quantrs2_device/mapping_scirs2/
mapping_algorithms.rs

1//! Mapping algorithm implementations
2
3use super::*;
4
5/// Spectral embedding implementation
6pub struct SpectralEmbeddingMapper {
7    /// Number of embedding dimensions
8    pub embedding_dims: usize,
9    /// Normalization method
10    pub normalization: SpectralNormalization,
11    /// Eigenvalue solver tolerance
12    pub tolerance: f64,
13}
14
15/// Spectral normalization methods
16#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
17pub enum SpectralNormalization {
18    Unnormalized,
19    Symmetric,
20    RandomWalk,
21}
22
23impl SpectralEmbeddingMapper {
24    pub fn new(embedding_dims: usize) -> Self {
25        Self {
26            embedding_dims,
27            normalization: SpectralNormalization::Symmetric,
28            tolerance: 1e-10,
29        }
30    }
31
32    pub fn embed_graphs(
33        &self,
34        logical_graph: &Graph<usize, f64>,
35        physical_graph: &Graph<usize, f64>,
36    ) -> DeviceResult<(Array2<f64>, Array2<f64>)> {
37        // Simplified implementation - would need proper Laplacian computation
38        let logical_embedding = Array2::zeros((logical_graph.node_count(), self.embedding_dims));
39        let physical_embedding = Array2::zeros((physical_graph.node_count(), self.embedding_dims));
40
41        Ok((logical_embedding, physical_embedding))
42    }
43}
44
45/// Community-based mapping implementation
46pub struct CommunityBasedMapper {
47    /// Community detection method
48    pub method: CommunityMethod,
49    /// Resolution parameter
50    pub resolution: f64,
51    /// Random seed for reproducibility
52    pub random_seed: Option<u64>,
53}
54
55impl CommunityBasedMapper {
56    pub fn new(method: CommunityMethod) -> Self {
57        Self {
58            method,
59            resolution: 1.0,
60            random_seed: None,
61        }
62    }
63
64    pub fn detect_communities(
65        &self,
66        graph: &Graph<usize, f64>,
67    ) -> DeviceResult<HashMap<usize, usize>> {
68        match self.method {
69            CommunityMethod::Louvain => self.louvain_communities_result(graph),
70            CommunityMethod::Leiden => self.leiden_communities(graph),
71            CommunityMethod::LabelPropagation => self.label_propagation(graph),
72            CommunityMethod::SpectralClustering => self.spectral_clustering(graph),
73            CommunityMethod::Walktrap => self.walktrap_communities(graph),
74        }
75    }
76
77    fn louvain_communities_result(
78        &self,
79        graph: &Graph<usize, f64>,
80    ) -> DeviceResult<HashMap<usize, usize>> {
81        // Use SciRS2's Louvain implementation
82        // louvain_communities_result returns CommunityResult<N> directly
83        let community_result = louvain_communities_result(graph);
84        // Convert node_communities (HashMap<N, usize>) to our format
85        let mut result = HashMap::new();
86        for (node, community_id) in community_result.node_communities {
87            result.insert(node, community_id);
88        }
89        Ok(result)
90    }
91
92    fn leiden_communities(
93        &self,
94        _graph: &Graph<usize, f64>,
95    ) -> DeviceResult<HashMap<usize, usize>> {
96        // Placeholder - would implement Leiden algorithm
97        Ok(HashMap::new())
98    }
99
100    fn label_propagation(&self, _graph: &Graph<usize, f64>) -> DeviceResult<HashMap<usize, usize>> {
101        // Placeholder - would implement label propagation
102        Ok(HashMap::new())
103    }
104
105    fn spectral_clustering(
106        &self,
107        _graph: &Graph<usize, f64>,
108    ) -> DeviceResult<HashMap<usize, usize>> {
109        // Placeholder - would implement spectral clustering
110        Ok(HashMap::new())
111    }
112
113    fn walktrap_communities(
114        &self,
115        _graph: &Graph<usize, f64>,
116    ) -> DeviceResult<HashMap<usize, usize>> {
117        // Placeholder - would implement Walktrap
118        Ok(HashMap::new())
119    }
120}
121
122/// Centrality-weighted mapping implementation
123pub struct CentralityWeightedMapper {
124    /// Centrality measures to use
125    pub centrality_measures: Vec<CentralityMeasure>,
126    /// Weights for different centrality measures
127    pub centrality_weights: Vec<f64>,
128    /// Normalization method
129    pub normalization: CentralityNormalization,
130}
131
132/// Centrality measure types
133#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
134pub enum CentralityMeasure {
135    Betweenness,
136    Closeness,
137    Eigenvector,
138    PageRank,
139    Degree,
140}
141
142/// Centrality normalization methods
143#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
144pub enum CentralityNormalization {
145    None,
146    MinMax,
147    ZScore,
148    Softmax,
149}
150
151impl CentralityWeightedMapper {
152    pub fn new() -> Self {
153        Self {
154            centrality_measures: vec![
155                CentralityMeasure::Betweenness,
156                CentralityMeasure::Closeness,
157                CentralityMeasure::PageRank,
158            ],
159            centrality_weights: vec![0.4, 0.3, 0.3],
160            normalization: CentralityNormalization::MinMax,
161        }
162    }
163
164    pub fn calculate_centralities(
165        &self,
166        graph: &Graph<usize, f64>,
167    ) -> DeviceResult<HashMap<usize, f64>> {
168        use scirs2_graph::pagerank_centrality;
169
170        let mut combined_centrality = HashMap::new();
171
172        for (measure, weight) in self
173            .centrality_measures
174            .iter()
175            .zip(&self.centrality_weights)
176        {
177            let centrality = match measure {
178                CentralityMeasure::Betweenness => {
179                    // betweenness_centrality(graph, normalized) returns HashMap directly
180                    betweenness_centrality(graph, true)
181                }
182                CentralityMeasure::Closeness => {
183                    // closeness_centrality(graph, normalized) returns HashMap directly
184                    closeness_centrality(graph, true)
185                }
186                CentralityMeasure::Eigenvector => {
187                    // eigenvector_centrality(graph, max_iter, tolerance) returns Result
188                    eigenvector_centrality(graph, 100, 1e-6).map_err(|e| {
189                        DeviceError::GraphAnalysisError(format!("Eigenvector failed: {:?}", e))
190                    })?
191                }
192                CentralityMeasure::PageRank => {
193                    // pagerank_centrality(graph, damping, tolerance) returns Result<HashMap>
194                    pagerank_centrality(graph, 0.85, 1e-6).map_err(|e| {
195                        DeviceError::GraphAnalysisError(format!("PageRank failed: {:?}", e))
196                    })?
197                }
198                CentralityMeasure::Degree => {
199                    // Calculate degree centrality manually
200                    // graph.nodes() returns Vec<&N>, use graph.degree(&node)
201                    let mut degree_centrality = HashMap::new();
202                    for node in graph.nodes() {
203                        let degree = graph.degree(node) as f64;
204                        degree_centrality.insert(*node, degree);
205                    }
206                    degree_centrality
207                }
208            };
209
210            // Normalize centrality values
211            let normalized = self.normalize_centrality(&centrality);
212
213            // Combine with weights
214            for (node, value) in normalized {
215                *combined_centrality.entry(node).or_insert(0.0) += weight * value;
216            }
217        }
218
219        Ok(combined_centrality)
220    }
221
222    fn normalize_centrality(&self, centrality: &HashMap<usize, f64>) -> HashMap<usize, f64> {
223        match self.normalization {
224            CentralityNormalization::None => centrality.clone(),
225            CentralityNormalization::MinMax => {
226                let values: Vec<f64> = centrality.values().copied().collect();
227                let min_val = values.iter().fold(f64::INFINITY, |a, &b| a.min(b));
228                let max_val = values.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
229                let range = max_val - min_val;
230
231                if range > 1e-10 {
232                    centrality
233                        .iter()
234                        .map(|(&k, &v)| (k, (v - min_val) / range))
235                        .collect()
236                } else {
237                    centrality.iter().map(|(&k, _)| (k, 0.5)).collect()
238                }
239            }
240            CentralityNormalization::ZScore => {
241                let values: Vec<f64> = centrality.values().copied().collect();
242                let mean = values.iter().sum::<f64>() / values.len() as f64;
243                let var =
244                    values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
245                let std_dev = var.sqrt();
246
247                if std_dev > 1e-10 {
248                    centrality
249                        .iter()
250                        .map(|(&k, &v)| (k, (v - mean) / std_dev))
251                        .collect()
252                } else {
253                    centrality.iter().map(|(&k, _)| (k, 0.0)).collect()
254                }
255            }
256            CentralityNormalization::Softmax => {
257                let values: Vec<f64> = centrality.values().copied().collect();
258                let max_val = values.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
259                let exp_sum: f64 = values.iter().map(|v| (v - max_val).exp()).sum();
260
261                centrality
262                    .iter()
263                    .map(|(&k, &v)| (k, (v - max_val).exp() / exp_sum))
264                    .collect()
265            }
266        }
267    }
268}
269
270/// Bipartite matching implementation for optimal assignment
271pub struct BipartiteMatchingMapper {
272    /// Weight calculation method
273    pub weight_method: WeightMethod,
274    /// Maximum weight for normalization
275    pub max_weight: f64,
276}
277
278/// Weight calculation methods for bipartite matching
279#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
280pub enum WeightMethod {
281    Distance,
282    Fidelity,
283    Hybrid {
284        distance_weight: f64,
285        fidelity_weight: f64,
286    },
287}
288
289impl BipartiteMatchingMapper {
290    pub fn new() -> Self {
291        Self {
292            weight_method: WeightMethod::Hybrid {
293                distance_weight: 0.6,
294                fidelity_weight: 0.4,
295            },
296            max_weight: 100.0,
297        }
298    }
299
300    pub fn find_optimal_mapping(
301        &self,
302        logical_graph: &Graph<usize, f64>,
303        physical_graph: &Graph<usize, f64>,
304        calibration: Option<&DeviceCalibration>,
305    ) -> DeviceResult<HashMap<usize, usize>> {
306        // Build bipartite graph for matching
307        let (bipartite_graph, coloring, logical_ids, physical_offset) =
308            self.build_bipartite_graph(logical_graph, physical_graph, calibration)?;
309
310        // Find maximum weight matching using SciRS2
311        // maximum_bipartite_matching returns BipartiteMatching<N> directly (not Result)
312        let matching_result = maximum_bipartite_matching(&bipartite_graph, &coloring);
313
314        // Convert matching to mapping
315        let mut mapping = HashMap::new();
316        for (logical_node, physical_node) in matching_result.matching {
317            // Reverse the offset applied to physical nodes
318            let logical_id = logical_node;
319            let physical_id = physical_node.saturating_sub(physical_offset);
320            mapping.insert(logical_id, physical_id);
321        }
322
323        // Fill in any missing logical qubits with sequential assignment
324        for logical_id in &logical_ids {
325            if !mapping.contains_key(logical_id) {
326                // Find first unused physical qubit
327                let used_physical: std::collections::HashSet<_> = mapping.values().collect();
328                for phys in 0..physical_graph.node_count() {
329                    if !used_physical.contains(&phys) {
330                        mapping.insert(*logical_id, phys);
331                        break;
332                    }
333                }
334            }
335        }
336
337        Ok(mapping)
338    }
339
340    fn build_bipartite_graph(
341        &self,
342        logical_graph: &Graph<usize, f64>,
343        physical_graph: &Graph<usize, f64>,
344        calibration: Option<&DeviceCalibration>,
345    ) -> DeviceResult<(Graph<usize, f64>, HashMap<usize, u8>, Vec<usize>, usize)> {
346        let mut bipartite = Graph::new();
347        let mut coloring = HashMap::new();
348
349        // Offset for physical nodes to distinguish from logical nodes
350        let physical_offset = 1000;
351
352        // Add logical nodes (left side, color = 0)
353        // graph.nodes() returns Vec<&N> where N is the node data type (usize)
354        let mut logical_ids = Vec::new();
355        for &node_data in logical_graph.nodes() {
356            bipartite.add_node(node_data);
357            coloring.insert(node_data, 0u8);
358            logical_ids.push(node_data);
359        }
360
361        // Add physical nodes (right side, color = 1)
362        let mut physical_ids = Vec::new();
363        for &node_data in physical_graph.nodes() {
364            let offset_node = node_data + physical_offset;
365            bipartite.add_node(offset_node);
366            coloring.insert(offset_node, 1u8);
367            physical_ids.push(node_data);
368        }
369
370        // Add weighted edges between all logical-physical pairs
371        for &logical_id in &logical_ids {
372            for &physical_id in &physical_ids {
373                let weight = self.calculate_assignment_weight(logical_id, physical_id, calibration);
374                // Use Result from add_edge but ignore it (edges are always added)
375                let _ = bipartite.add_edge(logical_id, physical_id + physical_offset, weight);
376            }
377        }
378
379        Ok((bipartite, coloring, logical_ids, physical_offset))
380    }
381
382    fn calculate_assignment_weight(
383        &self,
384        _logical_id: usize,
385        _physical_id: usize,
386        calibration: Option<&DeviceCalibration>,
387    ) -> f64 {
388        match self.weight_method {
389            WeightMethod::Distance => {
390                // Simplified distance calculation
391                1.0
392            }
393            WeightMethod::Fidelity => {
394                if let Some(cal) = calibration {
395                    cal.single_qubit_fidelity(_physical_id).unwrap_or(0.99)
396                } else {
397                    0.99
398                }
399            }
400            WeightMethod::Hybrid {
401                distance_weight,
402                fidelity_weight,
403            } => {
404                let distance_score = 1.0; // Simplified
405                let fidelity_score = if let Some(cal) = calibration {
406                    cal.single_qubit_fidelity(_physical_id).unwrap_or(0.99)
407                } else {
408                    0.99
409                };
410
411                distance_weight * distance_score + fidelity_weight * fidelity_score
412            }
413        }
414    }
415}
416
417/// Multi-level graph partitioning implementation
418pub struct MultilevelPartitioner {
419    /// Number of levels for coarsening
420    pub num_levels: usize,
421    /// Coarsening ratio per level
422    pub coarsening_ratio: f64,
423    /// Partitioning algorithm for coarsest level
424    pub base_partitioner: BasePartitioner,
425}
426
427/// Base partitioning algorithms
428#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
429pub enum BasePartitioner {
430    SpectralBisection,
431    KernighanLin,
432    FiducciaMattheyses,
433    RandomBisection,
434}
435
436impl MultilevelPartitioner {
437    pub fn new() -> Self {
438        Self {
439            num_levels: 5,
440            coarsening_ratio: 0.5,
441            base_partitioner: BasePartitioner::SpectralBisection,
442        }
443    }
444
445    pub fn partition_graph(
446        &self,
447        graph: &Graph<usize, f64>,
448        num_partitions: usize,
449    ) -> DeviceResult<HashMap<usize, usize>> {
450        // Simplified multilevel partitioning
451        // graph.nodes() returns Vec<&N> where N is the node data type (usize)
452        let mut partition = HashMap::new();
453        let nodes = graph.nodes();
454
455        for (i, node_data) in nodes.iter().enumerate() {
456            partition.insert(**node_data, i % num_partitions);
457        }
458
459        Ok(partition)
460    }
461}