1use super::*;
7
8pub struct AlgorithmDiscoveryEngine {
10 config: DiscoveryConfig,
11 search_engine: Arc<RwLock<SemanticSearchEngine>>,
12 recommendation_engine: Arc<RwLock<RecommendationEngine>>,
13 ranking_system: Arc<RwLock<RankingSystem>>,
14 personalization_engine: Arc<RwLock<PersonalizationEngine>>,
15 cache: Arc<RwLock<DiscoveryCache>>,
16}
17
18#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct DiscoveryCriteria {
21 pub query: Option<String>,
22 pub category: Option<AlgorithmCategory>,
23 pub tags: Vec<String>,
24 pub author: Option<String>,
25 pub min_rating: Option<f64>,
26 pub hardware_constraints: Option<HardwareConstraints>,
27 pub performance_requirements: Option<PerformanceRequirements>,
28 pub complexity_filter: Option<ComplexityFilter>,
29 pub license_filter: Option<Vec<LicenseType>>,
30 pub sort_by: SortBy,
31 pub limit: usize,
32 pub offset: usize,
33 pub include_experimental: bool,
34 pub user_context: Option<UserContext>,
35}
36
37#[derive(Debug, Clone, Serialize, Deserialize)]
39pub struct HardwareConstraints {
40 pub max_qubits: Option<usize>,
41 pub min_qubits: Option<usize>,
42 pub required_gates: Vec<String>,
43 pub forbidden_gates: Vec<String>,
44 pub topology_constraints: Vec<TopologyType>,
45 pub platform_compatibility: Vec<String>,
46 pub fidelity_threshold: Option<f64>,
47}
48
49#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct PerformanceRequirements {
52 pub max_execution_time: Option<Duration>,
53 pub min_success_probability: Option<f64>,
54 pub max_error_rate: Option<f64>,
55 pub min_quantum_advantage: Option<f64>,
56 pub resource_efficiency: Option<f64>,
57}
58
59#[derive(Debug, Clone, Serialize, Deserialize)]
61pub struct ComplexityFilter {
62 pub max_time_complexity: Option<String>,
63 pub max_space_complexity: Option<String>,
64 pub max_circuit_depth: Option<usize>,
65 pub max_gate_count: Option<usize>,
66}
67
68#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
70pub enum SortBy {
71 Relevance,
72 Popularity,
73 Rating,
74 RecentlyUpdated,
75 Performance,
76 Alphabetical,
77 QuantumAdvantage,
78 ResourceEfficiency,
79 Custom(String),
80}
81
82#[derive(Debug, Clone, Serialize, Deserialize)]
84pub struct UserContext {
85 pub user_id: String,
86 pub experience_level: ExperienceLevel,
87 pub research_areas: Vec<String>,
88 pub preferred_platforms: Vec<String>,
89 pub usage_history: Vec<String>,
90 pub collaboration_preferences: Vec<String>,
91}
92
93#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
95pub enum ExperienceLevel {
96 Beginner,
97 Intermediate,
98 Advanced,
99 Expert,
100 Researcher,
101}
102
103#[derive(Debug, Clone, Serialize, Deserialize)]
105pub struct AlgorithmInfo {
106 pub algorithm_id: String,
107 pub name: String,
108 pub version: String,
109 pub description: String,
110 pub author: String,
111 pub category: AlgorithmCategory,
112 pub tags: Vec<String>,
113 pub rating: f64,
114 pub downloads: u64,
115 pub last_updated: SystemTime,
116 pub quantum_advantage: QuantumAdvantage,
117 pub hardware_requirements: HardwareRequirements,
118 pub complexity_info: ComplexityInfo,
119 pub discovery_score: f64,
120 pub personalization_score: Option<f64>,
121}
122
123#[derive(Debug, Clone, Serialize, Deserialize)]
125pub struct ComplexityInfo {
126 pub time_complexity: String,
127 pub space_complexity: String,
128 pub circuit_depth: usize,
129 pub gate_count: usize,
130 pub qubit_count: usize,
131}
132
133pub struct SemanticSearchEngine {
135 word_embeddings: HashMap<String, Vec<f64>>,
136 algorithm_embeddings: HashMap<String, Vec<f64>>,
137 similarity_cache: HashMap<String, Vec<(String, f64)>>,
138 search_index: InvertedIndex,
139}
140
141#[derive(Debug, Clone)]
143pub struct InvertedIndex {
144 term_to_algorithms: HashMap<String, Vec<String>>,
145 algorithm_to_terms: HashMap<String, Vec<String>>,
146 term_frequencies: HashMap<String, HashMap<String, f64>>,
147 document_frequencies: HashMap<String, usize>,
148}
149
150pub struct RecommendationEngine {
152 user_profiles: HashMap<String, UserProfile>,
153 algorithm_similarities: HashMap<String, Vec<(String, f64)>>,
154 collaborative_filters: Vec<Box<dyn CollaborativeFilter + Send + Sync>>,
155 content_filters: Vec<Box<dyn ContentFilter + Send + Sync>>,
156 hybrid_weights: HybridWeights,
157}
158
159#[derive(Debug, Clone)]
161pub struct UserProfile {
162 pub user_id: String,
163 pub interests: Vec<String>,
164 pub expertise_areas: Vec<String>,
165 pub interaction_history: Vec<UserInteraction>,
166 pub preference_vector: Vec<f64>,
167 pub temporal_patterns: TemporalPatterns,
168}
169
170#[derive(Debug, Clone)]
172pub struct UserInteraction {
173 pub algorithm_id: String,
174 pub interaction_type: InteractionType,
175 pub timestamp: SystemTime,
176 pub duration: Option<Duration>,
177 pub rating: Option<f64>,
178 pub feedback: Option<String>,
179}
180
181#[derive(Debug, Clone, PartialEq)]
183pub enum InteractionType {
184 View,
185 Download,
186 Deploy,
187 Rate,
188 Review,
189 Share,
190 Bookmark,
191 Fork,
192 Contribute,
193}
194
195#[derive(Debug, Clone)]
197pub struct TemporalPatterns {
198 pub activity_by_hour: Vec<f64>,
199 pub activity_by_day: Vec<f64>,
200 pub seasonal_patterns: Vec<f64>,
201 pub burst_periods: Vec<(SystemTime, Duration)>,
202}
203
204pub trait CollaborativeFilter {
206 fn recommend(&self, user_id: &str, candidates: &[String]) -> DeviceResult<Vec<(String, f64)>>;
207 fn update_model(&mut self, interactions: &[UserInteraction]) -> DeviceResult<()>;
208}
209
210pub trait ContentFilter {
212 fn recommend(
213 &self,
214 user_profile: &UserProfile,
215 candidates: &[String],
216 ) -> DeviceResult<Vec<(String, f64)>>;
217 fn extract_features(&self, algorithm_id: &str) -> DeviceResult<Vec<f64>>;
218}
219
220#[derive(Debug, Clone)]
222pub struct HybridWeights {
223 pub collaborative_weight: f64,
224 pub content_weight: f64,
225 pub popularity_weight: f64,
226 pub temporal_weight: f64,
227 pub semantic_weight: f64,
228}
229
230pub struct RankingSystem {
232 ranking_algorithms: Vec<Box<dyn RankingAlgorithm + Send + Sync>>,
233 feature_extractors: Vec<Box<dyn FeatureExtractor + Send + Sync>>,
234 learning_to_rank_model: Option<LearningToRankModel>,
235 ranking_cache: HashMap<String, Vec<RankedResult>>,
236}
237
238pub trait RankingAlgorithm {
240 fn rank(
241 &self,
242 candidates: &[AlgorithmInfo],
243 criteria: &DiscoveryCriteria,
244 ) -> DeviceResult<Vec<RankedResult>>;
245 fn get_algorithm_name(&self) -> String;
246}
247
248pub trait FeatureExtractor {
250 fn extract_features(
251 &self,
252 algorithm: &AlgorithmInfo,
253 context: &DiscoveryCriteria,
254 ) -> DeviceResult<Vec<f64>>;
255 fn get_feature_names(&self) -> Vec<String>;
256}
257
258#[derive(Debug, Clone)]
260pub struct RankedResult {
261 pub algorithm_id: String,
262 pub rank: usize,
263 pub score: f64,
264 pub feature_scores: HashMap<String, f64>,
265 pub explanation: RankingExplanation,
266}
267
268#[derive(Debug, Clone)]
270pub struct RankingExplanation {
271 pub primary_factors: Vec<String>,
272 pub relevance_score: f64,
273 pub popularity_score: f64,
274 pub quality_score: f64,
275 pub personalization_boost: f64,
276 pub detailed_explanation: String,
277}
278
279#[derive(Debug, Clone)]
281pub struct LearningToRankModel {
282 pub model_type: String,
283 pub feature_weights: Vec<f64>,
284 pub training_data: Vec<TrainingExample>,
285 pub model_performance: ModelPerformance,
286}
287
288#[derive(Debug, Clone)]
290pub struct TrainingExample {
291 pub query_id: String,
292 pub algorithm_id: String,
293 pub features: Vec<f64>,
294 pub relevance_score: f64,
295 pub user_action: Option<InteractionType>,
296}
297
298#[derive(Debug, Clone)]
300pub struct ModelPerformance {
301 pub ndcg_at_10: f64,
302 pub map_score: f64,
303 pub precision_at_k: Vec<f64>,
304 pub recall_at_k: Vec<f64>,
305 pub click_through_rate: f64,
306}
307
308pub struct PersonalizationEngine {
310 personalization_models: HashMap<String, PersonalizationModel>,
311 context_analyzers: Vec<Box<dyn ContextAnalyzer + Send + Sync>>,
312 adaptation_strategies: Vec<Box<dyn AdaptationStrategy + Send + Sync>>,
313 privacy_preserving: bool,
314}
315
316#[derive(Debug, Clone)]
318pub struct PersonalizationModel {
319 pub user_id: String,
320 pub model_parameters: Vec<f64>,
321 pub context_features: Vec<f64>,
322 pub adaptation_history: Vec<AdaptationEvent>,
323 pub model_confidence: f64,
324}
325
326pub trait ContextAnalyzer {
328 fn analyze_context(&self, user_context: &UserContext) -> DeviceResult<Vec<f64>>;
329 fn get_context_dimensions(&self) -> Vec<String>;
330}
331
332pub trait AdaptationStrategy {
334 fn adapt_recommendations(
335 &self,
336 base_recommendations: Vec<(String, f64)>,
337 user_context: &UserContext,
338 ) -> DeviceResult<Vec<(String, f64)>>;
339 fn update_strategy(&mut self, feedback: &[UserInteraction]) -> DeviceResult<()>;
340}
341
342#[derive(Debug, Clone)]
344pub struct AdaptationEvent {
345 pub timestamp: SystemTime,
346 pub adaptation_type: AdaptationType,
347 pub parameters_changed: Vec<String>,
348 pub performance_impact: f64,
349}
350
351#[derive(Debug, Clone, PartialEq)]
353pub enum AdaptationType {
354 UserFeedback,
355 PerformanceOptimization,
356 ConceptDrift,
357 ContextChange,
358 ColdStart,
359}
360
361#[derive(Debug, Clone)]
363pub struct DiscoveryCache {
364 query_cache: HashMap<String, CachedResult>,
365 recommendation_cache: HashMap<String, CachedRecommendations>,
366 similarity_cache: HashMap<String, HashMap<String, f64>>,
367 cache_stats: CacheStatistics,
368}
369
370#[derive(Debug, Clone)]
372pub struct CachedResult {
373 pub results: Vec<AlgorithmInfo>,
374 pub cached_at: SystemTime,
375 pub expires_at: SystemTime,
376 pub hit_count: usize,
377}
378
379#[derive(Debug, Clone)]
381pub struct CachedRecommendations {
382 pub user_id: String,
383 pub recommendations: Vec<(String, f64)>,
384 pub cached_at: SystemTime,
385 pub context_hash: String,
386}
387
388#[derive(Debug, Clone, Default)]
390pub struct CacheStatistics {
391 pub total_requests: u64,
392 pub cache_hits: u64,
393 pub cache_misses: u64,
394 pub evictions: u64,
395 pub memory_usage: usize,
396}
397
398impl AlgorithmDiscoveryEngine {
399 pub fn new(config: &DiscoveryConfig) -> DeviceResult<Self> {
401 let search_engine = Arc::new(RwLock::new(SemanticSearchEngine::new()?));
402 let recommendation_engine = Arc::new(RwLock::new(RecommendationEngine::new()?));
403 let ranking_system = Arc::new(RwLock::new(RankingSystem::new()?));
404 let personalization_engine = Arc::new(RwLock::new(PersonalizationEngine::new()?));
405 let cache = Arc::new(RwLock::new(DiscoveryCache::new()));
406
407 Ok(Self {
408 config: config.clone(),
409 search_engine,
410 recommendation_engine,
411 ranking_system,
412 personalization_engine,
413 cache,
414 })
415 }
416
417 pub async fn initialize(&self) -> DeviceResult<()> {
419 Ok(())
421 }
422
423 pub async fn search_algorithms(
425 &self,
426 criteria: DiscoveryCriteria,
427 ) -> DeviceResult<Vec<AlgorithmInfo>> {
428 let cache_key = self.generate_cache_key(&criteria);
430 if let Some(cached_result) = self.check_cache(&cache_key).await? {
431 return Ok(cached_result);
432 }
433
434 let mut results = self.perform_search(&criteria).await?;
436
437 results = self.apply_ranking(results, &criteria).await?;
439
440 if let Some(user_context) = &criteria.user_context {
442 results = self.apply_personalization(results, user_context).await?;
443 }
444
445 self.cache_results(&cache_key, &results).await?;
447
448 Ok(results)
449 }
450
451 pub async fn get_recommendations(
453 &self,
454 user_id: &str,
455 count: usize,
456 ) -> DeviceResult<Vec<AlgorithmInfo>> {
457 let recommendation_engine = self.recommendation_engine.read().unwrap();
458
459 let recommendations = recommendation_engine.get_recommendations(user_id, count)?;
461
462 let mut results = Vec::new();
464 for (algorithm_id, score) in recommendations {
465 let info = AlgorithmInfo {
466 algorithm_id: algorithm_id.clone(),
467 name: format!("Algorithm {}", algorithm_id),
468 version: "1.0.0".to_string(),
469 description: "Recommended algorithm".to_string(),
470 author: "Unknown".to_string(),
471 category: AlgorithmCategory::Optimization,
472 tags: vec![],
473 rating: 4.5,
474 downloads: 1000,
475 last_updated: SystemTime::now(),
476 quantum_advantage: QuantumAdvantage {
477 advantage_type: AdvantageType::Quadratic,
478 speedup_factor: Some(2.0),
479 problem_size_threshold: Some(100),
480 verification_method: "Theoretical".to_string(),
481 theoretical_basis: "Grover's algorithm".to_string(),
482 experimental_validation: false,
483 },
484 hardware_requirements: HardwareRequirements {
485 min_qubits: 1,
486 recommended_qubits: 10,
487 max_circuit_depth: 100,
488 required_gates: vec!["H".to_string(), "CNOT".to_string()],
489 connectivity_requirements: ConnectivityRequirements {
490 topology_type: TopologyType::AllToAll,
491 connectivity_degree: None,
492 all_to_all_required: false,
493 specific_connections: vec![],
494 },
495 fidelity_requirements: FidelityRequirements {
496 min_gate_fidelity: 0.99,
497 min_readout_fidelity: 0.95,
498 min_state_preparation_fidelity: 0.98,
499 coherence_time_requirement: Duration::from_micros(100),
500 error_budget: 0.01,
501 },
502 supported_platforms: vec!["IBM".to_string()],
503 special_hardware: vec![],
504 },
505 complexity_info: ComplexityInfo {
506 time_complexity: "O(sqrt(N))".to_string(),
507 space_complexity: "O(log N)".to_string(),
508 circuit_depth: 50,
509 gate_count: 100,
510 qubit_count: 10,
511 },
512 discovery_score: score,
513 personalization_score: Some(score),
514 };
515 results.push(info);
516 }
517
518 Ok(results)
519 }
520
521 async fn perform_search(
523 &self,
524 criteria: &DiscoveryCriteria,
525 ) -> DeviceResult<Vec<AlgorithmInfo>> {
526 Ok(vec![])
528 }
529
530 async fn apply_ranking(
531 &self,
532 mut results: Vec<AlgorithmInfo>,
533 criteria: &DiscoveryCriteria,
534 ) -> DeviceResult<Vec<AlgorithmInfo>> {
535 let ranking_system = self.ranking_system.read().unwrap();
536 let ranked_results = ranking_system.rank_algorithms(&results, criteria)?;
537
538 results.sort_by(|a, b| {
540 let rank_a = ranked_results
541 .iter()
542 .find(|r| r.algorithm_id == a.algorithm_id)
543 .map(|r| r.rank)
544 .unwrap_or(usize::MAX);
545 let rank_b = ranked_results
546 .iter()
547 .find(|r| r.algorithm_id == b.algorithm_id)
548 .map(|r| r.rank)
549 .unwrap_or(usize::MAX);
550 rank_a.cmp(&rank_b)
551 });
552
553 Ok(results)
554 }
555
556 async fn apply_personalization(
557 &self,
558 mut results: Vec<AlgorithmInfo>,
559 user_context: &UserContext,
560 ) -> DeviceResult<Vec<AlgorithmInfo>> {
561 let personalization_engine = self.personalization_engine.read().unwrap();
562 let personalized_scores =
563 personalization_engine.personalize_results(&results, user_context)?;
564
565 for (i, score) in personalized_scores.iter().enumerate() {
567 if i < results.len() {
568 results[i].personalization_score = Some(*score);
569 }
570 }
571
572 Ok(results)
573 }
574
575 fn generate_cache_key(&self, criteria: &DiscoveryCriteria) -> String {
576 format!("search:{:?}", criteria)
578 }
579
580 async fn check_cache(&self, cache_key: &str) -> DeviceResult<Option<Vec<AlgorithmInfo>>> {
581 let cache = self.cache.read().unwrap();
582 if let Some(cached_result) = cache.query_cache.get(cache_key) {
583 if cached_result.expires_at > SystemTime::now() {
584 return Ok(Some(cached_result.results.clone()));
585 }
586 }
587 Ok(None)
588 }
589
590 async fn cache_results(&self, cache_key: &str, results: &[AlgorithmInfo]) -> DeviceResult<()> {
591 let mut cache = self.cache.write().unwrap();
592 let cached_result = CachedResult {
593 results: results.to_vec(),
594 cached_at: SystemTime::now(),
595 expires_at: SystemTime::now() + self.config.cache_ttl,
596 hit_count: 0,
597 };
598 cache
599 .query_cache
600 .insert(cache_key.to_string(), cached_result);
601 Ok(())
602 }
603}
604
605impl SemanticSearchEngine {
607 fn new() -> DeviceResult<Self> {
608 Ok(Self {
609 word_embeddings: HashMap::new(),
610 algorithm_embeddings: HashMap::new(),
611 similarity_cache: HashMap::new(),
612 search_index: InvertedIndex::new(),
613 })
614 }
615}
616
617impl InvertedIndex {
618 fn new() -> Self {
619 Self {
620 term_to_algorithms: HashMap::new(),
621 algorithm_to_terms: HashMap::new(),
622 term_frequencies: HashMap::new(),
623 document_frequencies: HashMap::new(),
624 }
625 }
626}
627
628impl RecommendationEngine {
629 fn new() -> DeviceResult<Self> {
630 Ok(Self {
631 user_profiles: HashMap::new(),
632 algorithm_similarities: HashMap::new(),
633 collaborative_filters: vec![],
634 content_filters: vec![],
635 hybrid_weights: HybridWeights {
636 collaborative_weight: 0.4,
637 content_weight: 0.3,
638 popularity_weight: 0.15,
639 temporal_weight: 0.1,
640 semantic_weight: 0.05,
641 },
642 })
643 }
644
645 fn get_recommendations(
646 &self,
647 _user_id: &str,
648 count: usize,
649 ) -> DeviceResult<Vec<(String, f64)>> {
650 let mut recommendations = Vec::new();
652 for i in 0..count {
653 recommendations.push((format!("algorithm_{}", i), 0.8 - (i as f64 * 0.1)));
654 }
655 Ok(recommendations)
656 }
657}
658
659impl RankingSystem {
660 fn new() -> DeviceResult<Self> {
661 Ok(Self {
662 ranking_algorithms: vec![],
663 feature_extractors: vec![],
664 learning_to_rank_model: None,
665 ranking_cache: HashMap::new(),
666 })
667 }
668
669 fn rank_algorithms(
670 &self,
671 algorithms: &[AlgorithmInfo],
672 _criteria: &DiscoveryCriteria,
673 ) -> DeviceResult<Vec<RankedResult>> {
674 let mut results = Vec::new();
675 for (i, algorithm) in algorithms.iter().enumerate() {
676 results.push(RankedResult {
677 algorithm_id: algorithm.algorithm_id.clone(),
678 rank: i,
679 score: 1.0 - (i as f64 * 0.1),
680 feature_scores: HashMap::new(),
681 explanation: RankingExplanation {
682 primary_factors: vec!["relevance".to_string()],
683 relevance_score: 0.9,
684 popularity_score: 0.8,
685 quality_score: 0.85,
686 personalization_boost: 0.1,
687 detailed_explanation: "High relevance to query".to_string(),
688 },
689 });
690 }
691 Ok(results)
692 }
693}
694
695impl PersonalizationEngine {
696 fn new() -> DeviceResult<Self> {
697 Ok(Self {
698 personalization_models: HashMap::new(),
699 context_analyzers: vec![],
700 adaptation_strategies: vec![],
701 privacy_preserving: true,
702 })
703 }
704
705 fn personalize_results(
706 &self,
707 results: &[AlgorithmInfo],
708 _user_context: &UserContext,
709 ) -> DeviceResult<Vec<f64>> {
710 Ok(results
712 .iter()
713 .enumerate()
714 .map(|(i, _)| 0.9 - (i as f64 * 0.1))
715 .collect())
716 }
717}
718
719impl DiscoveryCache {
720 fn new() -> Self {
721 Self {
722 query_cache: HashMap::new(),
723 recommendation_cache: HashMap::new(),
724 similarity_cache: HashMap::new(),
725 cache_stats: CacheStatistics::default(),
726 }
727 }
728}