quantrs2_device/quantum_network/network_optimization/
dummymlmodel_traits.rs1use async_trait::async_trait;
12use chrono::Utc;
13use std::collections::HashMap;
14use std::time::Duration;
15
16use super::type_definitions::*;
17use crate::quantum_network::distributed_protocols::TrainingDataPoint;
18
19#[async_trait]
20impl MLModel for DummyMLModel {
21 async fn predict(&self, _features: &FeatureVector) -> Result<PredictionResult> {
22 Ok(PredictionResult {
23 predicted_values: HashMap::new(),
24 confidence_intervals: HashMap::new(),
25 uncertainty_estimate: 0.1,
26 prediction_timestamp: Utc::now(),
27 })
28 }
29 async fn train(&mut self, _training_data: &[TrainingDataPoint]) -> Result<TrainingResult> {
30 Ok(TrainingResult {
31 training_accuracy: 0.8,
32 validation_accuracy: 0.75,
33 loss_value: 0.2,
34 training_duration: Duration::from_secs(100),
35 model_size_bytes: 1024,
36 })
37 }
38 async fn update_weights(&mut self, _feedback: &FeedbackData) -> Result<()> {
39 Ok(())
40 }
41 fn get_model_metrics(&self) -> ModelMetrics {
42 ModelMetrics {
43 accuracy: 0.8,
44 precision: 0.8,
45 recall: 0.8,
46 f1_score: 0.8,
47 mae: 0.1,
48 rmse: 0.1,
49 }
50 }
51}