
1251 if *count > 0 {
1252 distance_decay[distance] /= *count as f64;
1253 }
1254 }
1255
1256 Ok(distance_decay)
1257 }
1258
1259 fn calculate_qubit_distance(&self, qubit1: usize, qubit2: usize) -> DeviceResult<usize> {
1260 Ok((qubit1 as i32 - qubit2 as i32).abs() as usize)
1265 }
1266
1267 fn identify_directional_patterns(
1268 &self,
1269 crosstalk_matrix: &Array2<f64>,
1270 ) -> DeviceResult<HashMap<String, Array2<f64>>> {
1271 let mut patterns = HashMap::new();
1272
1273 let mut asymmetry = crosstalk_matrix.clone();
1278 for i in 0..asymmetry.nrows() {
1279 for j in 0..asymmetry.ncols() {
1280 asymmetry[[i, j]] = crosstalk_matrix[[i, j]] - crosstalk_matrix[[j, i]];
1281 }
1282 }
1283 patterns.insert("asymmetry".to_string(), asymmetry);
1284
1285 Ok(patterns)
1286 }
1287
1288 fn find_crosstalk_hotspots(
1289 &self,
1290 crosstalk_matrix: &Array2<f64>,
1291 ) -> DeviceResult<Vec<CrosstalkHotspot>> {
1292 let mut hotspots = Vec::new();
1293 let threshold = 0.05; for i in 0..crosstalk_matrix.nrows() {
1296 let total_crosstalk: f64 = crosstalk_matrix.row(i).sum();
1298 let max_crosstalk = crosstalk_matrix
1299 .row(i)
1300 .fold(0.0_f64, |max, &val: &f64| max.max(val));
1301
1302 if max_crosstalk > threshold {
1303 let affected_qubits: Vec<usize> = crosstalk_matrix
1305 .row(i)
1306 .iter()
1307 .enumerate()
1308 .filter(|(_, &val)| val > threshold * 0.1)
1309 .map(|(j, _)| j)
1310 .collect();
1311
1312 hotspots.push(CrosstalkHotspot {
1313 center_qubit: i,
1314 affected_qubits,
1315 radius: 2.0, max_crosstalk,
1317 mechanism: None, });
1319 }
1320 }
1321
1322 Ok(hotspots)
1323 }
1324
1325 fn analyze_crosstalk_propagation(
1326 &self,
1327 crosstalk_matrix: &Array2<f64>,
1328 ) -> DeviceResult<PropagationAnalysis> {
1329 let mut propagation_graph = Vec::new();
1331 let threshold = 0.01;
1332
1333 for i in 0..crosstalk_matrix.nrows() {
1334 for j in 0..crosstalk_matrix.ncols() {
1335 if i != j && crosstalk_matrix[[i, j]] > threshold {
1336 propagation_graph.push((i, j, crosstalk_matrix[[i, j]]));
1337 }
1338 }
1339 }
1340
1341 let critical_paths = self.find_propagation_paths(&propagation_graph)?;
1343
1344 let mut propagation_times = HashMap::new();
1346 for &(source, target, strength) in &propagation_graph {
1347 let time = 100.0 / strength.max(0.001); propagation_times.insert((source, target), time);
1350 }
1351
1352 let effective_topology = crosstalk_matrix.clone();
1354
1355 Ok(PropagationAnalysis {
1356 propagation_graph,
1357 critical_paths,
1358 propagation_times,
1359 effective_topology,
1360 })
1361 }
1362
1363 fn find_propagation_paths(
1364 &self,
1365 graph: &[(usize, usize, f64)],
1366 ) -> DeviceResult<Vec<Vec<usize>>> {
1367 let mut paths = Vec::new();
1369
1370 let mut visited = HashSet::new();
1372
1373 for &(source, target, _) in graph {
1374 if !visited.contains(&source) {
1375 let path = vec![source, target]; paths.push(path);
1377 visited.insert(source);
1378 }
1379 }
1380
1381 Ok(paths)
1382 }
1383
1384 fn is_zz_interaction(
1387 &self,
1388 qubit_pair: (usize, usize),
1389 crosstalk_matrix: &Array2<f64>,
1390 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1391 ) -> bool {
1392 let (i, j) = qubit_pair;
1393
1394 let forward_crosstalk = crosstalk_matrix[[i, j]];
1400 let reverse_crosstalk = crosstalk_matrix[[j, i]];
1401 let symmetry = (forward_crosstalk - reverse_crosstalk).abs() / forward_crosstalk.max(1e-10);
1402
1403 let is_symmetric = symmetry < 0.2; let is_frequency_independent = if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
1407 let amplitudes = freq_data.mapv(|c| c.norm());
1408 let variation = std(&litudes.view(), 1, None).unwrap_or(0.0);
1409 let mean_amp = mean(&litudes.view()).unwrap_or(1.0);
1410 variation / mean_amp < 0.1 } else {
1412 true };
1414
1415 is_symmetric && is_frequency_independent
1416 }
1417
1418 fn is_capacitive_coupling(&self, frequency_data: &Array1<Complex64>) -> bool {
1419 let amplitudes = frequency_data.mapv(|c| c.norm());
1421
1422 let variation = std(&litudes.view(), 1, None).unwrap_or(0.0);
1424 let mean_amp = mean(&litudes.view()).unwrap_or(1.0);
1425
1426 variation / mean_amp > 0.2 }
1428
1429 fn is_control_line_crosstalk(&self, peaks: &[SpectralPeak]) -> bool {
1430 peaks
1432 .iter()
1433 .any(|peak| peak.frequency > 1e9 && peak.significance > 3.0)
1434 }
1435}
1436
1437#[derive(Debug, Clone)]
1439pub struct CrosstalkOperation {
1440 pub qubit: usize,
1441 pub operation_type: CrosstalkOperationType,
1442 pub amplitude: f64,
1443 pub frequency: f64,
1444 pub phase: f64,
1445 pub duration: f64,
1446}
1447
1448#[derive(Debug, Clone, PartialEq)]
1450pub enum CrosstalkOperationType {
1451 ZRotation,
1452 FrequencySweep,
1453 AmplitudeSweep,
1454 DelayedPulse,
1455 ContinuousWave,
1456}
1457
1458#[derive(Debug, Clone)]
1460pub struct CrosstalkResult {
1461 pub counts: HashMap<String, u64>,
1462 pub shots: u64,
1463 pub metadata: HashMap<String, String>,
1464}
1465
1466#[async_trait::async_trait]
1468pub trait CrosstalkExecutor {
1469 async fn execute_crosstalk_circuit(
1470 &self,
1471 circuit: &Circuit<8>,
1472 operations: Vec<CrosstalkOperation>,
1473 shots: usize,
1474 ) -> DeviceResult<CrosstalkResult>;
1475}
1476
1477#[cfg(test)]
1478mod tests {
1479 use super::*;
1480 use crate::topology_analysis::create_standard_topology;
1481
1482 #[test]
1483 fn test_crosstalk_config_default() {
1484 let config = CrosstalkConfig::default();
1485 assert_eq!(config.shots_per_config, 10000);
1486 assert!(config.enable_spectral_analysis);
1487 }
1488
1489 #[test]
1490 fn test_frequency_sweep_generation() {
1491 let config = CrosstalkConfig {
1492 frequency_range: (4.0e9, 5.0e9),
1493 frequency_resolution: 1.0e8,
1494 ..Default::default()
1495 };
1496
1497 let topology = create_standard_topology("linear", 4).unwrap();
1498 let analyzer = CrosstalkAnalyzer::new(config, topology);
1499
1500 let frequencies = analyzer.generate_frequency_sweep();
1501 assert_eq!(frequencies.len(), 11); assert_eq!(frequencies[0], 4.0e9);
1503 assert_eq!(frequencies[10], 5.0e9);
1504 }
1505
1506 #[test]
1507 fn test_amplitude_sweep_generation() {
1508 let config = CrosstalkConfig {
1509 amplitude_range: (0.0, 1.0),
1510 amplitude_steps: 5,
1511 ..Default::default()
1512 };
1513
1514 let topology = create_standard_topology("linear", 4).unwrap();
1515 let analyzer = CrosstalkAnalyzer::new(config, topology);
1516
1517 let amplitudes = analyzer.generate_amplitude_sweep();
1518 assert_eq!(amplitudes.len(), 5);
1519 assert_eq!(amplitudes[0], 0.0);
1520 assert_eq!(amplitudes[4], 1.0);
1521 }
1522
1523 #[test]
1524 fn test_crosstalk_strength_calculation() {
1525 let topology = create_standard_topology("linear", 4).unwrap();
1526 let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1527
1528 let baseline = CrosstalkResult {
1529 counts: [("0".to_string(), 800), ("1".to_string(), 200)]
1530 .iter()
1531 .cloned()
1532 .collect(),
1533 shots: 1000,
1534 metadata: HashMap::new(),
1535 };
1536
1537 let crosstalk = CrosstalkResult {
1538 counts: [("0".to_string(), 600), ("1".to_string(), 400)]
1539 .iter()
1540 .cloned()
1541 .collect(),
1542 shots: 1000,
1543 metadata: HashMap::new(),
1544 };
1545
1546 let strength = analyzer
1547 .calculate_crosstalk_strength(&baseline, &crosstalk)
1548 .unwrap();
1549 assert!((strength - 0.4).abs() < 0.01); }
1551
1552 #[test]
1553 fn test_mechanism_identification() {
1554 let topology = create_standard_topology("linear", 4).unwrap();
1555 let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1556
1557 let mut crosstalk_matrix = Array2::zeros((4, 4));
1559 crosstalk_matrix[[0, 1]] = 0.1;
1560 crosstalk_matrix[[1, 0]] = 0.1; let frequency_crosstalk = HashMap::new();
1563 let spectral_signatures = SpectralCrosstalkAnalysis {
1564 power_spectra: HashMap::new(),
1565 coherence_matrix: Array2::zeros((4, 4)),
1566 dominant_frequencies: HashMap::new(),
1567 spectral_peaks: HashMap::new(),
1568 transfer_functions: HashMap::new(),
1569 };
1570
1571 let mechanisms = analyzer
1572 .identify_mechanisms(
1573 &crosstalk_matrix,
1574 &frequency_crosstalk,
1575 &spectral_signatures,
1576 )
1577 .unwrap();
1578
1579 assert!(!mechanisms.is_empty());
1580 assert_eq!(mechanisms[0].mechanism_type, CrosstalkType::ZZInteraction);
1581 }
1582}