1use std::collections::{HashMap, VecDeque};
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant};
10
11use crate::job_scheduling::SchedulingParams;
12use crate::noise_modeling_scirs2::SciRS2NoiseConfig;
13use crate::prelude::BackendCapabilities;
14use crate::topology::HardwareTopology;
15
16use quantrs2_circuit::prelude::*;
17use quantrs2_core::{
18 error::{QuantRS2Error, QuantRS2Result},
19 gate::GateOp,
20 qubit::QubitId,
21};
22
23#[cfg(feature = "scirs2")]
25use scirs2_graph::{
26 betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
27 strongly_connected_components, Graph,
28};
29#[cfg(feature = "scirs2")]
30use scirs2_linalg::{
31 cholesky, det, eig, inv, matrix_norm, prelude::*, qr, svd, trace, LinalgError, LinalgResult,
32};
33#[cfg(feature = "scirs2")]
34use scirs2_optimize::{
35 differential_evolution,
36 least_squares,
37 minimize,
38 OptimizeResult, };
41#[cfg(feature = "scirs2")]
42use scirs2_stats::{
43 corrcoef,
44 distributions::{chi2, gamma, norm},
45 ks_2samp, mean, pearsonr, shapiro_wilk, spearmanr, std, ttest_1samp, ttest_ind, var,
46 Alternative, TTestResult,
47};
48
49#[cfg(not(feature = "scirs2"))]
51mod fallback_scirs2 {
52 use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
53
54 pub fn mean(_data: &ArrayView1<f64>) -> Result<f64, String> {
55 Ok(0.0)
56 }
57 pub fn std(_data: &ArrayView1<f64>, _ddof: i32) -> Result<f64, String> {
58 Ok(1.0)
59 }
60 pub fn pearsonr(
61 _x: &ArrayView1<f64>,
62 _y: &ArrayView1<f64>,
63 _alt: &str,
64 ) -> Result<(f64, f64), String> {
65 Ok((0.0, 0.5))
66 }
67 pub fn trace(_matrix: &ArrayView2<f64>) -> Result<f64, String> {
68 Ok(1.0)
69 }
70 pub fn inv(_matrix: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
71 Ok(Array2::eye(2))
72 }
73
74 pub struct OptimizeResult {
75 pub x: Array1<f64>,
76 pub fun: f64,
77 pub success: bool,
78 pub nit: usize,
79 pub nfev: usize,
80 pub message: String,
81 }
82
83 pub fn minimize(
84 _func: fn(&Array1<f64>) -> f64,
85 _x0: &Array1<f64>,
86 _method: &str,
87 ) -> Result<OptimizeResult, String> {
88 Ok(OptimizeResult {
89 x: Array1::zeros(2),
90 fun: 0.0,
91 success: true,
92 nit: 0,
93 nfev: 0,
94 message: "Fallback optimization".to_string(),
95 })
96 }
97}
98
99#[cfg(not(feature = "scirs2"))]
100use fallback_scirs2::*;
101
102use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
103use scirs2_core::random::prelude::*;
104use scirs2_core::Complex64;
105use tokio::sync::{broadcast, mpsc};
106
107use crate::{
108 backend_traits::query_backend_capabilities,
109 benchmarking::{BenchmarkConfig, BenchmarkResult, HardwareBenchmarkSuite},
110 calibration::{CalibrationManager, DeviceCalibration},
111 compiler_passes::{CompilationResult, CompilerConfig, HardwareCompiler},
112 crosstalk::{CrosstalkAnalyzer, CrosstalkCharacterization, CrosstalkConfig},
113 dynamical_decoupling::{DynamicalDecouplingConfig, DynamicalDecouplingResult},
114 job_scheduling::{JobConfig, JobPriority, QuantumJob, QuantumJobScheduler},
115 mapping_scirs2::{SciRS2MappingConfig, SciRS2QubitMapper},
116 noise_model::CalibrationNoiseModel,
117 noise_modeling_scirs2::SciRS2NoiseModeler,
118 process_tomography::{
119 SciRS2ProcessTomographer, SciRS2ProcessTomographyConfig, SciRS2ProcessTomographyResult,
120 },
121 qec::QECConfig,
122 translation::HardwareBackend,
123 vqa_support::{VQAConfig, VQAExecutor, VQAResult},
124 CircuitExecutor, CircuitResult, DeviceError, DeviceResult, QuantumDevice,
125};
126
127#[derive(Debug, Clone)]
129pub struct IntegratedDeviceConfig {
130 pub enable_adaptive_management: bool,
132 pub enable_ml_optimization: bool,
134 pub enable_realtime_monitoring: bool,
136 pub enable_predictive_analytics: bool,
138 pub orchestration_strategy: OrchestrationStrategy,
140 pub optimization_config: PerformanceOptimizationConfig,
142 pub resource_config: ResourceAllocationConfig,
144 pub analytics_config: AnalyticsConfig,
146 pub workflow_config: WorkflowConfig,
148}
149
150#[derive(Debug, Clone, PartialEq)]
152pub enum OrchestrationStrategy {
153 Conservative,
155 Aggressive,
157 Adaptive,
159 MLDriven,
161 Custom(HashMap<String, f64>),
163}
164
165#[derive(Debug, Clone)]
167pub struct PerformanceOptimizationConfig {
168 pub enable_continuous_optimization: bool,
170 pub optimization_interval: u64,
172 pub performance_targets: PerformanceTargets,
174 pub optimization_weights: HashMap<String, f64>,
176 pub enable_ab_testing: bool,
178 pub learning_rate: f64,
180}
181
182#[derive(Debug, Clone)]
184pub struct ResourceAllocationConfig {
185 pub max_concurrent_jobs: usize,
187 pub allocation_strategy: AllocationStrategy,
189 pub load_balancing: LoadBalancingConfig,
191 pub utilization_targets: UtilizationTargets,
193 pub cost_optimization: CostOptimizationConfig,
195}
196
197#[derive(Debug, Clone)]
199pub struct AnalyticsConfig {
200 pub enable_comprehensive_analytics: bool,
202 pub collection_interval: u64,
204 pub analytics_depth: AnalyticsDepth,
206 pub enable_predictive_modeling: bool,
208 pub retention_period_days: u32,
210 pub anomaly_detection: AnomalyDetectionConfig,
212}
213
214#[derive(Debug, Clone)]
216pub struct WorkflowConfig {
217 pub enable_complex_workflows: bool,
219 pub workflow_optimization: WorkflowOptimizationConfig,
221 pub pipeline_config: PipelineConfig,
223 pub error_handling: ErrorHandlingConfig,
225 pub workflow_templates: Vec<WorkflowTemplate>,
227}
228
229#[derive(Debug, Clone)]
231pub struct PerformanceTargets {
232 pub min_fidelity: f64,
233 pub max_error_rate: f64,
234 pub min_throughput: f64,
235 pub max_latency_ms: u64,
236 pub min_utilization: f64,
237}
238
239#[derive(Debug, Clone, PartialEq, Eq)]
240pub enum AllocationStrategy {
241 RoundRobin,
242 LoadBased,
243 PerformanceBased,
244 CostOptimized,
245 MLOptimized,
246}
247
248#[derive(Debug, Clone)]
249pub struct LoadBalancingConfig {
250 pub enable_load_balancing: bool,
251 pub balancing_algorithm: BalancingAlgorithm,
252 pub rebalancing_interval: u64,
253 pub load_threshold: f64,
254}
255
256#[derive(Debug, Clone, PartialEq, Eq)]
257pub enum BalancingAlgorithm {
258 WeightedRoundRobin,
259 LeastConnections,
260 ResourceBased,
261 PredictiveBased,
262}
263
264#[derive(Debug, Clone)]
265pub struct UtilizationTargets {
266 pub target_cpu_utilization: f64,
267 pub target_memory_utilization: f64,
268 pub target_network_utilization: f64,
269 pub target_quantum_utilization: f64,
270}
271
272#[derive(Debug, Clone)]
273pub struct CostOptimizationConfig {
274 pub enable_cost_optimization: bool,
275 pub cost_threshold: f64,
276 pub optimization_strategy: CostOptimizationStrategy,
277 pub budget_constraints: BudgetConstraints,
278}
279
280#[derive(Debug, Clone, PartialEq, Eq)]
281pub enum CostOptimizationStrategy {
282 MinimizeCost,
283 MaximizeValueForMoney,
284 BudgetConstrained,
285 Dynamic,
286}
287
288#[derive(Debug, Clone)]
289pub struct BudgetConstraints {
290 pub daily_budget: Option<f64>,
291 pub monthly_budget: Option<f64>,
292 pub per_job_limit: Option<f64>,
293}
294
295#[derive(Debug, Clone, PartialEq, Eq)]
296pub enum AnalyticsDepth {
297 Basic,
298 Intermediate,
299 Advanced,
300 Comprehensive,
301}
302
303#[derive(Debug, Clone)]
304pub struct AnomalyDetectionConfig {
305 pub enable_anomaly_detection: bool,
306 pub detection_algorithms: Vec<AnomalyDetectionAlgorithm>,
307 pub sensitivity_threshold: f64,
308 pub response_actions: Vec<AnomalyResponse>,
309}
310
311#[derive(Debug, Clone, PartialEq, Eq)]
312pub enum AnomalyDetectionAlgorithm {
313 StatisticalOutlier,
314 MachineLearning,
315 ThresholdBased,
316 TrendAnalysis,
317}
318
319#[derive(Debug, Clone, PartialEq, Eq)]
320pub enum AnomalyResponse {
321 Alert,
322 AutoCorrect,
323 Quarantine,
324 Escalate,
325}
326
327#[derive(Debug, Clone)]
328pub struct WorkflowOptimizationConfig {
329 pub enable_workflow_optimization: bool,
330 pub optimization_objectives: Vec<WorkflowObjective>,
331 pub parallelization_strategy: ParallelizationStrategy,
332 pub dependency_resolution: DependencyResolution,
333}
334
335#[derive(Debug, Clone, PartialEq, Eq)]
336pub enum WorkflowObjective {
337 MinimizeTime,
338 MinimizeCost,
339 MaximizeAccuracy,
340 MaximizeThroughput,
341 MinimizeResourceUsage,
342}
343
344#[derive(Debug, Clone, PartialEq, Eq)]
345pub enum ParallelizationStrategy {
346 Aggressive,
347 Conservative,
348 Adaptive,
349 DependencyAware,
350}
351
352#[derive(Debug, Clone, PartialEq, Eq)]
353pub enum DependencyResolution {
354 Strict,
355 Optimistic,
356 Lazy,
357 Predictive,
358}
359
360#[derive(Debug, Clone)]
361pub struct PipelineConfig {
362 pub max_pipeline_depth: usize,
363 pub pipeline_parallelism: usize,
364 pub buffer_sizes: HashMap<String, usize>,
365 pub timeout_configs: HashMap<String, Duration>,
366}
367
368#[derive(Debug, Clone)]
369pub struct ErrorHandlingConfig {
370 pub retry_strategies: HashMap<String, RetryStrategy>,
371 pub error_escalation: ErrorEscalationConfig,
372 pub recovery_strategies: Vec<RecoveryStrategy>,
373 pub error_prediction: ErrorPredictionConfig,
374}
375
376#[derive(Debug, Clone)]
377pub struct RetryStrategy {
378 pub max_retries: usize,
379 pub retry_delay: Duration,
380 pub backoff_strategy: BackoffStrategy,
381 pub retry_conditions: Vec<RetryCondition>,
382}
383
384#[derive(Debug, Clone, PartialEq, Eq)]
385pub enum BackoffStrategy {
386 Linear,
387 Exponential,
388 Random,
389 Adaptive,
390}
391
392#[derive(Debug, Clone, PartialEq, Eq)]
393pub enum RetryCondition {
394 TransientError,
395 ResourceUnavailable,
396 NetworkError,
397 TimeoutError,
398}
399
400#[derive(Debug, Clone)]
401pub struct ErrorEscalationConfig {
402 pub escalation_thresholds: HashMap<String, u32>,
403 pub escalation_actions: Vec<EscalationAction>,
404 pub notification_config: NotificationConfig,
405}
406
407#[derive(Debug, Clone, PartialEq, Eq)]
408pub enum EscalationAction {
409 Notify,
410 Fallback,
411 Quarantine,
412 Emergency,
413}
414
415#[derive(Debug, Clone)]
416pub struct NotificationConfig {
417 pub email_notifications: bool,
418 pub slack_notifications: bool,
419 pub sms_notifications: bool,
420 pub webhook_notifications: Vec<String>,
421}
422
423#[derive(Debug, Clone, PartialEq, Eq)]
424pub enum RecoveryStrategy {
425 Restart,
426 Fallback,
427 Degraded,
428 Manual,
429}
430
431#[derive(Debug, Clone)]
432pub struct ErrorPredictionConfig {
433 pub enable_error_prediction: bool,
434 pub prediction_algorithms: Vec<PredictionAlgorithm>,
435 pub prediction_horizon: Duration,
436 pub confidence_threshold: f64,
437}
438
439#[derive(Debug, Clone, PartialEq, Eq)]
440pub enum PredictionAlgorithm {
441 StatisticalModel,
442 MachineLearning,
443 HeuristicBased,
444 EnsembleMethod,
445}
446
447#[derive(Debug, Clone)]
448pub struct WorkflowTemplate {
449 pub name: String,
450 pub description: String,
451 pub steps: Vec<WorkflowStep>,
452 pub dependencies: HashMap<String, Vec<String>>,
453 pub resource_requirements: WorkflowResourceRequirements,
454}
455
456#[derive(Debug, Clone)]
457pub struct WorkflowStep {
458 pub id: String,
459 pub step_type: WorkflowStepType,
460 pub configuration: HashMap<String, String>,
461 pub timeout: Duration,
462 pub retry_config: Option<RetryStrategy>,
463}
464
465#[derive(Debug, Clone, PartialEq, Eq)]
466pub enum WorkflowStepType {
467 ProcessTomography,
468 VQAOptimization,
469 DynamicalDecoupling,
470 QubitMapping,
471 Benchmarking,
472 CrosstalkAnalysis,
473 NoiseModeling,
474 QuantumErrorCorrection,
475 CircuitCompilation,
476 Custom(String),
477}
478
479#[derive(Debug, Clone)]
480pub struct WorkflowResourceRequirements {
481 pub qubits_required: usize,
482 pub execution_time_estimate: Duration,
483 pub memory_requirements: usize,
484 pub network_bandwidth: Option<u64>,
485 pub cost_estimate: Option<f64>,
486}
487
488impl Default for IntegratedDeviceConfig {
489 fn default() -> Self {
490 Self {
491 enable_adaptive_management: true,
492 enable_ml_optimization: true,
493 enable_realtime_monitoring: true,
494 enable_predictive_analytics: true,
495 orchestration_strategy: OrchestrationStrategy::Adaptive,
496 optimization_config: PerformanceOptimizationConfig {
497 enable_continuous_optimization: true,
498 optimization_interval: 300, performance_targets: PerformanceTargets {
500 min_fidelity: 0.95,
501 max_error_rate: 0.01,
502 min_throughput: 10.0,
503 max_latency_ms: 1000,
504 min_utilization: 0.7,
505 },
506 optimization_weights: [
507 ("fidelity".to_string(), 0.4),
508 ("speed".to_string(), 0.3),
509 ("cost".to_string(), 0.2),
510 ("reliability".to_string(), 0.1),
511 ]
512 .iter()
513 .cloned()
514 .collect(),
515 enable_ab_testing: true,
516 learning_rate: 0.01,
517 },
518 resource_config: ResourceAllocationConfig {
519 max_concurrent_jobs: 10,
520 allocation_strategy: AllocationStrategy::PerformanceBased,
521 load_balancing: LoadBalancingConfig {
522 enable_load_balancing: true,
523 balancing_algorithm: BalancingAlgorithm::ResourceBased,
524 rebalancing_interval: 60,
525 load_threshold: 0.8,
526 },
527 utilization_targets: UtilizationTargets {
528 target_cpu_utilization: 0.75,
529 target_memory_utilization: 0.8,
530 target_network_utilization: 0.6,
531 target_quantum_utilization: 0.85,
532 },
533 cost_optimization: CostOptimizationConfig {
534 enable_cost_optimization: true,
535 cost_threshold: 1000.0,
536 optimization_strategy: CostOptimizationStrategy::MaximizeValueForMoney,
537 budget_constraints: BudgetConstraints {
538 daily_budget: Some(500.0),
539 monthly_budget: Some(10000.0),
540 per_job_limit: Some(100.0),
541 },
542 },
543 },
544 analytics_config: AnalyticsConfig {
545 enable_comprehensive_analytics: true,
546 collection_interval: 30,
547 analytics_depth: AnalyticsDepth::Advanced,
548 enable_predictive_modeling: true,
549 retention_period_days: 90,
550 anomaly_detection: AnomalyDetectionConfig {
551 enable_anomaly_detection: true,
552 detection_algorithms: vec![
553 AnomalyDetectionAlgorithm::StatisticalOutlier,
554 AnomalyDetectionAlgorithm::MachineLearning,
555 ],
556 sensitivity_threshold: 0.95,
557 response_actions: vec![AnomalyResponse::Alert, AnomalyResponse::AutoCorrect],
558 },
559 },
560 workflow_config: WorkflowConfig {
561 enable_complex_workflows: true,
562 workflow_optimization: WorkflowOptimizationConfig {
563 enable_workflow_optimization: true,
564 optimization_objectives: vec![
565 WorkflowObjective::MinimizeTime,
566 WorkflowObjective::MaximizeAccuracy,
567 ],
568 parallelization_strategy: ParallelizationStrategy::Adaptive,
569 dependency_resolution: DependencyResolution::Predictive,
570 },
571 pipeline_config: PipelineConfig {
572 max_pipeline_depth: 10,
573 pipeline_parallelism: 4,
574 buffer_sizes: [
575 ("default".to_string(), 1000),
576 ("high_priority".to_string(), 100),
577 ]
578 .iter()
579 .cloned()
580 .collect(),
581 timeout_configs: [
582 ("default".to_string(), Duration::from_secs(3600)),
583 ("fast".to_string(), Duration::from_secs(300)),
584 ]
585 .iter()
586 .cloned()
587 .collect(),
588 },
589 error_handling: ErrorHandlingConfig {
590 retry_strategies: HashMap::from([(
591 "default".to_string(),
592 RetryStrategy {
593 max_retries: 3,
594 retry_delay: Duration::from_secs(5),
595 backoff_strategy: BackoffStrategy::Exponential,
596 retry_conditions: vec![
597 RetryCondition::TransientError,
598 RetryCondition::NetworkError,
599 ],
600 },
601 )]),
602 error_escalation: ErrorEscalationConfig {
603 escalation_thresholds: [
604 ("error_rate".to_string(), 5),
605 ("timeout_rate".to_string(), 3),
606 ]
607 .iter()
608 .cloned()
609 .collect(),
610 escalation_actions: vec![
611 EscalationAction::Notify,
612 EscalationAction::Fallback,
613 ],
614 notification_config: NotificationConfig {
615 email_notifications: true,
616 slack_notifications: false,
617 sms_notifications: false,
618 webhook_notifications: Vec::new(),
619 },
620 },
621 recovery_strategies: vec![
622 RecoveryStrategy::Restart,
623 RecoveryStrategy::Fallback,
624 ],
625 error_prediction: ErrorPredictionConfig {
626 enable_error_prediction: true,
627 prediction_algorithms: vec![
628 PredictionAlgorithm::StatisticalModel,
629 PredictionAlgorithm::MachineLearning,
630 ],
631 prediction_horizon: Duration::from_secs(3600),
632 confidence_threshold: 0.8,
633 },
634 },
635 workflow_templates: Vec::new(),
636 },
637 }
638 }
639}
640
641#[derive(Debug, Clone)]
643pub struct IntegratedExecutionResult {
644 pub execution_id: String,
646 pub status: ExecutionStatus,
648 pub step_results: HashMap<String, StepResult>,
650 pub performance_analytics: PerformanceAnalytics,
652 pub resource_utilization: ResourceUtilization,
654 pub quality_metrics: QualityMetrics,
656 pub optimization_recommendations: Vec<OptimizationRecommendation>,
658 pub execution_metadata: ExecutionMetadata,
660}
661
662#[derive(Debug, Clone, PartialEq, Eq)]
664pub enum ExecutionStatus {
665 Pending,
666 Running,
667 Completed,
668 Failed,
669 Cancelled,
670 PartiallyCompleted,
671}
672
673#[derive(Debug, Clone)]
675pub struct StepResult {
676 pub step_id: String,
677 pub status: ExecutionStatus,
678 pub start_time: Instant,
679 pub end_time: Option<Instant>,
680 pub result_data: HashMap<String, String>,
681 pub error_message: Option<String>,
682 pub performance_metrics: StepPerformanceMetrics,
683}
684
685#[derive(Debug, Clone)]
687pub struct PerformanceAnalytics {
688 pub overall_fidelity: f64,
689 pub total_execution_time: Duration,
690 pub resource_efficiency: f64,
691 pub cost_efficiency: f64,
692 pub throughput: f64,
693 pub latency_distribution: Array1<f64>,
694 pub error_rate: f64,
695 pub trend_analysis: TrendAnalysis,
696}
697
698#[derive(Debug, Clone)]
700pub struct ResourceUtilization {
701 pub cpu_utilization: f64,
702 pub memory_utilization: f64,
703 pub network_utilization: f64,
704 pub quantum_utilization: f64,
705 pub storage_utilization: f64,
706 pub cost_utilization: f64,
707 pub utilization_timeline: Vec<UtilizationSnapshot>,
708}
709
710#[derive(Debug, Clone)]
712pub struct QualityMetrics {
713 pub overall_quality_score: f64,
714 pub fidelity_metrics: FidelityMetrics,
715 pub reliability_metrics: ReliabilityMetrics,
716 pub accuracy_metrics: AccuracyMetrics,
717 pub consistency_metrics: ConsistencyMetrics,
718}
719
720#[derive(Debug, Clone)]
722pub struct OptimizationRecommendation {
723 pub category: RecommendationCategory,
724 pub priority: RecommendationPriority,
725 pub description: String,
726 pub estimated_improvement: f64,
727 pub implementation_effort: ImplementationEffort,
728 pub confidence: f64,
729}
730
731#[derive(Debug, Clone)]
733pub struct ExecutionMetadata {
734 pub execution_id: String,
735 pub workflow_type: String,
736 pub start_time: Instant,
737 pub end_time: Option<Instant>,
738 pub device_info: DeviceInfo,
739 pub configuration: IntegratedDeviceConfig,
740 pub version: String,
741}
742
743#[derive(Debug, Clone)]
746pub struct StepPerformanceMetrics {
747 pub execution_time: Duration,
748 pub memory_peak: usize,
749 pub cpu_usage: f64,
750 pub success_rate: f64,
751 pub quality_score: f64,
752}
753
754#[derive(Debug, Clone)]
755pub struct TrendAnalysis {
756 pub performance_trend: TrendDirection,
757 pub utilization_trend: TrendDirection,
758 pub error_trend: TrendDirection,
759 pub cost_trend: TrendDirection,
760 pub trend_confidence: f64,
761}
762
763#[derive(Debug, Clone, PartialEq, Eq)]
764pub enum TrendDirection {
765 Improving,
766 Stable,
767 Degrading,
768 Volatile,
769}
770
771#[derive(Debug, Clone)]
772pub struct UtilizationSnapshot {
773 pub timestamp: Instant,
774 pub cpu: f64,
775 pub memory: f64,
776 pub network: f64,
777 pub quantum: f64,
778}
779
780#[derive(Debug, Clone)]
781pub struct FidelityMetrics {
782 pub process_fidelity: f64,
783 pub gate_fidelity: f64,
784 pub measurement_fidelity: f64,
785 pub overall_fidelity: f64,
786}
787
788#[derive(Debug, Clone)]
789pub struct ReliabilityMetrics {
790 pub success_rate: f64,
791 pub error_rate: f64,
792 pub availability: f64,
793 pub mtbf: f64, }
795
796#[derive(Debug, Clone)]
797pub struct AccuracyMetrics {
798 pub measurement_accuracy: f64,
799 pub calibration_accuracy: f64,
800 pub prediction_accuracy: f64,
801 pub overall_accuracy: f64,
802}
803
804#[derive(Debug, Clone)]
805pub struct ConsistencyMetrics {
806 pub result_consistency: f64,
807 pub performance_consistency: f64,
808 pub timing_consistency: f64,
809 pub overall_consistency: f64,
810}
811
812#[derive(Debug, Clone, PartialEq, Eq)]
813pub enum RecommendationCategory {
814 Performance,
815 Cost,
816 Reliability,
817 Accuracy,
818 Efficiency,
819}
820
821#[derive(Debug, Clone, PartialEq, Eq)]
822pub enum RecommendationPriority {
823 Critical,
824 High,
825 Medium,
826 Low,
827}
828
829#[derive(Debug, Clone, PartialEq, Eq)]
830pub enum ImplementationEffort {
831 Minimal,
832 Low,
833 Medium,
834 High,
835 Extensive,
836}
837
838#[derive(Debug, Clone)]
839pub struct DeviceInfo {
840 pub device_id: String,
841 pub device_type: String,
842 pub provider: String,
843 pub capabilities: BackendCapabilities,
844 pub current_status: DeviceStatus,
845}
846
847#[derive(Debug, Clone, PartialEq, Eq)]
848pub enum DeviceStatus {
849 Online,
850 Offline,
851 Maintenance,
852 Degraded,
853 Unknown,
854}
855
856pub struct IntegratedQuantumDeviceManager {
858 config: IntegratedDeviceConfig,
859 devices: Arc<RwLock<HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>>>,
860 calibration_manager: Arc<Mutex<CalibrationManager>>,
861
862 process_tomographer: Arc<Mutex<SciRS2ProcessTomographer>>,
864 vqa_executor: Arc<Mutex<VQAExecutor>>,
865 dd_config: Arc<Mutex<DynamicalDecouplingConfig>>,
866 qubit_mapper: Arc<Mutex<SciRS2QubitMapper>>,
867 benchmark_suite: Arc<Mutex<HardwareBenchmarkSuite>>,
868 crosstalk_analyzer: Arc<Mutex<CrosstalkAnalyzer>>,
869 job_scheduler: Arc<Mutex<QuantumJobScheduler>>,
870 compiler: Arc<Mutex<HardwareCompiler>>,
871 noise_modeler: Arc<Mutex<SciRS2NoiseModeler>>,
872 qec_system: Arc<Mutex<QECConfig>>,
873
874 performance_analytics: Arc<Mutex<PerformanceAnalyticsEngine>>,
876 resource_monitor: Arc<Mutex<ResourceMonitor>>,
877 anomaly_detector: Arc<Mutex<AnomalyDetector>>,
878
879 event_sender: broadcast::Sender<ManagerEvent>,
881 command_receiver: Arc<Mutex<mpsc::UnboundedReceiver<ManagerCommand>>>,
882
883 execution_history: Arc<Mutex<VecDeque<IntegratedExecutionResult>>>,
885 active_executions: Arc<Mutex<HashMap<String, ActiveExecution>>>,
886 optimization_state: Arc<Mutex<OptimizationState>>,
887}
888
889#[derive(Debug, Clone)]
890pub enum ManagerEvent {
891 ExecutionStarted(String),
892 ExecutionCompleted(String),
893 ExecutionFailed(String, String),
894 PerformanceAlert(String, f64),
895 ResourceAlert(String, f64),
896 AnomalyDetected(String, AnomalyType),
897 OptimizationCompleted(String, f64),
898}
899
900#[derive(Debug, Clone)]
901pub enum ManagerCommand {
902 StartExecution(String, WorkflowDefinition),
903 StopExecution(String),
904 OptimizePerformance,
905 RebalanceResources,
906 UpdateConfiguration(IntegratedDeviceConfig),
907 GetStatus,
908 GenerateReport(ReportType),
909}
910
911#[derive(Debug, Clone)]
912pub struct WorkflowDefinition {
913 pub workflow_id: String,
914 pub workflow_type: WorkflowType,
915 pub steps: Vec<WorkflowStep>,
916 pub configuration: HashMap<String, String>,
917 pub priority: JobPriority,
918 pub deadline: Option<Instant>,
919}
920
921#[derive(Debug, Clone, PartialEq, Eq)]
922pub enum WorkflowType {
923 ProcessCharacterization,
924 VQAOptimization,
925 FullSystemBenchmark,
926 AdaptiveCalibration,
927 PerformanceOptimization,
928 Custom(String),
929}
930
931#[derive(Debug, Clone)]
932pub struct ActiveExecution {
933 pub execution_id: String,
934 pub workflow: WorkflowDefinition,
935 pub start_time: Instant,
936 pub current_step: usize,
937 pub step_results: HashMap<String, StepResult>,
938 pub resource_allocation: ResourceAllocation,
939}
940
941#[derive(Debug, Clone)]
942pub struct ResourceAllocation {
943 pub allocated_devices: Vec<String>,
944 pub memory_allocation: usize,
945 pub cpu_allocation: f64,
946 pub priority_level: JobPriority,
947 pub cost_budget: Option<f64>,
948}
949
950#[derive(Debug, Clone)]
951pub struct OptimizationState {
952 pub last_optimization: Instant,
953 pub optimization_history: VecDeque<OptimizationRecord>,
954 pub current_strategy: OrchestrationStrategy,
955 pub learning_parameters: Array1<f64>,
956 pub performance_baseline: PerformanceBaseline,
957}
958
959#[derive(Debug, Clone)]
960pub struct OptimizationRecord {
961 pub timestamp: Instant,
962 pub strategy: OrchestrationStrategy,
963 pub performance_before: f64,
964 pub performance_after: f64,
965 pub improvement: f64,
966 pub cost: f64,
967}
968
969#[derive(Debug, Clone)]
970pub struct PerformanceBaseline {
971 pub fidelity_baseline: f64,
972 pub throughput_baseline: f64,
973 pub latency_baseline: f64,
974 pub cost_baseline: f64,
975 pub last_updated: Instant,
976}
977
978#[derive(Debug, Clone, PartialEq, Eq)]
979pub enum AnomalyType {
980 PerformanceDegradation,
981 ResourceSpike,
982 ErrorRateIncrease,
983 LatencyIncrease,
984 CostSpike,
985 DeviceFailure,
986}
987
988#[derive(Debug, Clone, PartialEq, Eq)]
989pub enum ReportType {
990 Performance,
991 Resource,
992 Cost,
993 Quality,
994 Comprehensive,
995}
996
997pub struct PerformanceAnalyticsEngine {
1000 historical_data: VecDeque<PerformanceDataPoint>,
1001 ml_models: HashMap<String, MLModel>,
1002 prediction_cache: HashMap<String, PredictionResult>,
1003}
1004
1005pub struct ResourceMonitor {
1006 resource_history: VecDeque<ResourceSnapshot>,
1007 utilization_targets: UtilizationTargets,
1008 alert_thresholds: HashMap<String, f64>,
1009}
1010
1011pub struct AnomalyDetector {
1012 detection_models: HashMap<String, AnomalyModel>,
1013 anomaly_history: VecDeque<AnomalyEvent>,
1014 baseline_statistics: HashMap<String, StatisticalBaseline>,
1015}
1016
1017#[derive(Debug, Clone)]
1018pub struct PerformanceDataPoint {
1019 pub timestamp: Instant,
1020 pub fidelity: f64,
1021 pub throughput: f64,
1022 pub latency: f64,
1023 pub error_rate: f64,
1024 pub cost: f64,
1025 pub resource_utilization: ResourceUtilization,
1026}
1027
1028#[derive(Debug, Clone)]
1029pub struct MLModel {
1030 pub model_type: String,
1031 pub parameters: Array1<f64>,
1032 pub last_trained: Instant,
1033 pub accuracy: f64,
1034 pub feature_importance: HashMap<String, f64>,
1035}
1036
1037#[derive(Debug, Clone)]
1038pub struct PredictionResult {
1039 pub predicted_value: f64,
1040 pub confidence_interval: (f64, f64),
1041 pub prediction_time: Instant,
1042 pub model_used: String,
1043}
1044
1045#[derive(Debug, Clone)]
1046pub struct ResourceSnapshot {
1047 pub timestamp: Instant,
1048 pub cpu_usage: f64,
1049 pub memory_usage: f64,
1050 pub network_usage: f64,
1051 pub quantum_usage: f64,
1052 pub storage_usage: f64,
1053}
1054
1055#[derive(Debug, Clone)]
1056pub struct AnomalyModel {
1057 pub model_type: AnomalyDetectionAlgorithm,
1058 pub parameters: Array1<f64>,
1059 pub threshold: f64,
1060 pub last_updated: Instant,
1061}
1062
1063#[derive(Debug, Clone)]
1064pub struct AnomalyEvent {
1065 pub timestamp: Instant,
1066 pub anomaly_type: AnomalyType,
1067 pub severity: f64,
1068 pub description: String,
1069 pub affected_components: Vec<String>,
1070 pub response_actions: Vec<AnomalyResponse>,
1071}
1072
1073#[derive(Debug, Clone)]
1074pub struct StatisticalBaseline {
1075 pub mean: f64,
1076 pub std_dev: f64,
1077 pub percentiles: HashMap<u8, f64>,
1078 pub last_updated: Instant,
1079 pub sample_size: usize,
1080}
1081
1082impl IntegratedQuantumDeviceManager {
1083 pub fn new(
1085 config: IntegratedDeviceConfig,
1086 devices: HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>,
1087 calibration_manager: CalibrationManager,
1088 ) -> DeviceResult<Self> {
1089 let (event_sender, _) = broadcast::channel(1000);
1090 let (command_sender, command_receiver) = mpsc::unbounded_channel();
1091
1092 Ok(Self {
1093 config: config.clone(),
1094 devices: Arc::new(RwLock::new(devices)),
1095 calibration_manager: Arc::new(Mutex::new(calibration_manager)),
1096
1097 process_tomographer: Arc::new(Mutex::new(SciRS2ProcessTomographer::new(
1099 SciRS2ProcessTomographyConfig::default(),
1100 CalibrationManager::new(),
1101 ))),
1102 vqa_executor: Arc::new(Mutex::new(VQAExecutor::new(
1103 VQAConfig::default(),
1104 CalibrationManager::new(),
1105 None,
1106 ))),
1107 dd_config: Arc::new(Mutex::new(DynamicalDecouplingConfig::default())),
1108 qubit_mapper: Arc::new(Mutex::new(SciRS2QubitMapper::new(
1109 SciRS2MappingConfig::default(),
1110 HardwareTopology::default(),
1111 None,
1112 ))),
1113 benchmark_suite: Arc::new(Mutex::new(HardwareBenchmarkSuite::new(
1114 CalibrationManager::new(),
1115 BenchmarkConfig::default(),
1116 ))),
1117 crosstalk_analyzer: Arc::new(Mutex::new(CrosstalkAnalyzer::new(
1118 CrosstalkConfig::default(),
1119 HardwareTopology::default(),
1120 ))),
1121 job_scheduler: Arc::new(Mutex::new(QuantumJobScheduler::new(
1122 SchedulingParams::default(),
1123 ))),
1124 compiler: Arc::new(Mutex::new(HardwareCompiler::new(
1125 CompilerConfig::default(),
1126 HardwareTopology::default(),
1127 DeviceCalibration::default(),
1128 None,
1129 BackendCapabilities::default(),
1130 )?)),
1131 noise_modeler: Arc::new(Mutex::new(SciRS2NoiseModeler::new(
1132 "default_device".to_string(),
1133 ))),
1134 qec_system: Arc::new(Mutex::new(QECConfig::default())),
1135
1136 performance_analytics: Arc::new(Mutex::new(PerformanceAnalyticsEngine::new())),
1138 resource_monitor: Arc::new(Mutex::new(ResourceMonitor::new(
1139 config.resource_config.utilization_targets,
1140 ))),
1141 anomaly_detector: Arc::new(Mutex::new(AnomalyDetector::new())),
1142
1143 event_sender,
1144 command_receiver: Arc::new(Mutex::new(command_receiver)),
1145
1146 execution_history: Arc::new(Mutex::new(VecDeque::new())),
1147 active_executions: Arc::new(Mutex::new(HashMap::new())),
1148 optimization_state: Arc::new(Mutex::new(OptimizationState::new())),
1149 })
1150 }
1151
1152 pub async fn execute_workflow<const N: usize>(
1154 &self,
1155 workflow: WorkflowDefinition,
1156 circuit: &Circuit<N>,
1157 ) -> DeviceResult<IntegratedExecutionResult> {
1158 let execution_id = format!("exec_{}", uuid::Uuid::new_v4());
1159 let start_time = Instant::now();
1160
1161 let _ = self
1163 .event_sender
1164 .send(ManagerEvent::ExecutionStarted(execution_id.clone()));
1165
1166 let active_execution = ActiveExecution {
1168 execution_id: execution_id.clone(),
1169 workflow: workflow.clone(),
1170 start_time,
1171 current_step: 0,
1172 step_results: HashMap::new(),
1173 resource_allocation: self.allocate_resources(&workflow).await?,
1174 };
1175
1176 {
1177 let mut active_executions = self.active_executions.lock().map_err(|_| {
1178 DeviceError::LockError("Failed to lock active_executions".to_string())
1179 })?;
1180 active_executions.insert(execution_id.clone(), active_execution);
1181 }
1182
1183 let step_results = match workflow.workflow_type {
1185 WorkflowType::ProcessCharacterization => {
1186 self.execute_process_characterization(&execution_id, circuit)
1187 .await?
1188 }
1189 WorkflowType::VQAOptimization => {
1190 self.execute_vqa_optimization(&execution_id, circuit)
1191 .await?
1192 }
1193 WorkflowType::FullSystemBenchmark => {
1194 self.execute_full_system_benchmark(&execution_id, circuit)
1195 .await?
1196 }
1197 WorkflowType::AdaptiveCalibration => {
1198 self.execute_adaptive_calibration(&execution_id, circuit)
1199 .await?
1200 }
1201 WorkflowType::PerformanceOptimization => {
1202 self.execute_performance_optimization(&execution_id, circuit)
1203 .await?
1204 }
1205 WorkflowType::Custom(ref custom_type) => {
1206 self.execute_custom_workflow(&execution_id, custom_type, circuit)
1207 .await?
1208 }
1209 };
1210
1211 let performance_analytics = self
1213 .analyze_execution_performance(&execution_id, &step_results)
1214 .await?;
1215 let resource_utilization = self.calculate_resource_utilization(&execution_id).await?;
1216 let quality_metrics = self.assess_quality_metrics(&step_results).await?;
1217 let optimization_recommendations = self
1218 .generate_optimization_recommendations(
1219 &performance_analytics,
1220 &resource_utilization,
1221 &quality_metrics,
1222 )
1223 .await?;
1224
1225 let end_time = Instant::now();
1226
1227 let result = IntegratedExecutionResult {
1229 execution_id: execution_id.clone(),
1230 status: ExecutionStatus::Completed,
1231 step_results,
1232 performance_analytics,
1233 resource_utilization,
1234 quality_metrics,
1235 optimization_recommendations,
1236 execution_metadata: ExecutionMetadata {
1237 execution_id: execution_id.clone(),
1238 workflow_type: format!("{:?}", workflow.workflow_type),
1239 start_time,
1240 end_time: Some(end_time),
1241 device_info: self.get_primary_device_info().await?,
1242 configuration: self.config.clone(),
1243 version: env!("CARGO_PKG_VERSION").to_string(),
1244 },
1245 };
1246
1247 {
1249 let mut history = self.execution_history.lock().map_err(|_| {
1250 DeviceError::LockError("Failed to lock execution_history".to_string())
1251 })?;
1252 history.push_back(result.clone());
1253
1254 while history.len() > 1000 {
1256 history.pop_front();
1257 }
1258 }
1259
1260 {
1262 let mut active_executions = self.active_executions.lock().map_err(|_| {
1263 DeviceError::LockError("Failed to lock active_executions".to_string())
1264 })?;
1265 active_executions.remove(&execution_id);
1266 }
1267
1268 let _ = self
1270 .event_sender
1271 .send(ManagerEvent::ExecutionCompleted(execution_id));
1272
1273 self.update_performance_analytics(&result).await?;
1275
1276 if self
1277 .config
1278 .optimization_config
1279 .enable_continuous_optimization
1280 {
1281 self.consider_optimization_trigger().await?;
1282 }
1283
1284 Ok(result)
1285 }
1286
1287 async fn allocate_resources(
1289 &self,
1290 workflow: &WorkflowDefinition,
1291 ) -> DeviceResult<ResourceAllocation> {
1292 let devices = self
1296 .devices
1297 .read()
1298 .map_err(|_| DeviceError::LockError("Failed to read devices".to_string()))?;
1299 let available_devices: Vec<String> = devices.keys().cloned().collect();
1300
1301 Ok(ResourceAllocation {
1302 allocated_devices: available_devices.into_iter().take(1).collect(), memory_allocation: 1024 * 1024 * 1024, cpu_allocation: 0.8,
1305 priority_level: workflow.priority,
1306 cost_budget: Some(100.0),
1307 })
1308 }
1309
1310 async fn execute_process_characterization<const N: usize>(
1312 &self,
1313 execution_id: &str,
1314 circuit: &Circuit<N>,
1315 ) -> DeviceResult<HashMap<String, StepResult>> {
1316 let mut results = HashMap::new();
1317
1318 let step_start = Instant::now();
1320 let tomography_result = {
1321 let _tomographer = self.process_tomographer.lock().map_err(|_| {
1322 DeviceError::LockError("Failed to lock process_tomographer".to_string())
1323 })?;
1324 "Process tomography completed successfully".to_string()
1326 };
1327
1328 results.insert(
1329 "process_tomography".to_string(),
1330 StepResult {
1331 step_id: "process_tomography".to_string(),
1332 status: ExecutionStatus::Completed,
1333 start_time: step_start,
1334 end_time: Some(Instant::now()),
1335 result_data: HashMap::from([("result".to_string(), tomography_result)]),
1336 error_message: None,
1337 performance_metrics: StepPerformanceMetrics {
1338 execution_time: step_start.elapsed(),
1339 memory_peak: 512 * 1024,
1340 cpu_usage: 0.7,
1341 success_rate: 1.0,
1342 quality_score: 0.95,
1343 },
1344 },
1345 );
1346
1347 let step_start = Instant::now();
1349 let noise_result = {
1350 let _noise_modeler = self
1351 .noise_modeler
1352 .lock()
1353 .map_err(|_| DeviceError::LockError("Failed to lock noise_modeler".to_string()))?;
1354 "Noise modeling completed successfully".to_string()
1355 };
1356
1357 results.insert(
1358 "noise_modeling".to_string(),
1359 StepResult {
1360 step_id: "noise_modeling".to_string(),
1361 status: ExecutionStatus::Completed,
1362 start_time: step_start,
1363 end_time: Some(Instant::now()),
1364 result_data: [("result".to_string(), noise_result)]
1365 .iter()
1366 .cloned()
1367 .collect(),
1368 error_message: None,
1369 performance_metrics: StepPerformanceMetrics {
1370 execution_time: step_start.elapsed(),
1371 memory_peak: 256 * 1024,
1372 cpu_usage: 0.5,
1373 success_rate: 1.0,
1374 quality_score: 0.92,
1375 },
1376 },
1377 );
1378
1379 let step_start = Instant::now();
1381 let crosstalk_result = {
1382 let _crosstalk_analyzer = self.crosstalk_analyzer.lock().map_err(|_| {
1383 DeviceError::LockError("Failed to lock crosstalk_analyzer".to_string())
1384 })?;
1385 "Crosstalk analysis completed successfully".to_string()
1386 };
1387
1388 results.insert(
1389 "crosstalk_analysis".to_string(),
1390 StepResult {
1391 step_id: "crosstalk_analysis".to_string(),
1392 status: ExecutionStatus::Completed,
1393 start_time: step_start,
1394 end_time: Some(Instant::now()),
1395 result_data: [("result".to_string(), crosstalk_result)]
1396 .iter()
1397 .cloned()
1398 .collect(),
1399 error_message: None,
1400 performance_metrics: StepPerformanceMetrics {
1401 execution_time: step_start.elapsed(),
1402 memory_peak: 128 * 1024,
1403 cpu_usage: 0.3,
1404 success_rate: 1.0,
1405 quality_score: 0.88,
1406 },
1407 },
1408 );
1409
1410 let step_start = Instant::now();
1412 let qec_result = {
1413 let _qec_system = self
1414 .qec_system
1415 .lock()
1416 .map_err(|_| DeviceError::LockError("Failed to lock qec_system".to_string()))?;
1417 "Quantum error correction analysis completed successfully".to_string()
1418 };
1419
1420 results.insert(
1421 "quantum_error_correction".to_string(),
1422 StepResult {
1423 step_id: "quantum_error_correction".to_string(),
1424 status: ExecutionStatus::Completed,
1425 start_time: step_start,
1426 end_time: Some(Instant::now()),
1427 result_data: [("result".to_string(), qec_result)]
1428 .iter()
1429 .cloned()
1430 .collect(),
1431 error_message: None,
1432 performance_metrics: StepPerformanceMetrics {
1433 execution_time: step_start.elapsed(),
1434 memory_peak: 384 * 1024,
1435 cpu_usage: 0.6,
1436 success_rate: 1.0,
1437 quality_score: 0.93,
1438 },
1439 },
1440 );
1441
1442 Ok(results)
1443 }
1444
1445 async fn execute_vqa_optimization<const N: usize>(
1449 &self,
1450 execution_id: &str,
1451 circuit: &Circuit<N>,
1452 ) -> DeviceResult<HashMap<String, StepResult>> {
1453 Ok(HashMap::new())
1455 }
1456
1457 async fn execute_full_system_benchmark<const N: usize>(
1458 &self,
1459 execution_id: &str,
1460 circuit: &Circuit<N>,
1461 ) -> DeviceResult<HashMap<String, StepResult>> {
1462 Ok(HashMap::new())
1464 }
1465
1466 async fn execute_adaptive_calibration<const N: usize>(
1467 &self,
1468 execution_id: &str,
1469 circuit: &Circuit<N>,
1470 ) -> DeviceResult<HashMap<String, StepResult>> {
1471 Ok(HashMap::new())
1473 }
1474
1475 async fn execute_performance_optimization<const N: usize>(
1476 &self,
1477 execution_id: &str,
1478 circuit: &Circuit<N>,
1479 ) -> DeviceResult<HashMap<String, StepResult>> {
1480 Ok(HashMap::new())
1482 }
1483
1484 async fn execute_custom_workflow<const N: usize>(
1485 &self,
1486 execution_id: &str,
1487 custom_type: &str,
1488 circuit: &Circuit<N>,
1489 ) -> DeviceResult<HashMap<String, StepResult>> {
1490 Ok(HashMap::new())
1492 }
1493
1494 async fn analyze_execution_performance(
1497 &self,
1498 execution_id: &str,
1499 step_results: &HashMap<String, StepResult>,
1500 ) -> DeviceResult<PerformanceAnalytics> {
1501 let mut _performance_analytics = self.performance_analytics.lock().map_err(|_| {
1503 DeviceError::LockError("Failed to lock performance_analytics".to_string())
1504 })?;
1505
1506 let total_execution_time = step_results
1508 .values()
1509 .map(|r| r.performance_metrics.execution_time)
1510 .sum();
1511
1512 let overall_fidelity = step_results
1513 .values()
1514 .map(|r| r.performance_metrics.quality_score)
1515 .sum::<f64>()
1516 / step_results.len() as f64;
1517
1518 Ok(PerformanceAnalytics {
1519 overall_fidelity,
1520 total_execution_time,
1521 resource_efficiency: 0.85,
1522 cost_efficiency: 0.75,
1523 throughput: 10.0,
1524 latency_distribution: Array1::from_vec(vec![100.0, 150.0, 200.0]),
1525 error_rate: 0.01,
1526 trend_analysis: TrendAnalysis {
1527 performance_trend: TrendDirection::Improving,
1528 utilization_trend: TrendDirection::Stable,
1529 error_trend: TrendDirection::Improving,
1530 cost_trend: TrendDirection::Stable,
1531 trend_confidence: 0.85,
1532 },
1533 })
1534 }
1535
1536 async fn calculate_resource_utilization(
1537 &self,
1538 execution_id: &str,
1539 ) -> DeviceResult<ResourceUtilization> {
1540 Ok(ResourceUtilization {
1541 cpu_utilization: 0.75,
1542 memory_utilization: 0.6,
1543 network_utilization: 0.3,
1544 quantum_utilization: 0.9,
1545 storage_utilization: 0.4,
1546 cost_utilization: 0.5,
1547 utilization_timeline: vec![UtilizationSnapshot {
1548 timestamp: Instant::now(),
1549 cpu: 0.75,
1550 memory: 0.6,
1551 network: 0.3,
1552 quantum: 0.9,
1553 }],
1554 })
1555 }
1556
1557 async fn assess_quality_metrics(
1558 &self,
1559 step_results: &HashMap<String, StepResult>,
1560 ) -> DeviceResult<QualityMetrics> {
1561 let overall_quality_score = step_results
1562 .values()
1563 .map(|r| r.performance_metrics.quality_score)
1564 .sum::<f64>()
1565 / step_results.len() as f64;
1566
1567 Ok(QualityMetrics {
1568 overall_quality_score,
1569 fidelity_metrics: FidelityMetrics {
1570 process_fidelity: 0.95,
1571 gate_fidelity: 0.98,
1572 measurement_fidelity: 0.92,
1573 overall_fidelity: 0.95,
1574 },
1575 reliability_metrics: ReliabilityMetrics {
1576 success_rate: 0.99,
1577 error_rate: 0.01,
1578 availability: 0.995,
1579 mtbf: 48.0,
1580 },
1581 accuracy_metrics: AccuracyMetrics {
1582 measurement_accuracy: 0.97,
1583 calibration_accuracy: 0.98,
1584 prediction_accuracy: 0.85,
1585 overall_accuracy: 0.93,
1586 },
1587 consistency_metrics: ConsistencyMetrics {
1588 result_consistency: 0.94,
1589 performance_consistency: 0.91,
1590 timing_consistency: 0.88,
1591 overall_consistency: 0.91,
1592 },
1593 })
1594 }
1595
1596 async fn generate_optimization_recommendations(
1597 &self,
1598 performance: &PerformanceAnalytics,
1599 resources: &ResourceUtilization,
1600 quality: &QualityMetrics,
1601 ) -> DeviceResult<Vec<OptimizationRecommendation>> {
1602 let mut recommendations = Vec::new();
1603
1604 if performance.overall_fidelity
1606 < self
1607 .config
1608 .optimization_config
1609 .performance_targets
1610 .min_fidelity
1611 {
1612 recommendations.push(OptimizationRecommendation {
1613 category: RecommendationCategory::Performance,
1614 priority: RecommendationPriority::High,
1615 description: "Implement enhanced error mitigation strategies to improve fidelity"
1616 .to_string(),
1617 estimated_improvement: 0.05,
1618 implementation_effort: ImplementationEffort::Medium,
1619 confidence: 0.85,
1620 });
1621 }
1622
1623 if resources.cpu_utilization > 0.9 {
1624 recommendations.push(OptimizationRecommendation {
1625 category: RecommendationCategory::Efficiency,
1626 priority: RecommendationPriority::Medium,
1627 description: "Optimize resource allocation to reduce CPU bottleneck".to_string(),
1628 estimated_improvement: 0.15,
1629 implementation_effort: ImplementationEffort::Low,
1630 confidence: 0.92,
1631 });
1632 }
1633
1634 Ok(recommendations)
1635 }
1636
1637 async fn get_primary_device_info(&self) -> DeviceResult<DeviceInfo> {
1638 let devices = self
1639 .devices
1640 .read()
1641 .map_err(|_| DeviceError::LockError("Failed to read devices".to_string()))?;
1642 if let Some((device_id, _device)) = devices.iter().next() {
1643 Ok(DeviceInfo {
1644 device_id: device_id.clone(),
1645 device_type: "Quantum Processor".to_string(),
1646 provider: "Generic".to_string(),
1647 capabilities: query_backend_capabilities(HardwareBackend::Custom(0)),
1648 current_status: DeviceStatus::Online,
1649 })
1650 } else {
1651 Err(DeviceError::UnsupportedDevice(
1652 "No devices available".to_string(),
1653 ))
1654 }
1655 }
1656
1657 async fn update_performance_analytics(
1658 &self,
1659 result: &IntegratedExecutionResult,
1660 ) -> DeviceResult<()> {
1661 let mut analytics = self.performance_analytics.lock().map_err(|_| {
1662 DeviceError::LockError("Failed to lock performance_analytics".to_string())
1663 })?;
1664
1665 let data_point = PerformanceDataPoint {
1667 timestamp: Instant::now(),
1668 fidelity: result.performance_analytics.overall_fidelity,
1669 throughput: result.performance_analytics.throughput,
1670 latency: result
1671 .performance_analytics
1672 .total_execution_time
1673 .as_secs_f64()
1674 * 1000.0, error_rate: result.performance_analytics.error_rate,
1676 cost: result.resource_utilization.cost_utilization * 100.0, resource_utilization: result.resource_utilization.clone(),
1678 };
1679
1680 analytics.add_data_point(data_point);
1681
1682 Ok(())
1683 }
1684
1685 async fn consider_optimization_trigger(&self) -> DeviceResult<()> {
1686 let optimization_state = self
1687 .optimization_state
1688 .lock()
1689 .map_err(|_| DeviceError::LockError("Failed to lock optimization_state".to_string()))?;
1690 let last_optimization = optimization_state.last_optimization;
1691 let interval = Duration::from_secs(self.config.optimization_config.optimization_interval);
1692
1693 if Instant::now().duration_since(last_optimization) > interval {
1694 drop(optimization_state);
1695 self.trigger_system_optimization().await?;
1696 }
1697
1698 Ok(())
1699 }
1700
1701 async fn trigger_system_optimization(&self) -> DeviceResult<()> {
1702 let _ = self.event_sender.send(ManagerEvent::OptimizationCompleted(
1704 "system".to_string(),
1705 0.05, ));
1707
1708 Ok(())
1709 }
1710}
1711
1712impl PerformanceAnalyticsEngine {
1715 fn new() -> Self {
1716 Self {
1717 historical_data: VecDeque::new(),
1718 ml_models: HashMap::new(),
1719 prediction_cache: HashMap::new(),
1720 }
1721 }
1722
1723 fn add_data_point(&mut self, data_point: PerformanceDataPoint) {
1724 self.historical_data.push_back(data_point);
1725
1726 while self.historical_data.len() > 10000 {
1728 self.historical_data.pop_front();
1729 }
1730 }
1731}
1732
1733impl ResourceMonitor {
1734 fn new(targets: UtilizationTargets) -> Self {
1735 Self {
1736 resource_history: VecDeque::new(),
1737 utilization_targets: targets,
1738 alert_thresholds: [
1739 ("cpu".to_string(), 0.9),
1740 ("memory".to_string(), 0.85),
1741 ("network".to_string(), 0.8),
1742 ("quantum".to_string(), 0.95),
1743 ]
1744 .iter()
1745 .cloned()
1746 .collect(),
1747 }
1748 }
1749}
1750
1751impl AnomalyDetector {
1752 fn new() -> Self {
1753 Self {
1754 detection_models: HashMap::new(),
1755 anomaly_history: VecDeque::new(),
1756 baseline_statistics: HashMap::new(),
1757 }
1758 }
1759}
1760
1761impl OptimizationState {
1762 fn new() -> Self {
1763 Self {
1764 last_optimization: Instant::now(),
1765 optimization_history: VecDeque::new(),
1766 current_strategy: OrchestrationStrategy::Adaptive,
1767 learning_parameters: Array1::zeros(10),
1768 performance_baseline: PerformanceBaseline {
1769 fidelity_baseline: 0.95,
1770 throughput_baseline: 10.0,
1771 latency_baseline: 1000.0,
1772 cost_baseline: 100.0,
1773 last_updated: Instant::now(),
1774 },
1775 }
1776 }
1777}
1778
1779#[cfg(test)]
1780mod tests {
1781 use super::*;
1782 use crate::calibration::CalibrationManager;
1783
1784 #[test]
1785 fn test_integrated_device_config_default() {
1786 let config = IntegratedDeviceConfig::default();
1787 assert!(config.enable_adaptive_management);
1788 assert!(config.enable_ml_optimization);
1789 assert_eq!(
1790 config.orchestration_strategy,
1791 OrchestrationStrategy::Adaptive
1792 );
1793 }
1794
1795 #[test]
1796 fn test_workflow_definition_creation() {
1797 let workflow = WorkflowDefinition {
1798 workflow_id: "test_workflow".to_string(),
1799 workflow_type: WorkflowType::ProcessCharacterization,
1800 steps: Vec::new(),
1801 configuration: HashMap::new(),
1802 priority: JobPriority::Normal,
1803 deadline: None,
1804 };
1805
1806 assert_eq!(
1807 workflow.workflow_type,
1808 WorkflowType::ProcessCharacterization
1809 );
1810 assert_eq!(workflow.priority, JobPriority::Normal);
1811 }
1812
1813 #[tokio::test]
1814 async fn test_integrated_manager_creation() {
1815 let config = IntegratedDeviceConfig::default();
1816 let devices = HashMap::new();
1817 let calibration_manager = CalibrationManager::new();
1818
1819 let manager = IntegratedQuantumDeviceManager::new(config, devices, calibration_manager);
1820
1821 assert!(manager.is_ok());
1822 }
1823}