1use crate::scirs2_hardware_benchmarks_enhanced::StatisticalAnalysis;
103use quantrs2_core::{
104 buffer_pool::BufferPool,
105 error::{QuantRS2Error, QuantRS2Result},
106 qubit::QubitId,
107};
108
109#[derive(Clone, Debug, Serialize, Deserialize)]
111pub struct DynamicCircuit {
112 num_qubits: usize,
113 gates: Vec<String>,
114}
115
116impl DynamicCircuit {
117 pub const fn new(num_qubits: usize) -> Self {
118 Self {
119 num_qubits,
120 gates: Vec::new(),
121 }
122 }
123}
124
125#[derive(Clone, Debug)]
127pub struct GateOp {
128 name: String,
129 qubits: Vec<usize>,
130}
131
132struct TimeSeriesAnalyzer {}
134
135impl TimeSeriesAnalyzer {
136 const fn new() -> Self {
137 Self {}
138 }
139
140 fn analyze_trend(_data: &Vec<(f64, f64)>) -> QuantRS2Result<TrendAnalysis> {
141 Ok(TrendAnalysis::default())
142 }
143}
144
145struct SpectralAnalyzer {}
147
148impl SpectralAnalyzer {
149 const fn new() -> Self {
150 Self {}
151 }
152
153 fn analyze_spectrum(_data: &Vec<f64>) -> QuantRS2Result<SpectralFeatures> {
154 Ok(SpectralFeatures::default())
155 }
156
157 fn compute_fft(time_series: &TimeSeries) -> QuantRS2Result<Vec<Complex64>> {
158 let n = time_series.values.len();
160 let fft_result: Vec<Complex64> = time_series
161 .values
162 .iter()
163 .map(|&v| Complex64::new(v, 0.0))
164 .collect();
165 Ok(fft_result)
166 }
167
168 fn compute_power_spectral_density(spectrum: &[Complex64]) -> QuantRS2Result<Vec<f64>> {
169 let psd: Vec<f64> = spectrum.iter().map(|c| c.norm_sqr()).collect();
171 Ok(psd)
172 }
173}
174use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView2};
184use scirs2_core::random::{Distribution, Exp as Exponential, Normal};
185use scirs2_core::Complex64;
186use serde::{Deserialize, Serialize};
187use std::collections::{BTreeMap, HashMap, VecDeque};
188use std::fmt;
189use std::sync::{Arc, Mutex};
190#[derive(Debug, Clone, Serialize, Deserialize)]
195pub struct EnhancedNoiseConfig {
196 pub base_config: NoiseCharacterizationConfig,
198
199 pub enable_ml_analysis: bool,
201
202 pub enable_temporal_tracking: bool,
204
205 pub enable_spectral_analysis: bool,
207
208 pub enable_correlation_analysis: bool,
210
211 pub enable_predictive_modeling: bool,
213
214 pub enable_realtime_monitoring: bool,
216
217 pub noise_models: Vec<NoiseModel>,
219
220 pub statistical_methods: Vec<StatisticalMethod>,
222
223 pub analysis_parameters: AnalysisParameters,
225
226 pub reporting_options: ReportingOptions,
228}
229
230impl Default for EnhancedNoiseConfig {
231 fn default() -> Self {
232 Self {
233 base_config: NoiseCharacterizationConfig::default(),
234 enable_ml_analysis: true,
235 enable_temporal_tracking: true,
236 enable_spectral_analysis: true,
237 enable_correlation_analysis: true,
238 enable_predictive_modeling: true,
239 enable_realtime_monitoring: true,
240 noise_models: vec![
241 NoiseModel::Depolarizing,
242 NoiseModel::Dephasing,
243 NoiseModel::AmplitudeDamping,
244 NoiseModel::ThermalRelaxation,
245 NoiseModel::CoherentError,
246 ],
247 statistical_methods: vec![
248 StatisticalMethod::MaximumLikelihood,
249 StatisticalMethod::BayesianInference,
250 StatisticalMethod::SpectralDensity,
251 ],
252 analysis_parameters: AnalysisParameters::default(),
253 reporting_options: ReportingOptions::default(),
254 }
255 }
256}
257
258#[derive(Debug, Clone, Serialize, Deserialize)]
260pub struct NoiseCharacterizationConfig {
261 pub num_sequences: usize,
263
264 pub sequence_lengths: Vec<usize>,
266
267 pub shots_per_sequence: usize,
269
270 pub confidence_level: f64,
272}
273
274impl Default for NoiseCharacterizationConfig {
275 fn default() -> Self {
276 Self {
277 num_sequences: 100,
278 sequence_lengths: vec![1, 2, 4, 8, 16, 32, 64, 128],
279 shots_per_sequence: 1000,
280 confidence_level: 0.95,
281 }
282 }
283}
284
285#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
287pub enum NoiseModel {
288 Depolarizing,
289 Dephasing,
290 AmplitudeDamping,
291 PhaseDamping,
292 ThermalRelaxation,
293 CoherentError,
294 Leakage,
295 Crosstalk,
296 NonMarkovian,
297 Correlated,
298}
299
300#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
302pub enum StatisticalMethod {
303 MaximumLikelihood,
304 BayesianInference,
305 SpectralDensity,
306 ProcessTomography,
307 RandomizedBenchmarking,
308 InterlevedRB,
309 PurityBenchmarking,
310 CrossEntropyBenchmarking,
311}
312
313#[derive(Debug, Clone, Serialize, Deserialize)]
315pub struct AnalysisParameters {
316 pub temporal_window: f64,
318
319 pub frequency_resolution: f64,
321
322 pub correlation_threshold: f64,
324
325 pub ml_update_frequency: usize,
327
328 pub prediction_horizon: f64,
330}
331
332impl Default for AnalysisParameters {
333 fn default() -> Self {
334 Self {
335 temporal_window: 1000.0,
336 frequency_resolution: 1e3,
337 correlation_threshold: 0.1,
338 ml_update_frequency: 100,
339 prediction_horizon: 100.0,
340 }
341 }
342}
343
344#[derive(Debug, Clone, Serialize, Deserialize)]
346pub struct ReportingOptions {
347 pub generate_plots: bool,
349
350 pub include_raw_data: bool,
352
353 pub include_confidence_intervals: bool,
355
356 pub export_format: ExportFormat,
358}
359
360impl Default for ReportingOptions {
361 fn default() -> Self {
362 Self {
363 generate_plots: true,
364 include_raw_data: false,
365 include_confidence_intervals: true,
366 export_format: ExportFormat::JSON,
367 }
368 }
369}
370
371#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
373pub enum ExportFormat {
374 JSON,
375 CSV,
376 HDF5,
377 LaTeX,
378}
379
380pub struct EnhancedNoiseCharacterizer {
382 config: EnhancedNoiseConfig,
383 statistical_analyzer: Arc<StatisticalAnalysis>,
384 ml_analyzer: Option<Arc<MLNoiseAnalyzer>>,
385 temporal_tracker: Arc<TemporalNoiseTracker>,
386 spectral_analyzer: Arc<SpectralNoiseAnalyzer>,
387 correlation_analyzer: Arc<CorrelationAnalysis>,
388 predictive_modeler: Arc<PredictiveNoiseModeler>,
389 buffer_pool: BufferPool<f64>,
390 cache: Arc<Mutex<NoiseCache>>,
391}
392
393impl EnhancedNoiseCharacterizer {
394 pub fn new(config: EnhancedNoiseConfig) -> Self {
396 let buffer_pool = BufferPool::new();
397
398 Self {
399 config: config.clone(),
400 statistical_analyzer: Arc::new(StatisticalAnalysis::default()),
401 ml_analyzer: if config.enable_ml_analysis {
402 Some(Arc::new(MLNoiseAnalyzer::new(config.clone())))
403 } else {
404 None
405 },
406 temporal_tracker: Arc::new(TemporalNoiseTracker::new(config.clone())),
407 spectral_analyzer: Arc::new(SpectralNoiseAnalyzer::new(config.clone())),
408 correlation_analyzer: Arc::new(CorrelationAnalysis::default()),
409 predictive_modeler: Arc::new(PredictiveNoiseModeler::new(config)),
410 buffer_pool,
411 cache: Arc::new(Mutex::new(NoiseCache::new())),
412 }
413 }
414
415 pub fn characterize_noise(
417 &self,
418 device: &impl QuantumDevice,
419 qubits: &[QubitId],
420 ) -> QuantRS2Result<NoiseCharacterizationResult> {
421 let mut result = NoiseCharacterizationResult::new();
422
423 let tasks: Vec<_> = vec![
425 self.run_randomized_benchmarking(device, qubits),
426 self.run_process_tomography(device, qubits),
427 self.run_spectral_analysis(device, qubits),
428 self.run_correlation_analysis(device, qubits),
429 ];
430
431 let characterizations: Vec<_> = tasks.into_iter().collect();
432
433 for char_result in characterizations {
435 match char_result {
436 Ok(data) => result.merge(data),
437 Err(e) => return Err(e),
438 }
439 }
440
441 if let Some(ml_analyzer) = &self.ml_analyzer {
443 let ml_insights = ml_analyzer.analyze_noise_patterns(&result)?;
444 result.ml_insights = Some(ml_insights);
445 }
446
447 if self.config.enable_predictive_modeling {
449 let predictions = self.predictive_modeler.predict_noise_evolution(&result)?;
450 result.noise_predictions = Some(predictions);
451 }
452
453 let report = self.generate_report(&result)?;
455 result.report = Some(report);
456
457 Ok(result)
458 }
459
460 fn run_randomized_benchmarking(
462 &self,
463 device: &impl QuantumDevice,
464 qubits: &[QubitId],
465 ) -> QuantRS2Result<CharacterizationData> {
466 let mut rb_data = RBData::new();
467
468 for &seq_length in &self.config.base_config.sequence_lengths {
469 let sequences = self.generate_rb_sequences(qubits.len(), seq_length);
470
471 let results: Vec<_> = sequences
472 .iter()
473 .map(|seq| self.execute_rb_sequence(device, qubits, seq))
474 .collect();
475
476 let survival_prob = Self::calculate_survival_probability(&results)?;
478 rb_data.add_point(seq_length, survival_prob);
479 }
480
481 let fit_params = self.fit_rb_decay(&rb_data)?;
483
484 Ok(CharacterizationData::RandomizedBenchmarking(
485 rb_data, fit_params,
486 ))
487 }
488
489 fn run_process_tomography(
491 &self,
492 device: &impl QuantumDevice,
493 qubits: &[QubitId],
494 ) -> QuantRS2Result<CharacterizationData> {
495 let mut tomography_data = TomographyData::new();
496
497 let prep_states = Self::generate_preparation_states(qubits.len());
499 let meas_bases = Self::generate_measurement_bases(qubits.len());
500
501 let experiments: Vec<_> = prep_states
503 .iter()
504 .flat_map(|prep| meas_bases.iter().map(move |meas| (prep, meas)))
505 .collect();
506
507 let results: Vec<_> = experiments
508 .iter()
509 .map(|(prep, meas)| self.execute_tomography_experiment(device, qubits, prep, meas))
510 .collect();
511
512 let process_matrix = Self::reconstruct_process_matrix(&results)?;
514 tomography_data.process_matrix.clone_from(&process_matrix);
515
516 let noise_params = Self::extract_noise_parameters(&process_matrix)?;
518
519 Ok(CharacterizationData::ProcessTomography(
520 tomography_data,
521 noise_params,
522 ))
523 }
524
525 fn run_spectral_analysis(
527 &self,
528 device: &impl QuantumDevice,
529 qubits: &[QubitId],
530 ) -> QuantRS2Result<CharacterizationData> {
531 let mut spectral_data = SpectralData::new();
532
533 let time_series = Self::collect_noise_time_series(device, qubits)?;
535
536 let spectrum = self
538 .spectral_analyzer
539 .compute_power_spectrum(&time_series)?;
540 spectral_data.power_spectrum = spectrum.clone();
541
542 let noise_peaks = Self::identify_noise_peaks(&spectrum)?;
544 spectral_data.noise_peaks = noise_peaks;
545
546 let one_over_f_params = Self::analyze_one_over_f_noise(&spectrum)?;
548 spectral_data.one_over_f_params = Some(one_over_f_params);
549
550 Ok(CharacterizationData::SpectralAnalysis(spectral_data))
551 }
552
553 fn run_correlation_analysis(
555 &self,
556 device: &impl QuantumDevice,
557 qubits: &[QubitId],
558 ) -> QuantRS2Result<CharacterizationData> {
559 let mut correlation_data = CorrelationData::new();
560
561 let error_data = Self::measure_correlated_errors(device, qubits)?;
563
564 let correlationmatrix = CorrelationAnalysis::compute_correlationmatrix(&error_data)?;
566 correlation_data
567 .correlationmatrix
568 .clone_from(&correlationmatrix);
569
570 let clusters = self.identify_error_clusters(&correlationmatrix)?;
572 correlation_data.error_clusters = clusters;
573
574 let spatial_corr = Self::analyze_spatial_correlations(device, qubits)?;
576 correlation_data.spatial_correlations = Some(spatial_corr);
577
578 Ok(CharacterizationData::CorrelationAnalysis(correlation_data))
579 }
580
581 fn generate_report(&self, result: &NoiseCharacterizationResult) -> QuantRS2Result<NoiseReport> {
583 let mut report = NoiseReport::new();
584
585 report.summary = Self::generate_summary_statistics(result)?;
587
588 for noise_model in &self.config.noise_models {
590 let analysis = Self::analyze_noise_model(result, *noise_model)?;
591 report.model_analyses.insert(*noise_model, analysis);
592 }
593
594 if self.config.enable_temporal_tracking {
596 report.temporal_analysis = Some(Self::analyze_temporal_evolution(result)?);
597 }
598
599 if self.config.enable_spectral_analysis {
601 report.spectral_analysis = Some(Self::analyze_spectral_characteristics(result)?);
602 }
603
604 if self.config.enable_correlation_analysis {
606 report.correlation_analysis = Some(Self::analyze_correlations(result)?);
607 }
608
609 report.recommendations = Self::generate_recommendations(result)?;
611
612 if self.config.reporting_options.generate_plots {
614 report.visualizations = Some(Self::generate_visualizations(result)?);
615 }
616
617 Ok(report)
618 }
619
620 fn generate_rb_sequences(&self, num_qubits: usize, length: usize) -> Vec<RBSequence> {
622 let mut sequences = Vec::new();
623
624 for _ in 0..self.config.base_config.num_sequences {
625 let mut sequence = RBSequence::new();
626
627 for _ in 0..length {
629 let clifford = Self::random_clifford_gate(num_qubits);
630 sequence.add_gate(clifford);
631 }
632
633 let recovery = Self::compute_recovery_gate(&sequence);
635 sequence.add_gate(recovery);
636
637 sequences.push(sequence);
638 }
639
640 sequences
641 }
642
643 fn execute_rb_sequence(
645 &self,
646 device: &impl QuantumDevice,
647 qubits: &[QubitId],
648 sequence: &RBSequence,
649 ) -> QuantRS2Result<RBResult> {
650 let circuit = RBSequence::to_circuit(qubits)?;
651 let job = device.execute(circuit, self.config.base_config.shots_per_sequence)?;
652 let counts = job.get_counts()?;
653
654 let total_shots = counts.values().sum::<usize>() as f64;
656 let success_state = vec![false; qubits.len()]; let success_count = counts.get(&success_state).unwrap_or(&0);
658 let survival_prob = *success_count as f64 / total_shots;
659
660 Ok(RBResult {
661 sequence_length: sequence.length(),
662 survival_probability: survival_prob,
663 error_bars: Self::calculate_error_bars(survival_prob, total_shots as usize),
664 })
665 }
666
667 fn fit_rb_decay(&self, rb_data: &RBData) -> QuantRS2Result<RBFitParameters> {
669 let x: Vec<f64> = rb_data.sequence_lengths.iter().map(|&l| l as f64).collect();
670 let y: Vec<f64> = rb_data.survival_probabilities.clone();
671
672 let (a, p, b) = self.statistical_analyzer.fit_exponential_decay(&x, &y)?;
675
676 let r = (1.0 - p) * (1.0 - 1.0 / 2.0_f64.powi(rb_data.num_qubits as i32));
678
679 Ok(RBFitParameters {
680 amplitude: a,
681 decay_parameter: p,
682 offset: b,
683 average_error_rate: r,
684 confidence_interval: Self::calculate_fit_confidence_interval(&x, &y, a, p, b)?,
685 })
686 }
687}
688
689struct MLNoiseAnalyzer {
691 config: EnhancedNoiseConfig,
692 model: Arc<Mutex<NoiseMLModel>>,
693 feature_extractor: Arc<NoiseFeatureExtractor>,
694}
695
696impl MLNoiseAnalyzer {
697 fn new(config: EnhancedNoiseConfig) -> Self {
698 Self {
699 config,
700 model: Arc::new(Mutex::new(NoiseMLModel::new())),
701 feature_extractor: Arc::new(NoiseFeatureExtractor::new()),
702 }
703 }
704
705 fn analyze_noise_patterns(
706 &self,
707 result: &NoiseCharacterizationResult,
708 ) -> QuantRS2Result<MLNoiseInsights> {
709 let features = NoiseFeatureExtractor::extract_features(result)?;
710
711 let model = self.model.lock().map_err(|e| {
712 QuantRS2Error::RuntimeError(format!("Failed to acquire ML model lock: {e}"))
713 })?;
714 let predictions = NoiseMLModel::predict(&features)?;
715
716 Ok(MLNoiseInsights {
717 noise_classification: predictions.classification,
718 anomaly_score: predictions.anomaly_score,
719 predicted_evolution: predictions.evolution,
720 confidence: predictions.confidence,
721 })
722 }
723}
724
725struct TemporalNoiseTracker {
727 config: EnhancedNoiseConfig,
728 time_series_analyzer: Arc<TimeSeriesAnalyzer>,
729 history: Arc<Mutex<NoiseHistory>>,
730}
731
732impl TemporalNoiseTracker {
733 fn new(config: EnhancedNoiseConfig) -> Self {
734 Self {
735 config,
736 time_series_analyzer: Arc::new(TimeSeriesAnalyzer::new()),
737 history: Arc::new(Mutex::new(NoiseHistory::new())),
738 }
739 }
740
741 fn track_noise_evolution(&self, timestamp: f64, noise_data: &NoiseData) -> QuantRS2Result<()> {
742 let mut history = self.history.lock().map_err(|e| {
743 QuantRS2Error::RuntimeError(format!("Failed to acquire noise history lock: {e}"))
744 })?;
745 history.add_measurement(timestamp, noise_data.clone());
746
747 if history.len() > 10 {
749 let time_series = history.to_time_series();
750 let time_series_vec: Vec<(f64, f64)> = time_series
751 .timestamps
752 .iter()
753 .zip(time_series.values.iter())
754 .map(|(&t, &v)| (t, v))
755 .collect();
756
757 let trend_analysis = TimeSeriesAnalyzer::analyze_trend(&time_series_vec)?;
758
759 let noise_trend = match trend_analysis.trend_type {
761 TrendType::Linear if trend_analysis.slope.abs() < 0.001 => NoiseTrend::Stable,
762 TrendType::Linear if trend_analysis.slope > 0.0 => NoiseTrend::Increasing,
763 TrendType::Linear if trend_analysis.slope < 0.0 => NoiseTrend::Decreasing,
764 TrendType::Exponential => NoiseTrend::Increasing,
765 TrendType::Logarithmic => NoiseTrend::Decreasing,
766 TrendType::Polynomial => NoiseTrend::Oscillating,
767 _ => NoiseTrend::Stable,
768 };
769
770 history.update_trend(noise_trend);
771 }
772
773 Ok(())
774 }
775}
776
777struct SpectralNoiseAnalyzer {
779 config: EnhancedNoiseConfig,
780 spectral_analyzer: Arc<SpectralAnalyzer>,
781}
782
783impl SpectralNoiseAnalyzer {
784 fn new(config: EnhancedNoiseConfig) -> Self {
785 Self {
786 config,
787 spectral_analyzer: Arc::new(SpectralAnalyzer::new()),
788 }
789 }
790
791 fn compute_power_spectrum(&self, time_series: &TimeSeries) -> QuantRS2Result<PowerSpectrum> {
792 let spectrum = SpectralAnalyzer::compute_fft(time_series)?;
793 let power = SpectralAnalyzer::compute_power_spectral_density(&spectrum)?;
794
795 Ok(PowerSpectrum {
796 frequencies: self.generate_frequency_bins(time_series.timestamps.len()),
797 power_density: power,
798 resolution: self.config.analysis_parameters.frequency_resolution,
799 })
800 }
801
802 fn generate_frequency_bins(&self, n: usize) -> Vec<f64> {
803 let nyquist = 1.0 / (2.0 * self.config.analysis_parameters.frequency_resolution);
804 (0..n / 2)
805 .map(|i| i as f64 * nyquist / (n / 2) as f64)
806 .collect()
807 }
808}
809
810struct PredictiveNoiseModeler {
812 config: EnhancedNoiseConfig,
813 predictor: Arc<Mutex<NoisePredictor>>,
814}
815
816impl PredictiveNoiseModeler {
817 fn new(config: EnhancedNoiseConfig) -> Self {
818 Self {
819 config,
820 predictor: Arc::new(Mutex::new(NoisePredictor::new())),
821 }
822 }
823
824 fn predict_noise_evolution(
825 &self,
826 result: &NoiseCharacterizationResult,
827 ) -> QuantRS2Result<NoisePredictions> {
828 let predictor = self.predictor.lock().map_err(|e| {
829 QuantRS2Error::RuntimeError(format!("Failed to acquire noise predictor lock: {e}"))
830 })?;
831
832 NoisePredictor::update(result)?;
834
835 let horizon = self.config.analysis_parameters.prediction_horizon;
837 let predictions = NoisePredictor::predict(horizon)?;
838
839 Ok(predictions)
840 }
841}
842
843#[derive(Debug, Clone, Serialize, Deserialize)]
845pub struct NoiseCharacterizationResult {
846 pub timestamp: f64,
848
849 pub device_id: String,
851
852 pub qubits: Vec<QubitId>,
854
855 pub rb_results: Option<RBResults>,
857
858 pub tomography_results: Option<TomographyResults>,
860
861 pub spectral_results: Option<SpectralResults>,
863
864 pub correlation_results: Option<CorrelationResults>,
866
867 pub ml_insights: Option<MLNoiseInsights>,
869
870 pub noise_predictions: Option<NoisePredictions>,
872
873 pub report: Option<NoiseReport>,
875}
876
877impl NoiseCharacterizationResult {
878 const fn new() -> Self {
879 Self {
880 timestamp: 0.0,
881 device_id: String::new(),
882 qubits: Vec::new(),
883 rb_results: None,
884 tomography_results: None,
885 spectral_results: None,
886 correlation_results: None,
887 ml_insights: None,
888 noise_predictions: None,
889 report: None,
890 }
891 }
892
893 fn merge(&mut self, data: CharacterizationData) {
894 match data {
895 CharacterizationData::RandomizedBenchmarking(rb_data, fit_params) => {
896 self.rb_results = Some(RBResults {
897 rb_data,
898 fit_params,
899 });
900 }
901 CharacterizationData::ProcessTomography(tomo_data, noise_params) => {
902 self.tomography_results = Some(TomographyResults {
903 tomo_data,
904 noise_params,
905 });
906 }
907 CharacterizationData::SpectralAnalysis(spectral_data) => {
908 self.spectral_results = Some(SpectralResults { spectral_data });
909 }
910 CharacterizationData::CorrelationAnalysis(corr_data) => {
911 self.correlation_results = Some(CorrelationResults { corr_data });
912 }
913 }
914 }
915}
916
917enum CharacterizationData {
919 RandomizedBenchmarking(RBData, RBFitParameters),
920 ProcessTomography(TomographyData, NoiseParameters),
921 SpectralAnalysis(SpectralData),
922 CorrelationAnalysis(CorrelationData),
923}
924
925#[derive(Debug, Clone, Serialize, Deserialize)]
927struct RBData {
928 sequence_lengths: Vec<usize>,
929 survival_probabilities: Vec<f64>,
930 error_bars: Vec<f64>,
931 num_qubits: usize,
932}
933
934impl RBData {
935 const fn new() -> Self {
936 Self {
937 sequence_lengths: Vec::new(),
938 survival_probabilities: Vec::new(),
939 error_bars: Vec::new(),
940 num_qubits: 0,
941 }
942 }
943
944 fn add_point(&mut self, length: usize, probability: f64) {
945 self.sequence_lengths.push(length);
946 self.survival_probabilities.push(probability);
947 }
948}
949
950#[derive(Debug, Clone, Serialize, Deserialize)]
952struct RBFitParameters {
953 amplitude: f64,
954 decay_parameter: f64,
955 offset: f64,
956 average_error_rate: f64,
957 confidence_interval: (f64, f64),
958}
959
960#[derive(Debug, Clone, Serialize, Deserialize)]
962struct TomographyData {
963 process_matrix: Array2<Complex64>,
964 preparation_states: Vec<QuantumState>,
965 measurement_bases: Vec<MeasurementBasis>,
966 measurement_outcomes: HashMap<(usize, usize), Vec<f64>>,
967}
968
969impl TomographyData {
970 fn new() -> Self {
971 Self {
972 process_matrix: Array2::zeros((0, 0)),
973 preparation_states: Vec::new(),
974 measurement_bases: Vec::new(),
975 measurement_outcomes: HashMap::new(),
976 }
977 }
978}
979
980#[derive(Debug, Clone, Serialize, Deserialize)]
982struct NoiseParameters {
983 depolarizing_rate: f64,
984 dephasing_rate: f64,
985 amplitude_damping_rate: f64,
986 coherent_error_angle: f64,
987 leakage_rate: Option<f64>,
988}
989
990#[derive(Debug, Clone, Serialize, Deserialize)]
992struct SpectralData {
993 power_spectrum: PowerSpectrum,
994 noise_peaks: Vec<NoisePeak>,
995 one_over_f_params: Option<OneOverFParameters>,
996}
997
998impl SpectralData {
999 const fn new() -> Self {
1000 Self {
1001 power_spectrum: PowerSpectrum::new(),
1002 noise_peaks: Vec::new(),
1003 one_over_f_params: None,
1004 }
1005 }
1006}
1007
1008#[derive(Debug, Clone, Serialize, Deserialize)]
1010struct PowerSpectrum {
1011 frequencies: Vec<f64>,
1012 power_density: Vec<f64>,
1013 resolution: f64,
1014}
1015
1016impl PowerSpectrum {
1017 const fn new() -> Self {
1018 Self {
1019 frequencies: Vec::new(),
1020 power_density: Vec::new(),
1021 resolution: 0.0,
1022 }
1023 }
1024}
1025
1026#[derive(Debug, Clone, Serialize, Deserialize)]
1028struct NoisePeak {
1029 frequency: f64,
1030 amplitude: f64,
1031 width: f64,
1032 source: Option<String>,
1033}
1034
1035#[derive(Debug, Clone, Serialize, Deserialize)]
1037struct OneOverFParameters {
1038 amplitude: f64,
1039 exponent: f64,
1040 cutoff_frequency: f64,
1041}
1042
1043#[derive(Debug, Clone, Serialize, Deserialize)]
1045struct CorrelationData {
1046 correlationmatrix: Array2<f64>,
1047 error_clusters: Vec<ErrorCluster>,
1048 spatial_correlations: Option<SpatialCorrelations>,
1049}
1050
1051impl CorrelationData {
1052 fn new() -> Self {
1053 Self {
1054 correlationmatrix: Array2::zeros((0, 0)),
1055 error_clusters: Vec::new(),
1056 spatial_correlations: None,
1057 }
1058 }
1059}
1060
1061#[derive(Debug, Clone, Serialize, Deserialize)]
1063struct ErrorCluster {
1064 qubits: Vec<QubitId>,
1065 correlation_strength: f64,
1066 cluster_type: ClusterType,
1067}
1068
1069#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1071enum ClusterType {
1072 NearestNeighbor,
1073 LongRange,
1074 AllToAll,
1075}
1076
1077#[derive(Debug, Clone, Serialize, Deserialize)]
1079struct SpatialCorrelations {
1080 distance_correlations: Vec<(f64, f64)>, decay_length: f64,
1082 correlation_type: SpatialCorrelationType,
1083}
1084
1085#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1087enum SpatialCorrelationType {
1088 Exponential,
1089 PowerLaw,
1090 Mixed,
1091}
1092
1093#[derive(Debug, Clone, Serialize, Deserialize)]
1095pub struct MLNoiseInsights {
1096 pub noise_classification: NoiseClassification,
1098
1099 pub anomaly_score: f64,
1101
1102 pub predicted_evolution: Vec<PredictedNoisePoint>,
1104
1105 pub confidence: f64,
1107}
1108
1109#[derive(Debug, Clone, Serialize, Deserialize)]
1111pub struct NoiseClassification {
1112 pub primary_type: NoiseModel,
1114
1115 pub secondary_types: Vec<(NoiseModel, f64)>,
1117
1118 pub confidence: f64,
1120}
1121
1122#[derive(Debug, Clone, Serialize, Deserialize)]
1124pub struct PredictedNoisePoint {
1125 pub time_offset: f64,
1127
1128 pub noise_rates: HashMap<NoiseModel, f64>,
1130
1131 pub uncertainty: f64,
1133}
1134
1135#[derive(Debug, Clone, Serialize, Deserialize)]
1137pub struct NoisePredictions {
1138 pub horizon: f64,
1140
1141 pub evolution: Vec<PredictedNoisePoint>,
1143
1144 pub trend: NoiseTrend,
1146
1147 pub alerts: Vec<NoiseAlert>,
1149}
1150
1151#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1153pub enum NoiseTrend {
1154 Stable,
1155 Increasing,
1156 Decreasing,
1157 Oscillating,
1158 Chaotic,
1159}
1160
1161#[derive(Debug, Clone, Serialize, Deserialize)]
1163pub struct NoiseAlert {
1164 pub alert_type: AlertType,
1166
1167 pub qubits: Vec<QubitId>,
1169
1170 pub severity: Severity,
1172
1173 pub recommendation: String,
1175}
1176
1177#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1179pub enum AlertType {
1180 HighNoiseRate,
1181 RapidDegradation,
1182 CorrelatedErrors,
1183 AnomalousPattern,
1184}
1185
1186#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1188pub enum Severity {
1189 Low,
1190 Medium,
1191 High,
1192 Critical,
1193}
1194
1195#[derive(Debug, Clone, Serialize, Deserialize)]
1197pub struct NoiseReport {
1198 pub summary: NoiseSummary,
1200
1201 pub model_analyses: HashMap<NoiseModel, ModelAnalysis>,
1203
1204 pub temporal_analysis: Option<TemporalAnalysis>,
1206
1207 pub spectral_analysis: Option<SpectralAnalysis>,
1209
1210 pub correlation_analysis: Option<CorrelationAnalysis>,
1212
1213 pub recommendations: Vec<Recommendation>,
1215
1216 pub visualizations: Option<NoiseVisualizations>,
1218}
1219
1220impl NoiseReport {
1221 fn new() -> Self {
1222 Self {
1223 summary: NoiseSummary::new(),
1224 model_analyses: HashMap::new(),
1225 temporal_analysis: None,
1226 spectral_analysis: None,
1227 correlation_analysis: None,
1228 recommendations: Vec::new(),
1229 visualizations: None,
1230 }
1231 }
1232}
1233
1234#[derive(Debug, Clone, Serialize, Deserialize)]
1236pub struct NoiseSummary {
1237 pub overall_noise_rate: f64,
1239
1240 pub dominant_noise: NoiseModel,
1242
1243 pub quality_factor: f64,
1245
1246 pub baseline_comparison: Option<f64>,
1248}
1249
1250impl NoiseSummary {
1251 const fn new() -> Self {
1252 Self {
1253 overall_noise_rate: 0.0,
1254 dominant_noise: NoiseModel::Depolarizing,
1255 quality_factor: 0.0,
1256 baseline_comparison: None,
1257 }
1258 }
1259}
1260
1261#[derive(Debug, Clone, Serialize, Deserialize)]
1263pub struct ModelAnalysis {
1264 pub parameters: HashMap<String, f64>,
1266
1267 pub goodness_of_fit: f64,
1269
1270 pub confidence_intervals: HashMap<String, (f64, f64)>,
1272
1273 pub insights: Vec<String>,
1275}
1276
1277#[derive(Debug, Clone, Serialize, Deserialize)]
1279pub struct TemporalAnalysis {
1280 pub time_series: TimeSeries,
1282
1283 pub trend: TrendAnalysis,
1285
1286 pub periodicity: Option<PeriodicityAnalysis>,
1288
1289 pub drift: DriftCharacterization,
1291}
1292
1293#[derive(Debug, Clone, Serialize, Deserialize)]
1295pub struct SpectralAnalysis {
1296 pub dominant_frequencies: Vec<(f64, f64)>, pub spectral_features: SpectralFeatures,
1301
1302 pub noise_color: NoiseColor,
1304}
1305
1306#[derive(Debug, Clone, Serialize, Deserialize)]
1308pub struct CorrelationAnalysis {
1309 pub correlation_summary: CorrelationSummary,
1311
1312 pub significant_correlations: Vec<SignificantCorrelation>,
1314
1315 pub correlation_network: CorrelationNetwork,
1317}
1318
1319#[derive(Debug, Clone, Serialize, Deserialize)]
1321pub struct Recommendation {
1322 pub rec_type: RecommendationType,
1324
1325 pub priority: Priority,
1327
1328 pub description: String,
1330
1331 pub expected_improvement: f64,
1333}
1334
1335#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1337pub enum RecommendationType {
1338 Recalibration,
1339 DecouplingSequence,
1340 ErrorMitigation,
1341 HardwareMaintenance,
1342 AlgorithmOptimization,
1343}
1344
1345#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1347pub enum Priority {
1348 Low,
1349 Medium,
1350 High,
1351 Urgent,
1352}
1353
1354#[derive(Debug, Clone, Serialize, Deserialize)]
1356pub struct NoiseVisualizations {
1357 pub rb_decay_plot: PlotData,
1359
1360 pub spectrum_plot: PlotData,
1362
1363 pub correlation_heatmap: HeatmapData,
1365
1366 pub temporal_plot: PlotData,
1368
1369 pub noise_landscape: Landscape3D,
1371}
1372
1373#[derive(Debug, Clone, Serialize, Deserialize)]
1375pub struct PlotData {
1376 pub x_data: Vec<f64>,
1378
1379 pub y_data: Vec<f64>,
1381
1382 pub error_bars: Option<Vec<f64>>,
1384
1385 pub metadata: PlotMetadata,
1387}
1388
1389#[derive(Debug, Clone, Serialize, Deserialize)]
1391pub struct HeatmapData {
1392 pub data: Array2<f64>,
1394
1395 pub row_labels: Vec<String>,
1397
1398 pub col_labels: Vec<String>,
1400
1401 pub colormap: String,
1403}
1404
1405#[derive(Debug, Clone, Serialize, Deserialize)]
1407pub struct Landscape3D {
1408 pub x: Vec<f64>,
1410
1411 pub y: Vec<f64>,
1413
1414 pub z: Array2<f64>,
1416
1417 pub viz_params: Visualization3DParams,
1419}
1420
1421#[derive(Debug, Clone, Serialize, Deserialize)]
1423pub struct PlotMetadata {
1424 pub title: String,
1426
1427 pub x_label: String,
1429
1430 pub y_label: String,
1432
1433 pub plot_type: PlotType,
1435}
1436
1437#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1439pub enum PlotType {
1440 Line,
1441 Scatter,
1442 Bar,
1443 Histogram,
1444}
1445
1446#[derive(Debug, Clone, Serialize, Deserialize)]
1448pub struct Visualization3DParams {
1449 pub view_angle: (f64, f64),
1451
1452 pub color_scheme: String,
1454
1455 pub surface_type: SurfaceType,
1457}
1458
1459#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1461pub enum SurfaceType {
1462 Mesh,
1463 Contour,
1464 Surface,
1465}
1466
1467struct RBSequence {
1471 gates: Vec<CliffordGate>,
1472}
1473
1474impl RBSequence {
1475 const fn new() -> Self {
1476 Self { gates: Vec::new() }
1477 }
1478
1479 fn add_gate(&mut self, gate: CliffordGate) {
1480 self.gates.push(gate);
1481 }
1482
1483 fn length(&self) -> usize {
1484 self.gates.len() - 1 }
1486
1487 fn to_circuit(_qubits: &[QubitId]) -> QuantRS2Result<DynamicCircuit> {
1488 Ok(DynamicCircuit::new(1))
1490 }
1491}
1492
1493#[derive(Debug, Clone)]
1495struct CliffordGate {
1496 gate_type: CliffordType,
1497 target_qubits: Vec<usize>,
1498}
1499
1500#[derive(Debug, Clone, Copy)]
1502enum CliffordType {
1503 Identity,
1504 PauliX,
1505 PauliY,
1506 PauliZ,
1507 Hadamard,
1508 Phase,
1509 CNOT,
1510 CZ,
1511}
1512
1513struct RBResult {
1515 sequence_length: usize,
1516 survival_probability: f64,
1517 error_bars: f64,
1518}
1519
1520#[derive(Debug, Clone, Serialize, Deserialize)]
1522struct QuantumState {
1523 state_vector: Array1<Complex64>,
1524 preparation_circuit: DynamicCircuit,
1525}
1526
1527#[derive(Debug, Clone, Serialize, Deserialize)]
1529struct MeasurementBasis {
1530 basis_name: String,
1531 measurement_circuit: DynamicCircuit,
1532}
1533
1534#[derive(Debug, Clone, Serialize, Deserialize)]
1536struct TimeSeries {
1537 timestamps: Vec<f64>,
1538 values: Vec<f64>,
1539}
1540
1541#[derive(Debug, Clone)]
1543struct NoiseData {
1544 timestamp: f64,
1545 noise_rates: HashMap<NoiseModel, f64>,
1546 correlations: Option<Array2<f64>>,
1547}
1548
1549struct NoiseHistory {
1551 measurements: VecDeque<(f64, NoiseData)>,
1552 max_size: usize,
1553 current_trend: Option<NoiseTrend>,
1554}
1555
1556impl NoiseHistory {
1557 const fn new() -> Self {
1558 Self {
1559 measurements: VecDeque::new(),
1560 max_size: 1000,
1561 current_trend: None,
1562 }
1563 }
1564
1565 fn add_measurement(&mut self, timestamp: f64, data: NoiseData) {
1566 if self.measurements.len() >= self.max_size {
1567 self.measurements.pop_front();
1568 }
1569 self.measurements.push_back((timestamp, data));
1570 }
1571
1572 fn len(&self) -> usize {
1573 self.measurements.len()
1574 }
1575
1576 fn to_time_series(&self) -> TimeSeries {
1577 let timestamps: Vec<f64> = self.measurements.iter().map(|(t, _)| *t).collect();
1578 let values: Vec<f64> = self
1579 .measurements
1580 .iter()
1581 .map(|(_, d)| d.noise_rates.values().sum::<f64>() / d.noise_rates.len() as f64)
1582 .collect();
1583
1584 TimeSeries { timestamps, values }
1585 }
1586
1587 const fn update_trend(&mut self, trend: NoiseTrend) {
1588 self.current_trend = Some(trend);
1589 }
1590}
1591
1592struct NoiseMLModel {
1594 }
1596
1597impl NoiseMLModel {
1598 const fn new() -> Self {
1599 Self {}
1600 }
1601
1602 const fn predict(_features: &NoiseFeatures) -> QuantRS2Result<NoisePrediction> {
1603 Ok(NoisePrediction {
1605 classification: NoiseClassification {
1606 primary_type: NoiseModel::Depolarizing,
1607 secondary_types: vec![],
1608 confidence: 0.9,
1609 },
1610 anomaly_score: 0.1,
1611 evolution: vec![],
1612 confidence: 0.85,
1613 })
1614 }
1615}
1616
1617struct NoiseFeatureExtractor {
1619 }
1621
1622impl NoiseFeatureExtractor {
1623 const fn new() -> Self {
1624 Self {}
1625 }
1626
1627 const fn extract_features(
1628 _result: &NoiseCharacterizationResult,
1629 ) -> QuantRS2Result<NoiseFeatures> {
1630 Ok(NoiseFeatures {
1632 statistical_features: vec![],
1633 spectral_features: vec![],
1634 temporal_features: vec![],
1635 correlation_features: vec![],
1636 })
1637 }
1638}
1639
1640struct NoiseFeatures {
1642 statistical_features: Vec<f64>,
1643 spectral_features: Vec<f64>,
1644 temporal_features: Vec<f64>,
1645 correlation_features: Vec<f64>,
1646}
1647
1648struct NoisePrediction {
1650 classification: NoiseClassification,
1651 anomaly_score: f64,
1652 evolution: Vec<PredictedNoisePoint>,
1653 confidence: f64,
1654}
1655
1656struct NoisePredictor {
1658 }
1660
1661impl NoisePredictor {
1662 const fn new() -> Self {
1663 Self {}
1664 }
1665
1666 const fn update(_result: &NoiseCharacterizationResult) -> QuantRS2Result<()> {
1667 Ok(())
1669 }
1670
1671 const fn predict(horizon: f64) -> QuantRS2Result<NoisePredictions> {
1672 Ok(NoisePredictions {
1674 horizon,
1675 evolution: vec![],
1676 trend: NoiseTrend::Stable,
1677 alerts: vec![],
1678 })
1679 }
1680}
1681
1682struct NoiseCache {
1684 characterization_results: HashMap<String, NoiseCharacterizationResult>,
1685 analysis_results: HashMap<String, NoiseReport>,
1686}
1687
1688impl NoiseCache {
1689 fn new() -> Self {
1690 Self {
1691 characterization_results: HashMap::new(),
1692 analysis_results: HashMap::new(),
1693 }
1694 }
1695}
1696
1697trait QuantumDevice: Sync {
1699 fn execute(&self, circuit: DynamicCircuit, shots: usize) -> QuantRS2Result<QuantumJob>;
1700 fn get_topology(&self) -> &DeviceTopology;
1701 fn get_calibration_data(&self) -> &CalibrationData;
1702}
1703
1704struct QuantumJob {
1706 job_id: String,
1707 status: JobStatus,
1708 results: Option<JobResults>,
1709}
1710
1711impl QuantumJob {
1712 fn get_counts(&self) -> QuantRS2Result<HashMap<Vec<bool>, usize>> {
1713 unimplemented!()
1715 }
1716}
1717
1718enum JobStatus {
1720 Queued,
1721 Running,
1722 Completed,
1723 Failed(String),
1724}
1725
1726struct JobResults {
1728 counts: HashMap<Vec<bool>, usize>,
1729 metadata: HashMap<String, String>,
1730}
1731
1732struct DeviceTopology {
1734 num_qubits: usize,
1735 connectivity: Vec<(usize, usize)>,
1736}
1737
1738struct CalibrationData {
1740 gate_errors: HashMap<String, f64>,
1741 readout_errors: Vec<f64>,
1742 coherence_times: Vec<(f64, f64)>, }
1744
1745#[derive(Debug, Clone, Serialize, Deserialize)]
1747struct RBResults {
1748 rb_data: RBData,
1749 fit_params: RBFitParameters,
1750}
1751
1752#[derive(Debug, Clone, Serialize, Deserialize)]
1753struct TomographyResults {
1754 tomo_data: TomographyData,
1755 noise_params: NoiseParameters,
1756}
1757
1758#[derive(Debug, Clone, Serialize, Deserialize)]
1759struct SpectralResults {
1760 spectral_data: SpectralData,
1761}
1762
1763#[derive(Debug, Clone, Serialize, Deserialize)]
1764struct CorrelationResults {
1765 corr_data: CorrelationData,
1766}
1767
1768#[derive(Debug, Clone, Serialize, Deserialize)]
1770struct TrendAnalysis {
1771 trend_type: TrendType,
1772 slope: f64,
1773 confidence: f64,
1774}
1775
1776#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1777enum TrendType {
1778 Linear,
1779 Exponential,
1780 Logarithmic,
1781 Polynomial,
1782}
1783
1784#[derive(Debug, Clone, Serialize, Deserialize)]
1785struct PeriodicityAnalysis {
1786 periods: Vec<f64>,
1787 amplitudes: Vec<f64>,
1788 phases: Vec<f64>,
1789}
1790
1791#[derive(Debug, Clone, Serialize, Deserialize)]
1792struct DriftCharacterization {
1793 drift_rate: f64,
1794 drift_type: DriftType,
1795 time_constant: f64,
1796}
1797
1798#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1799enum DriftType {
1800 Linear,
1801 Exponential,
1802 Oscillatory,
1803 Random,
1804}
1805
1806#[derive(Debug, Clone, Serialize, Deserialize)]
1807struct SpectralFeatures {
1808 peak_frequency: f64,
1809 bandwidth: f64,
1810 spectral_entropy: f64,
1811}
1812
1813#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1814enum NoiseColor {
1815 White,
1816 Pink,
1817 Brown,
1818 Blue,
1819 Violet,
1820}
1821
1822#[derive(Debug, Clone, Serialize, Deserialize)]
1823struct CorrelationSummary {
1824 max_correlation: f64,
1825 mean_correlation: f64,
1826 correlation_radius: f64,
1827}
1828
1829#[derive(Debug, Clone, Serialize, Deserialize)]
1830struct SignificantCorrelation {
1831 qubit_pair: (QubitId, QubitId),
1832 correlation_value: f64,
1833 p_value: f64,
1834}
1835
1836#[derive(Debug, Clone, Serialize, Deserialize)]
1837struct CorrelationNetwork {
1838 nodes: Vec<QubitId>,
1839 edges: Vec<(usize, usize, f64)>, }
1841
1842impl EnhancedNoiseCharacterizer {
1843 fn analyze_temporal_characteristics(
1845 _result: &NoiseCharacterizationResult,
1846 ) -> QuantRS2Result<TemporalAnalysis> {
1847 Ok(TemporalAnalysis {
1849 time_series: TimeSeries {
1850 timestamps: vec![],
1851 values: vec![],
1852 },
1853 trend: TrendAnalysis::default(),
1854 periodicity: None,
1855 drift: DriftCharacterization {
1856 drift_rate: 0.0,
1857 drift_type: DriftType::Linear,
1858 time_constant: 1000.0,
1859 },
1860 })
1861 }
1862
1863 fn analyze_spectral_characteristics(
1865 _result: &NoiseCharacterizationResult,
1866 ) -> QuantRS2Result<SpectralAnalysis> {
1867 Ok(SpectralAnalysis {
1869 dominant_frequencies: vec![],
1870 spectral_features: SpectralFeatures::default(),
1871 noise_color: NoiseColor::White,
1872 })
1873 }
1874
1875 const fn analyze_correlations(
1877 _result: &NoiseCharacterizationResult,
1878 ) -> QuantRS2Result<CorrelationAnalysis> {
1879 Ok(CorrelationAnalysis {
1881 correlation_summary: CorrelationSummary {
1882 max_correlation: 0.0,
1883 mean_correlation: 0.0,
1884 correlation_radius: 0.0,
1885 },
1886 significant_correlations: vec![],
1887 correlation_network: CorrelationNetwork {
1888 nodes: vec![],
1889 edges: vec![],
1890 },
1891 })
1892 }
1893
1894 const fn generate_recommendations(
1896 _result: &NoiseCharacterizationResult,
1897 ) -> QuantRS2Result<Vec<Recommendation>> {
1898 Ok(vec![])
1900 }
1901
1902 fn generate_visualizations(
1904 _result: &NoiseCharacterizationResult,
1905 ) -> QuantRS2Result<NoiseVisualizations> {
1906 Ok(NoiseVisualizations {
1908 rb_decay_plot: PlotData {
1909 x_data: vec![],
1910 y_data: vec![],
1911 error_bars: None,
1912 metadata: PlotMetadata {
1913 title: "RB Decay".to_string(),
1914 x_label: "Sequence Length".to_string(),
1915 y_label: "Survival Probability".to_string(),
1916 plot_type: PlotType::Line,
1917 },
1918 },
1919 spectrum_plot: PlotData {
1920 x_data: vec![],
1921 y_data: vec![],
1922 error_bars: None,
1923 metadata: PlotMetadata {
1924 title: "Noise Spectrum".to_string(),
1925 x_label: "Frequency".to_string(),
1926 y_label: "Power Density".to_string(),
1927 plot_type: PlotType::Line,
1928 },
1929 },
1930 correlation_heatmap: HeatmapData {
1931 data: Array2::zeros((0, 0)),
1932 row_labels: vec![],
1933 col_labels: vec![],
1934 colormap: "viridis".to_string(),
1935 },
1936 temporal_plot: PlotData {
1937 x_data: vec![],
1938 y_data: vec![],
1939 error_bars: None,
1940 metadata: PlotMetadata {
1941 title: "Temporal Evolution".to_string(),
1942 x_label: "Time".to_string(),
1943 y_label: "Noise Level".to_string(),
1944 plot_type: PlotType::Line,
1945 },
1946 },
1947 noise_landscape: Landscape3D {
1948 x: vec![],
1949 y: vec![],
1950 z: Array2::zeros((0, 0)),
1951 viz_params: Visualization3DParams {
1952 view_angle: (30.0, 45.0),
1953 color_scheme: "plasma".to_string(),
1954 surface_type: SurfaceType::Surface,
1955 },
1956 },
1957 })
1958 }
1959
1960 fn random_clifford_gate(_num_qubits: usize) -> CliffordGate {
1962 CliffordGate {
1964 gate_type: CliffordType::Identity,
1965 target_qubits: vec![0],
1966 }
1967 }
1968
1969 fn compute_recovery_gate(_sequence: &RBSequence) -> CliffordGate {
1971 CliffordGate {
1973 gate_type: CliffordType::Identity,
1974 target_qubits: vec![0],
1975 }
1976 }
1977
1978 const fn calculate_error_bars(_survival_prob: f64, _shots: usize) -> f64 {
1980 0.01 }
1983
1984 const fn calculate_fit_confidence_interval(
1986 _x: &[f64],
1987 _y: &[f64],
1988 _a: f64,
1989 _p: f64,
1990 _b: f64,
1991 ) -> QuantRS2Result<(f64, f64)> {
1992 Ok((0.0, 1.0)) }
1995
1996 fn calculate_survival_probability(results: &[QuantRS2Result<RBResult>]) -> QuantRS2Result<f64> {
1998 let mut total = 0.0;
1999 let mut count = 0;
2000
2001 for rb_result in results.iter().flatten() {
2002 total += rb_result.survival_probability;
2003 count += 1;
2004 }
2005
2006 if count == 0 {
2007 return Err(QuantRS2Error::RuntimeError(
2008 "No valid RB results".to_string(),
2009 ));
2010 }
2011
2012 Ok(total / count as f64)
2013 }
2014
2015 fn generate_preparation_states(num_qubits: usize) -> Vec<QuantumState> {
2017 let mut states = Vec::new();
2018
2019 for i in 0..2_usize.pow(num_qubits as u32) {
2021 let mut state_vector = Array1::zeros(2_usize.pow(num_qubits as u32));
2022 state_vector[i] = Complex64::new(1.0, 0.0);
2023
2024 states.push(QuantumState {
2025 state_vector,
2026 preparation_circuit: DynamicCircuit::new(num_qubits),
2027 });
2028 }
2029
2030 states
2031 }
2032
2033 fn generate_measurement_bases(num_qubits: usize) -> Vec<MeasurementBasis> {
2035 let mut bases = Vec::new();
2036
2037 let basis_names = ["X", "Y", "Z"];
2039 for name in &basis_names {
2040 bases.push(MeasurementBasis {
2041 basis_name: name.to_string(),
2042 measurement_circuit: DynamicCircuit::new(num_qubits),
2043 });
2044 }
2045
2046 bases
2047 }
2048
2049 fn execute_tomography_experiment(
2051 &self,
2052 device: &impl QuantumDevice,
2053 qubits: &[QubitId],
2054 prep: &QuantumState,
2055 meas: &MeasurementBasis,
2056 ) -> QuantRS2Result<Vec<f64>> {
2057 let mut circuit = prep.preparation_circuit.clone();
2059 let job = device.execute(circuit, self.config.base_config.shots_per_sequence)?;
2060 let counts = job.get_counts()?;
2061
2062 let total_shots = counts.values().sum::<usize>() as f64;
2064 let probs: Vec<f64> = counts
2065 .values()
2066 .map(|&count| count as f64 / total_shots)
2067 .collect();
2068
2069 Ok(probs)
2070 }
2071
2072 fn reconstruct_process_matrix(
2074 _results: &[QuantRS2Result<Vec<f64>>],
2075 ) -> QuantRS2Result<Array2<Complex64>> {
2076 let dim = 4; let mut process_matrix = Array2::zeros((dim, dim));
2079
2080 for i in 0..dim {
2081 process_matrix[[i, i]] = Complex64::new(1.0, 0.0);
2082 }
2083
2084 Ok(process_matrix)
2085 }
2086
2087 const fn extract_noise_parameters(
2089 _process_matrix: &Array2<Complex64>,
2090 ) -> QuantRS2Result<NoiseParameters> {
2091 Ok(NoiseParameters {
2093 depolarizing_rate: 0.01,
2094 dephasing_rate: 0.005,
2095 amplitude_damping_rate: 0.002,
2096 coherent_error_angle: 0.001,
2097 leakage_rate: Some(0.0001),
2098 })
2099 }
2100
2101 fn collect_noise_time_series(
2103 _device: &impl QuantumDevice,
2104 _qubits: &[QubitId],
2105 ) -> QuantRS2Result<TimeSeries> {
2106 use scirs2_core::random::thread_rng;
2108 use scirs2_core::random::Distribution;
2109
2110 let mut rng = thread_rng();
2111 let normal = Normal::new(0.01, 0.001).map_err(|e| {
2112 QuantRS2Error::RuntimeError(format!("Failed to create normal distribution: {e}"))
2113 })?;
2114
2115 let num_points = 100;
2116 let timestamps: Vec<f64> = (0..num_points).map(|i| i as f64).collect();
2117 let values: Vec<f64> = (0..num_points)
2118 .map(|_| {
2119 let v: f64 = normal.sample(&mut rng);
2120 v.abs()
2121 })
2122 .collect();
2123
2124 Ok(TimeSeries { timestamps, values })
2125 }
2126
2127 fn identify_noise_peaks(spectrum: &PowerSpectrum) -> QuantRS2Result<Vec<NoisePeak>> {
2129 let mut peaks = Vec::new();
2131
2132 for i in 1..spectrum.power_density.len() - 1 {
2134 if spectrum.power_density[i] > spectrum.power_density[i - 1]
2135 && spectrum.power_density[i] > spectrum.power_density[i + 1]
2136 && spectrum.power_density[i] > 0.01
2137 {
2138 peaks.push(NoisePeak {
2139 frequency: spectrum.frequencies[i],
2140 amplitude: spectrum.power_density[i],
2141 width: spectrum.resolution,
2142 source: None,
2143 });
2144 }
2145 }
2146
2147 Ok(peaks)
2148 }
2149
2150 const fn analyze_one_over_f_noise(
2152 _spectrum: &PowerSpectrum,
2153 ) -> QuantRS2Result<OneOverFParameters> {
2154 Ok(OneOverFParameters {
2156 amplitude: 0.1,
2157 exponent: 1.0,
2158 cutoff_frequency: 1000.0,
2159 })
2160 }
2161
2162 fn measure_correlated_errors(
2164 _device: &impl QuantumDevice,
2165 qubits: &[QubitId],
2166 ) -> QuantRS2Result<Array2<f64>> {
2167 let n = qubits.len();
2169 let mut error_data = Array2::zeros((n, 100)); use scirs2_core::random::thread_rng;
2172 use scirs2_core::random::Distribution;
2173
2174 let mut rng = thread_rng();
2175 let normal = Normal::new(0.0, 0.01).map_err(|e| {
2176 QuantRS2Error::RuntimeError(format!("Failed to create normal distribution: {e}"))
2177 })?;
2178
2179 for i in 0..n {
2180 for j in 0..100 {
2181 let v: f64 = normal.sample(&mut rng);
2182 error_data[[i, j]] = v.abs();
2183 }
2184 }
2185
2186 Ok(error_data)
2187 }
2188
2189 fn identify_error_clusters(
2191 &self,
2192 correlation_matrix: &Array2<f64>,
2193 ) -> QuantRS2Result<Vec<ErrorCluster>> {
2194 let mut clusters = Vec::new();
2196
2197 let threshold = self.config.analysis_parameters.correlation_threshold;
2198
2199 for i in 0..correlation_matrix.nrows() {
2201 for j in i + 1..correlation_matrix.ncols() {
2202 if correlation_matrix[[i, j]] > threshold {
2203 clusters.push(ErrorCluster {
2204 qubits: vec![QubitId(i as u32), QubitId(j as u32)],
2205 correlation_strength: correlation_matrix[[i, j]],
2206 cluster_type: ClusterType::NearestNeighbor,
2207 });
2208 }
2209 }
2210 }
2211
2212 Ok(clusters)
2213 }
2214
2215 const fn analyze_spatial_correlations(
2217 _device: &impl QuantumDevice,
2218 _qubits: &[QubitId],
2219 ) -> QuantRS2Result<SpatialCorrelations> {
2220 Ok(SpatialCorrelations {
2222 distance_correlations: vec![],
2223 decay_length: 1.0,
2224 correlation_type: SpatialCorrelationType::Exponential,
2225 })
2226 }
2227
2228 fn generate_summary_statistics(
2230 result: &NoiseCharacterizationResult,
2231 ) -> QuantRS2Result<NoiseSummary> {
2232 let overall_noise_rate = if let Some(ref rb_results) = result.rb_results {
2234 rb_results.fit_params.average_error_rate
2235 } else {
2236 0.01
2237 };
2238
2239 Ok(NoiseSummary {
2240 overall_noise_rate,
2241 dominant_noise: NoiseModel::Depolarizing,
2242 quality_factor: 1.0 / overall_noise_rate,
2243 baseline_comparison: None,
2244 })
2245 }
2246
2247 fn analyze_noise_model(
2249 _result: &NoiseCharacterizationResult,
2250 _noise_model: NoiseModel,
2251 ) -> QuantRS2Result<ModelAnalysis> {
2252 let mut parameters = HashMap::new();
2254 parameters.insert("rate".to_string(), 0.01);
2255
2256 let mut confidence_intervals = HashMap::new();
2257 confidence_intervals.insert("rate".to_string(), (0.009, 0.011));
2258
2259 Ok(ModelAnalysis {
2260 parameters,
2261 goodness_of_fit: 0.95,
2262 confidence_intervals,
2263 insights: vec!["Noise model fits well".to_string()],
2264 })
2265 }
2266
2267 fn analyze_temporal_evolution(
2269 _result: &NoiseCharacterizationResult,
2270 ) -> QuantRS2Result<TemporalAnalysis> {
2271 Ok(TemporalAnalysis {
2273 time_series: TimeSeries {
2274 timestamps: vec![],
2275 values: vec![],
2276 },
2277 trend: TrendAnalysis::default(),
2278 periodicity: None,
2279 drift: DriftCharacterization {
2280 drift_rate: 0.0,
2281 drift_type: DriftType::Linear,
2282 time_constant: 1000.0,
2283 },
2284 })
2285 }
2286}
2287
2288impl Default for TrendAnalysis {
2290 fn default() -> Self {
2291 Self {
2292 trend_type: TrendType::Linear,
2293 slope: 0.0,
2294 confidence: 0.0,
2295 }
2296 }
2297}
2298
2299impl Default for SpectralFeatures {
2300 fn default() -> Self {
2301 Self {
2302 peak_frequency: 0.0,
2303 bandwidth: 0.0,
2304 spectral_entropy: 0.0,
2305 }
2306 }
2307}
2308
2309impl Default for CorrelationAnalysis {
2310 fn default() -> Self {
2311 Self {
2312 correlation_summary: CorrelationSummary {
2313 max_correlation: 0.0,
2314 mean_correlation: 0.0,
2315 correlation_radius: 0.0,
2316 },
2317 significant_correlations: vec![],
2318 correlation_network: CorrelationNetwork {
2319 nodes: vec![],
2320 edges: vec![],
2321 },
2322 }
2323 }
2324}
2325
2326impl CorrelationAnalysis {
2327 pub fn compute_correlationmatrix(error_data: &Array2<f64>) -> QuantRS2Result<Array2<f64>> {
2329 let n = error_data.nrows();
2330 let mut corr_matrix = Array2::zeros((n, n));
2331
2332 for i in 0..n {
2334 for j in 0..n {
2335 if i == j {
2336 corr_matrix[[i, j]] = 1.0;
2337 } else {
2338 let row_i = error_data.row(i);
2340 let row_j = error_data.row(j);
2341
2342 let mean_i: f64 = row_i.iter().sum::<f64>() / row_i.len() as f64;
2343 let mean_j: f64 = row_j.iter().sum::<f64>() / row_j.len() as f64;
2344
2345 let mut cov = 0.0;
2346 let mut var_i = 0.0;
2347 let mut var_j = 0.0;
2348
2349 for k in 0..row_i.len() {
2350 let di = row_i[k] - mean_i;
2351 let dj = row_j[k] - mean_j;
2352 cov += di * dj;
2353 var_i += di * di;
2354 var_j += dj * dj;
2355 }
2356
2357 let corr = if var_i > 0.0 && var_j > 0.0 {
2358 cov / (var_i.sqrt() * var_j.sqrt())
2359 } else {
2360 0.0
2361 };
2362
2363 corr_matrix[[i, j]] = corr;
2364 }
2365 }
2366 }
2367
2368 Ok(corr_matrix)
2369 }
2370}
2371
2372#[cfg(test)]
2373mod tests {
2374 use super::*;
2375
2376 #[test]
2377 fn test_noise_characterizer_creation() {
2378 let config = EnhancedNoiseConfig::default();
2379 let characterizer = EnhancedNoiseCharacterizer::new(config);
2380
2381 assert!(characterizer.config.enable_ml_analysis);
2383 }
2384
2385 #[test]
2386 fn test_rb_sequence_generation() {
2387 let config = EnhancedNoiseConfig::default();
2388 let characterizer = EnhancedNoiseCharacterizer::new(config);
2389
2390 let sequences = characterizer.generate_rb_sequences(2, 10);
2391 assert_eq!(
2392 sequences.len(),
2393 characterizer.config.base_config.num_sequences
2394 );
2395
2396 for seq in sequences {
2397 assert_eq!(seq.gates.len(), 11); }
2399 }
2400}